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Chapter 1

Introduction

1.1 Motivation

The advancements in memory technology in the past decades have allowed for the widespread

usage of large and cheap memory units in personal, commercial and scienti�c computing.

However, even though memory capacities and throughput have increased signi�cantly over

the past decades memory latencies have remained almost stagnant in comparison[5]. As

data intensive applications now seek to process Terrabytes of data, time is therefore in-

creasingly spent on the movement of data[1].

One alternative paradigm, that has recently gained traction is that of processing in mem-

ory(PIM)/computational memory, which promises to reduce times spent for waiting on

memory cells, by placing some processing capabilities close to the memory[13].

While the most accessible way of using the parallelism provided by modern multi-core CPUs

is the use of threads, which are implemented for almost all hardware platforms, threads

obfuscate the underlying architecture, in the worst case incurring additional overhead

through expensive context switches [17]. Modern task based frameworks such as MxTasking

[11] aim to avoid these pitfalls by enabling the programmer to develop their program in a

manner, that is considerate of architectural characteristics.

1.2 Goals of this thesis

The main objective of this thesis is to reevaluate the previous scienti�c observations re-

garding the database operation of aggregation in a current technological context. For

this purpose, aggregation with regard to various types of workloads will be examined uti-

lizing modern hardware, with both a traditional architecture i.e. a multicore CPU, as

well as a specialized architecture i.e. a hybrid system using an accelerator optimized for

database-workloads. The accelerator chosen for this thesis is the UPMEM PIM system.

1



2 CHAPTER 1. INTRODUCTION

Both architectures will be utilized using a task-based framework, speci�cally MxTasking,

in order to evaluate the e�ectiveness of a task based framework on this computational

memory platform.

Additionally, given the novel architectural environment given by the UPMEM PIM system

this thesis will focus on exploring various approaches to implementing aggregation on this

system and discuss bene�ts and shortcomings thereof for di�erent types of workloads.

1.3 Structure of this thesis

Chapter 2 will introduce the necessary concepts for this thesis starting with the algorith-

mic problem of aggregation and its previous solutions in the literature, followed by an

introduction to the concept of task-based frameworks leading into the MxTasking frame-

work. Finally, the technology of Computational Memory will be introduced. Chapter 3

will discuss the extension of the MxTasking framework, onto the UPMEM PIM system.

The implementation of a set of aggregation algorithms utilizing the UPMEM PIM system

is discussed in chapter 4. Chapter 5 is dedicated to the discussion of the experimental

setup and the retrieved results from both the UPMEM-based implementation as well as

the purely CPU-based implementation which has been created for comparison. Finally,

chapter 6 will summarize the results of this thesis and give a brief overview of possible

future work on the subject matter.



Chapter 2

Fundamentals

2.1 Aggregation

The emergence of the �rst multi-core processors brought the potential for an increase in

performance for the algorithmic problem of aggregation, while also requiring more sophis-

ticated and more specialized algorithms to fully utilize the available processor cores[6].

Previously the existence of the cache-hierarchy had strictly been bene�cial for workloads

with smaller group-by-cardinalities or workloads with keys that are clustered in one way or

another, because the small hash table size required to store the aggregation results could

�t into the smaller caches resulting in a reduced memory access time when aggregating.

The emergence of multi-core processors introduced the new factor of contention into this

algorithmic problem[6]. This led to the invention of a variety of di�erent algorithms meant

to alleviate the performance decreases caused by contention, of which four key approaches

will be discussed in the following.

2.1.1 Sorting based and hash based aggregation

While the majority of aggregation algorithms that are going to be discussed in this thesis

utilize the concept of hashing, sorting also is an option for implementing an aggregation

algorithm. In spite of the inherent cache friendly behavior of some sorting algorithms,

the fact that even the fastest sorting algorithms have a worst case runtime complexity of

O(n · logn) whereas hash based algorithms can achieve runtimes in O(n) as long as the

used hash table is su�ciently large, and the hash function has been chosen adequately, has

generally led to the dismissal of these algorithms [6].

2.1.2 Independent table aggregation

As implied by its name, this algorithm utilizes one independent table each for each processor-

core in the system. Only when a core is done with its given workload is it necessary to

merge the resulting hash table into a centralized hash table.

3
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The big advantage of this approach is that it entirely avoids contention, excluding the

merge-phase, which depending on the group-by-cardinality may be very short.

While this approach does avoid the overhead caused by contention and the necessary syn-

chronization coming along with it, it simultaneously runs into the problem of requiring

signi�cantly more memory to store its hash tables. While this memory requirement typi-

cally is not a big problem for today's in-memory databases as RAM-capacities can reach

hundreds of GB this attribute of this approach can quickly lead to the hash tables no

longer �tting into the Last Level Caches (LLC) of the given system [6]. This typically

means that other approaches outperform the independent hash tables when the group-by-

cardinality induced hash table size reaches a fraction of the size of the LLC because of the

comparatively slow RAM-access times[6].

Conversely, the nonexistent overhead for small group-by-cardinalities causes this approach

to be by far the most performant for small group-by-cardinalities[6].

2.1.3 Shared table aggregation

This approach is e�ectively the opposite of the independent table algorithm, as it simply

uses one hash table which all processor cores work on at the same time. This means

however that in order to avoid race conditions, some kind of synchronization method is

necessary.

The two main techniques for synchronizing the access to a shared variable are locking

and atomic-instructions. Due to the independent nature of the individual entries in the

hash table, atomic-instructions can be easily utilized for this purpose, while outperforming

locking due to the lower overhead associated with its instructions[6].

Alternative approaches to the utilization of shared hash tables for aggregation have been

inquired in the literature such as the idea of contention detection, where aggregation would

primarily occur in a shared hash table until contention was detected by the inability to

access a key in the table for one thread[18]. The key for which the contention was detected

would then be evicted for every table into a private hash table, thereby avoiding further

slowdown on this potentially contentious key.

2.1.4 Hybrid aggregation

While the shared table algorithms are typically able to outperform the independent table

algorithm for large group-by-cardinalities, this may not be the case if the distribution of

keys is so severely imbalanced that it induces a large enough amount of contention on some

key or group of keys, such as is the case for heavy-hitter-distributions.

Given such a workload it would be bene�cial to separate common keys and to store them

in an independent hash table for every thread to avoid the contention on them, while still

using a shared hash table for the remaining keys in order to limit the total size of all hash
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tables such that the cache doesn't get trashed for medium group-by-cardinalities as would

be the case for the independent hash table algorithm [6].

The hybrid aggregation algorithm implements this idea by utilizing small independent

hash tables for every thread which are usually sized to �t into one of the cache levels, while

keeping track of some metric for determining which keys to keep in this private table,

usually this is the access frequency or last access time [6]. When the private hash table is

full, the key with the lowest score with regard to the metric will be evicted into the shared

table and possibly merged with previous values for that key [6].

While this algorithm is particularly well suited for the aforementioned imbalanced key

distributions, its performance for more balanced distributions is slightly worse than that

of the two other algorithms [6]. This is because using the private hash tables causes an

additional overhead, in particular for large group by cardinalities, where the majority of

keys will have to reside in the large shared hash table, but still need to be checked in the

private hash table [6].

2.1.5 Partitioning based aggregation

As described above, the performance of aggregation algorithms is heavily dependent on

the distribution of the keys in the given workload, because of its in�uence on both the

contention and the potential cache misses caused by it. By performing a partitioning step

before executing the aggregation it is however possible, to both avoid the contention that

would be caused by the access to common keys as well as avoiding a substantial amount of

cache misses caused by other algorithms[18]. This however comes at the substantial cost of

having to perform the partitioning step which, is the main performance bottleneck of this

algorithm and has therefore seen a large amount of scienti�c investigation into optimizing

it for varying workloads[18][7][12].

Partitioning is performed by computing a hash function on the key of every tuple, and

using it to segregate the data into partitions which only contain a limited but exclusive

range of the possible keys[18]. The size of each range is chosen such, that the hash table

or each partition can �t into some cache-level, thereby ensuring no cache-misses during

the aggregation step[18]. Due to the large overhead which is caused by the partitioning

step this algorithm is outperformed for small group-by-cardinalities by the independent

algorithm, though there are hybrid approaches combining both. For very large group-by-

cardinalities however, this approach outperforms all other approaches, as the partitioning

overhead is smaller than the RAM access overheads incurred by other algorithms for the

majority of all tuples[18].
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2.2 MxTasking

MxTasking[11] is a recent example of a task based framework for application development.

It realizes a system for managing and scheduling tasks, as small batches of worker, which

can be scheduled onto a speci�c core while being executed without interruption. These

tasks can also store additional information to enable the e�cient scheduling of the tasks[11].

This information includes the priority of a task and its target.

While options exist to use the MxTasking framework by directly annotating a speci�c

processor core to a task as its target, an additional option is provided to specify a data

object as the tasks target instead. In doing so the MxTasking framework provides the

programmer with an automated way to structure the scheduling of a programs tasks around

the data of the program on the granularity of individual tasks[11].

In order to allow for this automated data oriented scheduling to take place, MxTasking

allows the programmer to annotate such data objects. The options for these annotations

include the following:

1. The target, i.e. a processor core or a NUMA node

2. The expected access frequency

3. The read write ratio

4. The preferred synchronization protocol

These annotations are mainly used by the framework to provide a way to automate the

synchronization of each task. As resource objects may be of any size and as the synchroniza-

tion method is applied for the duration of a task's execution, the available synchronization

protocols do not include atomic operations and instead support approaches linked with

locks, such as spin locks, mutexes and write-speci�c locks, though it is also possible to not

use the runtime's synchronization[11].

Additionally the information available to the framework about what data a task intends

to use during its execution, enables it to issue prefetch instructions to the responsible

processor core, as the framework controls the order of the execution of tasks for each core.

In doing so some memory latencies may be hidden[11].

2.3 Computational Memory

Computational memory as a term can refer to two di�erent ideas. One idea expressed

by the term, is the implementation of computations directly in memory, i.e. having the

necessary circuitry for some computations not only reserved for the registers inside of a

processing core, as it is historically common for computers, but rather to provide this

infrastructure for what is considered the memory of the given computer, which is referred
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to as processing using memory(PUM)[13]. The second idea expressed by the term, is

moving the infrastructure needed for computations closer to the memory, which is referred

to as processing near memory(PNM)[13]. One possible approach to achieving that would

be to associate every chunk of memory of some given size with some kind of processor-core

which is located in proximity of its chunk of memory, which is the approach taken by the

UPMEM PIM system[16].

2.3.1 Architecture

The UPMEM PIM-system takes the shape of commonly available RAM-modules called

DIMMs of which depending on the mainboard of the used computer up to 20 may be used

at a time[16]. Each of these DIMMs consists, depending on the version, of either one or

two ranks, which are the smallest units which can be invoked independently[16]. Each

rank is made up of 8 chips, which each contain each 8 memory banks with a capacity of

64 MB and every memory bank has a dedicated DRAM processing unit (DPU) associated

with itself, which enables it to independently perform computations[16].

Each DPU consists of four components, which are the processing core itself, the 64 MB

memory bank which is called main RAM (MRAM), a 64 KB scratchpad memory which is

called working RAM (WRAM) and a 24 KB instruction memory called instruction RAM

(IRAM)[16].

Each DPU is a 350 MHz in-order single-core processor and is equipped with 24 register

sets enabling the use of up to 24 hardware-threads, which are called tasklets, at a time.

Notably because a DPU is a single-core processor every tasklet on a DPU shares the same

pipeline[16].

The DPUs utilize a 16-step pipeline, however only the last 5 steps of an instruction may

be executed at the same time as the �rst 5 steps of a subsequent instruction from the

same tasklet[8]. Therefore, the maximum performance of an UPMEM DPU can only be

achieved when at least 11 tasklets are executed at a time[8].

With the exception of MRAM accesses every assembler-instruction that can be executed

on a DPU needs exactly 16 cycles, which means that for a full pipeline one instruction can

be executed in one cycle on average[8]. However, while the supported instruction set does

contain most simple operations, such as additions, subtractions, logical operations and bit

operations both for signed and unsigned 32-bit integers, there is no hardware-support for

multiplications, divisions or any kind of �oating point operations[16]. These operations

are instead implemented as a sequence of the available assembler-instructions which makes

their execution signi�cantly slower when compared to the relative speed on other hardware.

[8] therefore recommends to avoid using these instructions when possible.

While each DPU has the three memory segments IRAM, WRAM and MRAM at its dis-

posal, only the WRAM is directly accessible from the given DPU[16]. As with every
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DPU-assembler-instruction a WRAM-access takes 16 cycles[16]. However, as programs on

the DPUs can only utilize the full available performance of the hardware if at least 11

tasklets are running at the same time and as all three memory segments are shared among

the tasklets of a DPU some kind of synchronization is needed to avoid race-conditions when

accessing the same memory with multiple tasklets. For this purpose there are 56 hardware-

mutexes available which may be used directly or indirectly through various libraries to

implement more advanced synchronization patterns[16]. While a lock/unlock-operation

is signi�cantly faster in relative terms than on conventional hardware, as no actual com-

munication with another processor is necessary, a singular lock-call is implemented in 1

assembler-instructions in addition to being implemented by spinning, i.e. taking up the

pipeline when waiting on another thread[16].

As mentioned before access to the MRAM is treated in a special manner by the DPU as

doing so removes the calling tasklet from the pipeline until the requested memory has been

retrieved. Additionally, only one MRAM access may be going on at a time, meaning that

other tasklets issuing MRAM-access instructions will also suspend their execution when

waiting for the previous tasklet to �nish its access, though this also means that access to

the MRAM is functionally atomic[16]. Furthermore, access to the MRAM must happen

both aligned on 8 Bytes and in multiples of 8 Bytes reaching its maximum at 2048 Bytes

per transfer[16]. Because every access to the MRAM incurs an access-latency in addition

to the per-byte-constant transfer time, throughput increases for larger transfer-sizes, as

the access-latency becomes a smaller component of the time [8]. This means that random

access on small byte amounts incurs a signi�cant penalty compared to large sequential

reads or writes from/to MRAM, as a single read takes 77 cycles whereas a single write

takes 61 [8].

Finally the IRAM of a DPU is not accessible for programs to work in, but instead stores

the entirety of the code that can be executed on a DPU during a given invocation. While it

is integrated in such a manner, that instructions can always be loaded into the appropriate

register on time [16] its organization also imposes a hard limit on the complexity of the

code that can be executed during one given invocation of a DPU. With one instruction

taking up 6 Bytes this limit is reached at 4096 assembler-instructions [8].

One notable characteristic of the UPMEM PIM system is that every DPU has only access

to its own memory, i.e. its IRAM, WRAM and MRAM and that it by itself can neither

communicate with other DPUs directly nor do so with the CPU[16]. As the DPUs are

treated as an accelerator system for the CPU to invoke, everything the DPUs do must be

called on by the CPU through the provided library.
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2.3.2 Supported Software

The SDK provided by the UPMEM company includes a compiler for the DPU programs,

the required libraries for implementing a host application, as well as debuggin tools for

both[16]. The host application can be written in C, C++, Java or Python, however, the

low level API is only implemented in C code. The API provides access to all operations

necessary for sending and receiving data from the DPUs as well as for their invocation[16].

DPU-programs can be written in C, the specialized assembler-language or a combination

of both. The libraries implemented for the DPU-programs include most of the standard

C libraries such as the stdio.h and the stdlib.h functionality for transferring data between

the WRAM and MRAM is provided in the mram.h library[16].

Due to the performance criticality of implementing multi tasklet programs, additional li-

braries are provided by the UPMEM SDK, for synchronizing the access to the memory.

These include a mutex, barrier, semaphore and handshake implementation, which inter-

nally use the provided 56 hardware mutexes[16].

2.4 Related work

[6] , [18] and [14] have discussed aggregation on multi-core processors, for various input

distributions.

[8] discussed the performance of the UPMEM PIM system for a variety of general work-

loads, while [3], [4] and [2] discussed and evaluated various use cases of UPMEM with

regard to database workloads. [9] has evaluated the UPMEM PIM system for a selection

of database operator including aggregation, while considering one particular approach for

distributing the hash tables across the available DPU memory, that is similar, to the hybrid

algorithm.

Finally, [15] has already implemented support for the use of remote accelerators for the

MxTasking framework, while however staying limited to the use of conventional CPU based

architectures. For that purpose they have particularly focussed on the granularity of the

transferred tasks.
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Chapter 3

A task-based approach to utilizing

an UPMEM PIM system

As alluded to in section 1.2 the implementation of the aggregation experiments which this

thesis focuses on, is based on the MxTasking framework introduced in subsection 2.2.

As discussed in section 2.3.2 the UPMEM PIM system cannot operate independently of

a host program as the individual DPUs only have access to their own private memory

segments and cannot communicate among each other. Additionally, the programs that

run on the UPMEM PIM system must be compiled with a specialized compiler provided

in the UPMEM SDK and then transferred into the IRAM of the targeted DPU set. As the

MxTasking framework is mainly written in C++ it is compatible with the host libraries

which are available in both C and C++[16]. Therefore, the following sections are going to

discuss the implementation of the extension of the MxTasking framework for the UPMEM

PIM system.

3.1 Software architecture of the host side

As the code of the host side is an extension of the original MxTasking framework, a brief

rundown of it shall be given in the following subsection.

3.1.1 Original MxTasking software architecture

As can be seen in �gure 3.1 the MxTasking framework is centered around the runtime class,

which is a utility class that provides access to everything necessary for using the framework.

As discussed in subsection 2.2 the MxTasking framework does not only automate the

scheduling of tasks, but also provides options for doing so while basing the scheduling on

data used by each task.

Therefore the two main objects of the MxTasking framework are the task and the resource,

which are both abstract classes that are managed by the subsystems of the runtime and

11
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runtime application

Task

Scheduler Worker

TaskBu�er

TaskPool

Figure 3.1: The central components of the original MxTasking framework [11].

need to be overwritten by the programmer to use. The main operations that the runtime

supports with regard to these two primitives is their creation, annotation and deletion,

which is managed by one specialized allocator each and the dispatching of the tasks onto

the cores of the computer using the Scheduler class [11].

The main purpose of the Scheduler class is the managing of the individual processor cores

of the given system, which are abstracted by the Worker class. The Scheduler therefore

stores one Worker object for each processor core used by the runtime and each Worker

executes one thread which is permanently pinned to a processor core. Each Worker owns

a TaskPool (made up of di�erent underlying queues for synchronized and unsynchronized

access) and a TaskBu�er. Tasks that get scheduled to a Worker by the Scheduler are �rst

added to its TaskPool. When the setup of the program is �nished and the Workers are

launched, the Worker transfers the oldest tasks with the highest priority into the bu�er

which has a static size, where they are prepared for prefetching and executed in a strict

order. Tasks must return a TaskResult upon completion, which may either spawn followup

tasks, contain information about how to handle the tasks memory or instruct the runtime

to shut itself down. So the process of Workers executing tasks from the TaskBu�er and

fetching new tasks from the TaskPool which new tasks can be scheduled to is repeated

until a task returns the shutdown signal[11].

The lifecycle of a task therefore consist of the following steps:

1. The creation of the task

2. The annotation of the task e.g. with a core or a resource which has been created

beforehand
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runtime application

Task

Scheduler Worker

DPURank

TaskBu�er

TaskPool

DPUTaskBu�er

DPUTaskPool

Figure 3.2: The central components of the extended MxTasking framework.

3. The dispatching of the task, which leads to its scheduling and execution

4. The deletion of the task

3.1.2 Extension of the MxTasking software architecture onto the UP-

MEM PIM system

In order to extend the MxTasking software such that it supports scheduling tasks onto the

UPMEM DIMMs it is crucial to consider how the individual components of UPMEM may

be addressed by the programmer.

While each DPU can run up to 24 so called tasklets, which aside from sharing the same

WRAM and MRAM can execute code independently, these tasklets cannot be invoked

independently. Furthermore, not even the 2560 DPUs available in a full UPMEM instal-

lation can be invoked independently. Instead, DPUs are grouped together in groups of 64

which are called ranks and which are the smallest unit that can be invoked independently

and with di�erent code[16].

In order to incorporate these hardware limitations the following decision with regard to

the framework's software architecture have been made. In order to provide a maximum
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amount of precision to the programmer with regard to the location of the execution of a

task on the UPMEM system, each tasklet is functionally treated as the equivalent of a

worker on the CPU. Therefore, tasks may be scheduled to speci�c tasklets.

However because only one DPU set may be allocated and invoked per rank the scheduler

uses the DPURank class as the chosen abstraction. By doing so a similar approach as

the one taken for CPU tasks may be used for scheduling to the UPMEM DIMMs. While

tasks may be scheduled to the DPUs on a granularity of their tasklets the Scheduler

merely computes the rank that tasklet belongs to and then passes it on to the appropriate

DPURank object.

The DPURank object contains an array of DPUTaskPools where each represents one of

the DPU workers i.e. tasklets. When the scheduler is launched the DPURank object will

retrieve as many tasks from the pools as possible and store them in the DPUTaskBu�er,

which is only present once per DPURank object. In the DPUTaskBu�er object the tasks

are converted to a format which is appropriate for the execution on the DPUs, that is, an

8 Byte object, which only contains an 1 Byte ID that identi�es the type of the task and a

4 Byte address used to locate the address of an optional associated resource on the local

DPU. After having been converted to this simpli�ed format the tasks are stored into the

bu�er that is going to be used to transfer them to the DPUs of the rank. The structure

of this bu�er depends on the chosen DPU runtime implementation, and is going to be

discussed in depth in section 3.2.

In order to accelerate the address computations for the task batches both on the CPU

and DPU, the number of concurrently working DPU workers, was set to 16, as it has the

advantageous characteristic of both being a power of two between the minimum required

11 tasklets and the maximum 24.

During execution each rank is managed by one thread, however as the actual actions of

these threads are mostly limited to waiting in a loop for the �nishing of the ranks execution

and preparing the tasks for transfer, these threads are not pinned to a speci�c core. The

steps taken in the loop are as follows:

1. The rank's thread checks whether a signal has been sent to invoke the DPU rank. If

not the loop repeats.

2. The thread fetches as many tasks as possible from its DPUTaskPools and converts

them to the appropriate format for the DPUTaskBu�er. Then it transfers them to

the MRAM of the ranks DPUs.

3. The thread invokes the DPU rank using the synchronized method, i.e. it waits for

its completion.

4. Once the thread determines, that the rank is done, it transfers the followup task

bu�er from the MRAM and spawns the appropriate CPU tasks.
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5. The thread returns to step 1.

To enable a more energy e�cient approach, the active waiting of the ranks could be re-

placed with calls that enable the operating system to use some set amount of processing

time somewhere else, however as this thesis is focused on the achievable performance such

considerations have not been made.

3.1.3 DPU task de�nition and compilation

So far this thesis has discussed the procedure for distributing and transferring tasks to

their designated workers on the DPUs. This section is going to introduce the procedure

for de�ning and compiling the code of these tasks to prepare them for their execution on

the DPUs.

1 bool task1 ( uint32_t resource_po inte r )

2 {

3 do_something ( ) ;

4

5 return true ;

6 }

Listing 3.1: Example of an empty DPU task. As the address space of a DPU is less than 4 GB

the 32 bit integer may be cast to a pointer if needed.

As the code that runs on the DPUs cannot be simply compiled as part of the host appli-

cation, but instead needs to be separately compiled and transferred to the targeted DPU

set's IRAM, additional steps need to be taken so that tasks may be spawned on the CPU

at runtime and executed on the DPU. The runtime was therefore extended to support

the de�nition of tasks and resources on the DPU as well as the compilation of those into

a functioning DPU program. However, as the DPUs do not support the object-oriented

features of C++, tasks are de�ned as functions of the shape seen in listing 3.1, whereas

resources are de�ned as simple structs.

In order to de�ne a DPU task, one must begin with the same procedure as when de�ning a

task meant for the execution on the CPU, i.e. overwrite the abstract task class provided by

the MxTasking framework. However, unlike a CPU task, the actual execute method may

be left empty as it will not be used. Instead, the main usage of the data object associated

with the class is to be registered at the DPUCompilationUtility, which is responsible for

generating and compiling the code that is going to be executed on the DPUs.

In order to do so, two methods have been added to the original task class de�nition,

which are a setter and a getter for the dpu_task_id, which is the one byte ID meant to

identify the task type on the DPUs. The overwriting task class must therefore use a class

attribute, and make it accessible through its setter and getter, which it needs to overwrite
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appropriately. By doing so it is possible to pass an instance of the overwriting Task to the

DPUCompilationUtility which will then generate a new ID and set it for that task, as well

as storing it internally for code compilation.

When an instance of that task is later created and spawned, the scheduler will �rst check

the annotation, which distinguishes the execution location, i.e. CPU or DPU in order to

either pass it on to a CPU worker, or to the annotated DPURank. The annotation used for

denoting a DPU worker is the same 2 byte attribute as that used for annotating the CPU

core. This is because the maximum number of workers in the currently available version

of UPMEM is 24 · 64 · 40 = 61440 < 65536 = 216.

In case of a CPU annotation the process described in section 3.1.1 is followed.

In case of a DPU annotation the DPURank will append the Task object to the appro-

priate DPUTaskPool. When the rank is ready to be invoked, the least recently spawned

tasks in the pool will be transferred to the DPUTaskBu�er, which utilizes the getter

for the dpu_task_id to determine which type of task should be represented, as the

DPUTaskBu�er converts the previous relatively complex task object to an eight byte struct,

containing the one byte task type as well as a four byte pointer to the DPU resource, which

may be assigned via the resource annotation.

Notably however, it is possible to overwrite a task class and to de�ne functionality for both

the CPU side and the DPU side. The version which is going to be actually executed then

depends on the annotations that were used for that class at runtime.

Creating code for the DPU that is compatible with the MxTasking framework functions in

the following way. When registering a task it is also necessary to provide the name and code

of a C function as a string object. Both will then be used in combination with the registered

ID to automatically be written into a template for the DPU runtime code, by adding them

to the switch case in the main runtime loop on the DPU. In addition to de�ning tasks this

way it is possible to register de�nitions of any kind in the appropriate DPU compatible C

code by just creating a string with that code and using the register_declaration method

provided by the runtime.

3.2 Software architecture of the DPU side

Unlike the host side of the application which will usually be run on a modern CPU with

a frequency of a couple GHz, the DPUs used for the experiments of this thesis run at

a frequency of 350 MHz. In addition to that it is necessary to execute multiple tasklets

which share the same pipeline in order to �ll the pipeline and take full advantage of the

available 350 MHz, as discussed in section 2.3.1.

Both these characteristics make it so, that implementing a complex runtime system on

the DPUs would lead to a comparatively signi�cantly larger overhead than on a CPU.

Therefore, in order to avoid burdening the system with this overhead the architecture
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of the tasking runtime on the DPUs has been kept relatively simple as the majority of

operations on the tasks such as the scheduling are managed on the host side as discussed

in section 3.1.

A slightly simpli�ed code segment of the runtime implemented on the DPUs can be seen

in listing 3.2. As can be seen there, the DPU runtime is similar to the host runtime in that

each worker iterates over a bu�er of tasks which it has been assigned and executes them,

where after it proceeds by retrieving new tasks. The di�erences are as follows:

1 main ( )

2 {

3 i f ( worker . id == 0)

4 {

5 in it_runt ime ( ) ;

6 }

7 do

8 {

9 load_next_task_batch_from_mram( worker . id ) ;

10

11 for ( task in current_task_batch ( ) )

12 {

13 switch ( task . type )

14 {

15 case 0 :

16 shutdown_worker ( ) ;

17 case 1 :

18 execute_task_type1 ( task . r e s ou r c e ) ;

19 case 2 :

20 execute_task_type2 ( task . r e s ou r c e ) ;

21 }

22 }

23 }

24 while ( next_task_batch_exists ( worker . id ) )

25

26 }

Listing 3.2: Pseudocode for the central code executing on each worker of each DPU

� Tasks are not fetched from a queue but from an array stored in the MRAM

� As DPU code may only be written in C code, the di�erent task types are not deter-

mined by polymorphism but instead by a switch case over the task type which has

to be explicitly stored in the task struct

� Neither support for prefetching nor automated synchronization methods are imple-

mented, to avoid the associated overhead
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Figure 3.3: The structure of the task bu�er used for the simple runtime implementation. The

structure on top is the MRAM task bu�er, from each worker fetches the next batch into the WRAM

task bu�er(bottom).

3.2.1 Alternative versions of the DPU runtime

As can be seen in the listing 3.2 the main function of the DPU runtime, is the retrieval and

execution of the tasks for each DPU worker. As the tasks are represented by data in the

shape of the task bu�er, their movement competes with the movement of the actual appli-

cation data, over the MRAM bandwidth available on each DPU. Additionally, the space

required for storing the current batch of tasks competes over the limited WRAM space

with the requirements of the application. Therefore, three approaches for implementing

the runtime on the DPU have been implemented, which aim to minimize the performance

overhead caused by the runtime.

In order to do so, these approaches attempt to use the maximum possible transfer size for

the task-transfers, while keeping the size of the task bu�er in the WRAM small, such that

enough memory remains for the application data.

Simple runtime

The simple runtime represents a naive approach to implementing the runtime. It is equiv-

alent to the runtime main loop represented in listing 3.2. This means, that every DPU

worker simply fetches new task batches from the MRAM task bu�er, until a task contains

the 0 type or the end of the MRAM bu�er is reached, at which point the worker aborts its

execution. While this implementation requires no synchronization between the individual

workers, it has the disadvantage, that every worker needs its own WRAM bu�er. If this

bu�er's size is chosen to be the optimal transfer size of 2048 bytes all 16 workers will need

to store one such bu�er totaling in a memory requirement of 32 KB, thereby taking up

half of the available 64 KB of the WRAM. As this would leave far too little space for the

application data, as memory is still needed for the stacks, the decision has been made to

instead aim for a transfer size of 1024 bytes and to �t all 16 workers in there (i.e. 64B per

worker and transfer).
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Figure 3.4: The structure of the task bu�er used for the two bu�er runtime implementation.

The WRAM task bu�er(bottom) has space for two task batches, which each have 16 task seg-

ments, where each segment contains the eight tasks belonging to one worker. New tasks from the

MRAM(top) are only fetched if no more workers (yellow dots) are active in the given half of the

task bu�er.

In doing so a middle ground approach has been taken, which prioritizes leaving su�cient

space for the application data, while allowing for a non synchronized task transfer, that

cannot pro�t from the optimal transfer sizes thereby su�ering from a performance decrease

in that regard.

Two bu�er runtime

An alternative approach to implementing the DPU runtime, is to discard the notion of not

synchronizing the task transfers, and to thereby gain the ability to use shared, but larger

transfer bu�ers(i.e 1024B), which do not take up as much total space, due to there being

fewer of them. To do so this approach uses two bu�ers, which each interleave the tasks

for the di�erent workers, as can be seen in �gure 3.4. Unlike the �rst implementation, this

version, does not rely on the worker tasklets for fetching the task data. Instead, a separate

17th task loader tasklet is used which executes a di�erent main loop, in which it waits on

a semaphore and then loads in a new batch of tasks. This is because the semaphore is

internally implemented by actually removing waiting tasklets from the pipeline until they

are woken back up, thereby preventing this tasklet from taking up the pipeline unless it is

executing its loading code[16].

When a DPU is launched, one worker will fetch the �rst two task batches, which contain

tasks for all 16 workers, after which the workers will start their main loop, where they

iterate over the tasks that belong to them in the bu�er. However, whenever a worker

�nishes the last task of a batch it must check whether it was the last worker to leave the

batch and if it was it is responsible for waking up the task loader tasklet which will then

load in a new batch into the space of the older batch. When a worker is so fast, that

it �nishes all tasks from both current WRAM batches, before the older batch has been

replaced it must remove itself from the pipeline, by waiting for a semaphore as well, which

will later be woken up by the task loader tasklet.
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Figure 3.5: The structure of the task bu�er used for the grouped worker runtime implementation.

The bu�er has space for four task batches, which each have four task segments, where each segment

contains the 32 tasks belonging to one worker. The top shows the MRAM task bu�er and the

bottom the WRAM task bu�er. Notably, each memory segment here is four times as large, as in

the previous illustrations.

While this implementation allows for the use of the largest transfer sizes, while reducing

the required memory down to 2 · 2048B = 4KB from 162̇048B = 32KB (though in the

experimental evaluations only 1024B are used per batch) for doing so, limiting the number

of currently active batches down to two, means that very fast tasklets are forced to wait on

the slowest tasklet. However, as 16 workers are used, this leads to an automatic balancing

mechanism, because the remaining workers will take up a larger part of the pipeline during

these intervals. While the synchronization overhead for each worker is limited to checking

whether it was the last worker to �nish working on a task batch and checking whether the

task batch it worked on was the older one, this overhead is new if compared to the simple

runtime implementation.

Grouped worker runtime

While the two bu�er runtime implementation presents a relatively low overhead approach

to implementing a synchronized task fetching system, not relying on synchronizing all work-

ers for retrieval might be bene�cial if the workload distribution is simultaneously hard to

predict and unbalanced. The third approach to implementing the DPU runtime therefore

organizes the 16 workers into groups of 4, which each use a separate 2048B WRAM bu�er

for their tasks. This however requires a di�erent structure of the WRAM bu�ers, which

can be seen in �gure 3.5. The process of execution works as follows:

One worker for each group loads in the �rst task batch, where after they start working on

the tasks. When a worker is done with its tasks in the batch, it checks whether it is the

last one to �nish.

If it is not, it removes itself from the pipeline by attempting to acquire a semaphore.
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If it is, it loads in the next task batch for the group and wakes up the waiting members.

This implementation, has the bene�t of having the groups operate independently, thereby

requiring four very slow workers across the groups to slow the execution down, thereby

decreasing the likelihood of that happening. Additionally, as each group has a larger bu�er

at its disposal, the instruction count for synchronization is reduced if compared to the two

bu�er implementation. It should be noted that this leads to a bigger memory requirement.

The main idea of this implementation, is that, as four groups of four are present, the ma-

jority of the time 16 workers are going to be active at a time. When a group is stopped only

four workers are missing from the pipeline for the duration of the task transfer, thereby

still allowing for a full utilization of the pipeline with 12 workers. If however, more than

one group is waiting for its task transfer at the same time, there is a risk of the pipeline

not being full.

The experimental evaluation of these runtime implementations is going to take place in

chapter 5, as well as an experiment regarding the overall overhead of the tasking system

in general.

Follow-up tasks

In order to provide an easily accessible structure for the communication from the DPUs

to the CPU a follow-up task mechanism was implemented on the DPUs tasking runtime.

This simply means, that an additional task bu�er with 8 task slots per worker is present

in the WRAM of each DPU, and to which the DPU workers can issue the spawning of a

follow-up task. These tasks will then �rst be transferred to the MRAM and then to the

CPU, once the DPU execution completes, and spawned there, enabling the control of what

is to happen on the CPU in a task driven manner.

Notably the implementation of the task based runtime on the DPU implemented in this

thesis, does not support the spawning of new tasks that will be executed on the DPUs

during the DPU execution, and instead relies on the CPU for this. The decision to not

implement this feature has been made, as it was estimated to not be useful for the aggre-

gation workload this thesis focuses on. Additionally, it would require additional operations

for the workers to check for new tasks in some fashion.
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Chapter 4

Aggregation on an Upmem PIM

system

In this chapter, the implementation of various algorithms for aggregation on the UPMEM

PIM system is going to be discussed. The �rst section of this chapter is going to introduce

the given workload that the following sections are going to tackle. The second section

is going to evaluate whether, and if how, the algorithms commonly used for multi-core

aggregation can be modi�ed to work on the UPMEM PIM system. Finally, the third

section is going to discuss the speci�c implementations that have been developed for these

algorithms as well as which parameters are of note for invoking them for di�erent workloads.

4.1 Workload de�nition

As stated in chapter 1 the goal of this thesis is the investigation of the viability of computa-

tional memory for the workload of aggregation when compared to other currently available

hardware. While the problem of aggregation on the UPMEM architecture in particular has

already been investigated by other authors[9], the important question of the initial location

of the table data has been answered with the DRAM of the CPU. While this approach is

in line with the usage of the UPMEM PIM system as an accelerator, this thesis is going

to speci�cally investigate the aggregation of data that is already present in the MRAM

of the DPUs of an UPMEM system, as would be the case during the runtime of some in

memory database application. Additionally this thesis seeks to use a variaty of di�erent

algorithmic approaches to investigate UPMEM's viability in a broader context.

In doing so this thesis aims to provide a perspective on the UPMEM PIM architecture

that is more accommodating to its architectural shortcomings, in particular its reliance on

the limited DRAM bus, in addition to the requirement of having to perform a bit shu�ing

operation whenever moving data from and to the UPMEM DIMMs[8]. Additionally, this

thesis will focus on the aggregation of simple 8 byte tuples made up of a 4 byte key and

23
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a 4 byte value which are stored in a column based arrangement. MRAM tables are set to

always hold 32 MB of data i.e. 222 tuples.

4.2 Applicability of CPU aggregation algorithms

4.2.1 Sorting and hash based aggregation on UPMEM

As discussed in section 2.1.1 aggregation algorithms generally are either implemented using

sorting or hashing. However, sort based aggregation algorithms were usually dismissed due

to their longer O(n·logn) runtime as compared to the expected O(n) runtime of hash based

algorithms.

While the inherent runtime constraints of sort based algorithms naturally apply on all von

Neumann based computer architectures, including that of the UPMEM PIM system, two

particular characteristics of it have an additional impact on the viability of these algorithms

on it.

1. The lack of direct communication channels between the individual DPUs means, that

additional transfers to the CPU are necessary, to merge the result across the DPUs.

2. The comparatively low clock speed of the UPMEM DPUs means that, unlike on a

CPU, workloads which require too many instructions per byte may become compute

bound, which inherently means, that any workload with more operations per byte is

at an additional disadvantage on the UPMEM architecture [8].

Due to the inherent disadvantage the UPMEM architecture therefore has when implement-

ing sorting, sorting based aggregation algorithms were dismissed as possible candidates for

the implementation in this thesis. The remainder of this chapter is therefore going to focus

on the discussion of hash based aggregation algorithms on the UPMEM PIM system.

4.2.2 Independent and shared table aggregation and hybrid aggregation

on UPMEM

This section is going to discuss its three titular aggregation algorithms together, as they

all fundamentally represent di�erent ideas on how to handle and/or avoid the contention

induced when aggregating values into a hash table, while thereby carrying with them dif-

ferent properties in terms of their cache utilization.

As the MRAM of the UPMEM DIMMs may be compared to the DRAM of a traditional

CPU based architecture, while the WRAM shares similarities with a CPUs cache while

also being fully controllable through the programmer, the UPMEM PIM architecture o�ers

new ways of implementing these algorithms, while requiring more implementation e�ort.



4.2. APPLICABILITY OF CPU AGGREGATION ALGORITHMS 25

This is because, while direct access to the MRAM is programmatically possible, doing so

is usually implemented with very small transfer sizes between WRAM and MRAM [9],

leading to more time being spent on the access latency[8].

This thesis is therefore going to focus on implementing various versions of these three

algorithms and combinations thereof, in order to investigate their performance. The ideas

we are going to follow in particular are, where using shared, or independent hash tables

is useful or detrimental, i.e. WRAM and/or MRAM, what their appropriate sizes are,

to minimize the overhead on the CPU, while still having advantageous properties on the

DPUs and whether using the WRAM for the hash tables is bene�cial for large group by

cardinalities.

4.2.3 Partitioning based aggregation on UPMEM

Section 2.1.5 detailed the properties and use cases of partitioning based aggregation on

multi-core CPUs. This section may be summarized as partitioning being the best suited

algorithm for very large group by cardinalities while leading to too much overhead for small

and medium group by cardinalities.

However while the possible modi�ed algorithms discussed in section 4.2.2 are all expected

to not perform very well for large group by cardinalities, the architectural characteristics

of the UPMEM DIMMs are particularily disadvantageous for implementing partitioning

based aggregation, for two reason which are going to be discussed in the following sections:

Limited memory

Unlike the aggregation step, the partitioning step does not reduce the amount of data

between the input and the output. As all algorithms assume that the data that shall be

aggregated is present in an unsorted manner in the MRAM of the DPUs, this means that

either less than half of the MRAM may be used to store the tables meant to be aggregated,

or many invocations of the DPUs are necessary in order to fully partition the data and to

transfer it to the CPU, regardless of the group by cardinality.

Therefore any partitioning implementation on UPMEM DPUs would additionally need to

be implemented with locks and dynamically sized partitions, increasing the overhead of

the partitioning step on the DPUs.

Inter DPU communication

While the factor of the limited memory may lead to additional necessary invocations for

the partitioning step, the fact, that these invocations are necessary in the �rst place is

the major issue with partitioning on the UPMEM system. This is because by having to

transfer the entire data through the narrow DRAM bus and then having to iterate over all
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of it in order to convert it from the shu�ed version in which it was present on the DPUs

fundamentally defeats the purpose of using the UPMEM architecture in the �rst place.

Advantageous characteristics

While the characteristics of the partitioning phase mentioned above discourage the usage of

that algorithm, particularly the access patterns on the DPUs on a micro level are actually

more advantageous then those of the directly hash based algorithms. This is because,

partitioning on a micro level has the same access patterns on a DPU as partitioning on a

multi-core processor:

1. Data is read sequentially from the table, which therefore can be accessed in large

transfer sizes from the MRAM. Notably however, this also applies to aggregation

without partitioning[7].

2. As partitioned values may also be written sequentially to the end of a WRAM local

bu�er, which may be evicted into the MRAM upon being full in one piece the transfers

to the MRAM can also technically bene�t from a large throughput[7].

While the partitioning operation technically o�ers bene�cial characteristics in terms

of the access patterns inside of the DPUs, the fact, that practically the entire memory

present on the UPMEM DIMMs must be transferred to the CPUs DRAM and processed

in addition to having to wait for the completion of the partitioning on the UPMEM DIMMs

the partitioning approach was dismissed for the aggregation on the UPMEM DIMMs.

4.3 Implemented algorithms and parameters

For the purpose of this thesis nine variations of the ideas represented by the three algo-

rithms discussed in section 4.2.2 were implemented and evaluated experimentally (Note:

the term in parenthesis behind the algorithms is the name with which they will be identi�ed

in the graphs later):

1. Independent table aggregation in the WRAM without eviction (WRAM SEPARATE

NO EVICT)

2. Shared table aggregation in the WRAM without eviction (WRAM SHARED NO

EVICT)

3. Independent table aggregation in the WRAM and insertion of individual keys into

independent MRAM tables when full (WRAM SEPARATE SINGLE EVICT MRAM

SEPARATE)
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4. Independent table aggregation in the WRAM and insertion of individual keys into a

shared MRAM table when full (WRAM SEPARATE SINGLE EVICT)

5. Shared table aggregation in the WRAM and insertion of individual keys into a shared

MRAM table when full (WRAM SHARED SINGLE EVICT)

6. Independent table aggregation in the WRAM and transfer of entire blocks when full

(WRAM SEPARATE TABLE EVICT)

7. Shared table aggregation in the WRAM and transfer of entire blocks when full

(WRAM SHARED TABLE EVICT)

8. Independent table aggregation in the MRAM (MRAM SEPARATE)

9. Shared table aggregation in the MRAM (MRAM SHARED)

4.3.1 Independent and shared table aggregation in the WRAM with

individual eviction

The three algorithms represented by this section, are for the most part equivalent to the

hybrid algorihtm from the CPU. The hybrid algorithm is technically only equivalent to the

independent WRAM and shared MRAM algorithm, with its idea of avoiding contention.

The other concept followed by the hybrid algorithm is the usability of the cache for common

values, which is the main reason, the two other combinations have been implemented for

the UPMEM system, as the WRAM is utilized as a pseudo cache by these algorithms.

These algorithms therefore work, by �rst aggregating in the WRAM hash tables, and only

if no more space is left, falling back on the larger MRAM hash tables.

4.3.2 Independent and shared table aggregation in the WRAM with

block eviction

Unlike the cache the communication between the WRAM and MRAM is not only directly

controllable through the application code, but it also allows for variable transfer sizes, of

up to 2048B. The architecture of UPMEM therefore supports using a di�erent approach

to the hybrid algorithm. After having already inserted a tuple into the WRAM hash table,

where access latencies are short, instead of probing the MRAM with its far slower access

latencies[8] individually, when the WRAM is full, these algorithms instead copy whole

blocks of data (typically of the size of one of the independent tables in the WRAM) into

the MRAM.While doing so promises to signi�cantly improve the runtime on the DPUs, this

approach is likely to quickly �ll the MRAM with many of these blocks requiring eviction to

the CPU DRAM and putting the burden of aggregation on the CPUs instead. The main

expected use case of these algorithms is therefore data, where keys are locally clustered,

as this would lead to few evictions, while preserving the fast access of the MRAM.
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4.3.3 Independent and shared table aggregation in the MRAM

These two algorithms represent are the most comparable to the independent and shared

table aggregation algorithms on the CPU, in that they don't use any intermediary tables

before that. However, due to the lack of an automated caching system, as present on the

CPU, these algorithms are expected to perform poorly for small group by cardinalities, as

they cannot utilize the fast access rates of the WRAM. The main purpose of implementing

these implementations is to evaluate for large group by cardinalities if avoiding the addi-

tional operations associated with the WRAM tables has a performance bene�t, or if they

actually accelerate the aggregation still.

4.3.4 Independent and shared table aggregation in the WRAM without

eviction

Unlike the remaining algorithms, these two are implemented by only using the WRAM

for aggregation and copying the result into the MRAM at the end. In doing so, the main

purpose of them is to �nd a benchmark for the peak possible throughput on the UPMEM

PIM.

All nine algorithms were implemented using the MxTasking framework, which was extended

to be compatible with the UPMEM PIM system as discussed in chapter 3.

4.3.5 Algorithmic decomposition into tasks

As the algorithms where implemented using the MxTasking framework, The algorithms

were therefore generally subdivided into the following tasks, which were scheduled onto

the DPUs/CPUs respectively:

1. The DPUCleanupTask. This task is responsible for initializing the hash tables, which

the algorithm uses. At the end the workers synchronize one another through a barrier.

2. The DPUAggregateTask. This task performs the aggregation as explained in section

4.3.

3. The DPUCopyTask. This task copies the remaining keys (if any) from the WRAM

hash table(s) to the MRAM hash table(s).

4. The DPUTransferTask. This task is only spawned for one worker per rank and its

only functionality is to spawn the CPUAggregateTask for that rank.

5. The CPUAggregateTask. This task transfers the MRAM hash tables from the DPUs

of its rank, to the DRAM of the CPU and aggregates it �rst into a private hash

table. Then it merges that tables content into the result table atomically. It also

checks if any of the workers of its rank failed to �nish aggregating and initiates a

new invocation of the rank if needed.
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6. The DPUAggregatePostStopTask. The �rst aggregation task to be executed on the

DPU worker after it failed to aggregate. It is responsible for aggregating the remain-

ing tuples of the failing aggregate task.

7. The DPUCleanupPostStopTask. Only reinitializes the MRAM hash table(s), as its

contents have already been read by the CPU. As the aggregation process might have

failed before evicting all results from the WRAM, the WRAM tables are not altered.

All of the above DPU tasks with the exception of the DPUAggregateTask/DPUAggre-

gatePostStopTask and the DPUTransferTask are always spawned once per DPU worker.

The DPUAggregateTask is typically spawned once per transfer, however in order to eval-

uate the overhead induced by the large number of necessary tasks (e.g. one rank with

2GB of tuples requires 2GB/2KB/task = 1000000tasks), super tasks were used, which

internally execute multiple DPUAggregateTasks, while only taking up the space of one.

4.3.6 Core loop

All algorithms have been implemented using a similar core aggregation loop. That is, in

order to keep the computational load low, linear probing through a continuous hash table

was implemented. By avoiding the use of extendable hash tables e.g. through pointers

or the like, the transfer of the results back to the CPUs DRAM is also simpli�ed, as no

additional communication is necessary to establish the size of the �nal hash table. Before

starting the core loop the DPU worker must transfer a segment of tuple data from the

32MB tuple bu�er in the MRAM into a private WRAM bu�er. This transfer is performed

once per task and can be implemented using varying transfer sizes. The performance of

the parameters with regard to these transfer sizes will be evaluated in section 5. After

that, the worker can start iterating over the tuples present in its bu�er and execute the

core loop for each of them.

The core component of the loop can be seen in listing 4.1. Every tuple insertion/update is

implemented by �rst computing the hash function once. After that an in�nite do while loop

is executed in which every iteration probes one slot of the hash table until an appropriate

slot has been found or the table has been determined to be too full to continue e�cient

aggregation.

1 uint32_t i t e r a t i o n = 0 ;

2

3 uint32_t key_to_insert = wram_data_buffer [ index ] . _key ;

4 uint32_t hash = rotat ing_hash ( key_to_insert ) ;

5

6 do

7 {

8 uint32_t hash_slot = ( ( hash + i t e r a t i o n ) & hash_func ) + hash_of f se t ;

9 uint32_t hash_key = wram_hash_table [ hash_value ] . _key ;
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10

11 i f ( hash_key == inval id_key )

12 {

13 wram_hash_table [ hash_value ] . _key = key_to_insert ;

14 wram_hash_table [ hash_value ] . _val = wram_data_buffer [ index ] . _val ;

15 break ;

16 }

17 else i f ( hash_key == key_to_insert )

18 {

19 wram_hash_table [ hash_value ] . _val += wram_data_buffer [ index ] . _val ;

20 break ;

21 }

22 else

23 {

24 ++i t e r a t i o n ;

25 }

26 }

27 while ( true ) ;

Listing 4.1: The central code of the aggregation algorithms on the UPMEM DPUs, that is

executed for every key when aggregating in seperate hash tables.

Each probing step therefore consists of 2 case distinctions, which separate into three cases,

as can be seen in listing 4.1:

1. No key is present, meaning that the current key can be inserted.

2. The same key is present, meaning that the slot must be updated.

3. A di�erent key is present, meaning that probing must continue.

Depending on which of the nine algorithms described above is used, locking may be em-

ployed, and if the algorithm allows the eviction into the MRAM in case of a full hash table

one of the eviction policies which will be described in section 4.3.7 will be used.

4.3.7 Eviction policy

Unlike the remaining seven algorithms the �rst two algorithms have been implemented

to only work when the group by cardinality is su�ciently small so that all keys �t into

the applicable hash tables in the WRAM, as data is only moved to the MRAM upon the

completion of all aggregation operations, so that the CPU has access to them. The main

purpose of this is to benchmark the overhead caused by the check of the �ll rate.

Therefore the remaining seven algorithms all must perform some kind of check for whether

the currently used hash table is full or not. Because both the WRAM and the MRAM

hash tables are limited in size, this applies to both types of hash tables. For example, in

the case of algorithm 3 from the list above, if a DPU worker determines that it cannot
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insert the current key into its private WRAM hash table because it is full, it would then

abort the probing process in the WRAM and compute the hash for the key in the MRAM.

After that, it would start probing its private MRAM hash table for an appropriate slot. If

it were to determine that its MRAM hash table is full as well, it would write data to the

EarlyStopInfo struct, and stop operating entirely. The CPUAggregateTask responsible

fro retrieving and accumulating the data on the CPU would then check if any DPU worker

had to abort the aggregation by retrieving and evaluating the EarlyStopInfo data from

its rank and initiate a new invocation of the DPUs by creating and spawning new tasks

for the DPUs.

In order to determine whether a hash table is full two approaches were implemented. They

will be discussed in the following sections.

Check on probing step

One way of implementing a heuristic for determining the appropriate point in time for

evicting a key, is to check after every probing step whether a set number of probing iter-

ations has been performed while trying to aggregate the current tuple and to abort the

aggregation if that is the case. The key chosen for eviction then is the one that was �rst

visited during probing for the current tuple to insert. This is done, because having probed

for a set amount of slots, means that, that many slots were occupied in a row. Using the

assumption, that the slot at the beginning of the chain of full slots is possibly the oldest

one, this method can function as a heuristic for �nding older keys in the table to evict,

without requiring the maintenance of an additional data structure.

The new key is then inserted in the slot of the old one. While this might seem contradictory

to the assumption made for the heuristic, as the new key will then be at the beginning

of a chain with the given length, the likelihood of the same key being evicted is relatively

low, as evictions may only take place for keys that were in the position a new key has been

mapped onto by the hash function initially.

Check on insert

Even though, the probing based eviction method is relatively simple, the fact, that this

method requires the DPU worker to check the number of probing steps taken for every

probing step may cause a big overhead, if the number of average probing steps taken dur-

ing aggregation is high. Therefore, an alternative eviction policy was implemented. This

policy is based on the actual number of di�erent keys present in the hash table.
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It has been implemented, by incrementing a counter for the number of keys in the table,

whenever a key is inserted into the hash table. If the counter reaches a limit set relative

to the size of the hash table (we use 75% of its capacity) an eviction will be triggered.

However, unlike the probing based policy, as evictions now may occur on the �rst probing

step, while the currently probed slot is always empty, there is now no candidate available

in an immediate sense. Therefore, in order to avoid having to maintain an additional data

structure for �nding a candidate, an additional linear probing process is performed starting

from the slot where the tuple was inserted, in order to �nd any occupied slot which is then

picked as the slot to evict.

4.3.8 Other implemented parameters

In addition, to the di�erent eviction policies the following parameters were implemented,

of which some will be experimentally evaluated in chapter 5:

� Di�erent hash functions implemented through bit operations based on [10].

� Varying tuple transfer sizes.

� Varying WRAM and MRAM hash table sizes.

� Varying MRAM bucket sizes.



Chapter 5

Experiments

This chapter is going to discuss the experimental setup and the procured results of the

various aggregation algorithms that have been discussed in the chapters 2 and 4. It should

be noted, that all results discussed in the upcoming sections are the arithmetic mean across

�ve separate runs.

5.1 Experimental setup

The experiments regarding the UPMEM PIM systems were carried out on a two socket

server equipped with two Intel(R) Xeon(R) Silver 4216 CPUs which are each equipped

with 8 cores clocked at 2.1GHz. This system is also equipped with a 256GB RAM in

addition to the 40 ranks of DPUs distributed across 20 DIMMs. Notably out of the 40

present UPMEM ranks in this con�guration only 30 have the full advertised 64 DPUs

available, with only 2546 out of 2560 DPUs working. This is because 10 of the present

ranks have faulty DPUs which appears to be a common occurrence stemming from the

new manufacturing process [8].

As section 5.3.1 is going to be concerned with a discussion of the selection of parame-

ters for the e�cient execution of the aggregation algorithm on the DPUs, the experiments

there are going to be carried out using only 1 rank. This is because these experiments are

exclusively concerned with the runtime on the DPUs which is independent of concerns of

transfer times and the following merging of the results on the CPU. Sections 5.3.2 and 5.3.3

on the other hand are concerned with evaluating the performance of the entire work�ow of

the aggregation on the DPUs and the following merging operation on the CPU. Therefore

these experiments were carried out using all 30 fully functional ranks that were available

in the used installation.

As mentioned in section 4.1, it should be noted that all table data is assumed to be already

present in the MRAM of the UPMEM DPUs at the start of the aggregations. Therefore,

33
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Figure 5.1: The di�erent runtimes of an aggregation algorithm using independent WRAM hash

tables, for the three di�erent runtime implementations over a rank, for di�erent task counts.

Top left: Total runtime. Top right: DPU runtime.

Bottom left: CPU task generation time. Bottom right: Task transfer to DPU time.

Note: The task count represents only the number of physically present tasks. The actual workload

is the same (2GB of data), as tasks have merely been merged into super tasks, due to the repetitive

nature of the workload.

all measurements are concerned with the time starting from the moment the �rst task is

being created up to the moment the results of the aggregation have been combined in one

CPU hash table.

The experiments regarding modern multi-core CPUs were carried out on a two socket server

equipped with two Intel(R) Xeon(R) Gold 6230 CPUs which are each equipped with 20

cores clocked at 2.1 GHz. This system is also equipped with a 192 GB RAM.
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5.2 Performance of th MxTasking runtime extension

This section is going to discuss the results of the experiments regarding the performance

of the di�erent MxTasking runtime implementations on the DPUs. As the runtime of each

DPU is functionally independent of those on other DPUs these experiments were conducted

using only one rank and one CPU core. The di�erent runtime implementations were tested

for a selection of task counts ranging from 1024 to 2097152, while implementing the same

workload, in order to evaluate the overhead caused by each task in the context of its used

DPU runtime implementation. The aggregation operator evaluated for these workloads,

was the sum operator on 8 byte tuples consisting of a 4 byte key and a 4 byte value.

As can be seen in �gure 5.1 (top left), the use of more tasks for the DPU control incurs

a signi�cant overhead increasing the total execution time by a factor of 4 across all DPU

runtime implementations. When inspecting the individual components of the runtime

however, it becomes clear, that the actual DPU runtime is barely a�ected by the increase

in the number of tasks, di�ering only by roughly 1% (see �gure 5.1 (top right)).

Figure 5.1 (bottom left) shows, that the majority of this additional time is spent on the

task generation on the CPU. This indicates, that the chosen implementation of the task

processing on the CPU might be inadequate, as it relies on the use of the relatively large

and complex task class already implemented on the CPU, while also using polymorphism to

determine the DPU task time, thereby incurring an additional overhead. It might therefore

make sense to change the process for processing DPU tasks on the CPU, to immediately

using the simpler representation which is also used on the DPU, in the future. It should

be noted however, that such a more specialized approach, would lead to tasks no longer

being able to be scheduled to either device.

For now, however this thesis is going to proceed by using only super tasks, merging all

aggregation tasks per DPU worker into one, for evaluating the experiments in the following

sections, as the very uniform property of the aggregation workload allows for this.

Regarding the performance of the di�erent DPU runtime implementations on the DPU,

while the performance di�erences between the three discussed implementations are so small,

with respect to the total runtime, it can be seen, that the simple implementation generally

outperforms the other two. This implies, that the overhead stemming from the synchro-

nization performed by them is larger, than the time saved by avoiding more frequent access

latencies through larger transfers.
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Figure 5.2: The DPU execution time in nanoseconds for the di�erent eviction policies and a

group by cardinality of 64(left) and 256(right).

(a): Independent WRAM tables with single eviction into independent MRAM tables

(b): Independent WRAM tables with single eviction into a shared MRAM table

(c): Shared WRAM tables with single eviction into a shared MRAM table

5.3 Aggregation on the UPMEM PIM system

5.3.1 Experimental evaluation of the parameters

Eviction heuristics

The performance of the two eviction detection methods described in section 4.3.7 was ex-

perimentally evaluated for the three algorithms which implement the eviction of individual

keys. The experiments were performed for two di�erent group by cardinalities, one where

they require 50% of the WRAM hash tables space and one where they would require 200%

of the WRAM hash tables space therefore forcing eviction.

As can be seen in �gure 5.2 the method that checks on every probing step is more perfor-

mant for the two algorithms that use independent tables in the WRAM, while the method

that checks when inserting is more performant for the algorithm that uses a shared table

in the WRAM. There is however one exception, which is that the algorithm that uses

independent tables in the WRAM but a shared table in the MRAM, switches around for

large group by cardinalities (i.e. such that force it to evict to the shared MRAM table) to

being faster when checking for every probing step.

One possible explanation for this behavior is, the additional overhead caused, by the

method that checks on insertion. While the probing based check method has to exe-

cute its check operation on every probing step, the computational work required for it is

very low as it is a singular integer comparison. The following eviction is also fast, because

it simply chooses the current key.
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Figure 5.3: DPU execution times for transfer sizes ranging from 8B to 2048B.

The insertion based check method also uses a singular integer comparison to check the �ll

state of the table. As the hash table stores no information with regard to �tting eviction

candidates, the process of �nding one is quite expensive, as it requires probing the table

until a key is found. It may therefore be, that while the independent hash tables can amor-

tize these costs, as insertions happen rarely, the additional cost for shared tables induced

by the additional lock acquisitions for that purpose outweighs the bene�t of not having to

perform the comparison on every probing step.

Therefore the insertion based check method is going to be used for independent table

algorithms, while the shared table algorithms are going to be used in combination with the

probing based check method in the comparative experiments of sections 5.3.2 and 5.3.3.

Hash table and transfer sizes

As code that runs on the DPUs may only directly work on data present in the WRAM

and as small transfers from and to the MRAM incur a large access latency [8] the 64 KB

of available WRAM memory are a contested resource, because dedicating a segment of

memory to the function of a bu�er for MRAM data transfers allows for a direct increase

in performance. For hash based aggregation workloads in particular there are two uses for

the memory which compete for the limited WRAM memory, they utilize the memory in

such a way that it cannot be shared with the other use. The additional factor of having

to use at least 11 tasklets, also means, that this memory requirement has to be multiplied

by the number of tasklets.

WRAM tuple bu�er

The �rst use is the WRAM resident tuple bu�er. While the data in the WRAM tuple

bu�er remains static for each transfer from the MRAM, only if it is su�ciently large, can
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the full bandwidth of the MRAM be utilized[8]. Therefore, increasing the size of the bu�er

has a direct in�uence on the possible throughput of any aggregation algorithm.

The result of the experimental evaluation for the di�erent transfer sizes can be seen in

�gure 5.3. The various algorithms have been evaluated for transfer sizes ranging from 1

tuple i.e. 8 bytes per transfer to 256 tuples i.e. the maximum transfer size of 2048 bytes.

While the execution time varies by up to a factor of 2 for the di�erent transfer sizes,

thereby justifying the use of larger transfer sizes, the e�ectiveness of the increase decreases

for very large transfer sizes. Therefore, in order to utilize an e�ective transfer size while

still preserving memory for other uses in the WRAM, using a transfer size of 64 tuples

has been chosen. In doing so 16 · 64 · 8bytes = 8192bytes of the WRAM are used for the

transfer bu�ers only.

WRAM hash table

The second use is the WRAM resident hash table. Unlike the tuple bu�er, the hash tables

size is restricted to a power of two as not choosing that as its size would disable the use of

a bit shift to enforce the mapping of keys into the hash tables boundaries. As divisions are

very slow on the UPMEM DPUs[8] this is not an option this thesis considers. Notably this

memory segment is also not needed by the pure MRAM aggregation algorithms, though

these algorithms are expected to be only advantageous for very large group by cardinalities

in which case, most keys will likely not reside in the WRAM for long anyway.

On the other hand the algorithms which do utilize WRAM hash tables are expected to be

highly sensitive to the size of those tables. This is because while group by cardinalities are

smaller than the WRAM hash table size, workers will access the MRAM exclusively for

the retrieval of new tuples into the WRAM tuple bu�er, in which case transfer sizes may

be relatively large, depending on the choice of that parameter. For larger group by car-

dinalities however, the algorithms using single tuple eviction will be forced to evict tuples

into the MRAM hash table(s). As small transfer sizes lead to the overhead of the access

latency becoming a large factor in the total DPU runtime, dedicating a larger amount of

memory to the WRAM hash table(s) makes it so that larger group by cardinalities can

avoid these expensive accesses.

As can be seen in �gure 5.4 the performance impact of the WRAM hash table size is

signi�cant and also signi�cantly larger, than that of the transfer size, as the results there

only di�ered by a factor of at most 2 whereas here it di�ers by factors between 1.5 and

14. The reason for this large impact is likely, that unlike the transfer of the tuple from the

MRAM into the WRAM bu�er, which only occurs once per tuple, the worker may need to
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Figure 5.5: The DPU execution time in nanoseconds for the locking implementations and a group

by cardinalitiy of 64(left) and 256(right).

Top: DPU execution time for the hardware mutexes.

Bottom: DPU execution time for virtual mutexes using 16 hardware mutexes internally.

probe the hash table many times until it �nds a viable slot. As the WRAM hash table size

is therefore signi�cantly more impactful for the performance of the algorithms, the decision

has been made, to use as much of the WRAM as possible for storing these hash tables.

This means, as their size is limited to being a power of two, that the hash tables are set

to use at most 32 KB such that space still remains for the stack and transfer bu�ers. The

32KB result in 256 slots for each independent and 4096 for the shared WRAM hash table.

Locking

This section is going to evaluate the results of the experiments related to �nding the best

performing locking method for the algorithms utilizing a shared hash table for probing.

As mentioned in section 2.3.1 the UPMEM DPUs support the use of mutexes which are

implemented by continuously attempting to change a bit in a special atomic register until

the bit has been �ipped and the lock acquired. Because each DPU only contains one such
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register which has 56 bits, the number of so called hardware mutexes is also limited to 56

per DPU [16]. However, in order to support the shared access to larger data structures

the UPMEM SDK also implements so called virtual mutexes, which are implemented by

using a user de�nable number of hardware mutexes to protect the access to the actual

mutexes which are implemented as a bit array stored in the WRAM. The Upmem SDK

documentation claims therefore that by using virtual mutexes with a su�cient amount of

underlying bits, that it is possible to reduce the amount of contention during the critical

segment of the code[16].

However, it should be noted, that a hardware mutex pool lock takes 1 assembler instruc-

tions to execute, while a virtual mutex takes at least 10[16]. Therefore, the question this

thesis aims to answer with the following experimental evaluation is, whether the perfor-

mance increase created by decreasing the contention during the critical segment of the code

outweighs the constant overhead of using the more complex virtual mutexes.

Figure 5.5(top) shows the performance of the hardware mutexes for a mutex count ranging

from 1, i.e. e�ective serialization of the critical section, up to 16, the maximum amount

possible when both WRAM and MRAM based tables require locking, due to the maximum

number of usable hardware mutexes being 56. Figure 5.5(bottom) shows the performance

of the virtual mutexes for a hardware mutex count of 16 and virtual mutex counts ranging

from 16 to 1024.

It should be noted that the independent WRAM hash table algorithm with single key

eviction is una�ected by the mutexes for the two plots using a low group by cardinality

distribution, because the keys can remain WRAM resident there, where locking is not

performed in this algorithm.

As can be seen in the �gures, the hardware mutexes outperform the virtual ones for the

shared WRAM hash table algorithm as well as the independent WRAM hash table algo-

rithm with single key eviction into a shared MRAM table. For the aggregation in shared

MRAM tables however, both algorithms show almost the same performance. This is likely

because the relative length of the critical section of the MRAM algorithm, caused by the

longer MRAM accesses leads to the contention on the 16 mutexes being so high that avoid-

ing it with the slower but more granular virtual mutexes has the same performance impact.

The reason, why the algorithm using shared MRAM tables, but independent WRAM ta-

bles does not show this e�ect, in spite of also accessing the MRAM hash table in a shared

manner, is likely, that the majority of operations still occur in the WRAM for the given

group by cardinalities, thereby reducing the access frequency in the MRAM and thereby

the contention.
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Figure 5.6: Total tuple throughput per second for the various DPU algorithms and group by

cardinalities from 2 to 220

Because the performance of the hardware mutex implementation was better for almost all

algorithms and equivalent for the rest, it is selected as the used synchronization tool for

the experiments in sections 5.3.2 and 5.3.3.

It should be noted however, that it is likely, that these observations would not apply

when the aggregation operation is more complex, as the discussed operations here are only

concerned with one value row.

5.3.2 Performance for di�erent group by cardinalities

This section is going to discuss the performance of the di�erent aggregation algorithms for

group by cardinalities ranging from 21 to 220, for which the evaluated throughput in tuples

per second can be seen in �gure 5.6. Additionally, this section is limited to an in-depth

discussion of the results for a uniform data distribution.

It should be noted, that for these experiments, the total MRAM size has been set to twice

the size of the group by cardinality, however for the algorithms that use independent tables

in the MRAM it has been set to 32 times the group by cardinality, because all 16 workers

need this much space each. For large group by cardinalities, the maximum total size of the
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MRAM hash table slots has been set to 221, because of the MRAM's space constraints.

For the algorithms, that use block eviction, their tendency to evict very often, once the

group by cardinality is larger than the hash table size, was used as a reason to statically

set the MRAM hash table bu�er size for them to 219, in order to avoid to many evictions

to the CPU.

The observable results show in many ways trends which correspond to the trends that

were present in the experiments of [6] and [18]. While the results for the independent

WRAM table algorithms in the low group by cardinality ranges between 2 and 128, i.e.

the cardinalities, where all keys still �t into each of the independent hash tables for the used

WRAM hash table size of 256 slots, once it's capacity is reached and the used eviction policy

must evict the keys into the MRAM for �ll rates of above 75%, the throughput drops from

approximately 2.5 · 1010 down to 0.75 · 1010 indicating the common small MRAM transfers

as a big performance bottleneck.

This assumption is supported by the fact, that these algorithms fall down to a throughput

similar to that of the pure MRAM based independent hash table algorithm.

The performance of the shared WRAM hash table algorithms also largely corresponds to

those from [6], however unlike those results, the relative performance decrease if compared

to the peak performance for a group by cardinality of 512 is not as severe as for the refer-

enced experiments, as throughput only decreases by a factor of 10. This is because, while

the locking operations e�ectively serialize the aggregation, unlike a CPU implementation,

where the serialization applies across all CPUs, the serialization on the DPU implemen-

tation can only apply within a DPU, thereby still allowing for the massive parallelism

enabled by the use of 64 DPUs per rank with 30 ranks.

So for medium group by cardinalities, i.e. 512 onward, the shared algorithms mostly

outperform the independent variants. Initially, there is a small range between group by

cardinalities of 512 and 2048, where the throughput di�erence between the independent and

shared WRAM table algorithms is relatively large. This is the range where the property of

the WRAM tables being shared, means that aggregation can take place entirely within the

faster WRAM for larger group by cardinalities, as 256 ·16 = 4096. For larger group by car-

dinalities however, even the shared WRAM algorithms cannot keep all keys in the WRAM.

Notably for group by cardinalities larger than 4096 another trend can be observed. Here the

algorithms, that use independent hash tables in the MRAM show a signi�cant throughput

decrease, which is then followed by the shared MRAM algorithms for even larger group by

cardinalities. The same trend occurs for block evict algorithms for even smaller group by

cardinalities.
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This trend becomes understandable when investigating the decomposition of the time

spent per algorithm on the individual operations necessary for performing the aggregation

operation. That is, speci�cally the times spent on the DPU execution, the data transfer

times from the DPUs to the CPU DRAM and the time spent on the CPU's aggregation

per core, as can be seen in �gure 5.7.

While �gure 5.7(top) explains the relatively weak performance of the shared WRAM table

algorithms for small group by cardinalities, the DPU execution times alone do not explain

the poor performance of the independent MRAM algorithms and block evict algorithms

for large groupy by cardinalities, as they belong to the best performing algorithms across

all group by cardinalities in that respect. In order to understand their poor performance,

one must investigate the transfer times and in particular the CPU execution times in �gure

5.7(center and bottom). As can be seen there, the independent MRAM algorithms start

spending tens of seconds on the aggregation on the CPUs. This is because the maximum

MRAM space available for the hash tables is 16MB, as the tuples take up 32MB in addi-

tion to the tasking infrastructure, making 224 the largest usable power of 2 of bytes for the

hash tables. This means, that each independent hash table has only space for 217 slots, so

starting from those group by cardinalities the independent MRAM hash table algorithms

will have to often evict the table to the CPUs DRAM. Therefore, this trend follows the

same pattern as the one observed for the WRAM hash tables, only with a far larger impact

on the performance, as each interruption forces a complete stop of the aggregation on a

rank, and the core responsible for the CPUAggregateTask, aggregate the entire MRAM

hash table content an additional time.

5.3.3 Performance for di�erent group by cardinalities given di�erent

data distributions

While the previous experiments give a good initial insight into the performance of the UP-

MEM PIM system for the aggregation workload, this section is going to discuss a selection

of di�erent data distributions for which the di�erent aggregation algorithms were used for

a range of group by cardinalities. For this sake a selection of the distributions, which were

also discussed in [6] were chosen, more speci�cally an input sorted by the keys, an input

with a heavy hitter distribution, in this case one where one of the keys represent 50% of

the input, a sequential distribution. Additionally, a moving cluster distribution was used

for the experiments, using a window width of 32 for the sliding window.
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Figure 5.8: Tuple throughput per second for a sorted input(top) and a heavy hitter distribu-

tion(bottom) group by cardinalities from 2 to 220
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Sorted input

Figure 5.8(top) shows the results of the experimental evaluation for the sorted input data.

The main di�erence in the observed performance, is that all shared table algorithms per-

form signi�cantly worse for this distribution, than they did for the uniform data. While the

contention induced overhead, that was observed for low group by cardinalities and uniform

data only applied for group by cardinalities of up to 16, for the sorted input, a performance

increase can only be seen for these algorithms starting from group by cardinalities of 212.

Notably no comparable e�ect was observable for the observations of [6] when using sorted

inputs.

This di�erence can however be explained when one analyzes the layout of the sorted tuples

across the DPUs. As the experiments have been conducted using 30 · 64 = 1920 DPUs

sorting the input for group by cardinalities smaller than that size means, that every DPU

will only contain one key which corresponds with the value from which the shared table

algorithms start showing a better performance. The reason why [6] did not observe this

behavior for their CPU implementation is, that while the data was distributed among 32

cores, the e�ects of contention observed for other distributions also mostly occurred for

group by cardinalities of that scale, thereby hiding it. It should also be noted, that while

this e�ect decreases the performance of the shared table algorithms for small and medium

group by cardinalities, for even larger group by cardinalities, i.e. those equal to the number

of workers, it can guarantee the absence of contention.

An observation that is in line with those made in [6] is that the performance of independent

table algorithms stays at a very high level for far larger group by cardinalities. The reason

for this is once again the local e�ect across the DPUs. Because of this, even the smaller

capacity of the independent hash tables in the WRAM of 256 should su�ce for global group

by cardinalities of up to 256 · 1920 < 219. However, while the performance stays high for

slightly larger group by cardinalities than in the case of the uniform distribution, i.e. 128

vs. 512 (independent WRAM independent MRAM) and 2048 (independent WRAM shared

MRAM), the e�ect does seemingly not apply for the predicted group by cardinalities.

The reason for this is however not the DPUs themselves, but rather the chosen MRAM

hash table sizes. As discussed at the beginning of section 5.2, they have been chosen, to

always be double the size of the group by cardinality for each hash table, with 221 being

the maximum regardless of the previous rule. Therefore, the observed slow-down can be

explained by the increasing transfer times to the CPU, even if most of the hash table is

unused.

What also stands out for the sorted input, is that the algorithm with independent WRAM

tables transferring large blocks when evicting keys, performs very consistently across the
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di�erent group by cardinalities, which is likely due to the fact, that the workload repre-

sented by a sorted input is very well suited for this algorithm. This is because a sorted

input guarantees that a key x will never occur again after another key y has been read

after it. This means that keys evicted due to lack of space, must only ever be evicted once.

As the block evict algorithms are particularly well �t to exploit this kind of workload, as

they can bene�t from their larger transfer sizes during eviction, without �lling the MRAM

quickly and forcing evictions to the CPU.

The reason, why this algorithm does not outperform the individual eviction based algo-

rithms therefore, is likely the large chosen MRAM size discussed in section 5.2, causing

longer transfer times and thereby decreasing the throughput.

Heavy hitter distribution

The performance of the algorithms for the heavy hitter distribtion can be seen in �gure

5.8(bottom). The performance of the algorithms for this distribution is similar to that for

the uniform distribution, with two notable exceptions.

1. Unlike the uniform distribution, the performance of the shared table algorithms stays

poor even for large group by cardinalities, which is explained by the consistent con-

tention on the heavy hitter key for 50% of all tuples. This behavior was also noticeable

in the results of [6].

2. Both the individual eviction algorithms using independent WRAM tables perform

better for medium group by cardinalities of 512 to 2048. This is likely due to the

fact, that they can bene�t from keeping the heavy hitter in the WRAM, and thereby

having signi�cantly improved access times for 50% of the input, while avoiding the

contention on it.

Sequential input

The algorithms show performance characteristics for the sequential input, that are almost

identical to those for the uniform distribution. This is because, while the pattern pre-

sented by the sequential input is very predictable, neither the algorithms nor the UPMEM

architecture provide a way to exploit it, which means, that the only relevant attribute

of the distribution for the performance is its local group by cardinality. And as that is

functionally identical to that of a uniform distribution, that is what determines the results

seen in �gure 5.9(top).

Moving cluster distribution

Unlike the other distributions discussed in this chapter this distribution was only used for

a group by cardinality range from 64 to 220, because the distribution with a window width
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Figure 5.9: Tuple throughput per second for a sequential input(top) and a moving cluster distri-

bution(bottom) group by cardinalities from 2 to 220
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of 32 would break down to a uniform distribution for smaller group by cardinalities [6]. As

can be seen in �gure 5.9(bottom), the performance of almost all algorithms is signi�cantly

better than for other algorithms. In spite of the locally similar keys, the shared table

algorithms perform well for this distribution, as the locally present group by cardinality of

32 is su�cient for the avoidance of most contention, while allowing for the need for evictions

to be rare, as the nature of the distribution as a sliding window across the di�erent keys,

means that this distribution has similar characteristics to the sorted distribution. While

keys are not guaranteed to not reappear once they have been evicted, it is far less likely to

happen, than for uniform distributions.

These local low group by cardinality for stretches of the input, has the same e�ect as the

sorted input had on the independent hash table algorithms and block evict algorithms,

leading to the evictions of keys into the MRAM to be rare. It should be noted however,

that this is likely due to the choice of the used window width of 32 �tting well into any

WRAM hash table.

5.4 Aggregation on a modern multi-core CPU

So far the discussion of the experimental results in this thesis has solely focussed on the

performance of the aggregation operation on the UPMEM PIM system for di�erent pa-

rameters and workloads. This section is going to compare these results with results which

have been produced on a modern multi-core CPU in order to procure insights into the

viability of the UPMEM PIM system in a productive context.

5.4.1 Performance for di�erent group by cardinalities

For this purpose �gure 5.10 shows the results of the DPU based algorithms (in black)

overlaid with the results of implementations of the CPU based algorithms discussed in

section 2.1(in red).

While the general trends of the results from the current CPU correspond with those from

[6], the performance of the independent table approach is higher than that of the shared

tables for far larger group by cardinalities. While one might assume that this is due to the

larger cache sizes on the modern hardware, the size of the LLC for the used system only has

a capacity of 27.5MB, while the memory requirement for storing every hash table indepen-

dently for 20 cores is around 640MB for a group by cardinality of 221, thereby exceeding

the cache size by a factor of 23. It must therefore be assumed that the overhead of the

atomic operations on this platform is so great that it exceeds that of the direct RAM ac-

cess, as the e�ects of contention should no longer be that great for this group by cardinality.
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Figure 5.10: Average tuple throughput per second for the DPU(black) and CPU(red) algorithms

for group by cardinalities from 2 to 220

When comparing the peak throughput of the modern CPU implementation (3 · 109 tuples
per second) with that of the UPMEM PIM system (2.75 · 1010) for a uniform distribution,

it can be seen, that the UPMEM PIM system outperforms the CPU implementation by a

factor of almost 10. This can be explained by the signi�cantly larger number of operations

per second the 30 used ranks can perform (30 · 64 · 350MHz = 672GOps) when compared

to the 20 CPU cores (20 · 4.1GHz= 82 GOps), in addition to the fact, that the individual

throughput of a DPUs when accessing the MRAM in an optimal way is 628MB/s, which

is multiplied for every DPU, as they do not share a bus[8].

For large group by cardinalities however, the performance of the UPMEM PIM system is

almost identical to that of the CPU implementation. This is because while the separation

of the workload into the locally responsible DPUs allows for the massive parallelism that

enabled the previously discussed peak throughput, the larger result size for large group

by cardinalities, means, that each DPU must transfer those results to the CPU's DRAM.

This simultaneously puts a strain on the limited bus, while also forcing the CPU cores to

perform the merge operation across all hash tables o� its rank. As can be seen in �gure

5.7(bottom) this leads to the majority of the time being spent not on the DPUs, but on

the CPU cores.
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Chapter 6

Conclusion

6.1 Summary

Throughout this thesis, the algorithmic problem of aggregation was examined in a context

of two types of modern computational hardware. Additionally, the task based MxTasking

framework was extended to enabling the scheduling of tasks onto an UPMEM PIM system

on a tasklet granularity.

The performance of the UPMEM system was consistently able to outmatch that of a mod-

ern multi-core processor for group by cardinalities of up to 220. The maximum achievable

performance is however not only highly dependent on the structure of the data, as locally

clustered distributions of data allow for a higher throughput even for larger group by car-

dinalities, it also requires knowledge on the appropriate parameter and algorithmic choices

to exploit this structure.

For large group by cardinalities, i.e. those starting from 220, the inherent structure of

the UPMEM PIM system, i.e. the isolated nature of the DPUs, with their inability to

communicate with one another, leads to the necessity of a large amount of communication

between the CPU cores and the DPUs, shifting the majority of the time spent from the

DPUs to the CPU cores and signi�cantly decreasing performance.

With regard to the utilization of the UPMEM PIM system through a task based framework

the following can be said. While di�erent approaches were presented, aimed at combating

the overhead induced by the management of the tasks on the DPUs, it turned out, that

the impact of these tasks was negligible on the DPUs themselves (≈ 1%).

The overhead on the CPU side of the MxTasking runtime was however severe, indicating

the need for a di�erent approach to this implementation, or the shift of more of these

structures to the DPUs.
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6.2 Future Work

While this thesis attempted to evaluate the impact of modern hardware on the algorithmic

problem of aggregation, it did so only through the two hardware platform types of multi-

core processors and computational memory. While multi-core processors represent a large

component of the modern hardware landscape, their raw computational power is limited

compared to that of modern hardware that is dedicated to massively parallel computation

such as GPUs. Work therefore remains to be done in evaluating how these platforms com-

pare to the results obtained in this thesis.

Though this thesis did examine the performance impact of the implementation of a task

based framework on a computational memory platform, the uniform nature of the code

executed in the implemented aggregation workloads has not provided many opportunities

for the use of some of the more advanced features usable on task based software platforms,

such as features for communication between the DPU workers within the runtime. There-

fore, the behavior of the platform for more heterogeneous workloads remains to be seen.

In this regard however, the overhead of a very �ne granular task based control �ow must

be taken into consideration, as this thesis already showed the performance impact it may

have when implemented naively.



Appendix A

List of additional used tools and

resources

� The extension of the MxTasking framework has been implemented using the MxTask-

ing framework version available at https://git.cs.tu-dortmund.de/DBIS/MxTasking,

using commit d36d7850246791f3f72e29bde99�ec4acda470e as a code basis, and thereby

also some of its dependencies.

� The benchmarks used the arg_parse library available at https://github.com/p-ranav/argparse

for the parsing of the command line arguments.

� Unsourced graphics have been generated using either tikz/tikz-uml, matplotlib or

OpenO�ce Draw.

� This thesis has been authored using latex and in particular the following latex pack-

ages:

� listings

� xcolor

� enumerate

� algorithmic

� hidelinks

� layouts

� pgf

� graphicx

� sub�gure

� pdfpages

� tikz
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� ifthen

� xstring

� calc

� pgfopts

� tikz-uml
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