Zum Inhalt
Fakultät für Informatik

Efficient Storage and Analysis of Genome Data in Databases

Title

Efficient Storage and Analysis of Genome Data in Databases

Authors

Sebastian Dorok, Sebastian Breß, Jens Teubner, Horstfried Läpple, Gunter Saake and Volker Markl

Published

Proc. Datenbanksysteme für Business, Technologie und Web (BTW), Stuttgart, Germany, March 2017

Download

PDF

Abstract

Genome-analysis enables researchers to detect mutations within genomes and deduce their consequences. Researchers need reliable analysis platforms to ensure reproducible and comprehensive analysis results. Database systems provide vital support to implement the required sustainable procedures. Nevertheless, they are not used throughout the complete genome-analysis process, because (1) database systems suffer from high storage overhead for genome data and (2) they introduce overhead during domain-specific analysis. To overcome these limitations, we integrate genome-specific compression into database systems using a specialized database schema. Thus, we can reduce the storage overhead to 30%. Moreover, we can exploit genome-data characteristics during query processing allowing us to analyze real-world data sets up to five times faster than specialized analysis tools and eight times faster than a straightforward database approach.

Project

Real-Time Analysis and Storage for High-Volume Data in Particle Physics (SFB 876, C5)