
Security in Computing Systems
Challenges, Approaches and Solutions

Lecture Notes extracted from a monograph published by Springer-Verlag

Joachim Biskup
ISSI - Informationssysteme und Sicherheit

Technische Universität Dortmund

© 2009 Springer-Verlag Berlin Heidelberg
© 2010 Joachim Biskup TU Dortmund
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems 07. 04. 2011 i

Original source of these lecture notes

Security in
Computing Systems
Challenges, Approaches and Solutions

| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |

| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |

| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |

| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |

| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |

7 83540 7 844189

springer.com

 ISBN 978-3-540-78441-8
Security in Com

puting System
s

Joachim Biskup

Biskup

Biskup

Security in Computing Systems
With Security in Computing Systems, Joachim Biskup introduces, surveys and assesses
the fundamentals of security with respect to all activities that individuals or groups directly
or indirectly perform by means of computers and computer networks.

He has organized his comprehensive overview on multilateral security into four cross-
referencing parts: challenges and basic approaches; fundamentals of information flow and
inference control; security mechanisms with an emphasis on control and monitoring on the
one hand and on cryptography on the other; and implementations. Besides presenting
informal surveys and introductions to these topics, the book carefully elaborates the
fundamental ideas by at least partially explaining the required precise formalizations and
outlining the achieved mathematical verifications. Moreover, the need to employ the various
security enforcement methods in a well-coordinated way is emphasized and thoroughly
exemplified, and this includes case studies on UNIX, Oracle/SQL, CORBA, Kerberos,
SPKI/SDSI and PGP.

Overall, this monograph provides a broad and comprehensive description of computer
security threats and countermeasures, ideal for graduate students or researchers in academia
and industry who require an introduction to the state of the art in this field. In addition,
it can be used as the basis for graduate courses on security issues in computing.
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: 07. 04. 2011 ii

 Table of Contents
Original source of these lecture notes . ii

Part I:
Challenges and Basic Approaches . 1

1 Interests, Requirements, Challenges, and Vulnerabilities. 2
A notion of security. 3
Basic security interests . 4
Fundamental aspects of security . 5
Security evaluation . 6
Requirements by legislation: important examples . 7
Privacy and informational self-determination. 8
Protection rules for personal data . 9
Requirements by security evaluation criteria . 11
Common Criteria: security functionality. 12
Common Criteria: evaluation assurance levels . 13
Common Criteria: top-level assurance classes . 14
A practical checklist for evaluations . 15
Issues for the actual version, configuration and circumstances . 16
Construction principles . 17
Message transmission: a basic abstraction for challenges . 18
Transmission control in distributed computing systems: example . 19
Information flow . 20
Information flow based on message transmission. 21
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Table of Contents 07. 04. 2011 iii

Information flow and message transmission. 22
Inspection and exception handling: basic approach . 23
Inspection and exception handling: summary . 24
Security interests reconsidered . 25
in terms of message transmission/information flow . 25
Threats: originators and causes . 26
Security interests: an expanded list . 27
Integrity: unmodified state . 28
Authenticity . 29
Confidentiality. 30
Autonomy and cooperation: a classification of security interests . 31
Trust and threats . 32
Crucial points of multilateral security. 33
Confident and optimistic approach . 34
Provisional and pessimistic approach . 35
Optimistic approach versus pessimistic approach. 36
Computing system: layered design . 37
Internal structure of a processor and its memory . 38
Features of computing and basic vulnerabilities: overview . 39
Features of computing and basic vulnerabilities: one component . 40
Features of computing and basic vulnerabilities: networks . 41
Features and vulnerabilities. 42

2 Key Ideas and Combined Techniques. 43
Key ideas for technical security enforcement mechanisms . 44
Redundancy: important examples . 45
Isolation. 46
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Table of Contents 07. 04. 2011 iv

Physical/programming-based isolations: a global view . 47
Physical/programming-based isolations: a local view . 48
Spatial separation and entrance control. 49
Temporal separation and isolated memory . 50
Memory protection and privileged instructions . 51
Basis register and bound register . 52
Memory tags . 53
Tags as usage classes: examples . 54
Basis register and bound register versus memory tags . 55
Privileged instructions. 56
Further isolation mechanisms . 57
Indistinguishability . 58
Indistinguishability by randomness. 59
Example for superimposing randomness: encryption . 60
Encryption: indistinguishability of plaintexts . 61
Example for superimposing randomness: authentication . 62
Authentication: indistinguishability of exhibits . 63
Indistinguishability by standardized behavior. 64
Hiding among standardized behavior: examples . 65
Combined techniques: overview . 66
Local control and monitoring . 67
Local control and monitoring . 68
Cryptography . 69
Certificates and credentials . 70
Certificates and credentials . 71
Participants and objects involved . 72
Local identifiers: participants and their local connections . 73
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Table of Contents 07. 04. 2011 v

The fiction of an overall “connection” . 74
Global identifiers: virtual end-to-end connections . 75
Provisions for authentication and proof of authenticity . 76
Peculiarities of human individuals: examples. 77
Peculiarities of physical devices: examples . 78
Properties of verification data: informal version. 79
Some contributions of cryptography . 80
Issue of authentic verification data: trusted authorities . 81
Issue of freshness: challenge–response procedures . 82
Issue of malicious redirection by man-in-the-middle . 83
Issue of malicious guessing or probing: carefully chosen exhibits. 84
Permissions and prohibitions: the need for a layered approach . 85
Specification of permissions and prohibitions: some guidelines . 86
Requirements and mechanisms reconsidered . 87
Combined techniques reconsidered. 88
Interests and enforcing mechanisms: summary (part 1) . 89
Interests and enforcing mechanisms: summary (part 2) . 90

Part II:
Control and Monitoring. 91

3 Fundamentals of Control and Monitoring. 92
Control and monitoring . 93
Essential parts . 94
Declarations: subjects, objects and kinds of access . 95
Declarations: expressive means . 96
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Table of Contents 07. 04. 2011 vi

Declarations: positive, negative and mixed approach. 97
Required completeness property for declarations . 98
Control operations . 99
Grantors and owners . 100
Control states. 101
Required analysis property for control operations . 102
Isolation, interception and mediation of messages . 103
Required complete mediation property . 104
Proof of authenticity . 105
Required authenticity property . 106
Access decisions . 107
Requirement for architecture of control . 108
Monitoring: inspecting results. 109
Monitoring: auditing and intrusion detection . 110
Requirement for architecture of monitoring . 111
Imagined ideal and real world. 112
Root of trust. 113
Issues of trust raised when the following problems are investigated . 114

4 Case Study: UNIX . 115
Some basic features of UNIX . 116
Basic blocks of control and monitoring (and cryptography). 117
Conceptual design of the operating system functionality . 118
ER model of fundamental functional features and security concepts . 119
Participants, sessions and system calls . 120
Processes as active subjects. 121
Lifespan of a process . 122
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Table of Contents 07. 04. 2011 vii

Growing and shrinking of a process tree . 123
Files as passive objects . 124
Conceptual design of the security concepts . 125
Some operations with commands and their operational mode . 126
Mastership and group mastership . 127
Refined ER model of the functional features and security concepts . 128
Refined ER model: users. 129
Refined ER model: files . 130
Refined ER model: processes . 131
Different notions of a participant . 132
System administrator. 133
Groups . 134
Mastership and group mastership refined . 135
Current masterships. 136
Right amplification . 137
Identification and authentication. 138
Proof of authenticity by a password procedure. 139
Access decisions . 140
Access decisions regarding normal users . 141
Knowledge base on permitted operational options . 142
Main entries of the administration files for users and groups . 143
Modifications of the knowledge base: user and group administration . 144
Modifications of the knowledge base: password management. 145
Modifications of the knowledge base: login procedure . 146
Modifications of the knowledge base: mastership assignments . 147
Modifications of the knowledge base: file management. 148
Modifications of the knowledge base: masking access privileges . 149
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Table of Contents 07. 04. 2011 viii

Modifications of the knowledge base: process management . 150
Modifications of the knowledge base: execution flags . 151
Modifications of the knowledge base: some further manipulations . 152
Knowledge base on usage history . 153
Examples of UNIX log files . 154
Examples of UNIX log files, continued . 155
Audit services . 156
Configuration of an audit service: example . 157
Overall architecture . 158

5 Discretionary Access Control and Privileges . 159
Permissions and prohibitions as discretionary access rights. 160
ER model of lookup representation . 161
A relational implementation . 162
Access control matrix/graph and privilege/access control lists . 163
Some features of more sophisticated knowledge base structures . 164
Refined ER model for permissions . 165
ER model of structural relationships and specializations of objects . 166
ER model of programs, processes and masterships . 167
ER model of operational modes . 169
Functional modes in a pure object-oriented environment. 170
Control modes: examples . 172
ER model of qualifications and conditions . 173
ER Model of privileges with collectives . 174
ER Model of privileges with collectives (subpart) . 175
Role-based access control (RBAC). 176
Some specific pitfalls of RBAC . 177
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Table of Contents 07. 04. 2011 ix

Semantics for access decisions . 178
Inheritance rules for hierarchical relationships: examples . 179
Conflict resolution by priority rules: examples. 180
A metarule for priority rules . 181
Completion rules: examples . 182
Requirements for formal specification language/formal semantics . 183
Flexible Authorization Framework: basic concepts . 184
Flexible Authorization Framework: basic concepts (continued) . 185
Flexible Authorization Framework: basic concepts (continued) . 186
Flexible Authorization Framework: concepts derived by rules . 187
Architecture of FAF: overview . 188
Architecture: knowledge base on permissions and prohibitions . 189
Architecture: access decisions . 190
Syntax of Flexible Authorization Specification Language: outline . 191
Strata of logical program in FASL . 192
Semantics of a logical program in FASL . 195
A simple fragment of a security policy in FASL: scenario. 196
A policy: explicit permissions/prohibitions in strata 1 and 2 . 197
A policy: implicit permissions/prohibitions in stratum 4 . 198
A policy: decisions and conflict resolution in stratum 5. 199
A policy: integrity enforcement in stratum 6 . 200
Access decision on a functional request . 201
Access decision on an update request (control operation) . 202
Strata, goals and responsible agents . 203
Basic properties of FAF . 204
FASL programs are complete and sound: theorem. 205
Proof idea . 206
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Table of Contents 07. 04. 2011 x

Properties of FAF: efficiency . 207

6 Granting and Revoking, and Analysis . 208
Granting. 209
A model with simplifying assumptions. 210
An ER model for grantings . 211
An instance of a relational implementation . 212
A grant graph corresponding to a history subrelation . 213
A formalization of granting. 214
Producing a grant graph: example . 215
Options for revocation semantics: examples . 216
Simple deletion . 217
Grantor-specific deletion. 218
Deletion with renewed further grantings. 219
Deletion with deleted further grantings. 220
Time-specific deletion with recursive revocation of further grantings . 221
Recursive revocation . 222
Recursive revocation: main procedure . 223
Recursive revocation: recursive auxiliary procedure . 224
Procedure call revoke(8,b,c): the run . 225
Procedure call revoke(8,b,c): call of auxiliary procedure . 226
Procedure call revoke(8,b,c): a recursive call . 227
Procedure call revoke(8,b,c): a further recursive call. 228
Procedure call revoke(8,b,c): removing isolated nodes . 229
Dynamic and state-dependent permissions . 230
Control automatons . 231
Some purposes of a security context . 232
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Table of Contents 07. 04. 2011 xi

State transitions of control automatons/switches of security contexts . 233
Role enabling and disabling: an example . 234
Information flow monitoring. 235
Chinese Walls . 236
Experimental operating system HYDRA . 237
Java protection framework: local and remote code. 238
Java protection framework: enabling flexible cooperation . 239
Java stack inspection . 240
Workflow control . 241
Analysis of control states: basic problem . 242
Undecidability of the analysis problem of control states/operations . 243
A model of control states . 244
A model of control operations. 245
Reduction: simulation of TM configurations by of control states . 246
Reduction: simulation of TM moves by of control operations . 247
Some crucial insight . 248
Generic take–grant operations and create . 249
Analysis problem for generic take, grant and create: theorem . 250
Reversing directions of grant and take privileges . 251
Privileges and information flow: extended analysis problem . 252
Interactions of control operations and functional operations: example . 253

7 Mandatory Access Control and Security Levels. 254
ER model . 255
Partial orders for relative trustworthiness and relative sensitivity . 256
Mandatory security policy. 257
Access decisions to enforcing confidentiality. 258
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Table of Contents 07. 04. 2011 xii

Mandatory control of information flow: debates . 259
Dynamic mandatory access control. 260
Security levels as a finite lattice: underlying assumptions . 261
Example of security levels: linear orders . 262
Example of security levels: power set lattices . 263
Approximation of dependance by levels: container objects . 264
Dynamic classification of data: expressions . 265
Dynamic classification of data: active subjects. 266
Combining static and dynamic features: outline of a formal model . 267
Static and dynamic features: access decisions and state transitions . 268
Models attributed to Bell and LaPadula . 269
Downgrading. 270
Sanitation. 271
Trusted subjects and violation of the basic security property . 272
Confidentiality and integrity . 273
A dual approach to enforcing integrity . 274
Enforcing both confidentiality and integrity . 275
Additional integrity security levels . 276

8 Inference Control . 277
Information gain . 278
Information, knowledge, computational capabilities and resources . 279
Information gain by an observer . 280
Two extreme cases for the information gain. 281
Enabling/preventing information flow concerning semantic objects . 282
Simple mathematical model: inversion of functions/solving equations . 283
A classification of functions: an (everywhere) injective function . 284
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Table of Contents 07. 04. 2011 xiii

A classification of functions: a nowhere injective function . 285
A classification of functions: arbitrary functions . 286
Exemplifying three cases regarding information gain . 287
Observing the result of a group operation. 288
Information gain based on a parameter . 289
Inference control by dynamic monitoring of a process . 290
Inference control by static verification and modification of a program . 291
Sequential programs: main constructs. 292
Sequential programs: an example . 293
Goals of analysis . 294
Stepwise analysis: expressions and assignments . 295
Stepwise analysis: positive branch of guarded command. 296
Stepwise analysis: guarded command. 298
A classification of information flows . 299
Reachability or actual reaching of a command . 300
Implicit flows without any direct flows: example. 301
Implicit flows and the constantness problem: example . 302
Undecidability of information flows . 303
Static compiler-based verification. 304
Simplified version of a procedural language. 305
Informal semantics: flow diagrams for commands . 306
Policy specification for expressing permitted information flows . 307
A procedure declaration with static labels . 308
Enforcing the intention of the static labels . 309
Guidelines for verification rules . 310
Defining dynamic labels and generating control conditions: example . 311
Dynamic labels and control conditions . 312
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Table of Contents 07. 04. 2011 xiv

Compiler-based verification: theorem. 313
Resetting and downgrading dynamic labels . 314
Decentralized label model: main emphasis. 315
Decentralized label model: outline . 316
Programming language Jif (Java Information Flow) . 318
Inference control for parallel programs. 319
Inference control for parallel programs: example . 320
Inference control for parallel programs: analysis of the example. 321
Inferences based on covert channels . 322
An never-ending list of possibilities . 323
Some countermeasures against detected covert channels . 324
Inference control for statistical information systems . 325
Summation as aggregate function: a functional model . 327
Summation as aggregate function: a refusal approach . 328
Summation as aggregate function: a refusal situation. 329
Summation as aggregate function: a circumvention procedure . 330

Part III:
Security Architecture . 331

9 Layered Design Including Certificates and Credentials . 332
Trust and trustworthiness . 333
Some aspects of an informational concept of trust . 334
Establishing reasonable trust reductions . 335
Trust reductions for control and monitoring . 336
Trust reductions for cryptography. 337
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Table of Contents 07. 04. 2011 xv

Layered design: a fictitious architecture . 338
Integrity and authenticity basis (trusted platform module) . 339
Integrity and authenticity basis: main functions of an instance . 340
Secure booting and add-on loading: important assumptions . 341
Basic booting and loading procedure . 343
Some extensions and variants . 344
Middleware: functional and security services. 345
Informational infrastructure and organizational environment . 346
Middleware: support by underlying layers and global infrastructure . 347
Middleware instantiation of control and monitoring. 348
ER models of fundamental relationship classes for permissions . 349
Programming languages: enforcing compile time features. 351
Programming languages: controlling runtime features . 353
Software engineering: helpful recommendations . 354
Distributed systems: real world and virtual view . 355
Hidden (real) world and a visible virtual view . 356
Certificates/credentials and property assignment . 357
Principals and entities . 358
Digital document (certificate/credential): important fields. 359
Characterizing properties: free and bound properties . 360
Characterizing properties . 361
Administrative properties . 362
Relationships and trust evaluations . 363
Evaluating trust: basic situation . 364
Evaluating trust recursively. 365
Model of trusted authorities and licensing: an instance . 366
Certificate types in the model of trusted authorities and licensing . 367
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Table of Contents 07. 04. 2011 xvi

Model of owners and delegation: an instance . 368
Credential types in the model of owners and delegation . 369
Converting free properties into bound properties: an instance . 370
Firewalls . 371
Firewalls serving as LAN borderline and WAN server checkpoints . 372
Checkpoints handling packets according to ISO/OSI model . 373
Packet filter . 374
Proxy . 375
Generic example of a LAN borderline firewall . 376

10 Intrusion Detection and Reaction . 377
Ideals of control and monitoring . 378
Shortcomings in reality . 379
Some intricate difficulties . 380
Additional protection mechanisms . 381
Classifying behaviors or states . 382
Classification and monitoring task . 383
A simple model . 384
Basic components . 385
Learning, operation and measurement for a policy . 386
Effectiveness of an analysis component: four possibilities. 387
Signature-based approach: outline . 388
Signature-based approach: overly simplified case . 389
Analysis component: some more sophisticated features. 391
Signature-based approach: basic steps: . 394
Anomaly-based approach: outline. 395
Anomaly-based approach: basic steps. 396
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Table of Contents 07. 04. 2011 xvii

Cooperation . 397

Part IV:
Cryptography . 398

11 Fundamentals of Cryptography. 399
Cryptography . 400
Cryptography. 401
Basic cryptographic blocks . 402
Encryption: functionality. 403
Encryption: correctness property . 404
Encryption: secrecy property . 405
Operational secrecy as indistinguishability. 406
Basic assumptions . 407
Relationship between the encryption key and the decryption key . 408
Symmetric encryption . 409
Asymmetric encryption . 410
Symmetric and asymmetric encryption mechanisms . 411
Authentication: basic approach . 412
Authentication: functionality. 413
Authentication: (weak) correctness property . 414
Authentication: unforgeability . 415
Basic assumptions . 416
Relationship between the test key and the authentication key . 417
Symmetric authentication . 418
Asymmetric authentication (digital signing) . 419
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Table of Contents 07. 04. 2011 xviii

Symmetric and asymmetric authentication mechanisms . 420
Anonymization . 421
Sender anonymity . 422
Sender–receiver anonymity . 423
Anonymity by unlinkability . 424
Unlinkability and blind signatures . 425
A classification of pseudonyms. 426
Meanings of the notion of “participant” and their relationships . 427
Sufficient randomness . 428
Pseudorandom generator . 429
Guidelines for generating and employing pseudorandom sequences . 430
Goals of random input: examples . 431
One-way hash functions . 432
Application: representations with fixed short format . 433
Application: enforcing integrity (detection of modification) . 434
One-way hash functions: functionality and properties . 435
Weak collision-resistance property . 436
Strong collision-resistance property . 437
Timestamps . 438
Quality in terms of attacks . 440
A classification framework for attacks against encryption . 441
Cryptographic security . 443

12 Case Studies: PGP and Kerberos . 444
Pretty Good Privacy (PGP) . 445
Basic blocks. 446
Conceptual design of secure message transmission . 448
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Table of Contents 07. 04. 2011 xix

Secure message transmission: preparations . 449
Secure message transmission: encryption and finalization . 450
PGP parameters . 451
Key management. 452
Using a symmetric secret key for securing an asymmetric private key . 453
Using a symmetric secret key as a session key for the hybrid method . 454
Private key ring . 455
Public key ring . 456
Assessment of public keys . 457
Two basic relationships. 458
A derived relationship . 459
Participants, asymmetric keys, signatures and their relationships . 460
Kerberos . 461
Overall security achievements and trust . 462
Basic blocks. 463
Conceptual design: structures . 465
Structure of a Kerberos server . 466
Structures of a client and a functional server . 467
Names, identifiers, addresses and keys . 468
Kerberos server . 469
A client . 470
Rounds of the Kerberos protocol . 471
Messages between a client, a Kerberos server and a functional server . 472
Rough meanings of the six different Kerberos messages . 473
Simplified message 1.1 . 474
Simplified message 1.2 . 475
Ticket-granting ticket . 476
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Table of Contents 07. 04. 2011 xx

Simplified message 2.1 . 477
Simplified message 2.2 . 478
Functional-service ticket . 479
Simplified message 3.1 . 480
Simplified message 3.2 . 481

13 Symmetric Encryption . 482
Encryption mechanism: functionality . 483
Encryption mechanism: properties . 484
Classification. 485
Probability-theoretic secrecy property (one-time key approach) . 486
Complexity-theoretic secrecy property (one-way function approach) . 487
Empirical secrecy property (chaos approach/confusion and diffusion) . 488
One-time keys and perfect ciphers (Vernam) . 489
One-time keys: treating a single bit. 490
One-time keys: handling bit strings of length n . 491
One-time keys: underlying sets . 492
One-time keys: algorithms . 493
One-time keys: applications . 494
Stream ciphers with pseudorandom sequences (Vigenère). 495
Vigenère: overall structure . 496
DES (Data Encryption Standard) . 497
Triple-DES . 498
DES: overall structure . 499
IDEA (International Data Encryption Algorithm) . 500
IDEA: overall structure . 501
AES–Rijndael (Advanced Encryption Standard) . 502
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Table of Contents 07. 04. 2011 xxi

Encryption algorithm AES (k , x) . 504
Structure of the AES–Rijndael symmetric block cipher . 505
AES–step (1): bytewise substitutions . 506
Tabular representation of the substitution function. 507
Algebraic representation of the substitution function . 508
AES–step (2): permutations shifting positions within a row . 509
AES–step (3): transformations on columns . 510
AES–step (4): bitwise XOR operations with the round key . 511
AES: key expansion . 512
AES: decryption . 513
AES: efficiency . 514
Stream ciphers using block modes . 515
Two basic approaches to fragmentation . 516
Electronic Codebook (ECB) Mode . 517
Cipher Block Chaining (CBC) Mode . 518
CBC: correctness. 519
CBC: producing a message digest. 520
Cipher Feedback (CFB) Mode . 521
CFB: overall structure . 522
CFB: correctness . 523
CFB: producing a message digest . 524
Output Feedback (OFB) Mode . 525
Output Feedback (OFB) Mode: overview . 526
Counter-with-Cipher-Block-Chaining Mode (CCM) . 527
Features of block modes . 529
Rudimentary comparison of block modes . 531
Some rough advice to a security administrator . 532
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Table of Contents 07. 04. 2011 xxii

14 Asymmetric Encryption and Digital Signatures with RSA 533
Asymmetric encryption . 534
Complexity-theoretic secrecy property (one-way function approach) . 535
Family of one-way functions with trapdoors . 536
RSA functions . 537
Injectivity and trapdoor: theorem . 539
Injectivity and trapdoor: sketch of proof. 540
Subcase 2a . 541
Subcase 2b. 542
Factorization conjecture of computational number theory . 543
RSA conjecture . 544
RSA conjecture and further conjectures . 545
Some similar proven claims . 546
Conjectures and proven claims about feasible reducibility . 547
RSA asymmetric block cipher. 548
RSA encryption: protocol outline . 549
RSA encryption: underlying sets. 550
RSA: key generation Gen . 551
RSA: encryption algorithm Enc . 552
RSA: decryption algorithm Dec . 553
RSA: fundamental properties . 554
RSA: added nonce. 555
RSA: authenticated encryption . 556
Asymmetric authentication (digital signing). 557
RSA asymmetric digital signatures . 558
RSA digital signatures: protocol outline . 559
RSA digital signatures: underlying sets . 560
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Table of Contents 07. 04. 2011 xxiii

RSA digital signatures: three algorithms . 561
RSA digital signatures: fundamental properties . 562
RSA encryption and digital signatures . 563
ElGamal asymmetric block cipher . 564
Asymmetric block ciphers based on elliptic curves . 565
Asymmetric authentication by ElGamal and elliptic curves. 566

15 Some Further Cryptographic Protocol . 567
Covert commitments . 568
Secret sharing . 569
Multiparty computations . 570
A trusted host with private input channels . 571
A semi-trusted host operating on ciphertexts . 572
Parties with protected local operations and message transmissions . 573
A combined correctness and secrecy property (with threshold t) . 574

Part V: Index (erstellt von Katharina Diekmann) 575
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Table of Contents 07. 04. 2011 xxiv

© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems 07. 04. 2011 1

Part I

Challenges and Basic Approaches

1 Interests, Requirements, Challenges, and Vulnerabilities
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Interests, Requirements, Challenges, and Vulnerabilities - 07. 04. 2011 2

A notion of security

a computing system is secure

iff

it satisfies the intended purposes
without violating relevant informational (or other) rights
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Interests, Requirements, Challenges, and Vulnerabilities - 07. 04. 2011 3

Basic security interests

• availability of data and activities

• confidentiality of information and actions

• integrity of the computing system

• authenticity of actors

• non-repudiation of their actions
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Interests, Requirements, Challenges, and Vulnerabilities - 07. 04. 2011 4

Fundamental aspects of security

• security is a a comprehensive property

• security design reflects the interests of participants

• conflicts must be balanced

• security requirements identify informational activities and their threats

• security interests comprise
– availability
– confidentiality
– integrity
– authenticity
– non-repudiation

• security mechanisms aim at
– preventing security violations
– limiting the damage caused by violations
– compensating their consequences
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Interests, Requirements, Challenges, and Vulnerabilities - 07. 04. 2011 5

Security evaluation

• whether, or to what extent,
do security mechanisms satisfy the security requirements?

• which assumptions are underlying the evaluation?

• which kind of trust is assigned to participants or system components?

• do the risks recognized justify
the expenditure for the security mechanisms selected?
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Interests, Requirements, Challenges, and Vulnerabilities - 07. 04. 2011 6

Requirements by legislation: important examples

• privacy acts detailing the principles of informational self-determination
first declare a general and protecting forbiddance,
and then allow the processing of personal data under specific conditions

• telecommunication and services acts
enable the public and commercial exploitation of informational activities, and
lay foundations for legally binding transactions
in public administration and private commerce

• intellectual property acts
support and extend the traditional concept of
authors’ (or their publishers’) copyright in texts or images
to all kinds of electronic multimedia objects

• criminal acts
identify definitely offending behavior within computing systems
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Interests, Requirements, Challenges, and Vulnerabilities - 07. 04. 2011 7

Privacy and informational self-determination

• an individual determines by himself
which personal information he is willing to share with group members
in a specific social role

• an individual selects his social roles under his own responsibility

• other agents respect the intended separation of roles,
refraining from unauthorized information flows between different roles

Joachim Biskup

father: Torsten, Ulrike

husband: Barbara

taxpayer: revenue officer

patient: physicians

university professor

colleague: faculty staff

lecturer: students

examinator: candidates
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Interests, Requirements, Challenges, and Vulnerabilities - 07. 04. 2011 8

Protection rules for personal data

• based on permission:
personal data should be processed only by permission,
expressed in a law or with the explicit consent of the person concerned

• need-to-know:
processing personal data should be restricted to actual needs,
preferably by avoiding the collection of personal data at all or
by converting it into nonpersonal data by anonymization

• collected from the source:
personal data should be collected from the person concerned

• bound to original purpose:
personal data should be processed only for the well-defined purpose
for which it was originally collected
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Interests, Requirements, Challenges, and Vulnerabilities - 07. 04. 2011 9

• subject to inspection:
a person concerned should be informed about the kind of processing
that employs his personal data

• under ongoing control:
“wrong” personal data should be corrected;
“no longer needed” personal data should be deleted

• with active support:
agents processing personal data are obliged to actively pursue
the privacy of the persons concerned
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Interests, Requirements, Challenges, and Vulnerabilities - 07. 04. 2011 10

Requirements by security evaluation criteria

• Trusted Computer System Evaluation Criteria (TCSEC),
known as the Orange Book,
issued by the US Department of Defense

• Information Technology Security Evaluation Criteria (ITSEC),
jointly published by some European countries

• Common Criteria for Information Technology Security Evaluation (CC),
a version of which has also become an ISO standard
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Interests, Requirements, Challenges, and Vulnerabilities - 07. 04. 2011 11

Common Criteria: security functionality
• Audit, as the basis of monitoring and analyzing the behavior of participants

• Communication, with an emphasis on providing evidence
for sending and receiving of messages

• User Data Protection, with an emphasis on enforcing
availability, integrity and confidentiality of the users’ objects

• Identification and Authentication, for enforcing
authenticity with non-repudiation and accountability

• Privacy, including
non-observability, anonymity, pseudonymity and unlinkability

• Protection of the Trusted Security Functions, which deals with the installation,
administration and operation of security mechanisms, i.e.,
how security mechanisms are securely protected in turn

• Resource Utilization, including fault tolerance, priorization and scheduling

• Target of Evaluation Access, including log-in procedures

• Trusted Path/Channel, dealing with the physical link between
a (human) participant and the (processor of the) technical device employed
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Interests, Requirements, Challenges, and Vulnerabilities - 07. 04. 2011 12

Common Criteria: evaluation assurance levels

• EAL1: functionally tested

• EAL2: structurally tested

• EAL3: methodically tested and checked

• EAL4: methodically designed, tested and reviewed

• EAL5: semiformally designed and tested

• EAL6: semiformally verified design and tested

• EAL7: formally verified design and tested
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Interests, Requirements, Challenges, and Vulnerabilities - 07. 04. 2011 13

Common Criteria: top-level assurance classes

• Configuration Management

• Delivery and Operation

• Development

• Guidance Documents

• Life Cycle Support

• Tests

• Vulnerabilities

for each of the subclasses of the assurance classes,
appropriate assurance levels are required
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Interests, Requirements, Challenges, and Vulnerabilities - 07. 04. 2011 14

A practical checklist for evaluations

• a comprehensive view of the circumstances

• answers to the following questions:
– on what other components, in what layers, is the system based?
– in what environment is the system embedded?
– in what institution or company is the system used?

communication

hardware

system under evaluation

supporting layers

supported layers

institution/company_1
 institution/company_2

environment � information society

 network
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Interests, Requirements, Challenges, and Vulnerabilities - 07. 04. 2011 15

Issues for the actual version, configuration and circumstances
• security policy:

are the security requirements explicitly expressed?

• authorization:
is every access (execution of an operation by a subject on an object),
preceded by an explicit permission
(granting a corresponding access right/a suitable cryptographic key)?

• control:
is such a permission controlled before execution,
(by checking access rights/by the need for a suitable cryptographic key)?

• authenticity:
is the authenticity of all items checked before the execution?

• monitoring:
can intrusions be detected, though potentially only afterwards, and
can any resulting damage be limited or compensated?

• total overage:
do the security mechanisms cover all accesses and messages?
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Interests, Requirements, Challenges, and Vulnerabilities - 07. 04. 2011 16

Construction principles
• open design:

the design and the actual implementation of security mechanisms
may or even must be made public (“no security by obscurity”)

• fail-safe defaults:
any informational activity within a computing system is forbidden
unless it has been explicitly permitted

• fine granularity:
elementary, independent activity classes are defined as units of control

• need-to-know/need-to-act:
permissions are granted only if they are strictly needed

• complete mediation:
permissions are granted to well-defined single activity executions

• economy of mechanisms:
the main burden of security enforcement is put on technical mechanisms

• complexity reduction:
the security mechanisms are appropriately concentrated
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Interests, Requirements, Challenges, and Vulnerabilities - 07. 04. 2011 17

Message transmission: a basic abstraction for challenges

• captured by an assignment statement of the form R:=S

• the content m of the memory part denoted by S
is transmitted to the memory part denoted by R

• S writes into R, or
R reads from S, or
some mechanism pushes the transmission

 Sender S Receiver R

m

meaningful message
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Interests, Requirements, Challenges, and Vulnerabilities - 07. 04. 2011 18

Transmission control in distributed computing systems: example

sender::send_data(receiver,message)

receiver::receive_data(sender,message)

.

Sender S Receiver R

(S,R,m)

send_data receive_data.

message: m

receiver: R sender: S

message: m
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Interests, Requirements, Challenges, and Vulnerabilities - 07. 04. 2011 19

Information flow
• a transmitted message,

seen as a string (of letters and, ultimately, of 0’s and 1’s),
is not necessarily meaningful concerning content
for a receiver or any other observer

• it may happen and can even be sensible that
an observed string appears random and without information:

from the point of view of the observer,
the message transmission has not caused an information flow

• in other cases, an observer succeeds in
assigning a meaning to the observed string,
roughly in the following sense:

he determines an assertion
expressing the truth of some aspect of his considerations;
if, additionally, the observer has newly learnt this truth,
then the message transmission has caused
an information flow from the observer’s point of view
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Interests, Requirements, Challenges, and Vulnerabilities - 07. 04. 2011 20

Information flow based on message transmission
1. observing a message: consider a string m

2. assigning meaning: determine a sentence Δm

3. expressing knowledge: form presupposition Π as a collection of sentences
testing novelty: infer whether Π implies Δm

updating the knowledge: if novel (not implied), add Δm to Π and reorganize,

4. resulting in Πnew .

 Sender S Receiver R

m

 observing message: m.

assigning
meaning: �m

knowledge: � / �new

 message as string

testing
novelty

updating
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Interests, Requirements, Challenges, and Vulnerabilities - 07. 04. 2011 21

Information flow and message transmission

• a message transmission does not necessarily cause
an information flow for any observer

• sometimes an observer has to infer implications
in order to let a message transmission appear
as an information flow from his point of view

• for such an inference, the observer can exploit a priori knowledge
such as a previously acquired key

• for an actual inference,
the observer needs appropriate computational means
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Interests, Requirements, Challenges, and Vulnerabilities - 07. 04. 2011 22

Inspection and exception handling: basic approach

• a message transmission can be accidently disturbed or deliberately distorted,
with the effect that the receiver observes a modified or even forged message

• as a provision against such unfortunate events,
senders generate redundancy in the form of auxiliary objects, in particular:
– additional (check) bits for encoding
– copies for fault-tolerant computing
– cryptographic exhibits for authentication

• participants agree on protocols to exploit the redundancy, in particular:
– to detect and correct errors for decoding
– to detect and recover from faults for fault-tolerant computing
– to detect forgeries for authenticity verification
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Interests, Requirements, Challenges, and Vulnerabilities - 07. 04. 2011 23

Inspection and exception handling: summary

 Sender S Receiver R

select_encode(tolerant(m,Aut(akS,m),...),...)

.

return messages

.

encoding

preparing for faults

authenticating

message: m

decoding

recovering from faults

verifying authenticity

message: m

 receive send send receive

with error correction with check bits
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Interests, Requirements, Challenges, and Vulnerabilities - 07. 04. 2011 24

Security interests reconsidered
in terms of message transmission/information flow

• each participant should express his interests
with respect to the service considered
(here: message transmission /information flow)

• some interests mainly expect reliable correctness, i.e.,
correct execution of the specified service even in the presence of threats,
and maybe also additional evidence for actual executions

• other interests mainly require confinement, i.e.,
that nobody can misuse the service for unwanted effects
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Interests, Requirements, Challenges, and Vulnerabilities - 07. 04. 2011 25

Threats: originators and causes
originators
• the interest holder himself

• participants directly involved in the service

• participants who have implemented the service

• other participants who are authorized to share the computing system

• intruders from outside

• manufacturers, vendors and administrators

originators might threat the service
• harmlessly and accidently

• maliciously and deliberately

causes might range from
• improper requirements, through

• faulty implementations or

• wrong administration, to

• unfortunate external events

© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Interests, Requirements, Challenges, and Vulnerabilities - 07. 04. 2011 26

Security interests: an expanded list
• availability

• integrity: correct content

• integrity: unmodified state

• integrity: detection of modification

• authenticity

• non-repudiation

• confidentiality

• non-observability

• anonymity

• accountability

• evidence

• integrity: temporal correctness

• separation of roles

• covert obligations

• fair exchange

• monitoring and eavesdropping

© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Interests, Requirements, Challenges, and Vulnerabilities - 07. 04. 2011 27

Integrity: unmodified state

Sender S Receiver R

m / m� (S,R,m�)

(S,R,m)

message: m message: m
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Interests, Requirements, Challenges, and Vulnerabilities - 07. 04. 2011 28

Authenticity

Sender S Receiver R

(S,R,m)(S,,)

(S,,)other
participants
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Interests, Requirements, Challenges, and Vulnerabilities - 07. 04. 2011 29

Confidentiality
.

Sender S Receiver R

(S,R,m)

other
participants
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Interests, Requirements, Challenges, and Vulnerabilities - 07. 04. 2011 30

Interest Autonomy Cooperation

availability �,+ +,�

integrity: correct content � �

integrity: unmodified state � �

integrity: detection of modification + �

authenticity + �

non-repudiation �,+ +

confidentiality + �

non-observability + �

anonymity + �

accountability �,� +

evidence �,+ +

integrity: temporal correctness + �

separation of roles + �

covert obligations + �

fair exchange + �

monitoring and eavesdropping � +

Autonomy and cooperation: a classification of security interests
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Interests, Requirements, Challenges, and Vulnerabilities - 07. 04. 2011 31

Trust and threats

• while interacting, one participant might see another one
both as a wanted partner
and as a potentially threatening opponent

• at least some limited trust has to be assigned to some participants involved

• components of a computing system might fail,
but a user has to trust at least some components
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Interests, Requirements, Challenges, and Vulnerabilities - 07. 04. 2011 32

Crucial points of multilateral security

• the trust needed should be minimized
while simultaneously maximizing the achievable functionality,
thereby facing the potential threat from the untrusted parts

• each participant should autonomously assign trust at their own discretion

• as far as possible,
assigned trust should be justified, and

the assigning participant should have the power
to verify the trustworthiness and
to control the actual behavior of the trusted realm
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Interests, Requirements, Challenges, and Vulnerabilities - 07. 04. 2011 33

Confident and optimistic approach

the administrator chooses relatively weak security mechanisms,
roughly expecting the following:

at relatively low cost,

only slightly affecting the standard operations,

most of the anticipated threats are effectively covered,

but exceptional violations (hopefully rare) might still be possible;

such violations will, hopefully, manageable or acceptable,

though potentially at high cost
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Interests, Requirements, Challenges, and Vulnerabilities - 07. 04. 2011 34

Provisional and pessimistic approach

the administrator selects relatively strong security mechanisms,
roughly expecting the following:

at relatively high cost,

greatly affecting the standard operations,

all anticipated threats are effectively covered
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Interests, Requirements, Challenges, and Vulnerabilities - 07. 04. 2011 35

Optimistic approach versus pessimistic approach

• cheap versus expensive

• basically unaffected standard operations versus an essential security overhead

• approximate versus complete coverage of threats

• toleration versus strict avoidance of exceptional violations

example: access control
optimistic: we audit all activities and,

taking random samples or in cases of suspicion,
analyze the audit trail for violations only afterwards

pessimistic: we fully control all requests for activities and
decide them in advance

example: trading
optimistic: cooperating participants issue exhibits by themselves,

which are subject to later evaluation by a trusted third party
only in the case of disputes

pessimistic: every trade is mediated and supervised by a trusted notary

© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Interests, Requirements, Challenges, and Vulnerabilities - 07. 04. 2011 36

Computing system: layered design

switches assembler
language

command
language

data
definition/
manipulation
language

application
language

��higher��
programming
language

information system programming

application
system

operating system: administration of processes, memory,

assembler: translation of symbolic addresses, mnemonics, macros

(real) physical device(s)

processor (main) memory: externals:
programs (for screen,

keyboard, mouse,
disk memory,
scanner,
network controller
...

network connection

transfer

control:

system

instruction
interpreter

arithmetic

and
machine
languages

virtual machines
and applications),
runtime data,
application data

files (programs), input/output devices, network

and logic
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Interests, Requirements, Challenges, and Vulnerabilities - 07. 04. 2011 37

Internal structure of a processor and its memory

 data base

program base

arithmetic logic unit

 address bus

instruction

 accu-

instruction register

 address

program

memory addresses
cells

 buffer

(instruction and) data bus

mulator register

interpreter

counter register
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Interests, Requirements, Challenges, and Vulnerabilities - 07. 04. 2011 38

Features of computing and basic vulnerabilities: overview

processor memory externals

operating/network system

application system

interface
device

personal
device

overall

universality, no data-program

rewritable

virtuality

multi-user functionality,

user-to-devicehardware

no personalization

no identity

�real world� meaning

processor memory externals

operating/network system

application system

processor memory externals

operating/network system

application system

personal
device

processor memory externals

operating/network system

application system

interface
device

local area network

local area network

processor memory externals

operating/network system

application system

wide area network

limited control

indistinguishable

not expressed
abstract semantics

access pathmemory complexity

complexity

parallel processes,
virtual memory

over remote sites

remote behavior

distinctionprogram-storing

processor memory externals

operating/network system

application system

processor memory externals

operating/network system

application system

processor memory externals

operating/network system

application system

processor memory externals

operating/network system

application system

processor memory externals

operating/network system

application system

a
v
ir

tu
al

 c
o
n
n
ec

ti
o
n

ac
re

ss
 n

et
w

o
rk

 b
o

u
n
d

ar
ie

s

© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Interests, Requirements, Challenges, and Vulnerabilities - 07. 04. 2011 39

Features of computing and basic vulnerabilities: one component

processor memory externals

operating/network system

application system

interface
device

personal
device

overall

universality, no data-program

rewritable

virtuality

multi-user functionality,

user-to-devicehardware

no personalization

no identity

�real world� meaning
not expressed

abstract semantics

access pathmemory complexity

complexity

parallel processes,
virtual memory

distinctionprogram-storing

operating/network system

application system

n
et

w
o
rk

 b
o

u
n
d

ar
ie

s

© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Interests, Requirements, Challenges, and Vulnerabilities - 07. 04. 2011 40

Features of computing and basic vulnerabilities: networks

processor memory externals

operating/network system

application system

processor memory externals

operating/network system

application system

personal
device

processor memory externals

operating/network system

application system

interface
device

local area network

local area network

processor memory externals

operating/network system

application system

wide area network

limited control

indistinguishable

over remote sites

remote behavior

processor memory externals

processor memory externals

operating/network system

application system

processor memory externals

operating/network system

application system

processor memory externals

operating/network system

application system

processor memory externals

operating/network system

application system

a
v
ir

tu
al

 c
o
n
n
ec

ti
o
n

ac
re

ss
 n
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Interests, Requirements, Challenges, and Vulnerabilities - 07. 04. 2011 41

Features and vulnerabilities
virtuality “virtual security” corrupted or

circumvented in supporting layers

overall complexity no global, complete understanding;
unexpected interferences

universality, program-storing imposed (malicious) “computable will”

processors without identity masquerades

devices without personalization masquerades, repudiated human–device binding

no data–program distinction program (self-)modification
(buffer overflow attacks)

rewritable memory program and data modification

hardware complexity hidden functionality, covert channels

user-to-device access path exposed attack target

multi-user functionality, parallel processes
and virtual memory

unintended interferences by resource sharing

abstract semantics of virtual layers incorrect translation,
non-captured but security-relevant aspects

“real-world” meaning not expressed unperceived attack possibilities

seemingly restricted functionality universality by simulation

(identifiable) virtual digital objects
represented by bit string

unauthorized copying
(double spending of coins)

limited control over remote sites remote activities only derivable by inferences

indistinguishable remote behavior eavesdropping,
message manipulation and forgery,
(malicious) message production

© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Interests, Requirements, Challenges, and Vulnerabilities - 07. 04. 2011 42

2 Key Ideas and Combined Techniques
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Key Ideas and Combined Techniques - 07. 04. 2011 43

Key ideas for technical security enforcement mechanisms

• redundancy
enables one
to infer needed information,
to detect failures and attacks and
to recover from such unfortunate events

• isolation
prevents unwanted information flows or interference

• indistinguishability
makes maliciously planned observations
appear random or uniformly expected
and thus useless
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Key Ideas and Combined Techniques - 07. 04. 2011 44

Redundancy: important examples

• spare equipment and emergency power

• recovery copies for data and programs

• deposit of secrets

• switching networks with multiple connections

• fault-tolerant protocols:
– infer a hidden original state from observations and auxiliary redundancy

and reconstruct it accordingly
– abort a failing operation and restart it

from a saved or reconstructed previous state,
or even to redo a completed operation

– take a majority vote regarding the actual outputs of computations
performed independently and in parallel

• error-detecting and error-correcting codes

• cryptographic pieces of evidence
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Key Ideas and Combined Techniques - 07. 04. 2011 45

Isolation

• physical/programming-based isolations
requiring explicit access decisions at runtime,
in order to enable the restricted usage of the isolated components
according to declared permissions

• virtual cryptographic isolations
employing more implicit access decisions
based on the distribution of secret keys
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Key Ideas and Combined Techniques - 07. 04. 2011 46

Physical/programming-based isolations: a global view

processor memory externals

operating/network system

application system

interface
device

personal
device

temporal separation,

entrance

personalization,

processor memory externals

operating/network system

application system

processor memory externals

operating/network system

application system

personal
device

processor memory externals

operating/network system

application system

interface
device

local area network

local area network

processor memory externals

operating/network system

application system

wide area network

spatial separation

processor memory externals

operating/network system

application system

processor memory externals

operating/network system

application system

processor memory externals

operating/network system

application system

processor memory externals

operating/network system

application system

processor memory externals

operating/network system

application system

a
vi

rtu
al

 c
on

ne
ct

io
n

ac
ro

ss
 n

et
w

or
k

bo
un

da
rie

s

? ?

operating system security kernel

middleware security kernel

control

isolated memory

privileged instructions,
basis and bound registers,
tags (data�program distinction)

?

?

firewall

firewall

? ?

? ?

?

?

?

?

?

?

biometrics

?

?

© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Key Ideas and Combined Techniques - 07. 04. 2011 47

Physical/programming-based isolations: a local view

processor memory externals

operating/network system

application system

interface
device

personal
device

temporal separation,

entrance

personalization,

processor memory externals

operating/network system

application system

l l t k

spatial separation

processor memory externals

operating/network system

application system

ac
ro

ss
 n

et
w

or
k

bo
un

da
rie

s

? ?

operating system security kernel

middleware security kernel

control

isolated memory

privileged instructions,
basis and bound registers,
tags (data�program distinction)

?
firewall

? ?

? ?

?

biometrics

?

© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Key Ideas and Combined Techniques - 07. 04. 2011 48

Spatial separation and entrance control

• spatially separate an autonomously operated, stand-alone computing system
in a dedicated closed room with locked doors (and windows)

• operate an effective entrance control
enabling only authorized individuals to enter and
then to (unrestrictedly) use the system

• may suffer from serious threats:
– authorized individuals might not match the interests,

owing to organizational weaknesses or unresolved conflicts

– two or more authorized individuals might (unrestrictedly)
interfere and collaborate

– an (unrestrictedly) authorized individual might
misuse the trust for unexpected and unwanted goals

– the entrance control might fail, and some
unauthorized individual might then (unrestrictedly) exploit the system
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Key Ideas and Combined Techniques - 07. 04. 2011 49

Temporal separation and isolated memory

• several participants can share a computing system
either strictly in sequence or overlapping in time

• the participants might then interfere,
when the processes executed on behalf of them access common memory

• if sharing is done strictly in sequence, after finishing a job,
completely erase all memory contents,
i.e., reestablish an agreed normal state,
maintained as an invariant of any usage of the computing system

• if sharing is done so that there is overlapping in time,
adapt the notion of a normal state and take additional measures:
– ensure that the allocated process spaces

(containing programs to be executed, runtime stacks, heaps, etc.)
always remain strictly isolated:
one process can never access memory locations
currently reserved for a different process

– ground these measures on physical tamper-resistant mechanisms

© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Key Ideas and Combined Techniques - 07. 04. 2011 50

Memory protection and privileged instructions

• memory protection physically restrict memory accesses with respect to
– addresses and
– the mode of the operation requested

• ensured behavior of the processor’s instruction interpreter:
if the next instruction must be fetched from a memory location address or
a machine instruction of the kind instr = [operation , address] is considered,

 then the request is actually executed
iff
a specific protection condition is satisfied

• a protection condition might depend on
– the process,
– the activity requested and
– the address referred to
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Key Ideas and Combined Techniques - 07. 04. 2011 51

Basis register and bound register

memory cells addresses

 relative addressing

basis register

 basis

 address +

basis + 1
basis
basis � 1

�

targetaddress register

 bound

bound register

target

bound � 1
bound
bound + 1

no accesses

no accesses

allocated

allocated

?

(if target � bound)

 false true

program counter

handle error perform access

or address part of
instruction register

possible

possible

address space

address space
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Key Ideas and Combined Techniques - 07. 04. 2011 52

Memory tags

�access register�

access address

 DaRW
 DaRW

 DaRW
 DaR
 DaRW
 DaR

 OSX

...

...

...

...

...

 ...

 X
 X

 X
 X

 tag

 OSX
 OSX

 instruction/data address

access in class tag

 handle error

?

 perform access

false true

memory tags memory cells addresses
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Key Ideas and Combined Techniques - 07. 04. 2011 53

Tags as usage classes: examples

• read access to an executable instruction
(fetching into the instruction register)
by any user process or by special operating system processes

• read access to arbitrary data
(loading into a data register)
by any user process or by special operating system processes

• write access with arbitrary data
(storing from a data register)
by any user process or by special operating system processes

• read access to data of a specific type
(e.g., integer, string, address or pointer),
which has to be suitably recognized by the context or other means

• write access with data of a specific type
(e.g., integer, string, address or pointer),
which has to be suitably recognized by the context or other means.
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Key Ideas and Combined Techniques - 07. 04. 2011 54

Basis register and bound register versus memory tags

Basis register and
bound register Memory tags

Extra memory 2 registers linear in the size of memory

Operational
overhead

assigning the registers;
calculating and comparing addresses
during memory accesses

assigning the memory tags;
checking conformance
during memory accesses

Abstraction layer
of separated items

dynamically allocated
address spaces

instances of types
known to the processor

Granularity more coarse
(according to the memory requirements
of dynamically generated, active items)

more fine
(according to the size of instances of
static types)

Protection goal
primarily achieved

isolation of active items
for avoiding unintended
sharing of memory

isolation of instances of types
for avoiding unintended usage

Coordination
with higher layers

relative addressing,
as usually employed

mapping of more application-oriented
types to usage classes denoted by tags

Deployment widespread,
mostly together with other mechanisms
of indirect addressing

seldom,
mostly only in a simple variation
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Key Ideas and Combined Techniques - 07. 04. 2011 55

Privileged instructions

 tags memory cells

privileged

 error handling

instructions

instruction interpreter

circuit for state transition

processor state register

basis register

�
�
�

�
�
�

bound register

instructions for user processes

(e.g. with states operating_system
or user_process):
determines executable instructions
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Key Ideas and Combined Techniques - 07. 04. 2011 56

Further isolation mechanisms

• separate process spaces

• object-oriented encapsulation

• security kernels

• stand-alone systems

• separate transmission lines

• security services in middleware

• firewalls

• cryptographic isolation
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Key Ideas and Combined Techniques - 07. 04. 2011 57

Indistinguishability

• blurs specific informational activities
by making them indistinguishable from random or uniformly expected events

• thus prevents an unauthorized observer to infer
the details or even the occurrence of a specific activity

• might be achieved by employing
– randomness or
– standardized behavior
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Key Ideas and Combined Techniques - 07. 04. 2011 58

Indistinguishability by randomness

some explicit randomness is generated,

and then the specific activity considered
has this randomness superimposed on it

such that the activity appears (sufficiently) random itself

used in cryptography: the secret key is randomly selected
from a very large number of possibilities,

and the randomness of the secret key is transformed
into (some sufficient degree of) randomness
of the activity to be protected
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Key Ideas and Combined Techniques - 07. 04. 2011 59

Example for superimposing randomness: encryption
• two possible plaintexts: 0 with probability q

1 with probability 1 – q

• source of randomness: two equally distributed keys, 0 and 1,
 with probability 1/2, independently of the plaintext

• the randomness of the keys is then superimposed on the plaintexts:

=

= =

0

1

 plaintexts x with probabilities ciphertexts y

random keys k with equal distribution

“loss” ≅ 0

“win” ≅ 1

0 with p0=1/2

1 with p1=1/2

1 with p1=1/2

0 with p0=1/2

with q

with (1– q)

Prob y 0=[] Prob x 0=[] Prob k 0=[]⋅ Prob x 1=[] Prob k 1=[]⋅+

q 1 q–()+() 1
2
---⋅ 1

2

© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Key Ideas and Combined Techniques - 07. 04. 2011 60

Encryption: indistinguishability of plaintexts

described in terms of a mental experiment:

• attempt: construct an efficient accepting device
that discriminates (hidden) plaintexts
on the basis of observing (visible) ciphertexts

• insight: such a device cannot exist:
an observed ciphertext does not contain
any information about the underlying plaintext,

thus this plaintext and the alternative one
remain completely indistinguishable
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Key Ideas and Combined Techniques - 07. 04. 2011 61

Example for superimposing randomness: authentication

• two possible objects, 0 and 1

• source of randomness: four equally distributed keys, 00, 01, 10 and 11,
each of which is used with probability 1/4,
independently of the object

• the randomness of the keys is then superimposed on the objects:

0

1

 objects x exhibits y

random keys k with equal distribution

“loss” ≅ 0

“win” ≅ 1

00 with p00= 1/4

01 with p01 = 1/4

11 with p11 = 1/4

11 with p11 = 1/4

10 with p10 = 1/4

10 with p10 = 1/4

00 with p00 = 1/4

01 with p01 = 1/4
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Key Ideas and Combined Techniques - 07. 04. 2011 62

Authentication: indistinguishability of exhibits

• suppose the exhibit 0 for the event “loss” is known

• then, either key 00 or key 11 has been secretly used:

these keys still map the event “win” onto either exhibit, 0 or 1,

which are thus indistinguishable
regarding their acceptance on the basis of the pertinent secret key

0

1

 objects x exhibits y

random keys k with equal distribution

“loss” ≅ 0

“win” ≅ 1

00 with p00= 1/4

01 with p01 = 1/4

11 with p11 = 1/4

11 with p11 = 1/4

10 with p10 = 1/4

10 with p10 = 1/4

00 with p00 = 1/4

01 with p01 = 1/4
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Key Ideas and Combined Techniques - 07. 04. 2011 63

Indistinguishability by standardized behavior

a suitably designed standardized behavior,
possibly consisting just of dummy activities, is foreseeably produced,

and then the specific activity considered is hidden
among the foreseeable behavior,
for instance by replacing one of the dummy activities
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Key Ideas and Combined Techniques - 07. 04. 2011 64

Hiding among standardized behavior: examples
• non-observable activities

hiding the points in time of sending a message
 by pretending to be uniformly active:
 – participant actually communicate with some partner:

prepares a corresponding document,
appropriately adds the final destination of the communication,
pads the document with some additional material until it has the expected length,
envelops all data,
waits for the next agreed point in time, and
then sends the final message to the intermediate address used as a postbox

– participant wants no “real activity”:
just sends a dummy message of the expected length

• brokers and blackboards
employing a sort of fixed intermediate postbox to hide
the sources and the final destinations of communications

• group activities
authorizing group members to act on behalf of the community
but without revealing the actor’s identity to observers outside the group
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Key Ideas and Combined Techniques - 07. 04. 2011 65

Combined techniques: overview

• control and monitoring:
identifiable agents can have access rights granted and revoked, and
access requests of authenticated agents are intercepted by control components

 that decide on allowing or denying an actual access

• cryptography:
secrets are generated and kept by agents:
the secrets are exploited as cryptographic keys,
distinguishing the key holder so that
that agent is enabled to execute a specific operation in a meaningful way,
in contrast to all other agents

• certificates and credentials:
digitally signed digital documents (digital legitimations),
conceptually bind properties that are relevant for access decisions
to specific agents, which are denoted only by public keys

(here, a public key is understood as a suitable reference to
a private (secret) cryptographic key held by the agent considered)
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Key Ideas and Combined Techniques - 07. 04. 2011 66

Local control and monitoring

 id
en

tit
y

 identification

and

 proof of
 authenticity

 knowledge base

 access decision
and

 result inspection

knowledge base

(modified) result

(modified)

result

� change

� trigger further
requests

� generate and
return result

participating subjects controlled objects

control and monitoring component
� cannot be bypassed
� (virtually) isolates participating subjects

� is based on physical isolation

 identifier
 with evidence

 request for object
or

 update request for
 knowledge bases

...
...

...
...

...

on
 permissions and prohibitions

monitoring

on
usage history

request

 and
monitoring

(might also be objects)

internal state

from controlled objects

 (indicated by the gray frame)
� decides on requests and results

and possibly modifies them

 (might also be subjects)
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Key Ideas and Combined Techniques - 07. 04. 2011 67

Local control and monitoring

 id
en

tit
y

 identification

and

 proof of
 authenticity

 knowledge base

 access decision
and

 result inspection

knowledge base

(modified) result

(modified)

result

� change

� trigger further
requests

� generate and
return result

participating subjects controlled objects

control and monitoring component
b b d

 identifier
 with evidence

 request for object
or

 update request for
 knowledge bases

...
...

...
...

...

on
 permissions and prohibitions

monitoring

on
usage history

request

 and
monitoring

(might also be objects)

internal state

 (might also be subjects)
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Key Ideas and Combined Techniques - 07. 04. 2011 68

Cryptography

cryptographic

 secrets

conceptually: (cryptographic) conceptually: (cryptographic)

 secrets

 request

secret (key)

result:

controlled objects

(mediated) request

�raw� result

participating subjects
� generate, store and employ secrets
� exploit physical isolation

...
...

...
...

...

 (indicated by the gray areas)

 mechanisms

 only meaningful for
 matching secret (key)

cryptographic
 mechanisms

 control component knowledge base on permissions
(and prohibitions)

...
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Key Ideas and Combined Techniques - 07. 04. 2011 69

Certificates and credentials

pr
iv

at
e

ke
y

 proof of

 locally represented part of

 access decision
and

 result inspection

knowledge base

(modified) result

(modified)

result

� change

� trigger further
requests

� generate and
return result

participating subjects controlled objects

control and monitoring component

� cannot be bypassed
� (virtually) isolates participating subjects

� is based on physical isolation

 certificates/
 credentials

...

...
...

...

monitoring

on
usage history

request

 and
monitoring

internal state

 from controlled objects

 (indicated by the gray frame)
� decides on requests and results

 and possibly modifies them

 (might also be subjects)

security policy:
certificates/credentials

request

challenge

response

pe
rs

on
al

ce
rti

fic
at

es
/

cr
ed

en
tia

ls

 authenticity

as clients (requestors)
(might also be objects)

 at a server

conceptually: knowledge base on permissions (and prohibitions)

© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Key Ideas and Combined Techniques - 07. 04. 2011 70

Certificates and credentials

pr
iv

at
e

ke
y

 proof of

 locally represented part of

 access decision
and

 result inspection

knowledge base

(modified) result

(modified)

result

� change

� trigger further
requests

� generate and
return result

participating subjects controlled objects

control and monitoring component

 certificates/
 credentials

...

...
...

...

monitoring

on
usage history

request

 and
monitoring

internal state

 (might also be subjects)

security policy:
certificates/credentials

request

challenge

response

pe
rs

on
al

ce
rti

fic
at

es
/

cr
ed

en
tia

ls

 authenticity

as clients (requestors)
(might also be objects)

 at a server

conceptually: knowledge base on permissions (and prohibitions)

© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Key Ideas and Combined Techniques - 07. 04. 2011 71

Participants and objects involved

• a human individual

• a (physical) personal computing device

• a (physical) interface device

• a physical computing device
(with a processor as its main component,
and running an operating system and other system software)

• a process

• an operating system kernel

• a (physical) storage device

• a (virtual application) object
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Key Ideas and Combined Techniques - 07. 04. 2011 72

Local identifiers: participants and their local connections

 operating physical computing device

 a process
executed on behalf of

user management:

- user identifier (surrogate)
- classifying properties
- internal representation of peculiarities

 operating system kernel

physical storage device

 an individual

 human
individual

. . .

interface
 device

 personal
computing
 device

an object . . .
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Key Ideas and Combined Techniques - 07. 04. 2011 73

The fiction of an overall “connection”

conceptual perception:
an individual is permitted (or prohibited) to perform an action on an object

actual requirement:
the “natural identity” of a human individual
must be appropriately reflected along the chain of local connections,
ensuring that the messages involved are directed as expected, in particular:

• between the human individual and the interface device:
either directly or with the help of a secure personal computing device

• between the interface device and the physical computing device:
a secure physical access path

• between one process and another local process:
secure process communication

• between a process and the local storage:
a secure operating system kernel
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Key Ideas and Combined Techniques - 07. 04. 2011 74

Global identifiers: virtual end-to-end connections

 human
individual

 human
individual

 local
system

 local
system

network
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Key Ideas and Combined Techniques - 07. 04. 2011 75

Provisions for authentication and proof of authenticity

matching procedure

employ identifier
as internal surrogate

accept

exception
handling

rejectshown exhibits

claimed identifier

registered
identifiers

verification
 data

.

.

.

.

.

.

retrieved
verification
data

management
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Key Ideas and Combined Techniques - 07. 04. 2011 76

Peculiarities of human individuals: examples
• individual knowledge:

– password, passphrase
– PIN (personal identification number)
– personal data
– historic data
– (discretionarily selected) cryptographic key
– random number (nonce)

• physical possession:
– smartcard
– personal(ized) computing device

• biological characteristics (biometrics):
– fingerprints
– eye pattern,
– genetic code
– speech sound

• individual (reproducible) behavior:
– pattern of keyboard striking
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Key Ideas and Combined Techniques - 07. 04. 2011 77

Peculiarities of physical devices: examples

• tamper-resistant, physically implanted serial number

• tamper-resistant, physically implanted cryptographic key

• discretionarily selected cryptographic key

• random number
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Key Ideas and Combined Techniques - 07. 04. 2011 78

Properties of verification data: informal version

• (strong) correctness:
an exhibit presented is accepted
iff
it is authentic for the claimed identifier

• (extended) unforgeability:
knowing the verification data alone
should not enable one to produce any matching exhibits
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Key Ideas and Combined Techniques - 07. 04. 2011 79

Some contributions of cryptography

• by applying encryption,
any verification data can be persistently stored in encrypted form,
such that only the recognizing system can exploit the verification data

• by applying asymmetric cryptographic authentication,
a participant’s given peculiarity can be made
to consist of a private (secret) authentication or signature key,
and the corresponding public test key serves as the verification data

• by applying a collision-resistant one-way hash function,
a (digital encoding of any) peculiarity is mapped to a hash value
serving as stored verification data;
later on, the peculiarity can be shown as an exhibit,
whose hash value is recomputed and compared with the stored value
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Key Ideas and Combined Techniques - 07. 04. 2011 80

Issue of authentic verification data: trusted authorities

peculiarity verification data

participant recognizer

trusted authority
show/prove peculiarity certify verification data
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Key Ideas and Combined Techniques - 07. 04. 2011 81

Issue of freshness: challenge–response procedures

participant recognizer

request (with identifier)

challenge (with nonce)

response (with exhibits for receipt)
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Key Ideas and Combined Techniques - 07. 04. 2011 82

Issue of malicious redirection by man-in-the-middle

sensitive data

participant participant
assumed connection

redirected connection

man-in-the-middle “impersonated connection”
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Key Ideas and Combined Techniques - 07. 04. 2011 83

Issue of malicious guessing or probing: carefully chosen exhibits

syntactically possible items
“semantically likely” items

attacker’s
dictionaryselected item
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Key Ideas and Combined Techniques - 07. 04. 2011 84

Permissions and prohibitions: the need for a layered approach

• participants by themselves, or
some distinguished participants acting on behalf of the others,
specify and declare the wanted permissions and prohibitions

• declarations are then (hopefully) appropriately represented
by the means of the computing system and inside it

• representations are (hopefully) efficiently managed there,
both for decisions on actual requests for an operational option and for updates

• decisions are effectively enforced, i.e.,
(hopefully) exactly those requests are successfully executed
that have been declared permitted, and,
accordingly, none of those that have been declared prohibited
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Key Ideas and Combined Techniques - 07. 04. 2011 85

Specification of permissions and prohibitions: some guidelines

• alignment with the environment

• least privileges according to need-to-know or need-to-act

• separation of roles

• purpose binding

• separation of privileges
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Key Ideas and Combined Techniques - 07. 04. 2011 86

Requirements and mechanisms reconsidered
security interests:
• availability: requested data/action returned/executed in a timely manner

• integrity: an item’s state unmodified, or its modification detectable

• authenticity: claimed origin of data or action recognized as correct

• non-repudiation: correct origin of data or action provable to third parties

• confidentiality: information kept secret from unauthorized participants

• non-observability and anonymity: activities kept secret

• accountability: activities traceable to correct origin

key ideas for security mechanisms:
• redundancy: adding additional data or resources

to enable needed inferences, detect failures and attacks,
or recover from them

• isolation: separating items
to disable information flows and interferences

• indistinguishability: hiding data or activities by letting them appear to be
 random samples of a large collection or uniformly expected
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Key Ideas and Combined Techniques - 07. 04. 2011 87

Combined techniques reconsidered

• local control and monitoring:
 – identity-based

– identification and proof of authenticity
– permissions as access rights
– control of intercepted requests and results
– monitoring of overall behavior

• cryptography:
– secret-based
– encryption, (cryptographic) authentication including digital signatures,

anonymization, randomness, one-way hash functions, timestamps
– more advanced protocols built from these blocks

• certificates and credentials:
– property-based
– features of local control and monitoring applied to requests

that are accompanied by digitally signed assignments
of security-relevant properties
to public keys
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Key Ideas and Combined Techniques - 07. 04. 2011 88

Interests and enforcing mechanisms: summary (part 1)

Interest Redundancy Isolation Indistinguisha-
bility

Control and
monitoring Cryptography Certificates and

credentials

Availability provisionally multi-
plying (sub)objects or
generating auxiliary
objects to reconstruct
lost or corrupted
objects

attributing distin-
guishing identifiers
or characterizing
properties

confining threatening
operations in the
context of integrity

granting access rights
for enabling permitted
operations (and confin-
ing them as far as they
are threatening)

detecting and recon-
structing losses and
corruptions while inter-
cepting requests and
results

generating and dis-
tributing secrets
(keys) for enabling
permitted operations

issuing documents
about properties for
enabling permitted
operations (and con-
fining them as far as
they are threatening)

Integrity provisionally generat-
ing auxiliary objects to
detect modifications

confining operations
on objects to dedi-
cated purposes

generating distin-
guishing secrets

making exhibits
appear randomly
selected for prevent-
ing forgeries

specifying prohibitions
for rejecting or confin-
ing threatening opera-
tions

detecting unwanted
modifications of
objects

specifying prohibi-
tions for rejecting or
confining threatening
operations

Authenticity adding exhibits
derived from a distin-
guishing secret

attributing distin-
guishing identifiers

generating distin-
guishing secrets

making exhibits
appear randomly
selected for prevent-
ing forgeries

recognizing a requestor
by identification and
proof of authenticity

recognizing a
requestor or actor by
verifying crypto-
graphic exhibits

challenging a
requestor and verify-
ing cryptographic
exhibits in responses
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Key Ideas and Combined Techniques - 07. 04. 2011 89

Interests and enforcing mechanisms: summary (part 2)

Interest Redundancy Isolation Indistinguisha-
bility

Control and
monitoring Cryptography Certificates and

credentials

Non-
repudiation

adding cryptographic
exhibits in the form of
digital signatures
derived from a distin-
guishing secret

generating distin-
guishing secrets

making exhibits
appear randomly
selected for prevent-
ing forgeries

proving an actor
responsible by veri-
fying cryptographic
exhibits in the form
of digital signatures

assigning provable
responsibility to issu-
ers of documents by
verifying crypto-
graphic exhibits in the
form of digital signa-
tures

Confidentiality

confining operations
on objects to dedi-
cated purposes

making data appear
randomly selected
from a large collec-
tion of possibilities

specifying prohibitions
for rejecting or confin-
ing threatening opera-
tions

prohibiting gain of
information by
encrypting data

specifying prohibi-
tions for rejecting or
confining threatening
operations

Non-
observability/
anonymity

hiding activities in a
large collection of
possibilities

untraceably mediating
requests and results

superimposing ran-
domness

issuing documents
about properties
referring to public
keys (rather than
identities)

Accountability
adding cryptographic
exhibits in the form of
digital signatures or
similar means derived
from a distinguishing
secret

attributing distin-
guishing identities

generating distin-
guishing secrets

logging and analyzing
intercepted requests
and results

proving an actor
responsible by veri-
fying cryptographic
exhibits in the form
of digital signatures
or similar means

logging and analyzing
intercepted requests
and results
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Key Ideas and Combined Techniques - 07. 04. 2011 90

© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems 07. 04. 2011 91

Part II

Control and Monitoring

3 Fundamentals of Control and Monitoring
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Fundamentals of Control and Monitoring - 07. 4. 2011 92

Control and monitoring
• identifiable agents can have access rights granted and revoked

• access requests of authenticated agents are intercepted by control components

• control components decide on allowing or denying an actual access
 id

en
tit

y
 identification

and

 proof of
 authenticity

 knowledge base

 access decision
and

 result inspection

knowledge base

(modified) result

(modified)

result

� change

� trigger further
requests

� generate and
return result

participating subjects controlled objects

 identifier
 with evidence

 request for object
or

 update request for
 knowledge bases

...
...

...
...

...

on
 permissions and prohibitions

monitoring

on
usage history

request

 and
monitoring

(might also be objects)

internal state

 (might also be subjects)
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Fundamentals of Control and Monitoring - 07. 4. 2011 93

Essential parts

• declaration of permissions and prohibitions

• control operations

• isolation, interception and mediation of messages

• proof of authenticity

• access decisions

• monitoring
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Fundamentals of Control and Monitoring - 07. 4. 2011 94

Declarations: subjects, objects and kinds of access

• conceptualize and denote the subjects: carriers of permissions and prohibitions

• where appropriate, treat collectives of subjects in a uniform way

• conceptualize and denote the objects: targets of permissions and prohibitions

• where appropriate, collect objects into
classes, domains or related aggregates for uniform treatment

• conceptualize and denote the kinds of access offered:
from generic reading and writing
to application-specific methods

• where appropriate, abstract from concrete accesses and
instead refer to their (operational) modes
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Fundamentals of Control and Monitoring - 07. 4. 2011 95

Declarations: expressive means

• a permission or a prohibition can be directly expressed
by explicitly naming the respective subject, object and operational mode

• preferably, the needed items are expressed in a more indirect way,
employing a wide range of techniques of computer science
(programming languages, knowledge engineering, ...):

• in particular, syntactic means for
– collectives of subjects (e.g., hierarchies),
– aggregates of objects (e.g., complex compositions)
– modes of access (e.g., further method invocations)
must be suitably handled at the semantic level

• in general, techniques for deriving
implicit properties of the items considered from explicit properties
might be exploited
(e.g., inheritance rules, first-order logic reasoning, ...)
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Fundamentals of Control and Monitoring - 07. 4. 2011 96

Declarations: positive, negative and mixed approach

• positive approach:
only explicit permissions expressible,
and, by default, prohibitions defined as the absence of a permission

• negative approach:
only explicit prohibitions expressible,
and, by default, permissions defined as the absence of a prohibition

• mixed approach:
both explicit permissions and explicit prohibitions expressible,
with a need for the resolution of conflicts and for completions
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Fundamentals of Control and Monitoring - 07. 4. 2011 97

Required completeness property for declarations

for any request

of a subject s

to access an object o

in an operational mode m,

the declared permissions and prohibitions entail

a unique and definite access decision
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Fundamentals of Control and Monitoring - 07. 4. 2011 98

Control operations

• first level:
permissions and prohibitions for the functionality of a system, i.e., for
functional operations

• second level:
permissions and prohibitions for the control operations
that manipulate the first-level functional permissions and prohibitions,
including granting and revoking of functional permissions and prohibitions;

more advanced control operations deal with, e.g.,
transferring or delegating permissions and prohibitions
to declare functional permissions and prohibitions

• further levels:
possible, but rarely employed
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Fundamentals of Control and Monitoring - 07. 4. 2011 99

Grantors and owners

• need to define which subjects may grant permissions and prohibitions
– initially
– by means of some special qualifications

• example:
a (nearly) omnipotent administrator,
known as root or superuser, is permitted

– to manage any kind of permissions and prohibitions

– to assign each subject that generates a new object
the ownership of the creation, coupled with the permission
to manage the permissions and prohibitions for that creation
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Fundamentals of Control and Monitoring - 07. 4. 2011 100

Control states

• the granting of permissions should be done with great care

• an administrator or owner planning some control operations has to
analyze the potential consequences regarding
which subjects can eventually acquire which permissions

• more generally, for any control state resulting from control operations,
such an analysis should be performed
(unfortunately, in general computationally infeasible or even impossible)
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Fundamentals of Control and Monitoring - 07. 4. 2011 101

Required analysis property for control operations

for any control state resulting from control operations,

the analysis problem regarding

which subjects can eventually acquire which permissions

should be computationally feasible

or at least admit a computational approximation
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Fundamentals of Control and Monitoring - 07. 4. 2011 102

Isolation, interception and mediation of messages

• effective enforcement of declared permissions and prohibitions
relies on an appropriate system architecture:
– it strictly isolates subjects from objects
– it considers that some entity might act both as a subject and as an object

• a subject should not be able to directly access any object

• a subject can send a message containing an access request
that will be intercepted by a separating control and monitoring component

• the control and monitoring component mediates the request,
basically in three steps:
– identification and proof of authenticity
– access decision and forwarding
– further monitoring
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Fundamentals of Control and Monitoring - 07. 4. 2011 103

Required complete mediation property

each request of a subject

to access an object

is intercepted and mediated

by a control and monitoring component
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Fundamentals of Control and Monitoring - 07. 4. 2011 104

Proof of authenticity

• declared permissions and prohibitions refer to well-conceptualized subjects

• the control and monitoring component must relate
the sender of any request message, an actual requestor, to a pertinent subject

• given a request message,
the control and monitoring component must recognize the requestor
as one of the conceptualized subjects,
being aware of the possibility of a maliciously cheating agent

• the requesting agent must provide some further evidence regarding itself;
the control and monitoring component can then base a proof of authenticity on
– the freshly communicated evidence
– suitably maintained permanent verification data
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Fundamentals of Control and Monitoring - 07. 4. 2011 105

Required authenticity property

any mediation of an access request

is based on a proof of authenticity

of the requestor and,

as far as needed,

of the target object as well
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Fundamentals of Control and Monitoring - 07. 4. 2011 106

Access decisions

• once a requestor has been recognized as a conceptualized subject,
the control and monitoring component takes an access decision
by evaluating the request with respect to
the previously declared permissions and prohibitions

• the declarations constitute a knowledge base on permissions and prohibitions,
from which the access decision is derived as a logical consequence

• such derivations might vary
from simple lookup procedures to highly sophisticated reasoning

• such reasoning might additionally consider
the dynamic evolution of the controlled system,
as conceptually represented by a knowledge base on the usage history

• such a knowledge base must be appropriately maintained
by logging all relevant events
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Fundamentals of Control and Monitoring - 07. 4. 2011 107

Requirement for architecture of control

the control and monitoring component

maintains suitably isolated knowledge bases

on permissions and prohibitions and

on the usage history
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Fundamentals of Control and Monitoring - 07. 4. 2011 108

Monitoring: inspecting results

• an accepted and forwarded request might produce some results
that should be inspected afterwards

• if the results are to be returned to the original requestor:
the inspection might retain all or some parts of them:
– totally block the forwarding to the requestor, or
– suitably modify the results before forwarding

• if an internal state of an accessed object might have been changed or
further requests to other objects might have been triggered:

the options for undoing such effects depend strongly
on additional mechanisms such as transactions, seen as
atomic actions that can be finally either completely committed or aborted

• in case of an abort, the effect should be (largely) indistinguishable
from the situation where the access has not occurred at all
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Fundamentals of Control and Monitoring - 07. 4. 2011 109

Monitoring: auditing and intrusion detection

• complementary to access decisions and result inspection,
the control and monitoring component can analyze
all messages and possibly further audit data
regarding an intrusion defense policy

• such a policy assists in classifying the activities actually occurring as
either semantically acceptable or violating

• the notions of permissions and prohibitions should be semantically related
to the notions of acceptable behavior and violating behavior, respectively

• in general, however, these notions will not fully coincide because of
– inevitable shortcomings of the preventive access control mechanisms
– efficiency considerations (leading to an optimistic approach)
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Fundamentals of Control and Monitoring - 07. 4. 2011 110

Requirement for architecture of monitoring

complementarily to access decision and result inspection,

the control and monitoring component

audits and analyzes all activities regarding potential violations

defined by an intrusion defence policy
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Fundamentals of Control and Monitoring - 07. 4. 2011 111

Imagined ideal and real world

• ideal world:
– all subjects behave as expected

– all informational devices actually operate as completely specified

– correct and complete knowledge is available whenever needed

• real world:
– such an imaginary scenario is not met with at all

– security aims at managing the imperfections, including:
– potentially maliciously behaving subjects,
– failing implementations of inadequate designs,
– decision making regarding remote subjects
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Fundamentals of Control and Monitoring - 07. 4. 2011 112

Root of trust

• there always remains the need
to base at least small parts of an overall computing system on trust

• trust in a technical part usually means,
or at least includes the requirement,
that the participant controlling that part is trusted

• as security is a multilateral property
that respects potentially conflicting interests,
trust is essentially context-dependent, i.e.,
subjectively assigned by one participant
but refused by another one
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Fundamentals of Control and Monitoring - 07. 4. 2011 113

Issues of trust raised when the following problems are investigated

• does the control and monitoring component actually work as expected,
intercepting and suitably mediating each access request?

• does it support availability by accepting permitted requests, and
does it preserve integrity and confidentiality by denying prohibited accesses?

• do participants permitted to execute control operations
behave appropriately and honestly
when granting, revoking, transferring or delegating permissions?

• do shown evidence and maintained verification data
reflect the actual peculiarities of remote communication partners?
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Fundamentals of Control and Monitoring - 07. 4. 2011 114

4 Case Study: UNIX
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Case Study: UNIX - 07. 04. 2011 115

Some basic features of UNIX

• UNIX supports participants in
– using their own workstation for their specific application tasks
– cooperating with colleagues in server-based local networks for joint projects

• a participant can manage his own computing resources at his discretion,
– either keeping them private
– or making them available to other particular participants or to everybody

• security mechanisms
– enforce the virtual isolation of identified, previously registered users
– enable the deliberate sharing of resources

• the mechanisms are closely intertwined with the basic functional concepts of
files and processes, which are managed by the UNIX kernel

• the kernel acts as controller and monitor of all security-relevant accesses
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Case Study: UNIX - 07. 04. 2011 116

Basic blocks of control and monitoring (and cryptography)
• identification of registered users as participants

• passwords for user authentication at login time

• a one-way hash function for storing password data

• discretionary access rights concerning files as basic objects and
three fundamental operational modes, read, write and execute

• owners, as autonomous grantors of access rights

• owners, groups and the full community of all users, as kinds of grantees

• right amplification for temporarily increasing the operational options of a user

• a superuser, capable of overriding the specifications of owners

• access control concerning the commands and the corresponding system calls

• monitoring of the functionality

• kernel-based implementation of control and monitoring
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Case Study: UNIX - 07. 04. 2011 117

Conceptual design of the operating system functionality

• UNIX provides a virtual machine
that offers an external command interface
with the following fundamental features:

– identified participants can

– master processes that

– execute programs

– stored in files

• the processes, in turn, can operate on files,
in particular for reading and writing
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Case Study: UNIX - 07. 04. 2011 118

ER model of fundamental functional features and security concepts

 participant

file

process

execution

 master

 access privileges

owner group other
r w x r w x r w x

 member

 owner group

group
master

 sgid

 group

available_
for

owned_
by

 suid

 share
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Case Study: UNIX - 07. 04. 2011 119

Participants, sessions and system calls

• a previously registered participant
can start a session by means of the login command

• thereby the system
– assigns a physical device for input and output data to him
– starts a command interpreter

as the first process mastered by that participant

• afterwards, the participant can issue commands,
which may possibly generate additional processes
that are also mastered by him

• the commands invoke system calls that serve for
– process management
– signaling
– file management
– directory and file system management
– protection
– time management
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Case Study: UNIX - 07. 04. 2011 120

Processes as active subjects

• execute (the program contained in) a file, and in doing so

• read or write in (usually other) files

• create new files and remove existing ones

• generate new (child) processes

• have a lifespan,
starting with the generation by a father process and
ending with a synchronization with the pertinent father process

• constitute a process tree:
– when the UNIX system is started, an initial process init is generated
– an already running (father) process can generate new (child) processes
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Case Study: UNIX - 07. 04. 2011 121

Lifespan of a process

father process (child) process

fork

exec

exitwait

(child) process is generated
by the father process

(child) process exchanges process space

(child) process synchronizes with
father process and is ended

© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Case Study: UNIX - 07. 04. 2011 122

Growing and shrinking of a process tree

initial process

��� child process for each
physical device

child process for
command interpreter

by login

by a command that
creates a new process

by logout

by a further command that
creates a new process

��� ���

���
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Case Study: UNIX - 07. 04. 2011 123

Files as passive objects

• files are uniformly managed by the system using a file tree

• a file is identified by its path name within the file tree

• a file that constitutes a branching node in the file tree
is a directory listing other files

• a file that constitutes a leaf in the file tree
is a plain file containing data,
which might be considered as an executable program
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Case Study: UNIX - 07. 04. 2011 124

Conceptual design of the security concepts

• a participant acts as the owner of the files created by him

• the system administrator assigns participants as members of a group:
– a group comprises those participants that are entitled to share files
– an owner can make a file available for a group to share it

• for each file, the owner implicitly specifies three disjoint participant classes:
– himself as owner
– the members of the pertinent group, except the owner if applicable
– all other participants

• the owner of a file discretionarily declares access privileges
for each of these classes – for the processes mastered –
by permitting or prohibiting the operations
belonging to an operational mode:
– read
– write
– execute
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Case Study: UNIX - 07. 04. 2011 125

Some operations with commands and their operational mode

Operation with command
on plain file

Operation with command
on directory

Operational
mode

open file for reading:
open(,o_rdonly)

read content:
read

open directory for scanning:
opendir

read next entry:
readdir

read

open file for writing:
open(,o_wronly)

modify content: write

delete content: truncate

insert entry: add

delete entry: remove

rename entry: rename

write

execute content as program:
execute

select as current directory:
cd

execute

© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Case Study: UNIX - 07. 04. 2011 126

Mastership and group mastership

• normally,
a user is the master of the command interpreter process that he has started,
and of all its descendants

• additionally, the (primary) group of that user is said to be the
group master of all those processes

• if a process requests an operation op on a file file,
then the access privileges file.access_privileges
are inspected according to the masterships of the process
in order to take an access decision

• for each file, the owner can additionally set two execution flags,
suid and sgid,
that direct its usage as a program, or as a directory, respectively:
– for a plain file containing an executable program,

the flag impacts on the mastership of an executing process

– for a directory,
the flag impacts on the ownership of inserted files
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Case Study: UNIX - 07. 04. 2011 127

Refined ER model of the functional features and security concepts

 user

full name home
directory

shell file ���

 connected physical
device

human

 uid
 (user identification)

 gid
 (group identification)

surrogate
primary
member

member

ISA

 superuser_
 id

 owner group
 file

 access privileges

owner group other
r w x r w x r w x

filename suid sgid

process

current
 master

original
 master

original
 group master

 execution

 effective uid

real uid real gid

 effective gid

process id umask ���

owned_ available_
 for

i_nodes

process
table

/etc/passwd

/etc/groups

individual

 suppl.
 gid

 saved gid saved
 master

saved uid

/etc/shadow
username

by

current
 group master

 group master
suppl.

 group master
 saved

share

 password
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Case Study: UNIX - 07. 04. 2011 128

Refined ER model: users

 user

full name home
directory

shell file ���

 connected physical
device

human

 uid
 (user identification)

 gid
 (group identification)

surrogate
primary
member

member

ISA

 superuser_
 id

/etc/passwd

/etc/groups

individual /etc/shadow
username password
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Case Study: UNIX - 07. 04. 2011 129

Refined ER model: files

 uid
 (user identification)

 gid
 (group identification)

ISA

 superuser_
 id

 owner group
 file

 access privileges
owner group other
r w x r w x r w x

filename suid sgid

owned_ available_
 for

i_nodes

by
share
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Case Study: UNIX - 07. 04. 2011 130

Refined ER model: processes

 owner group
 file

filename suid sgid

process

current
 master

original
 master

original
 group master

 execution

 effective uid

real uid real gid

 effective gid

process id umask ���

owned_ available_
 for

i_nodes

process
table

 suppl.
 gid

 saved gid saved
 master

saved uid

by

current
 group master

 group master
suppl.

 group master
 saved

share
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Case Study: UNIX - 07. 04. 2011 131

Different notions of a participant
• a human individual

• the physical device
from which the individual issued his last login command

• an abstract user:
– representing the previously registered human individual within the system:

as a result of a successful login command,
the abstract user is connected to the
physical device from which the command was received

– uniquely identified by a username

– associated with further administrative data, e.g.:
– password data
– full name,
– (the path name of) home directory in the overall file tree
– (the path name of the file containing) command interpreter (shell file)

• a user identification, i.e., a cardinal number uid,
which serves as a (not necessarily unique) surrogate for an abstract user
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Case Study: UNIX - 07. 04. 2011 132

System administrator

• is a human individual,
typically registered as a distinguished abstract user
whose username is root and
whose surrogate is superuser_id
(in general, represented by 0)

• enjoys nearly unrestricted operational options

(consequently, so does any human individual
who succeeds in being related to root)
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Case Study: UNIX - 07. 04. 2011 133

Groups

• a group is represented by a group identification, gid

• each abstract user is a primary member of one group,
and can be a member of any further groups
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Case Study: UNIX - 07. 04. 2011 134

Mastership and group mastership refined

• all relationships of files/processes with participants/groups are interpreted as
relationships with user identification/group identifications

• the master and the group master relationships are further differentiated
in order to enable dynamic modifications

• a user identification uid
(the surrogate of a user connected to a physical device
from which a human individual has issued a login command)
is seen as the original master of the command interpreter process
generated during the login procedure
and of all its descendants

• these processes are also said to have this uid as their real uid

• correspondingly,
a group identification gid
is seen as the original group master of these processes,
which are also said to have this gid as their real gid
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Case Study: UNIX - 07. 04. 2011 135

Current masterships

• normally, the original masterships are intended to determine the access
decision when a process requests an operation on a file

• to distinguish between normal and exceptional cases,
– an additional current mastership (an effective uid) and
– an additional current group mastership (an effective gid)
are maintained and actually employed for access decisions

• the current mastership and the current group mastership of a process
are automatically manipulated according
to the execution flags suid and sgid of the executed file:
– normally, if the respective flag is not set,

then the current mastership is assigned the original mastership, and
the current group mastership is assigned the original group mastership

– exceptionally, if the respective flag is set,
then the current mastership is assigned
the user identification of the owner of the file to be executed, and
the current group mastership is assigned
the group identification for which that file has been made available
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Case Study: UNIX - 07. 04. 2011 136

Right amplification

• the exceptional case is used for right amplification,
to dynamically increase the operational options of a process
while it is executing a file with a flag set

• the owner of that file allows all ‘‘participants’’
that are permitted to execute the file at all
to act thereby as if they were the owner himself

• if the owner is more powerful than such a participant
(e.g., if the owner is the nearly omnipotent abstract user root),
then the operational options of the participant are temporarily increased

• the current masterships and current group masterships
can also be manipulated by special, suitably protected commands

• for this option, the additional
saved mastership and saved group mastership
are used to restore the original situation
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Case Study: UNIX - 07. 04. 2011 137

Identification and authentication

• a human individual can act as a participant of a UNIX installation
only if the system administrator has registered him in advance as user,
thereby assigning a username to him

• this assignment and further user-related data are stored in the files
/etc/passwd and /etc/shadow

• the usernames serve for identification and for accountability of all actions

• whenever an individual submits a login command,
the system

– checks whether the username is known from a registration
by inspecting the file /etc/passwd :

if the username is found, it is considered as known, otherwise as unknown

 – evaluates whether the actual command is authentic, relying on:

– appropriate registrations

– the integrity of the underlying files

© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Case Study: UNIX - 07. 04. 2011 138

Proof of authenticity by a password procedure

• if the individual can input the agreed password,
then the command is seen as authentic

• the system relies on
– appropriate password agreements
– the individual’s care in keeping his password secret
– the integrity and confidentiality of the file /etc/shadow

• the confidentiality of this file is supported by several mechanisms:
 – passwords are not stored directly,

but only their images under a one-way hash function

 – on any input of the password,
the system immediately computes its hash value and
compares that hash value with the stored value

• the hash values are stored in a specially protected file /etc/shadow:
– a write access to an entry (password modification) is allowed only if

the request stems from root or from the pertinent user

– a read access to an entry is allowed only for authenticity evaluations
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Case Study: UNIX - 07. 04. 2011 139

Access decisions

• the kernel has to take access decisions concerning
– a process as an active subject
– a file as a controlled passive object
– a requested operation

• given a triple (process, file, operation),
the kernel has to decide whether
– the process identified by process is allowed
– to actually execute the operation denoted by operation
– on the file named file

• two cases according to the effective user identification of the process,
 process.current_master:

– if process.current_master = superuser_uid,
then nearly everything is considered to be allowed

– otherwise, a decision procedure is called
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Case Study: UNIX - 07. 04. 2011 140

Access decisions regarding normal users

function decide(process, file, operation): Boolean;

if process.current_master = file.owner
then return file.access_privileges.owner.mode(operation)

else
if process.current_groupmaster = file.group
 OR
 EXISTS process.supplementary_groupmaster:
 process.supplementary_groupmaster = file.group

then return file.access_privileges.group.mode(operation)

else return file.access_privileges.other.mode(operation)
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Case Study: UNIX - 07. 04. 2011 141

Knowledge base on permitted operational options

• implemented by means of the fundamental functional features of UNIX

• data about users and groups is stored in the special files
– /etc/passwd
– /etc/shadow
– /etc/group

• these files are owned by the system administrator (under superuser_id)

• the access privileges for these files are given by
– r--|r--|r--
– rw-|---|---
– r--|r--|r--

• additionally, modifications of the files /etc/passwd and /etc/group
are specially restricted to processes with the effective uid superuser_id

• security-relevant data about files is managed in i-nodes

• security-relevant data about processes is maintained in the process table
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Case Study: UNIX - 07. 04. 2011 142

Main entries of the administration files for users and groups

/etc/passwd /etc/shadow /etc/group

username username groupname

reference to /etc/shadow hash value of password group password

user identification (uid) date of last modification group identification (gid)

gid of primary group maximum lifetime usernames of members

full name, comment date of expiration

path name of home directory

path name of shell file
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Case Study: UNIX - 07. 04. 2011 143

Modifications of the knowledge base: user and group administration

• the commands useradd, usermod and userdel
manipulate the entries for users
in the files /etc/passwd, /etc/shadow and /etc/group:

only executed for a process
whose effective user identification is superuser_uid

• the commands groupadd, groupmod and groupdel
manipulate the entries for groups
in the file /etc/group:

only executed for a process
whose effective user identification is superuser_uid
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Case Study: UNIX - 07. 04. 2011 144

Modifications of the knowledge base: password management

• the command passwd
modifies an entry of a user in the file /etc/shadow:

only executed for a process
whose effective user identification is

– superuser_uid
or
– equal to the user identification of the user

whose password is requested to be changed
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Case Study: UNIX - 07. 04. 2011 145

Modifications of the knowledge base: login procedure

• the command login tries to identify and authenticate the issuer

• on success, the issuer is recognized as a known registered user

• by a system call fork, a new process is generated for that user

• that process, by use of a system call exec,
starts executing the shell file of the user as a command interpreter

• the masterships and group masterships are determined as follows:
– the real uid, effective uid and saved uid are all assigned

the user identification of the user, i.e., user.surrogate

– the real gid, effective gid and saved gid are all assigned
 the primary group of the user, i.e., user.primary_member

– the supplementary gid is assigned
the set of elements of user.member

• subsequently, this process is treated as the original ancestor of all processes
that are generated during the session started by the login command
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Case Study: UNIX - 07. 04. 2011 146

Modifications of the knowledge base: mastership assignments

• normally,
a process inherits its masterships and group masterships
from its immediate ancestor

• exceptionally,
masterships and group masterships are determined differently, namely if

– the file executed has an execution flag suid or sgid set,
or
– some explicit command modifies the implicit assignment
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Case Study: UNIX - 07. 04. 2011 147

Modifications of the knowledge base: file management

• the system call
create(filename, access_privileges, suid, sgid)
creates a new file

• the owner and the group share of the file are assigned
the effective uid and the effective gid, respectively,
of the creating process

• the access privileges and
the execution flags suid and sgid are assigned
according to the respective parameters of the call,
possibly modified according to the mask umask
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Case Study: UNIX - 07. 04. 2011 148

Modifications of the knowledge base: masking access privileges

• the mask umask specifies nine truth values,
one for each value contained in the parameter for the access privileges:
– each mask value is complemented
– the conjunction with the corresponding parameter value is taken

• a mask value true (or 1) is complemented into false (or 0) and thus
always results in the corresponding access privilege being set to false (or 0),
thereby expressing a prohibition

• in general, individuals are strongly recommended
to prohibit write access to files with an execution flag suid or sgid set:

avoids unintended/malicious modification of the program contained,
resulting in unwanted effects of right amplification

• the system call umask(new_umask)
modifies the current nine truth values of the mask umask into
the values specified by the parameter new_umask
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Case Study: UNIX - 07. 04. 2011 149

Modifications of the knowledge base: process management

• the system call fork generates a new process

• a subsequent system call exec(command_file)
exchanges the content of its address space, thereby loading the program
that is contained in the file specified as the parameter command_file,
whose instructions are then executed

• masterships, group masterships and the mask umask of that process:

– if the flags suid and sgid of the file command_file are not set,
then the new process inherits all masterships and group masterships
from its father process

– if the flag suid is set,
then the effective uid and the saved uid are assigned
to command_file.owner

– if the flag sgid is set,
then the effective gid and the saved gid are assigned
to command_file.group share

– the mask umask is inherited from the father process
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Case Study: UNIX - 07. 04. 2011 150

Modifications of the knowledge base: execution flags

• the system call setuid(uid) assigns
the masterships real uid, effective uid and saved uid
the parameter value uid:

only executed for a process that satisfies the following precondition:
the effective uid equals superuser_uid,
or the real uid equals the parameter value uid
(i.e., in the latter case, the original situation is restored)

• the system call seteuid(euid) assigns
the current mastership effective uid
the parameter value euid,
which might be the real uid or the saved uid

• thereby, while executing a file with the execution flag suid set,
a process can repeatedly change its effective uid:

the process can select
the uid of that user who has generated the original ancestor, or
the uid of the owner of the file executed
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Case Study: UNIX - 07. 04. 2011 151

Modifications of the knowledge base: some further manipulations

• the system calls setgid(gid) and setegid(egid)
manipulate the group masterships

• the command /bin/su -
changes the effective uid of the currently executed process
into superuser_uid
(thus the system administrator can acquire the mastership of any process):

only executed if the issuer is successfully authenticated
with the agreed password for the system administrator with username root

• the command chown changes the owner of a file:
only executed for a process that satisfies the following precondition:
the effective uid equals superuser_uid or
equals the current owner of the file

• the command chmod changes the access privileges of a file:
only executed for a process that satisfies the following precondition:
the effective uid equals superuser_uid or
equals the current owner of the file
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Case Study: UNIX - 07. 04. 2011 152

Knowledge base on usage history

• basically, UNIX does not maintain an
explicit knowledge base on the usage history for taking access decisions,

 except for keeping track of process generations

• most UNIX versions offer log services for monitoring that

– produce log data about issued commands and executed system calls

 – store that data in special log files
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Case Study: UNIX - 07. 04. 2011 153

Examples of UNIX log files

• the file lastlog contains the
date of the last issuing of a login command for each of the registered users,
whether successful or failed

• the file loginlog contains
entries about all failed issuings of a login command,
comprising the username employed, the physical device used and the date

• the file pacct contains entries about all issued commands,
including their date
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Case Study: UNIX - 07. 04. 2011 154

Examples of UNIX log files, continued

• the file sulog contains
entries about all successful or failed attempts to issue the critical su command;

 for each attempt, the following is recorded:
– success or failure
– the username employed
– the physical device used
– the date

• the files utmp or wtmp contain
entries about the currently active participants;
in particular, the following is recorded:
– the username employed
– the physical device used
– the process identification of the original ancestor process

that was started by the login command
to execute the user’s command interpreter
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Case Study: UNIX - 07. 04. 2011 155

Audit services

• log services send their log data as audit messages to an audit service
that unifies and prepares that data for persistent storage or further monitoring

• the audit service syslog works on audit messages that are sent
– by the kernel, exploiting /dev/klog
– by user processes, exploiting /dev/log
– by network services, exploiting the UDP port 514

• the audit messages consist of four entries:

– the name of the program whose execution generated the message

– a classification of the executing process into one of a restricted number
of event sources, called facilities, which are known as
kern, user, mail, lpr, auth, daemon, news, uucp, local0, …, local7, mark

– a priority level, which is one of
emerg(ency), alert, crit(ical), err(or), warning, notice, info(rmational),

 (from) debug(ging), none

– the actual notification of the action that has occurred
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Case Study: UNIX - 07. 04. 2011 156

Configuration of an audit service: example

• the system administrator can configure the audit service syslog
using the file /etc/syslog.conf,
which contains expressions of the form

 facility.priority destination

• such an expression determines how an audit message
– that stems from an event source classified as facility and
– has the level priority should be treated, i.e.,
– to which destination it has to be forwarded

• destination might denote

– the path name of a file
– a username,
– a remote address,
– a pipe
– the wildcard * (standing for all possible receivers)
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Case Study: UNIX - 07. 04. 2011 157

Overall architecture
• control and monitoring are part of the operating system kernel

• the kernel realizes the system calls offered by UNIX

• a system call is treated roughly as follows:
– the kernel checks the operator and the parameters of the call and

then deposits these items in dedicated registers or storage cells

– a software interrupt or trap dispenses the calling process

– the program determined by the specified operator
is executed with the specified parameters

– if applicable, return values for the calling process are deposited

– subsequently, the calling process can be resumed

• this procedure needs special hardware support for security: storage protection,
processor states, privileged instructions, process space separation, ...

• most UNIX installations are part of a network,
and thus employ various features for securing the connections
to remote participants and the interactions with them
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Case Study: UNIX - 07. 04. 2011 158

5 Discretionary Access Control and Privileges
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Discretionary Access Control and Privileges - 07. 04. 2011 159

Permissions and prohibitions as discretionary access rights

• access rights:
at least conceptually, maintained by an appropriate knowledge base

• static aspects of the knowledge base:
structures for representing access rights

• dynamic aspects of knowledge base:
operations on access rights:
– taking an access decision (including solving conflicts)
– updating
– analyzing (determining the possible future instances under updates)
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Discretionary Access Control and Privileges - 07. 04. 2011 160

ER model of lookup representation

• an identifiable and registered subject that is a participant seen as a grantee

• a controlled object that is a possible operand of an access request

• an (operational) mode that signifies a set of operations on the object

• a relationship granted that a subject is permitted to
perform any operation of a specified mode on an object

granted

 (controlled)
 object

 (operational)
 mode

 (registered)
 subject

grantee
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Discretionary Access Control and Privileges - 07. 04. 2011 161

A relational implementation
• an instance:

• access decisions by means of a simple lookup:
function decide(subject, object, operation): Boolean;

return (subject, object, mode(operation)) ∈ Granted.

• updates:
explicitly inserting, modifying or deleting tuples

Granted Subject Object (Operational) Mode

 user application execute
 user data_file read

 application data_ file read
 application data_ file write
 application recovery_file read

 user recovery_file write
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Discretionary Access Control and Privileges - 07. 04. 2011 162

Access control matrix/graph and privilege/access control lists

execute
application user

read

write

read

read, write

recovery_file

 data_file

 application data_ file recovery_
 file

user execute read write

application read, write read

 Cl(user) = { [application,execute], [data_file,read], [recovery_file,write] }

 Cl(application) = { [data_file,read], [data_file,write], [recovery_file,read] }

a) access control matrix b) access control graph

c) privilege lists

 Acl(recovery_file) = { [user,write], [application,read] }

 Acl(data_file) = { [user,read], [application,read], [application,write] }

 Acl(application) = { [user,execute] }

d) access control lists
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Discretionary Access Control and Privileges - 07. 04. 2011 163

Some features of more sophisticated knowledge base structures
• privilege: aggregate of a controlled object and an operational mode

• collectives: grantee might be a
– group (understood as set of equally treated participants)
– role (seen as collection of privileges)

• grantor: might have an impact on access decisions or updates

• owner: assigned to a controlled object

• relationships on controlled objects (e.g., the part_of relationship) and
specializations of the object class (in particular: executable programs)

• structural relationships and specializations for grantees and grantors

• masterships: a program is executed by a dynamically generated process
that in turn is mastered by an individual participant

• inclusion relationships for the class of operational modes;
specialization of modes into functional and administrative ones

• usage constraints: temporal conditions, conditions on computing history, ...

• revocation semantics: might have cascading effects, by using the issue time

• negative privileges (access rights): explicit prohibitions
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Discretionary Access Control and Privileges - 07. 04. 2011 164

Refined ER model for permissions

grantee

collective

ISA

(controlled)
 object

(operational)
 mode

(registered)
 subject

grantee

privilege

grantor

privilege

assigned_
 to

granted

 owner
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Discretionary Access Control and Privileges - 07. 04. 2011 165

ER model of structural relationships and specializations of objects

 (controlled)
 object

ISA

subobject superobject

 collection access path storage declaration

ISA

stuff program

extension_
 of

accessible_

 stored_
 at

instance_
 of

 element_
 of

 by

 instance

part_of

 (element,
oid and data)

 (index) (extension) (schema,
 intension)

 (address,
 reference)
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Discretionary Access Control and Privileges - 07. 04. 2011 166

ER model of programs, processes and masterships

item

grantee

ISA

owner (controlled)
 object

 (operational)
 mode

(registered)
 subject

grantee

privilege

grantor

 privilege

granted

ISA

stuff program

executes

mastered_
 by

grantor

ISA ISA

 process
(runtime)

generated_
 by
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Discretionary Access Control and Privileges - 07. 04. 2011 167

ER model of programs, processes and masterships (subpart)

item

grantee

ISA

(registered)
 subject

grantee

privilege

grantor
granted

mastered_
 by

grantor

ISA ISA

 process
(runtime)

generated_
 by
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Discretionary Access Control and Privileges - 07. 04. 2011 168

ER model of operational modes

 functional
 mode

 (operational)
 mode

includes

ISA

 control
 mode

controlled_by
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Discretionary Access Control and Privileges - 07. 04. 2011 169

Functional modes in a pure object-oriented environment

• operations are called by sending, receiving and interpreting messages

• an object oact, acting as a subject,
is granted a permission to invoke an operation op on an object oexec, i.e.,
oact is permitted to send a message to oexec ,
where the body of the message contains an identifier for the operation op
(subject oact sees the message as “controlled object” under operation send):
 oact is the activator of an operation to be performed by oexec

• the object oexec, acting as a subject,
is granted a permission to interpret a message received from the object oact
such that the operation op denoted in the body of the message
is actually executed
(subject oexec sees the message as “controlled object” under
operation receive and interpret):

oexec is the executor of an operation invoked by the object oact
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Discretionary Access Control and Privileges - 07. 04. 2011 170

• two permissions are independently granted:
– a send permission to the activator and
– a receive and interpret permission to the executor

• appropriate in distributed systems with autonomous components
acting as activators and executors:

control and monitoring of send and receive and interpret
can be implanted into the channel between the activators and the executors
(like by firewalls)

• on the activator side, outgoing messages are controlled;
on the executor side, the incoming messages are inspected
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Discretionary Access Control and Privileges - 07. 04. 2011 171

Control modes: examples

• granting a privilege to a subject as a grantee

• transferring a privilege to another subject

• taking a privilege from another subject

• delegating the usage of a privilege to another subject

• revoking a privilege from a subject

for controlling privileges, the following operation is also important:

• generating a new item:
– classified as potentially acting as a subject, a controlled object or both
– supplied with some initial privileges
– accessible by some privileges given to the creator
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Discretionary Access Control and Privileges - 07. 04. 2011 172

ER model of qualifications and conditions

 valid_for

implies

 condition

ISA

 time
 condition

 history
 condition

 (registered)
 subject

issue time

 grantee
 grantor

 revocation semantics

positive/negative

 condition

 priority

other

grantable/delegation

granted

(controlled)
 object

(operational)
 mode

privilege
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Discretionary Access Control and Privileges - 07. 04. 2011 173

ER Model of privileges with collectives

 item

 grantee

ISA

 owner

(controlled)
 object

 (operational)
 mode

 (registered)
 subject

grantee

privilege

grantor

 privilege

granted

ISA

program

 executes

mastered_
 by

 grantor

ISA ISA

 (runtime)

ISA

 role

ISA

 (registered)

(registered)

contained

assigned

generated_comprised

 enabled

member

 individual group process

 by
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Discretionary Access Control and Privileges - 07. 04. 2011 174

ER Model of privileges with collectives (subpart)

 grantee

ISA

 (registered)
 subject

grantee

privilege

grantor

granted

mastered_
 by

 grantor

ISA ISA

 (runtime)

ISA

 role

ISA

 (registered)

(registered)

contained

assigned

generated_comprised

 enabled

member

 individual group process

 by
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Discretionary Access Control and Privileges - 07. 04. 2011 175

Role-based access control (RBAC)

• above: roles seen as an optional feature of discretionary access rights

• alternatively: role-based access control, RBAC, as specific approach:
– rich body of insight and tools
– widely used in practice
– comprehensive treatment of implementation and application aspects

• role-based access control can be simulated
by privileges directly granted to individuals,
essentially by expanding all implicit inferences due to roles

• some features for privileges can also be employed for roles, e.g.:
– functional and control roles, each having their own hierarchy
– various conditions
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Discretionary Access Control and Privileges - 07. 04. 2011 176

Some specific pitfalls of RBAC

role concepts identified in the application environment
are not properly translated into computing concepts, e.g.:

• an individual is charged with many obligations and tasks,
which can be partly overlapping and partly quite separate;

simply defining one very powerful role for such an individual
could violate need-to-know/act and separation of roles

• an organizational hierarchy is interpreted by operational power/authority:
an individual acting in a higher organizational or social role is permitted
to act like any individual in a lower organizational or social role
(a senior might take the right to perform all actions
that his subordinates are permitted to perform);

naively translating this idea into roles
can turn out to be extremely dangerous
(an omnipotent user who is not well trained to operate the system)
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Discretionary Access Control and Privileges - 07. 04. 2011 177

Semantics for access decisions

• conceptually:
decisions are taken by calling a function
decide(subject, object, operation): Boolean

• simplest case:
implemented by a lookup of a tuple
(subject, object, mode(operation))
in a table

• more sophisticated cases:
complex inferences are necessary,
based on various features managed by the knowledge base,
foundation on precise semantics, in particular:

– how to deal with hierarchical relationships between entities?

– how to resolve conflicts between permissions and prohibitions?

– how to always ensure a defined decision?
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Discretionary Access Control and Privileges - 07. 04. 2011 178

Inheritance rules for hierarchical relationships: examples

Hierarchical relationship Permission Prohibition

subrole ≤R superrole upwards downwards

subobject ≤O superobject downwards downwards

more special mode ≤M more general mode downwards upwards
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Discretionary Access Control and Privileges - 07. 04. 2011 179

Conflict resolution by priority rules: examples

• prohibition prevails over permission

• specialization prevails over generalization
– considers a more special case as some kind of an exception to a larger case

– if only permissions (positive access rights) are explicitly declared,
then in accordance with the default rule:

every request is prohibited
unless it is explicitly proven to be permitted

• higher-ranked grantor prevails over lower-ranked grantor
– sees grantors been ranked in a command hierarchy:

orders of higher-ranked individuals invalidate
conflicting orders of lower-ranked individuals
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Discretionary Access Control and Privileges - 07. 04. 2011 180

A metarule for priority rules

• in general, priority rules cannot uniquely resolve all conflicts:
several rules might be equally applicable but deliver different results

• a simple metarule for a collection of priority rules:
– consider the rules of the collection in a fixed predetermined sequence;
– the result of the first applicable priority rule

is taken as the final access decision

• this metarule can turn out to be rather dangerous:
in general, the impact of sequencing rules
is difficult to understand and to manage
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Discretionary Access Control and Privileges - 07. 04. 2011 181

Completion rules: examples

• closed completion:
an undefined situation results in a final prohibition:

a request is finally permitted
only if
a permission can be derived from the information in the knowledge base

• open completion:
an undefined situation results in a final permission:

a request is finally permitted
not only if a permission can be derived
but also if no prohibition can be derived

in other terms:
if a permission can be derived
or
if no prohibition can be derived
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Discretionary Access Control and Privileges - 07. 04. 2011 182

Requirements for formal specification language/formal semantics

• expressiveness: a rich variety of conceptual features is covered

• manageability: administrators can easily declare their wishes

• completeness: for any request, an access decision can be inferred

• soundness: for any request, the access decision is unique

• computational efficiency:
access decisions and control operations
can be implemented such that the
storage overheads and runtimes
are acceptable in practical applications
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Discretionary Access Control and Privileges - 07. 04. 2011 183

Flexible Authorization Framework: basic concepts

• Inst: set of instance objects
Coll: set of collections or similar concepts
≤ΙC : (for simplicity) common hierarchy (instance objects are minimal),

denoting element_of relationships or part_of relationships

• Ind: set of individual users
Gr: set of groups
≤UG : (for simplicity) common hierarchy (users are minimal),

denoting group memberships or group containments

• Ro: set of roles
≤R : hierarchy, denoting role comprising

• Mode: set of operational modes

• Rel1, … , Reln: some relations Rel1, … , Reln of appropriate arities,
including the binary relation Owner
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Discretionary Access Control and Privileges - 07. 04. 2011 184

Flexible Authorization Framework: basic concepts (continued)

• Grantee = Ind ∪ Gr ∪ Ro: set of (possible) grantees

• Object = Inst ∪ Coll ∪ Ro: set of (possible) controlled objects

• Qual = {pos, neg}: set of qualifications

• QGranted ⊆ Grantee × Object × Mode × Qual:
relation for explicitly declared granted relationships,
qualified as positive (for permissions) or negative (for prohibitions)

a role r can occur in a tuple of QGranted in two different positions:

– in (r , o , m , q),
role r is grantee holding the privilege [o , m] with qualification q

– in (u , r , m , q) with m ∈{assign , enable},
individual user u has role r assigned/enabled, qualified by q
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Discretionary Access Control and Privileges - 07. 04. 2011 185

Flexible Authorization Framework: basic concepts (continued)

• Done ⊆ Ind × Ro × Object × Mode × Time:
relation for recording selected aspects (u , r , o , m , t) of the usage history:

– an individual user u (assumed to have at most one role enabled)
– acting in a role r
– has operated on an object o
– in some mode m
– at a specific time t
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Discretionary Access Control and Privileges - 07. 04. 2011 186

Flexible Authorization Framework: concepts derived by rules

• QGranted* ⊆ Grantee × Object × Mode × Qual:
relation for extending the relation QGranted
by further explicit qualified granted relationships,
which might be conditional in terms of basic items and the usage history

• Derived ⊆ Grantee × Object × Mode × Qual:
relation for representing implicit qualified permissions and prohibitions,
where an auxiliary relation Override together with appropriate rules is used
to prepare for resolving conflicts

• Decide ⊆ Grantee × Object × Mode × Qual:
relation for representing the overall security policy,
including final conflict resolution and enforcing completeness

• Error ⊆ {∅}:
relation (Boolean predicate) to detect erroneous specifications
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Discretionary Access Control and Privileges - 07. 04. 2011 187

Architecture of FAF: overview

 (control)
 update request

AND

SEM:

unique fixpoint of
stable/well-founded
 semantics

function decide(s,o,op): Boolean;
if (s,o,mode(op),pos)∈SEM then return true; if (s,o,mode(op),neg)∈SEM then return false.

 (preliminary) access decision
 for (functional) requests:

 access decision
 for

tr

an
sa

ct
io

n
st

ar
t

 f
or

 u
pd

at
es

Override/

implicit
permissions/
prohibitions

relations: facts for
Owner,…,Reli,…

items and hierarchies:

 Done:

 facts for

 Error: Decide:
integrity rules

rules for

 decision rules

 knowledge base on permissions and prohibitions

 knowledge base on usage history

 (control) update requests

(functional)
request
(s,o,op)

QGranted:
facts for explicit
permissions/prohibitions

facts (transitivity rules) for

 Inst ∪ Coll with ≤IC

Ind ∪ Gr with ≤UG

Ro with ≤R +

 Derived:
QGranted*:

rules for
explicit
permissions/
prohibitions

(and preliminary access decisions)

 usage history with time points
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Discretionary Access Control and Privileges - 07. 04. 2011 188

Architecture: knowledge base on permissions and prohibitions

Override/

implicit
permissions/
prohibitions

relations: facts for Owner,�,Reli,�

items and hierarchies:

 Error: Decide:
integrity rules

rules for

 decision rules

 knowledge base on permissions and prohibitions

QGranted:
facts for explicit
permissions/prohibitions

facts (transitivity rules) for
 Inst ��Coll with �IC
Ind ��Gr with �UG
Ro with �R +

 Derived:
QGranted*:

rules for
explicit
permissions/
prohibitions
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Discretionary Access Control and Privileges - 07. 04. 2011 189

Architecture: access decisions

 (control)
 update request

AND

SEM:
unique fixpoint of
stable/well-founded
 semantics

function decide(s,o,op): Boolean;
if (s,o,mode(op),pos)�SEM then return true; if (s,o,mode(op),neg)�SEM then return false.

 (preliminary) access decision
 for (functional) requests:

 access decision
 for

tra

ns
ac

tio
n

st
ar

t

 fo

r u
pd

at
es

 Done:
 facts for

 Error: Decide:
integrity rules decision rules

k l d b h

 (control) update requests

(functional)
request
(s,o,op)

(and preliminary access decisions)

 usage history with time points
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Discretionary Access Control and Privileges - 07. 04. 2011 190

Syntax of Flexible Authorization Specification Language: outline
• vocabulary:

– sorted constant symbols for any item occurring in the computing system
– sorted variables for such items
– sorted predicate symbols for the components

• terms: either constants (no further function symbols) or variables

• atoms: formed by a predicate symbol followed by a list of terms;
literal: either an atom or a negated atom (written as ¬ atom)

• rules: implicational formulas of the form
atom ← literal1 ∧ … ∧ literaln .

conclusion (head): single atom;
premise (body): conjunction of atoms and,

under some essential restrictions, of negated atoms

• facts: rules of the form atom ← .

• strata: 6-level dependency structure of rules,
as roughly indicated in the architecture

• program: finite set of rules
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Discretionary Access Control and Privileges - 07. 04. 2011 191

Strata of logical program in FASL

Stratum Head Body Goal

1 Inst(t), Coll(t), Ind(t),
Gr(t), Ro(t)

≤IC(t1, t2),
≤UG(t1, t2),
≤R (t1, t2)

Owner(t1, t2), …

QGranted(t1, t2 , t3, t4)

Done(t1, t2 , t3, t4 , t5)

empty

empty, or the respective rela-
tion symbols

empty

empty

empty

facts for basic items

facts and recursive clo-
sure rules
for hierarchies

facts for relations

facts for explicit
granted relationships

facts for
usage history

2 QGranted*(t1, t2 , t3, t4) literals for
basic items, hierarchies,
usage history

rules for explicit,
granted relationships
with conditions
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Discretionary Access Control and Privileges - 07. 04. 2011 192

3 Override(t1, t2 , t3, t4) (not treated in this text) rules for preparing
conflict resolution

4 Derived(t1, t2 , t3, t4) literals for
basic items, hierarchies,
usage history, explicit
granted relationships,
conflict resolution;

atoms for implicit
granted relationships

rules for implicit
granted relation-
ships

recursive rules for
implicit granted
relationships

Stratum Head Body Goal
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Discretionary Access Control and Privileges - 07. 04. 2011 193

5 Decide(t1, t2 , t3 , pos)

Decide(x, y, z, neg)
as head of a single rule
with variables x,y,z

literals for basic items,
hierarchies, usage his-
tory, explicit and implicit
granted relationships;

the single literal
¬ Decide(x, y , z , pos)

decision rules for
final permissions

one default decision
rule for
final prohibitions

6 Error() literals for basic items,
hierarchies, usage his-
tory, explicit and implicit
granted relationships,
decisions

integrity rules

Stratum Head Body Goal
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Discretionary Access Control and Privileges - 07. 04. 2011 194

Semantics of a logical program in FASL

• semantics is determined as the unique minimal fixpoint of the program,
with respect to stable/well-founded semantics for locally stratified programs

• a rule (under a suitable substitution of variables by constant symbols)
generates a new head fact from previously available body facts

• the rules of each stratum are exhaustively treated
before proceeding to the next stratum

• negative atoms from preceding strata are always treated
according to negation as failure

• in stratum 5, the negative atom ¬ Decide(x, y , z , pos) is first determined by
negation as failure, and then the single rule for final prohibitions is used

• concerning negation, there is a difference between
– “negation of a permission” (a negated atom with qualification pos)
– “prohibition” (an atom with qualification neg)

• stratum 5 finally resolves conflicts
that may have potentially occurred in preceding strata
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Discretionary Access Control and Privileges - 07. 04. 2011 195

A simple fragment of a security policy in FASL: scenario

• reading and writing a file pub_f of low sensitivity

• an individual user admin acting as administrator

• arbitrary requestors denoted by the variable x

• arbitrary operational modes denoted by the variable m
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Discretionary Access Control and Privileges - 07. 04. 2011 196

A policy: explicit permissions/prohibitions in strata 1 and 2

administrator: granted a positive read privilege
but a negative write privilege

owner of the file: acquires positives read and write privileges:

QGranted(admin, pub_f, read, pos) ← .
QGranted(admin, pub_f, write, neg) ← .

QGranted*(x, pub_f, read, pos) ← Owner(x,pub_f).
QGranted*(x, pub_f, write, pos) ← Owner(x,pub_f).
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Discretionary Access Control and Privileges - 07. 04. 2011 197

A policy: implicit permissions/prohibitions in stratum 4

operational modes:
– read is considered to be included in write
– corresponding inheritance rules are instantiated
– explicit statements are converted in implicit ones:

Derived(x, pub_f, read, pos) ← Derived(x, pub_f, write, pos).
Derived(x, pub_f, write, neg) ← Derived(x, pub_f, read, neg).

Derived(x, pub_f, m, pos) ← QGranted(x, pub_f, m, pos).
Derived(x, pub_f, m, pos) ← QGranted*(x, pub_f, m, pos).
Derived(x, pub_f, m, neg) ← QGranted(x, pub_f, m, neg).
Derived(x, pub_f, m, neg) ← QGranted*(x, pub_f, m, neg).
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Discretionary Access Control and Privileges - 07. 04. 2011 198

A policy: decisions and conflict resolution in stratum 5

• read accesses are finally permitted
if some implicit permission can be derived or
if an implicit prohibition cannot be derived

• write accesses are finally permitted only in the former case

• thus, for both modes, a permission prevails over a prohibition

• while an open policy is stated for reading
(finally permitted if no prohibition can be derived), and
a closed policy is preferred for writing
(finally permitted only if a permission can be derived):

Decide(x, pub_f, read, pos) ← Derived(x, pub_f, read, pos).
Decide(x, pub_f , read, pos) ← ¬ Derived(x, pub_f, read, neg).
Decide(x, pub_f, write, pos) ← Derived(x, pub_f, write, pos).

• prohibitions, as generally required for stratum 5 of any logical program in
FASL, one generic default decision rule is specified:

Decide(x, y , z , neg) ← ¬ Decide(x, y , z , pos).
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Discretionary Access Control and Privileges - 07. 04. 2011 199

A policy: integrity enforcement in stratum 6

an implicit permission of a read or write access to the file pub_f
together with the respective implicit prohibition is treated as an error, i.e.,
any update request resulting in such a situation should be rejected):

Error()← Derived(x, pub_f, read, pos) ∧ Derived(x, pub_f, read, neg).
Error()← Derived(x, pub_f, write, pos) ∧ Derived(x, pub_f, write, neg).
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Discretionary Access Control and Privileges - 07. 04. 2011 200

Access decision on a functional request
• (functional) request (s , o , op) with

– s is an individual requestor u or, if applicable, his enabled role r
– op is a wanted operation on a controlled object o such that m = mode(op)

• the unique minimal fixpoint SEM of the logical program is computed

• a preliminary access decision is taken:
function decide(s,o,op): Boolean;
if (s,o,mode(op),pos)∈SEM then return true fi; / permitted
if (s,o,mode(op),neg)∈SEM then return false fi. / prohibited

• if preliminary access decision returns false:
request is immediately rejected;

• otherwise:
– an appropriate tuple (u , r , o , m , t) is tentatively inserted into Done,
– fixpoint is recomputed and checked for integrity

• if the integrity is preserved:
preliminary permission is confirmed/tentative insertion is committed;
otherwise: request is rejected/tentative insertion is aborted
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Discretionary Access Control and Privileges - 07. 04. 2011 201

Access decision on an update request (control operation)

• an access decision is taken,
similarly to what is done for a functional request

• a transaction is started

• the requested modifications are tentatively executed,
allowing various revoking strategies to be implemented

• the Error predicate for checking integrity is evaluated
using the fixpoint SEM

• depending on the result of the integrity check,
the transaction either commits or aborts
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Discretionary Access Control and Privileges - 07. 04. 2011 202

Strata, goals and responsible agents

1 facts for
basic items, hierarchies, relations

facts for
explicit granted relationships

facts for usage history

automatic extraction from
declarations and runtime data

system administrator and
respective owners

monitoring component

2 rules for
explicit granted relationships

respective owners and
application administrator

3 rules for
preparing conflict resolution

application administrator and
security officer

4 (recursive) rules for
implicit granted relationships

application administrator and
security officer

5 decision rules for
permissions and prohibitions

security officer

6 integrity rules application administrator and
security officer

© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Discretionary Access Control and Privileges - 07. 04. 2011 203

Basic properties of FAF

• expressiveness
– by design, many features of access control can be formally treated
– determined by the power of the chosen fragment of logic programming

• manageability
– layered approach supports reliable administration of access rights,

even if the administration is not centralized but partially distributed
– for example, responsibilities can be reasonably assigned to

– system components
– several individual owners
– a system administrator
– an application administrator
– a security officer

• completeness and soundness
– ensured by stratification and the restrictions imposed
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Discretionary Access Control and Privileges - 07. 04. 2011 204

FASL programs are complete and sound: theorem

Let AS be a logical program
according to the syntax of the Flexible Authorization Specification Language.

The following properties then hold:

• AS has a unique minimal fixpoint SEM as a stable/well-founded model.

• For each (functional) request (s , o , op),
exactly one of the literals

(s , o , mode(op) , pos) and (s , o , mode(op) , neg)

is an element of SEM.
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Discretionary Access Control and Privileges - 07. 04. 2011 205

Proof idea

• existence of a unique minimal fixpoint is ensured by local stratification, i.e.,
the restrictions concerning negation

• completeness is enforced by the default decision rule for prohibitions
together with negation as failure

• soundness is a consequence of having
just one default decision rule for prohibitions
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Discretionary Access Control and Privileges - 07. 04. 2011 206

Properties of FAF: efficiency

• general design allows
tractable (polynomial-time computable) access decisions

• if advanced techniques of logic programming are employed,
including materialization of the fixpoint SEM,
then decisions with an acceptable delay appear to be achievable
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Discretionary Access Control and Privileges - 07. 04. 2011 207

6 Granting and Revoking, and Analysis
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Granting and Revoking, and Analysis - 07. 04. 2011 208

Granting

• a current holder of a privilege, as a grantor,
assigns this privilege to a subject as a further grantee

• in doing so, the grantor can declare the privilege to be grantable again

• the following options for a grantable attribute can be meaningful:
no: receiver must not grant the received privilege further

limited: receiver may grant the received privilege further,
under the provision that the grantable attribute is then set to no

unlimited: receiver may grant the received privilege further,
without any restrictions

• a privilege can ultimately be held by many grantees

• a single grantee might have repeatedly received a privilege in several ways,
from different grantors and
at different issue times
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Granting and Revoking, and Analysis - 07. 04. 2011 209

A model with simplifying assumptions

• originally: a privilege is held only by the owner of the object concerned

• later on: all grantings are recorded with the issue time and
permit further unlimited grantings

• this model can be implemented as a database relation KB with five attributes:
– (Issue) Time
– Grantor
– Grantee/Subject
– (Controlled) Object
– (Operational) Mode

• a tuple (t, g, s, o, m) ∈ KB means:
at the issue time t,
a grantor g has assigned
to the grantee/subject s a privilege with respect to
the controlled object o
for the operational mode m

(where the special mode own indicates ownership)
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Granting and Revoking, and Analysis - 07. 04. 2011 210

An ER model for grantings

subject

owner (controlled)
 object

 (operational)
 mode

grantee

privilege

grantor

 privilege

granted

 issue time
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Granting and Revoking, and Analysis - 07. 04. 2011 211

An instance of a relational implementation

KB Time Grantor Grantee/
 Subject Object Mode

0 admin owner

1 admin owner

2 owner
3 b
4 c
5 owner
6 d
7 c

 Granted

 Grantor_Granted

H_Viewowner,o,m

m

m
m
m
m
m
m

own

o

o

o
o
o
o
o
o

b
c

c
e

d

d

© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Granting and Revoking, and Analysis - 07. 04. 2011 212

A grant graph corresponding to a history subrelation

• a subrelation H_Viewowner,o,m exhibits the full history of grantings
for a single privilege [o, m]
that originate directly or indirectly from the subject owner

• a corresponding grant graph
represents each triple (time, grantor, grantee) ∈ H_Viewowner,o,m
by a labeled, directed edge with
– origin grantor
– target grantee
– label time

 owner

 b

 c d e
5 4 6

 7

2

1

Grantees = {owner, b, c, d, e}

H_Viewowner,o,m:
3

© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Granting and Revoking, and Analysis - 07. 04. 2011 213

A formalization of granting

procedure grantowner,o,m(time,grantor,grantee);
{ precondition: owner ∈ Grantees;
import: Grantees, H_View, tmax

}
if / access decision:
[grantor = owner / owner is always permitted
OR
EXISTS t, EXISTS x ∈ Grantees: (t,x,grantor) ∈ H_View

 / a current holder is permitted
]
AND tmax < time / issue times are monotone
AND grantor ≠ grantee / no self-granting
AND grantee ≠ owner / no grantings for owner

then / updating of grant graph:
Grantees := Grantees ∪ {grantee}; / insert grantee
H_View := H_View ∪ {(time,grantor,grantee)}

 / insert privilege with issue time
fi.

© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Granting and Revoking, and Analysis - 07. 04. 2011 214

Producing a grant graph: example

is produced by the following calls,
where all requested updates have been permitted:

grantowner,o,m(2 , owner, b)
grantowner,o,m(3 , b , c)
grantowner,o,m(4 , c , d)
grantowner,o,m(5 , owner, c)
grantowner,o,m(6 , d , e)
grantowner,o,m(7 , c , d)

 owner

 b

 c d e
5 4 6

 7

2

1

Grantees = {owner, b, c, d, e}

H_Viewowner,o,m:
3

© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Granting and Revoking, and Analysis - 07. 04. 2011 215

Options for revocation semantics: examples

Option Knowledge
base

Precondition for
permission/invariant

Postcondition for
knowledge base

simple
deletion

Granted revoker is
administrator or owner

granting is completely
deleted

grantor-specific
deletion

Grantor_
Granted

revoker has been grantor granting of revoker is
deleted

deletion with
renewed further
grantings

Grantor_
Granted

revoker has been grantor

invariant: unique grantor, and
existence of unique granting
chain from owner

granting is deleted,
and
further grantings are
renewed

deletion with
deleted further
grantings

Grantor_
Granted

revoker has been grantor

invariant: existence of grant-
ing chains from owner

granting is deleted,
and
invariant is satisfied

time-specific
deletion with
recursive
revocation of
further grantings

KB
(all
H_View
instances)

revoker has been grantor

invariant: existence of time-
increasing granting chains
from owner

KB´ is the instance that
would be produced if
revoker had never granted
the privilege to grantee
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Granting and Revoking, and Analysis - 07. 04. 2011 216

Simple deletion
• request:

revoker r wants to revoke privilege [o, m] from grantee s at time t

• precondition for a permission :

r = admin
or
(r, o, own) ∈ Granted

• postcondition for knowledge base:

(s, o, m) ∉ Granted´

• implementation:

Granted := Granted \ {(s,o,m)}
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Granting and Revoking, and Analysis - 07. 04. 2011 217

Grantor-specific deletion
• request:

revoker r wants to revoke privilege [o, m] from grantee s at time t

• precondition for a permission :

(r, s, o, m) ∈ Grantor_Granted

• postcondition for knowledge base:

(r, s, o, m) ∉ Grantor_Granted´

• implementation:

Grantor_Granted := Grantor_Granted \ {(r,s,o,m)}
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Granting and Revoking, and Analysis - 07. 04. 2011 218

Deletion with renewed further grantings

• precondition for a permission to revoker r :
(r, s, o, m) ∈ Grantor_Granted

• invariant for knowledge base:
existence of unique granting chains from owner to grantees

• postcondition for knowledge base:
(r, s, o, m) ∉ Grantor_Granted´
and
for all y ≠ r with (s, y , o, m) ∈ Grantor_Granted:

(s, y , o, m) ∉ Grantor_Granted´ and (r, y , o, m) ∈ Grantor_Granted´

• implementation:
Grantor_Granted := Grantor_Granted \ {(r,s,o,m)};
forall y do
if (s,y,o,m) ∈ Grantor_Granted AND y ≠ r
then

Grantor_Granted := Grantor_Granted \ {(s,y,o,m)};
Grantor_Granted := Grantor_Granted ∪ {(r,y,o,m)}

fi .

© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Granting and Revoking, and Analysis - 07. 04. 2011 219

Deletion with deleted further grantings
• request:

revoker r wants to revoke privilege [o, m] from grantee s at time t

• precondition for a permission to revoker r :
(r, s, o, m) ∈ Grantor_Granted

• invariant for knowledge base:
existence of granting chains from owner to grantees

• postcondition for knowledge base:
(r, s, o, m) ∉ Grantor_Granted´
and the invariant

• (sketch of) implementation:
– the entry (r, s, o, m) is deleted in Grantor_Granted

– apply a graph search algorithm
to enforce the invariant by minimal further deletions
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Granting and Revoking, and Analysis - 07. 04. 2011 220

Time-specific deletion with recursive revocation of further grantings

• precondition for a permission to revoker r :
(r, s, o, m) ∈ Grantor_Granted

• invariant for knowledge base:
existence of issue time respecting granting chains from owner to grantees

• (informal) postcondition for knowledge base:
KB´ is the instance
that would have been produced
if the revoker r had never granted the privilege [o, m] to the grantee s

• discussion of implementation:
– needs enough information to allow one to construct

fictitious instances of the knowledge base
that could have been produced in the past

– the information represented in KB suffices

– this information is also necessary
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Granting and Revoking, and Analysis - 07. 04. 2011 221

Recursive revocation

procedure revokeowner,o,m(time,revoker,grantee);
{ precondition: owner � Grantees;

import: Grantees, H_View, tmax}
/ at time the revoker invalidates his grantings
/ of privilege [o,m] concerning object o of owner
/ to grantee

if / access decision:
tmax < time / issue times are monotone

then / updating of grant graph:
revoke*(time,revoker,grantee); / first call of recursive auxiliary procedure
delete isolated elements from Grantees except owner

fi.

procedure revoke*(t,x,y); / recursive auxiliary procedure for revokeowner,o,m
{ precondition: owner ��Grantees;

import: Grantees, H_View, tmax}
if / access decision:

EXISTS tearly: tearly < t AND (tearly,x,y) � H_View
/ x has granted privilege to y before time t

then / updating of grant graph:
H_View := H_View \ {(tearly,x,y) | tearly < t };

/ delete grantings from x to y before time t

VALID := { tother | EXISTS xother: (tother,xother,y) � H_View };

if VALID 	 Ø then t := minimum(VALID) else t :=
�fi;
/ compute earliest different granting time t for y;
/ if there is none, define this time as greater than all �real times�

forall w � Grantees do revoke*(t,y,w)
/ y recursively revokes all invalidated grantings, namely
/ those before the earliest different granting time t for y

fi.
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Granting and Revoking, and Analysis - 07. 04. 2011 222

Recursive revocation: main procedure

procedure revokeowner,o,m(time,revoker,grantee);
{ precondition: owner � Grantees;

import: Grantees, H_View, tmax}
/ at time the revoker invalidates his grantings
/ of privilege [o,m] concerning object o of owner
/ to grantee

if / access decision:
tmax < time / issue times are monotone

then / updating of grant graph:
revoke*(time,revoker,grantee); / first call of recursive auxiliary procedure
delete isolated elements from Grantees except owner

fi.

procedure revoke*(t,x,y); / recursive auxiliary procedure for revokeowner,o,m
{ precondition: owner ��Grantees;

import: Grantees, H_View, tmax}
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Granting and Revoking, and Analysis - 07. 04. 2011 223

Recursive revocation: recursive auxiliary procedure

procedure revoke*(t,x,y); / recursive auxiliary procedure for revokeowner,o,m
{ precondition: owner ��Grantees;

import: Grantees, H_View, tmax}
if / access decision:

EXISTS tearly: tearly < t AND (tearly,x,y) � H_View
/ x has granted privilege to y before time t

then / updating of grant graph:
H_View := H_View \ {(tearly,x,y) | tearly < t };

/ delete grantings from x to y before time t

VALID := { tother | EXISTS xother: (tother,xother,y) � H_View };

if VALID 	 Ø then t := minimum(VALID) else t :=
�fi;
/ compute earliest different granting time t for y;
/ if there is none, define this time as greater than all �real times�

forall w � Grantees do revoke*(t,y,w)
/ y recursively revokes all invalidated grantings, namely
/ those before the earliest different granting time t for y

fi.

© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Granting and Revoking, and Analysis - 07. 04. 2011 224

Procedure call revoke(8,b,c): the run

 owner

b

 c d e
5 4 6

7

2 3

Grantees = {owner, b, c, d, e}H_View

 owner

b

 c d e
5 4 6

7

2

Grantees1 = {owner, b, c, d, e}H_View1

 owner

b

 c d e
5 6

7

2

Grantees2 = {owner, b, c, d, e}H_View2

 owner

b

 c d e
5

7

2

Grantees3 = {owner, b, c, d, e}H_View3

 owner

b

 c d
5

7

2

Granteesfinal = {owner, b, c, d}H_Viewfinal

Initial instance of grant graph H_View

First call of auxiliary procedure,

Recursive calls for w�	�d

Recursive call for w = d,

Recursive calls for w�	�e

All further recursive calls

Finally, all isolated nodes

when the procedure
revokeowner,o,m(8,b,c)
is called.

revoke*(8,b,c),
delivers H_View1 with
VALID1 = {5} and t1 = 5.

do not change the grant graph.

revoke*(5,c,d),
delivers H_View2 with
VALID2 = {7} and t2 = 7.

do not change the grant graph.

Recursive call for w = e,
revoke*(7,d,e),
delivers H_View3 with
VALID3 = ����and t3 =
.

do not change the grant graph.

are removed.
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Granting and Revoking, and Analysis - 07. 04. 2011 225

Procedure call revoke(8,b,c): call of auxiliary procedure

 owner

b

 c d e
5 4 6

7

2 3

Grantees = {owner, b, c, d, e}H_View

 owner

b

 c d e
5 4 6

7

2

Grantees1 = {owner, b, c, d, e}H_View1

Initial instance of grant graph H_View

First call of auxiliary procedure,

Recursive calls for w�	�d

when the procedure
revokeowner,o,m(8,b,c)
is called.

revoke*(8,b,c),
delivers H_View1 with
VALID1 = {5} and t1 = 5.

do not change the grant graph.
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Granting and Revoking, and Analysis - 07. 04. 2011 226

Procedure call revoke(8,b,c): a recursive call

 owner

b

 c d e
5 4 6

7

2

Grantees1 = {owner, b, c, d, e}H_View1

 owner

b

 c d e
5 6

7

2

Grantees2 = {owner, b, c, d, e}H_View2

First call of auxiliary procedure,

Recursive calls for w�	�d

Recursive call for w = d,

revoke*(8,b,c),
delivers H_View1 with
VALID1 = {5} and t1 = 5.

do not change the grant graph.

revoke*(5,c,d),
delivers H_View2 with
VALID2 = {7} and t2 = 7.
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Granting and Revoking, and Analysis - 07. 04. 2011 227

Procedure call revoke(8,b,c): a further recursive call

 owner

b

 c d e
5 6

7

2

Grantees2 = {owner, b, c, d, e}H_View2

 owner

b

 c d e
5

7

2

Grantees3 = {owner, b, c, d, e}H_View3

Recursive call for w = d,

Recursive calls for w�	�e

revoke*(5,c,d),
delivers H_View2 with
VALID2 = {7} and t2 = 7.

do not change the grant graph.

Recursive call for w = e,
revoke*(7,d,e),
delivers H_View3 with
VALID3 = ����and t3 =
.
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Granting and Revoking, and Analysis - 07. 04. 2011 228

Procedure call revoke(8,b,c): removing isolated nodes

 owner

b

 c d e
5

7

2

Grantees3 = {owner, b, c, d, e}H_View3

 owner

b

 c d
5

7

2

Granteesfinal = {owner, b, c, d}H_Viewfinal

All further recursive calls

Finally, all isolated nodes

Recursive call for w = e,
revoke*(7,d,e),
delivers H_View3 with
VALID3 = ����and t3 =
.

do not change the grant graph.

are removed.
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Granting and Revoking, and Analysis - 07. 04. 2011 229

Dynamic and state-dependent permissions

• basic concepts ensure availability in two steps:
– some administrator grants the needed permissions, permanently

represented in a knowledge base on permissions and prohibitions

– a grantee can repeatedly employ his permissions
whenever he himself wants to do so

• the availability of a resource can
be explicitly terminated by revoking the pertinent privileges

• one can further restrict the availability of a resource by employing
the knowledge base on the usage history

• an administrator can express a policy that
– “statically” permits a requestor to access a resource

– but additionally requires the validity of some “dynamic conditions”
for any actual request
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Granting and Revoking, and Analysis - 07. 04. 2011 230

Control automatons

• static layer:
the “principally permitted” options for using a computing system
are declared in some suitable way

• dynamic layer:
control automatons specify security contexts by their states;

a security context represents the collection of
those permissions (and prohibitions)
that are actually exploitable by an individual or a community
at a specific point in time
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Granting and Revoking, and Analysis - 07. 04. 2011 231

Some purposes of a security context

• selecting a narrow subset of the “principally permitted” options or
selecting one alternative out of several mutually exclusive possibilities

• monotonically decreasing the usability of “principally permitted” options;
resetting previously decreased usability

• temporarily amplifying the “principally permitted” options for special tasks

• partially implementing “principally permitted” options by means of
runtime concepts of operating systems and programming languages

• enhancing the runtime complexity of access decisions with respect to the
“principally permitted” options, owing to appropriate precomputations

• sequencing the actual employment of “principally permitted” options
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Granting and Revoking, and Analysis - 07. 04. 2011 232

State transitions of control automatons/switches of security contexts

• explicitly,
owing to a control operation

• implicitly (as a side effect),
owing to a functional operation

• “spontaneously”,
owing to an error condition or a detected security violation
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Granting and Revoking, and Analysis - 07. 04. 2011 233

Role enabling and disabling: an example
Granted Role Object Mode

.
ri

…

.

ri

.

.

.

.
oi,1

…
oi,k

.

.

.

.
mi,1

…
mi,k

.

.

Role_Assignment Subject Role
.
.
s
…
s
…
s

.

.
r1

…
ri

…
rn

.. .

Role_Enabling Subject Role
.
.
s
.

.

.
ri

.

lazy ri

r1

rn

role_monitor(s)

(s, r1, e
nable)

(s, r1, d
isable)

(s, ri, enable)

(s, ri, disable)(s, rn, enable)

(s, rn, disable)

current state

.

.

.

.

.

.

© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Granting and Revoking, and Analysis - 07. 04. 2011 234

Information flow monitoring

• initially,
an individual subject is statically granted a permission
to access some information sources “in principle”

• while the individual is enjoying his privileges,
a monitoring automaton aims at dynamically preventing the individual
from gathering “more information than intended”
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Granting and Revoking, and Analysis - 07. 04. 2011 235

Chinese Walls

• in principle:
a participant can advise several companies, and thus
is permitted to access objects owned by different companies

• however:
– if two companies are competing, then the consultant should not

simultaneously obtain information from both companies

– any information flow from one company via a consultant
to the other competing company must be strictly prevented

thus dynamically:
once the consultant has read an object owned by one company:
– he is dynamically prohibited to access any object of a competing company

– to avoid transitive information flows,
writing is restricted to objects of just that company
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Granting and Revoking, and Analysis - 07. 04. 2011 236

Experimental operating system HYDRA

• system maintains a runtime stack for procedure calls

• a procedure call triggers the dynamic creation of a local name space object

• this object contains or references all runtime data needed,
including the privileges needed to access other objects

• usually, these privileges are dynamically granted in two ways:
– the (dynamic) local name space object of the calling procedure

can copy any selection of its own privileges and
pass the copies as actual parameters

– the (static) program object of the called procedure
transmits its own privileges

• in general, the permissions of a specific execution of a procedure
are strictly bounded by the permissions held by the two source objects

• right amplification might supply a local name space object
with a privilege that is neither held by the calling dynamic object

nor possessed by the called static object

© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Granting and Revoking, and Analysis - 07. 04. 2011 237

Java protection framework: local and remote code

• the framework includes rules for deciding on access requests
issued by the execution of either local or remote (program) code

• local code might be assumed to be “trustworthy” and thus
qualify to discretionarily receive privileges to access local resources

• remote code is seen to be potentially “suspicious” and thus
treated with special care;
as an extreme option, executed in a sandbox
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Granting and Revoking, and Analysis - 07. 04. 2011 238

Java protection framework: enabling flexible cooperation

• subjects are formed by a set of Java classes characterized by:
– origin
– acceptance of digital signatures
– certificates
– ...

• such a subject is assigned a protection domain,
which is granted concrete privileges

• later on,
all runtime instance objects of the pertinent classes
inherit these privileges from the protection domain

• however,
the usage of privileges is further dynamically restricted by stack inspection
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Granting and Revoking, and Analysis - 07. 04. 2011 239

Java stack inspection

• a runtime stack for each thread:
to keep track of a chain of pending method invocations

• fundamental policy:
a nested execution of a method
may not be more powerful that any of its predecessors in the chain

• mechanism of stack inspection:
if a method execution requests to access a resource,
then the mechanism inspects both
– the privileges of the current protection domain

assigned to the relevant subject

– the privileges of all protection domains
assigned to the predecessors

• the request is permitted only if
all items in the chain possess appropriate privileges

• there are further refinements, optimizations and even exceptions
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Granting and Revoking, and Analysis - 07. 04. 2011 240

Workflow control

• an administrator statically declares a workflow schema

• suitable participants dynamically execute one or more workflow instances

• while an instance is progressing, at any point in time:
– any participant scheduled to perform the next step

should effectively receive the pertinent privileges

– all other participants deemed to be waiting for a call
should be temporarily prevented from acting

– after the completion of a step,
one or more succeeding steps must be enabled

• the workflow schema and the current state of an instance
jointly specify a security context

• such a security context can be described by a control automaton,
suitably formed as a finite automaton or a Petri net
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Granting and Revoking, and Analysis - 07. 04. 2011 241

Analysis of control states: basic problem

• may a subject s ever acquire a privilege [o, m] ?

• can a subject s never acquire a privilege [o, m] ?

• given a current control state (permissions/prohibitions)
does there exist a sequence of permitted control operations
such that, afterwards, a request
– from subject s
– to perform an operation of mode m
– on object o
is permitted ?

• in the positive case,
– which participants,
– using which control operations,
can achieve such acquisition?
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Granting and Revoking, and Analysis - 07. 04. 2011 242

Undecidability of the analysis problem of control states/operations

• elaborate a formal model for control state

• elaborate a formal model of control operation

• show that the halting problem is reducible to the analysis problem
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Granting and Revoking, and Analysis - 07. 04. 2011 243

A model of control states
• time-independent declarations:

– I infinite set of potential system items;
may act both as subject and as object

– Actor ⊆ I infinite set of actors; may request control operations

– Mode finite set of modes
FM ⊆ Mode set of functional modes
KM ⊆ Mode set of control and relational modes

– Priv := { [x, m] | x ∈ I and m ∈ Mode } set of privileges

• time-dependent control state (Lt , Grantedt ,Condt):
– t actual abstract time

– Lt ⊆ I finite set of system items that are alive at time t

– Grantedt ⊆ Lt × Lt × Mode
representing the actual permissions or
other relationships at time t

– Condt possibly parameterized further condition
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Granting and Revoking, and Analysis - 07. 04. 2011 244

A model of control operations
• a control operation is a call of a parameterized control procedure:

procedure control_schema_ident
(formal_mode_list; formal_item_list);

{ import: Granted, L, Cond }

if subrelation Required is contained in relation Granted
AND
condition Cond is satisfied

then modify Granted and, if required, also L;
if required, adapt Cond

fi.

• a modification of Granted or L consists of a sequence of elementary actions:
– insert(s , o , m): Granted := Granted ∪ { (s, o, m) }

– delete(s , o , m): Granted := Granted \ { (s, o, m) }

– create(y): L := L ∪ { y } with y ∉ L

– destroy(y): L := L \ { y }

© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Granting and Revoking, and Analysis - 07. 04. 2011 245

Reduction: simulation of TM configurations by of control states

 k

 x1 x2 x3 xi xe

m1 m2 m3 … mi … me ~ ~ …

 1 2 3 i e e+1

own own own own own

m1 m2 m3 mi , k me , end

a configuration of TM:

a simulating control state:

the initial control state S1:

 x1

~ , kinit ,end

a halting control state:

 x1

m1, khalt

 own ...
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Granting and Revoking, and Analysis - 07. 04. 2011 246

Reduction: simulation of TM moves by of control operations

 x y

own

m, k

 x y

own

m´Case δ(k ,m) = (k´ ,m´ ,left):

simk,m(x,y): if then

k´

 x y

own

 x y

own

k´Case δ(k ,m) = (k´ ,m´ ,right):

simk,m(x,y): if then

m´m, k

 x x y

own

~, k´, end

sim_tape_extk,m(x,y): if then

m´m, k, end
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Granting and Revoking, and Analysis - 07. 04. 2011 247

Some crucial insight

• though control operations appear to be very simple,
they can be expressive enough
to simulate the local behavior of a Turing machine

• together with the option to create new items,
the computational power of universal programming languages is reached

• we can try to achieve decidability,
by suitably restricting the expressiveness, for example:

– just prevent the TM simulation

– avoid the interaction of granting and taking together with creating

– employ suitable typing
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Granting and Revoking, and Analysis - 07. 04. 2011 248

Generic take–grant operations and create

mode

grantor grantee object

mode

 grantor grantee object

mode

grant(mode;grantor,grantee,object): grant

 grant

if

then

mode

grantor grantee object

mode

 grantor grantee object

mode

take(mode;grantor,grantee,object): take

 take

if

then

createN(creator,creation):
 N

creator creation
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Granting and Revoking, and Analysis - 07. 04. 2011 249

Analysis problem for generic take, grant and create: theorem

consider Control: generic take, grant and create as control operations
S1: a current control state (permissions/prohibitions)
s: a subject
o: an object
m: a mode

claim:
there exists a sequence of permitted control operations such that a request
from subject s to perform an operation of mode m on object o is permitted
iff
there exists an item p ∈ L1 such that
(i) (p, o, m) ∈ Granted1

p already holds the examined privilege [o , m] in the original control state S1

(ii) p and s are take/grant-connected in the original control state S1

in the corresponding access control graph there is a path from p to s,
such that, ignoring directions,
each edge on the path is labeled with take or grant
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Granting and Revoking, and Analysis - 07. 04. 2011 250

Reversing directions of grant and take privileges

 grant

 si si+1

 grant

 si+1 si

 n

 take, grant

 grant

 si+1 si

 n

 take,grant grant

 |⎯ |⎯

 take

 si+1

 take

 si+1 si

 n

 take, grant

 take

 si+1 si

 n

 take, grant grant

 |⎯ |⎯
si
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Granting and Revoking, and Analysis - 07. 04. 2011 251

Privileges and information flow: extended analysis problem

• may a subject s ever be enabled
to learn the information contained in some object o?

• will a subject s never be enabled
to learn the information contained in some object o?
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Granting and Revoking, and Analysis - 07. 04. 2011 252

Interactions of control operations and functional operations: example

 flow

 x1

 data

 data

 flow

 x1

 data data

 s = x0

 s = x0

 s = x0

 flow

 x2 = o

 flow

 x1

 data data

 s = x0

 flow

 x2 = o

 data

 flow

 x1

 data data

 s = x0

initial state with source s
containing data:

control operations establish
transmission edge to x1 for data:

control operations establish
transmission edge to x2 for data:

functional operation
transmits data to x1:

functional operation
transmits data to x2:

 |⎯∗

 |⎯∗

© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Granting and Revoking, and Analysis - 07. 04. 2011 253

7 Mandatory Access Control and Security Levels
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Mandatory Access Control and Security Levels - 07. 04. 2011 254

ER model

• a security level assigned to a subject as a clearance
roughly expresses a degree of its trustworthiness (concerning confidentiality)

• A security level assigned to an object as a classification
roughly expresses a degree of its sensitivity (concerning confidentiality)

 (controlled)
 object

 (registered)
 subject

 security level

 classified

 cleared
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Mandatory Access Control and Security Levels - 07. 04. 2011 255

Partial orders for relative trustworthiness and relative sensitivity

• use a partial order ≤SL on the set of security levels SL

• an ordering l1 ≤SL l2 expresses:

– relative trustworthiness (“less trustworthy than”) for subjects

– relative sensitivity (“less sensitive than”) for objects
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Mandatory Access Control and Security Levels - 07. 04. 2011 256

Mandatory security policy

• information flows must respect the orderings between security levels:

– a request is permitted
only if
the trustworthiness of the requestor (postulated properties of subject)
suffices for (are expected to cover)
the sensitivity of the target (protection requirements for object)

– information may flow from an item with level l1 to an item with level l2
only if
l1 ≤SL l2

• we have to know exactly the direction of the potential information flows:
– reading: from the accessed object to the requesting subject
– writing: from the requesting subject to the accessed object
– any: function mode has to correctly assign mode read or write
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Mandatory Access Control and Security Levels - 07. 04. 2011 257

Access decisions to enforcing confidentiality

function decide(subject, object, operation): Boolean;

if mode(operation) = read
then return classification(object) ≤SL clearance(subject)
fi;

if mode(operation) = write
then return clearance(subject) ≤SL classification(object)
fi.

• the function decide is supported by a
conceptual knowledge base (on permissions and prohibitions) expressing:
– cleared relationships of the form (subject, clearance)

– classified relationships of the form (object, classification)

• the achievements are often briefly referred to as
the read-down/write-up rule
for upwards information flow
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Mandatory Access Control and Security Levels - 07. 04. 2011 258

Mandatory control of information flow: debates

• achievements rely on strong suppositions concerning:
– a common understanding of security levels by all administrators
– correct assignments of operational modes to all operations

• achievements might be too restrictive:
– allow only unidirectional information flows
– thus prevent full back and forth communications

• achievements might nevertheless be too weak:
– potential inferences about the results of permitted operations

are not captured in general
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Mandatory Access Control and Security Levels - 07. 04. 2011 259

Dynamic mandatory access control

• so far:
an object is statically assigned a fixed security level as its sensitivity

• now refined:
– treat an object as a container

– capture the dynamic evolution of the sensitivity of the content
during a sequence of operations

– increase the classification for the object like a high-water mark,
according to the most sensitive information that has ever flowed in

• convenient postulate:
the partial order ≤SL on the domain SL of security levels
forms a finite lattice
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Mandatory Access Control and Security Levels - 07. 04. 2011 260

Security levels as a finite lattice: underlying assumptions

• domain SL of security levels:
to represent some aspects regarding information

• ≤SL is a partial order on the domain SL:
to treat transitive information flows

• ≤SL allows infimums (greatest lower bounds) infSL(l1 , l2):
to capture the common part of the aspects represented by l1 and l2

• ≤SL allows supremums (least upper bounds) supSL(l1 , l2):
to capture the accumulation of the aspects represented by l1 and l2
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Mandatory Access Control and Security Levels - 07. 04. 2011 261

Example of security levels: linear orders

to characterize information under the interest in confidentiality:

open

secret
secret

top secret

confidential

open
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Mandatory Access Control and Security Levels - 07. 04. 2011 262

Example of security levels: power set lattices

to describe information by subject matter,
using a set of keywords KW, e.g.,
KW = { avail(ability) , conf(identiality) , int(egrity) , auth(enticity) }

 { avail } { conf } { int } { auth }

�

{ avail,
 conf }

{ avail,
 int }

{ avail,
 auth }

{ conf,
 int }

{ conf,
 auth }

{ int,
 aut }

{ avail,
 conf,
 int }

{ avail,
 conf,
 auth }

{ avail,
 int,
 auth }

{ conf,
 int,
 auth }

{avail,
 conf,
 int,
 auth }
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Mandatory Access Control and Security Levels - 07. 04. 2011 263

Approximation of dependance by levels: container objects

• in principle, keep track of
which items the current content of the container object co actually depends on

• as an efficient approximation,
maintain a dynamic (high-water mark) security level slco (t),
where t denotes the time parameter:

– if some data d is read from the container at some point in time t,
then d inherits the container’s current security level slco (t)
as its dynamic classification

– if some data d, supposed to carry some security level sld ,
is written to the container co at some point in time t,
then the container’s security level is updated to the
least upper bound of the container’s previous level and the data’s level:

 slco (t) := supSL { slco (t – 1) , sld }

• crucial issue: specify convincingly
how the data d to be written obtains its dynamic classification sld
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Mandatory Access Control and Security Levels - 07. 04. 2011 264

Dynamic classification of data: expressions

• partial answer by the rule for reading:
if data d is just read and then written without any further interactions,

then take the inherited dynamic classification

• extended answer:
if data d results from performing some operation op on arguments a and b,

each of which has only been read just before the operation,

then take the supremum of the inherited dynamic classifications

• generalized for arbitrary expressions:
take the supremum of all the inherited dynamic classifications involved
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Mandatory Access Control and Security Levels - 07. 04. 2011 265

Dynamic classification of data: active subjects

for a subject su that actively participates in forming the data to be written:

• if the subject only persistently stores previously read data over time,

then treat the subject like a container,
in particular,
su obtains a dynamic security level slsu(t)

• if a subject dynamically “generates” new data,

then let the data inherit
either the subject’s static clearance
or some lower label
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Mandatory Access Control and Security Levels - 07. 04. 2011 266

Combining static and dynamic features: outline of a formal model

• each subject su obtains a static security level clearance(su)
expressing its trustworthiness

• each container object co obtains a static security level classification(co)
expressing its initial sensitivity

• all operations are monitored by a control automaton
whose internal states are composed of
the dynamic security levels slco (t) and slsu(t)
for each container object co and each subject su, respectively

• for t = 0, the dynamic security levels are initialized by:
– slco (0) := classification (co), for each container object co
– slsu(0) ≤SL clearance (su), for each subject su

• for t > 0, an access request is decided
according to the current state resulting from time t – 1,
and a state transition reflecting the decision is performed
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Mandatory Access Control and Security Levels - 07. 04. 2011 267

Static and dynamic features: access decisions and state transitions

• subject su requests to read from a container object co:
– access permitted iff slco (t – 1) ≤SL clearance(su)

– in the case of a permission,
slsu (t) := supSL { slsu (t – 1) , slco(t – 1) }

• subject su requests to write to a container object co:
– access (always) permitted
– slco(t) := supSL { slsu (t – 1) , slco(t – 1) , l }, where l ≤SL clearance(su)

• satisfied security invariant (for confidentiality):
slsu(t) ≤SL clearance (su), for each subject su, at any point in time t

a subject sees only data
which results from operating on arguments
whose sensitivities have been classified as lower than or equal
to the clearance of that subject
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Mandatory Access Control and Security Levels - 07. 04. 2011 268

Models attributed to Bell and LaPadula

• exploring the fundamental concepts of:
– a “secure state”: satisfying a security invariant
– a “secure action”: preserving the invariant

• enforcing a *(star)-security property:
reading an object and subsequently writing to another object
is permitted only if
the label of the former object is lower than or equal
to the label of the latter object

• establishing a Basic Security Theorem:
starting a system in a secure state and
employing only secure actions
guarantee that the system is “secure” (always satisfies the invariant)
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Mandatory Access Control and Security Levels - 07. 04. 2011 269

Downgrading

• pure mandatory approach:

only unidirectional information flows,
“from low to high”

• many applications require exceptions, e.g.:

– critical information to be kept top secret for some time
might age over the years and thus becomes less critical

– a subject acts in highly critical missions for some time
but subsequently is given a less critical task

• some downgrading of an object/subject is due, e.g.:

– an original classification/clearance “top secret”
is substituted by “confidential”
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Mandatory Access Control and Security Levels - 07. 04. 2011 270

Sanitation

• downgrading may possibly be preceded by sanitation, i.e.:

– data is inspected for parts that are still critical

– such data is then individually removed or
suitably replaced by harmless variants
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Mandatory Access Control and Security Levels - 07. 04. 2011 271

Trusted subjects and violation of the basic security property

• downgrading and sanitation are performed
by special subjects that are considered as trusted, i.e.,
being exempted from obeying the pure rules of mandatory access control

• downgrading may violate the basic security property:

– only suitably relaxed formal security properties are still valid

– in the extreme case,
there are no formal guarantees of confidentiality anymore
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Mandatory Access Control and Security Levels - 07. 04. 2011 272

Confidentiality and integrity

• confidentiality security levels are designed to preserve confidentiality:

– data can be distributed to the equally or higher-labeled items

– such data can be written into these items

– all these items can be modified, and
thus are subject to concerns about their integrity

– in general, integrity will not be preserved

• close relationship between
– “(no) information flow”
– “(non)interference”

• these two notions are dual:
there might be an information flow from some item a to another item b
if and only if
item a might interfere with item b
(i.e., a might have an impact on the behavior of b)
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Mandatory Access Control and Security Levels - 07. 04. 2011 273

A dual approach to enforcing integrity

• fully dualize the mandatory approaches for preserving confidentiality,
including the procedure for access decision

• a read-up/write-down rule for downwards interference is employed:

– reading is allowed upwards, i.e.,
from equally or higher-labeled items

– writing is allowed downwards, i.e.,
to equally or lower-labeled items
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Mandatory Access Control and Security Levels - 07. 04. 2011 274

Enforcing both confidentiality and integrity

• jointly apply
the “read-down/write-up rule” and
the “read-up/write-down rule”

• then only accesses within the set of equally labeled items are allowed,
independently of whether the operational mode is read or write

• this strong restriction might impede the wanted application functionality
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Mandatory Access Control and Security Levels - 07. 04. 2011 275

Additional integrity security levels

• use a separate set SLint of integrity security levels:
– an integrity security level assigned to a subject as a clearance

expresses a degree of trustworthiness of the subject
concerning preserving the integrity of items

– an integrity security level assigned to an object as a classification
expresses a degree of sensitivity of the object
concerning the need for its integrity to be preserved

• trustworthiness and sensitivity concerning confidentiality and
the corresponding concepts concerning integrity
might differ essentially

• accordingly, both kinds of security levels
should be applied in parallel,
simultaneously following both permission rules:
– upwards information flow regarding confidentiality security levels
– downwards interference regarding integrity security levels
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Mandatory Access Control and Security Levels - 07. 04. 2011 276

8 Inference Control
© Joachim Biskup, Technische Universität Dortmund Security in Computing Systems: Inference Control - 07. 04. 2011 277

Information gain

• an observer of a message or other event
achieves an information gain

if he can convert his a priori knowledge
into strictly increased a posteriori knowledge
– when adding the meaning of the message or event and
– making all possible inferences

• such a gain might
remain merely potential or
be actually realized,

depending on
– the fundamental computational capabilities and
– the available computational resources of the observer
© Joachim Biskup, Technische Universität Dortmund Security in Computing Systems: Inference Control - 07. 04. 2011 278

Information, knowledge, computational capabilities and resources

 message

 observe message

 assign meaning

computational

evaluate novelty

 (gain of)

(or event)
experiences

 determine options for
 potential implications

 deploy resources and
 actually infer implications capabilities

and resources

(explicitly
represented,
a priori and
revised)
knowledge

 revise knowledge information
© Joachim Biskup, Technische Universität Dortmund Security in Computing Systems: Inference Control - 07. 04. 2011 279

Information gain by an observer
• selects a framework for reasoning

as the pertinent communicative context or universe of discourse

• interprets an observation and assigns a meaning to the observation

• has some a priori knowledge

• employs a declarative notion of implication, using
first-order logic, probabilities, vagueness, uncertainty, preferences, ... ,
and thus reasons about the fictitious implicational closure

• computationally infers
– deploying the computational resources available to him –
selected or even all implications, and
evaluates actual inferences concerning novelty

• treats the newly inferred implications as the information gained

• appropriately revises his previous knowledge,
thereby getting a posteriori knowledge
© Joachim Biskup, Technische Universität Dortmund Security in Computing Systems: Inference Control - 07. 04. 2011 280

Two extreme cases for the information gain

• the a priori knowledge and the a posteriori knowledge are identical:

– the knowledge has remained invariant

– the observer has learnt nothing novel

– the set of possible worlds has not changed

• the a posteriori knowledge determines exactly one possible world:

– the knowledge has become complete

– the observer has learnt any property expressible in the selected framework
© Joachim Biskup, Technische Universität Dortmund Security in Computing Systems: Inference Control - 07. 04. 2011 281

Enabling/preventing information flow concerning semantic objects

gain
information

knowledge

(potentially corrected) accepted message m ,

and
computational
capabilities
and resources

about
message sent
as
syntactic object

actually observed message m´

considered as having integrity and being authentic

enabling mechanisms that
serve mainly for
enforcing integrity and authenticity

 detect modifications
 and
correct modifications

gain
information

knowledge
and
computational
capabilities
and resources

about
considered
semantic objects

 (gain of) information about considered semantic object

enabling/preventing mechanisms that
serve mainly for
enforcing confidentiality
© Joachim Biskup, Technische Universität Dortmund Security in Computing Systems: Inference Control - 07. 04. 2011 282

Simple mathematical model: inversion of functions/solving equations

• framework for reasoning:
– function f : D → R
– domain D = dom (f) containing at least two elements
– range R = range (f)
– an abstract assignment x → f (x) of function values to arguments

• observation:
– message m, seen as a syntactic object in the form of a bit string

• interpretation:
– m, seen as a semantic object y ∈ R, generated by the sender

by applying the function f to some semantic object x ∈ D
– m possibly contains information

about some (hidden) semantic object x ∈ D such that f (x) = y

• gain of information:
– try to invert the function f for the given range value y
– attempt to find the solutions of the equation f (z) = y

for the unknown variable z
© Joachim Biskup, Technische Universität Dortmund Security in Computing Systems: Inference Control - 07. 04. 2011 283

A classification of functions: an (everywhere) injective function

for each y ∈ R there exists a unique z ∈ D such that f (z) = y:

– the observer can potentially gain complete information

– the actual gain depends on the observer’s possibilities
to actually compute the unique solution of the given equation
© Joachim Biskup, Technische Universität Dortmund Security in Computing Systems: Inference Control - 07. 04. 2011 284

A classification of functions: a nowhere injective function

for each y ∈ R there exist at least two different domain values
z1 ∈ D and z2 ∈ D such that f (z1) = f (z2) = y:

• the observer cannot gain the sought information completely
(he cannot distinguish the candidate domain values)

• the observer can possibly gain some partial information:
– his a posteriori knowledge comprises

x ∈ {z | f (z) = y} ⊆ D

– if { z | f (z) = y} ≠ D,
then the observer can potentially gain novel partial information;
he can exclude the possibility that the hidden object x is
an element of the difference set D \ {z | f (z) = y }

– the actual partial gain depends
on the observer’s possibilities to actually compute the relevant items
© Joachim Biskup, Technische Universität Dortmund Security in Computing Systems: Inference Control - 07. 04. 2011 285

A classification of functions: arbitrary functions

given the interpretation y ∈ R of an observed message,
the observer determines the pre-image { z | f (z) = y }:

• complete (potential) information gain:
the pre-image contains exactly one element x, i.e.,

card { z | f (z) = y } = 1, and accordingly { z | f (z) = y } = { x }

• partial (potential) information gain:
the pre-image contains at least two (indistinguishable) elements
but does not comprise the full domain D, i.e.,

card { z | f (z) = y } > 1 and D \ { z | f (z) = y } ≠ ∅

• no information gain:
the pre-image is equal to the full domain D, i.e.,

{ z | f (z) = y } = D

• framework not applicable:
the pre-image is empty, i.e.,

{ z | f (z) = y } = ∅

© Joachim Biskup, Technische Universität Dortmund Security in Computing Systems: Inference Control - 07. 04. 2011 286

Exemplifying three cases regarding information gain

 hidden

 observed
semantic object semantic object

D R
complete information gain

partial information gain

framework not applicable

f

© Joachim Biskup, Technische Universität Dortmund Security in Computing Systems: Inference Control - 07. 04. 2011 287

Observing the result of a group operation
• group (G , • , e)

– G set of group elements
– • : G × G → G binary group operation
– e neutral element

– inverse : G → G inversion with xinverse • x = e for all x ∈ G

• group properties ensure the solvability of equations:
every equation of the form k • x = y , where two of the items are given,
has a unique solution for the third item

• example: addition modulo 3

 0 1 2
0 0 1 2
1 1 2 0
2 2 0 1

observation: y = 0
pre-image: {(0,0),(2,1),(1,2)}

parameter k

remaining argument x

remaining argument
for known parameter k=1: 2

set of possible remaining arguments
for unknown parameter: {0,1,2}
© Joachim Biskup, Technische Universität Dortmund Security in Computing Systems: Inference Control - 07. 04. 2011 288

Information gain based on a parameter
• observation:

y ∈ G result of an application of the group operation

• a partial information gain about the arguments:
G × G \ { (k , x) | k • x = y } ≠ ∅

• fix the first (or, similarly, the second) argument of the group operation
to some parameter k ∈ G:
family of functions •k : G → G, where •k (x) = k • x

• observer knows k:
complete information about the remaining argument, since
 •k (x) = y implies

kinverse • y = kinverse • (k • x) = (kinverse • k) • x = e • x = x

• observer does not know k:
no information about the remaining argument, since
{ x | there exists k ∈ G : k • x = y } = G
© Joachim Biskup, Technische Universität Dortmund Security in Computing Systems: Inference Control - 07. 04. 2011 289

Inference control by dynamic monitoring of a process

 observer

 program

 executing
 dynamic

 permitted

 semantics a priori previous

 monitoring
 (case-by-case
 decisions)

 process

 knowledge observations

 observations

 security
 policy
© Joachim Biskup, Technische Universität Dortmund Security in Computing Systems: Inference Control - 07. 04. 2011 290

Inference control by static verification and modification of a program

 observer

 (modified)

 executing

static verification

 permitted

 semantics a priori
 knowledge

 (original)
 program

and modification
(global decisions) program

 process

observations

 security
 policy
© Joachim Biskup, Technische Universität Dortmund Security in Computing Systems: Inference Control - 07. 04. 2011 291

Sequential programs: main constructs
• declaration of typed identifiers and

generation of corresponding program variables,
whose current values constitute a (storage) state of an execution

• state transition, caused by
– generating a new program variable
– destroying an existing one
– assigning a value to a program variable
– passing an actual parameter during a procedure call

• control of the execution sequence by
– sequential composition of commands
– guarded commands such as a conditional or a repetition

• evaluation of an expression occurring
– in an assignment
– as an actual parameter
– as a guard

• computation of a function value needed during the evaluation of an expression,
where the function is implicitly given by a fundamental type
or has been explicitly declared
© Joachim Biskup, Technische Universität Dortmund Security in Computing Systems: Inference Control - 07. 04. 2011 292

Sequential programs: an example

procedure flow(
in init, guard, x, y: integer;
out result: integer);

local help: integer;

begin
help := 2;
help := help + init * init;

if guard ≥ 0
then help := help + x
else help := help + y
fi;
result := help

end flow
© Joachim Biskup, Technische Universität Dortmund Security in Computing Systems: Inference Control - 07. 04. 2011 293

Goals of analysis

• information gain
about the actual parameter values of the
input variables init, guard, x and y,

passed before the execution of the body,

when the value of the output variable result
is observed after the execution

• information gain
that may arise during subparts of the executions
© Joachim Biskup, Technische Universität Dortmund Security in Computing Systems: Inference Control - 07. 04. 2011 294

Stepwise analysis: expressions and assignments

• assignment help := 2
does not enable any information gain

• expression help+init*init
– evaluates the subexpression init*init :

observing the unidentified product value
enables a nearly complete information gain
about the actual parameter value of init passed

– determines the final value of the full expression help+init*init:
observing the sum value enables a
complete information gain about the second argument, and, by transitivity,
a nearly complete information gain about the value of init passed

• assignment help := help+init*init
causes an information flow
from the carrier init
over the sum value
to the carrier help
© Joachim Biskup, Technische Universität Dortmund Security in Computing Systems: Inference Control - 07. 04. 2011 295

Stepwise analysis: positive branch of guarded command

• assignment help := help+x in the positive branch:
– evaluates the expression help+x
– delivers an unidentified sum value
– assigns this sum value to the reused local variable help

• if the command is inspected separately,
observing the sum value enables an information gain
about neither the previous value of help nor the value of x

• an observer can achieve a partial information gain
about the pairs of these values

• if the observer knows one of the argument values a priori,
then the sum value uniquely determines the other argument value;
by transitivity, the same reasoning applies for the value of help

• the complete command causes some information flow
from help and x back to help
© Joachim Biskup, Technische Universität Dortmund Security in Computing Systems: Inference Control - 07. 04. 2011 296

• the body is equivalent to the following command sequence:
help := 2;
help := help + init * init;
help := help + x;
result := help

• final step can be understood as a direct, explicit data flow
from the local variable help
to the output variable result

• by transitivity, the full sequence can be regarded as
causing an information flow

from init and x
to result
© Joachim Biskup, Technische Universität Dortmund Security in Computing Systems: Inference Control - 07. 04. 2011 297

Stepwise analysis: guarded command

if guard ≥ 0 then help := help + x else help := help + y fi

• the branch is selected by the actual parameter value of guard

• in general, observing the value of help after this command is executed
does not enable an information gain about the guarding variable

• such a gain is possible, e.g., with the additional a priori knowledge:
– the value of help is 2
– the value of x is greater than or equal to 8
– the value of y is less than 8

• the observed value of help is greater than or equal to 10 iff
the value of guard is greater than or equal to 0

• the observed value of help is less than 10 iff
the value of guard is less than 0
© Joachim Biskup, Technische Universität Dortmund Security in Computing Systems: Inference Control - 07. 04. 2011 298

A classification of information flows
• direct information flow (direct data flow or message transmission)

– a value (not known to be a constant)
is explicitly transported from a variable to another one

– assignment commands,
passing actual parameters,
providing arguments for the computation of a function

• indirect information flow
– from the arguments to the value of the computation of a

function

• transitive information flow
– two “matching” information flows are combined
– command sequences,

nested expressions

• implicit information flow
– a guarded command has an impact on the control;

from the constituents of the guarding expression into the selected branch
– conditionals,

repetitions

© Joachim Biskup, Technische Universität Dortmund Security in Computing Systems: Inference Control - 07. 04. 2011 299

Reachability or actual reaching of a command

• formally declared information flow:
the pertinent command is part of the program (seen as a text)

• realizable (or existential) information flow:
the pertinent command is reachable
for at most one execution with appropriate input values

• realized (or occurring) information flow:
the pertinent command is actually reached during an execution
© Joachim Biskup, Technische Universität Dortmund Security in Computing Systems: Inference Control - 07. 04. 2011 300

Implicit flows without any direct flows: example

procedure implicit(
in x: boolean;
out y: boolean);

local z: boolean;

begin
y:= false;
z:= false;
if x then z := true fi;
if z then y := true fi

end implicit

• implicit flow from x to z by the guarded command if x then z := true

• implicit flow from z to y by the guarded command if z then y := true

• transitive flow by sequencing the implicit flows
© Joachim Biskup, Technische Universität Dortmund Security in Computing Systems: Inference Control - 07. 04. 2011 301

Implicit flows and the constantness problem: example

procedure difficult(
in x: integer;
out y: integer);

function f(z: integer) : integer;
{ f computes a total function, as implemented by the body;

f returns the output value 0 on the actual input parameter value z = 0}
begin … end f;

begin
if f(x) = 0
then y := 1
else y := 2
fi

end difficult
© Joachim Biskup, Technische Universität Dortmund Security in Computing Systems: Inference Control - 07. 04. 2011 302

Undecidability of information flows

• the function constantly returns 0:
– equivalent to the assignment command y := 1
– no information flow

• there exists an actual input parameter value z ≠ 0 such that
the function returns a different value:
– enables a partial gain of information

about the actual parameter value x, by excluding
either the value z
or the specially treated value 0

• an information flow occurs
iff
the locally defined function is non-constant
(in general undecidable)
© Joachim Biskup, Technische Universität Dortmund Security in Computing Systems: Inference Control - 07. 04. 2011 303

Static compiler-based verification

• is a preventive mechanism of inference control

• employs the structures of high-level procedural programming languages
in order to deal with implicit information flows due to guarded commands

• approximates the information flow from the argument components of the
guard into the carriers manipulated in the pertinent scope of the guard:
– this scope is easily determined syntactically
– leaving the scope, the impact of the guard is reset appropriately

• is integrated into the functional analysis of the program,
on the basis of compositional and procedural semantics

• is supported by a pertinent compiler

• considers the progressively more complex syntactical subparts of a program
as some kind of carriers of information
© Joachim Biskup, Technische Universität Dortmund Security in Computing Systems: Inference Control - 07. 04. 2011 304

Simplified version of a procedural language

• x1 , x2 , … , y1 , y2 , … , z1 , z2 , … typed variables (variable v extension Dv)
x1 , x2 , … , y1 , y2 , … declared as formal parameters
z1 , z2 , … declared as local variables

• command: one of the following well-formed constructs
– assignment to a variable (with an expression to be evaluated and assigned)
– sequence of commands (bracketed by begin–end, “;” used as delimiter)
– structured conditional (conditional forward jump/two-sided alternative)
– repetition (guard in front of the body: while instruction)
– procedure call (with appropriate actual parameters)

• procedure: identifier, formal parameters, local declarations, body

• body: sequence of commands without global variables

• formal parameter
– either argument parameter (no assignments allowed)
– or result parameter bzw. argument/result parameter (preceded by var)

• program: procedure, which might contain nested local procedures
© Joachim Biskup, Technische Universität Dortmund Security in Computing Systems: Inference Control - 07. 04. 2011 305

Informal semantics: flow diagrams for commands

u := exp(w1,…,wn)

exp(w1,…,wn)

true

false

the flow diagram
for the command

exp(w1,…,wn)
true false

the flow diagram
for command_1

the flow diagram
for command_2

exp(w1,…,wn)

true

false

the flow diagram
for the command
© Joachim Biskup, Technische Universität Dortmund Security in Computing Systems: Inference Control - 07. 04. 2011 306

Policy specification for expressing permitted information flows

• labels are taken from the power set lattice (℘Var , ⊆ , ∩ , ∪)
with respect to the set of all variables Var = { x1 , … , xm , y1 , … , yn , z1 , … , zk }

• declaring the static label sl (v) = V ⊆ Var for a variable v ∈ Var is to permit
only information flows into v that originate from the variables in V

• the following restrictions apply:
– a formal argument parameter xi must get { xi } as its static label

– a formal result parameter yj might get a static label Vj such that
yj ∉ Vj ⊆ { x1 , … , xm , y1 , … , yn },
not containing any other pure result parameter

– a formal argument/result parameter yj might get a static label Vj such that
yj ∈Vj ⊆ { x1 , … , xm , y1 , … , yn },
not containing any pure result parameter

identifier flow: type label
var

variable declaration
© Joachim Biskup, Technische Universität Dortmund Security in Computing Systems: Inference Control - 07. 04. 2011 307

A procedure declaration with static labels

proc max (
 x1 : integer flow { x1 } ; argument parameter

x2 : integer flow { x2 } ; argument parameter
var y : integer flow { x1 , x2 } result parameter

) ;

begin

if x1 > x2 then y := x1

else y := x2 returns maximum

end
© Joachim Biskup, Technische Universität Dortmund Security in Computing Systems: Inference Control - 07. 04. 2011 308

Enforcing the intention of the static labels
• during the syntactical analysis:

– for all expressions and commands: a dynamic label dl (.) [numbered box]
– control invariant concerning the variables: dl (v) ⊆ sl (v)
– additional control conditions concerning the compositional structures

• control conditions:
– expressed in terms of the dynamic labels (circle)
– dynamically generated and verified

• initially (at leaves of syntax tree):
– dynamic label of an occurrence of a variable:

the respective static label (declared in the corresponding flow clause)
– dynamic label of an occurrence of a constant:

least label (empty set)

• afterwards (at inner nodes of syntax tree):
– define dynamic labels stepwise in a bottom-up fashion
– appropriately propagate the already available data up the syntax tree
– approximate the relevant information content
© Joachim Biskup, Technische Universität Dortmund Security in Computing Systems: Inference Control - 07. 04. 2011 309

Guidelines for verification rules
• functional expression:

approximate information flow by the
⊆-supremum of the labels of the arguments

• assignment, including a procedure call (like a multiple assignment):
require following control condition:
label of the receiving carrier dominates labels of the data to be transported

• guarded command:
require following control condition:
an implicit flow of the information
represented by the label of the guarding expression
is permitted for all assignments in the scope of the guard

• composed command (sequence or alternative):
refer to all constructs,
the assigned label is computed as the ⊆-infimum of the contributing labels

• reaction:
refuse execution after detecting a policy violation
© Joachim Biskup, Technische Universität Dortmund Security in Computing Systems: Inference Control - 07. 04. 2011 310

Defining dynamic labels and generating control conditions: example

if x1 > x2 then y := x1 else y := x2

if Boolean expression then command else command

 expression operator expression assignment assignment

 variable > variable variable := expression variable := expression

 x1 x2 y variable y variable

 x1 x2

 alternative conditional

 x1 , x21/2

 x11

 x11

 x22

 x22

 x11 x22 x1 , x2 3

 x1 , x2 3

 x14

 x14

 x14

 x1 , x2 5

 x1 , x2 5

 x26

 x26

 x26

 x1 , x2 3

 x14 x1 , x2 3 � x26 x1 , x2 5 �

 x1 , x2 5

 x1 , x2 3 x1 , x2 5

 x1 , x2 5 � x1 , x21/2 x1 , x2 3 ����

 x1 , x2 5 x1 , x2 3 ����
© Joachim Biskup, Technische Universität Dortmund Security in Computing Systems: Inference Control - 07. 04. 2011 311

Dynamic labels and control conditions

Expression/command
e / C

Assigned dynamic label
dl (e) / dl (C)

Generated
control condition

constant: e ≡ const ∅ , i.e., least element
variable: e ≡ v sl (v) , i.e., static label
functional expression:
e ≡ f (w1 , … , wn) dl (w1) ∪ ... ∪ dl (wn)

assignment:
C ≡ u := e dl (u) dl (e) ⊆ dl (C)
sequence:
C ≡ begin C1,…,Cm end dl (C1) ∩ ... ∩ dl (Cm)
conditional jump:
C ≡ if e then C1 dl (C1) dl (e) ⊆ dl (C)
alternative:
C ≡ if e then C1 else C2 dl (C1) ∩ dl (C2) dl (e) ⊆ dl (C)
repetition:
C ≡ while e do C1 dl (C1) dl (e) ⊆ dl (C)
procedure call:
C ≡ P (a1 , … , am , b1 , … , bn) dl (b1) ∩ ... ∩ dl (bn)

for xi ∈ sl (yj): dl (ai) ⊆ dl (bj)
for yi ∈ sl (yj): dl (bi) ⊆ dl (bj)
© Joachim Biskup, Technische Universität Dortmund Security in Computing Systems: Inference Control - 07. 04. 2011 312

Compiler-based verification: theorem

Let P be a procedure with a totally defined semantic function | P |.

If P satisfies all generated control conditions,
then the following property holds:

for any execution of the calling of P,
any realized information flow from a variable v to a variable w
is permitted according to the declaration of the static label of w, i.e.,
all other information gains are blocked.

• proof:
by a structural induction

• perspective:
great potential, also regarding further advanced programming constructs,
provided that
– all constructs are compositionally structured
– all constructs carefully avoid unforeseen side effects
– the approximations are acceptable (do not cause too many rejections)
© Joachim Biskup, Technische Universität Dortmund Security in Computing Systems: Inference Control - 07. 04. 2011 313

Resetting and downgrading dynamic labels

• whenever a program variable is assigned a new value,
the previously held value is supposed to be lost:

the dynamic label of the variable is redefined

• as a special case,
if the expression is just a constant,
then the new label is the least element of the lattice employed:

the dynamic label is completely reset

• whenever a structured command is properly left,
control is supposed to forget the value of guarding expression:

the dynamic label of the pertinent version of a control variable
is reset to its value before the structured command was entered

• unfortunately, there seem to be no further generally applicable techniques for
forgetting information
© Joachim Biskup, Technische Universität Dortmund Security in Computing Systems: Inference Control - 07. 04. 2011 314

Decentralized label model: main emphasis

provide each individual owner of some information
with a flexible and expressive means to specify the allowed receivers,
when the execution of a program is shared
© Joachim Biskup, Technische Universität Dortmund Security in Computing Systems: Inference Control - 07. 04. 2011 315

Decentralized label model: outline
• label: set of policies consisting of an owner and a list of readers:

{ (owner1: reader1,1, …) , … , (ownerk: reader k,1, …) }

• assigning a label to
a carrier (input channel, internal program variable, output channel, ...) or
some data (result of evaluation of an expression, ...):

the respective information content is permitted
to be transferred to a principal prin
iff
that principal is a grantee of all policies in the label, i.e.,
iff
prin ∈ {owner1 , reader1,1 , … } ∩ … ∩ {owner k , reader k,1 , …

• while information is being processed during the execution of a program,
the static label of the receiving carrier must always be
at least as restrictive as the dynamic label of the transferred data:

each grantee for the receiving carrier is a
grantee for the transferred information as well
© Joachim Biskup, Technische Universität Dortmund Security in Computing Systems: Inference Control - 07. 04. 2011 316

• while information is flowing,
the labels assigned to a piece of information might become more restrictive:

any deposit of a piece of information in a labeled carrier
possibly excludes principals from accessing this (copy of the) information

• to maintain the needed availability of information,
any of the owners can dynamically relax the exclusions by
somehow downgrading (declassifying) their part of the label:

by generating a copy of the information with a label
that is less restrictive with respect to this owner’s grantees

• an owner can achieve this goal only if
– he is a member of the specific authority set of principals

on behalf of which the program execution is performed, and
– the program contains a suitable command dedicated to such a relaxation

• when the dedicated command is executed,
a copy is generated with a new label
where this owner’s part is modified as described in the command
© Joachim Biskup, Technische Universität Dortmund Security in Computing Systems: Inference Control - 07. 04. 2011 317

Programming language Jif (Java Information Flow)

• implements features of the decentralized label model

• extends (a sublanguage of) Java

• provides inference control by static verification of labeled programs
as an extension to type checking:
– analyzing the main constructs of Java for all kinds of information flows
– verifying the pertinent control conditions

• demands some limited dynamic monitoring for downgrading

• dynamic monitoring also extends
to granting authorities along chains of procedure calls,
or dealing with additional runtime labels
© Joachim Biskup, Technische Universität Dortmund Security in Computing Systems: Inference Control - 07. 04. 2011 318

Inference control for parallel programs

• there are constructs for the parallel execution of several threads

• threads coordinate their actions and
synchronize at specific points of their execution and
thus introduce new kinds of implicit information flows

• suppose that one thread can only proceed
if another thread has completed some specific actions:

then the latter thread appears like a guard for the former one
© Joachim Biskup, Technische Universität Dortmund Security in Computing Systems: Inference Control - 07. 04. 2011 319

Inference control for parallel programs: example

x,y,z: boolean;
s: semaphore;

begin
z:= false;

cobegin
thread_1: read(x);

if x then signal(s)

||

thread_2: y := false;
wait(s);
y := true

coend;

z:= y
end
© Joachim Biskup, Technische Universität Dortmund Security in Computing Systems: Inference Control - 07. 04. 2011 320

Inference control for parallel programs: analysis of the example

• accessing only the program variable y ,
an observer of thread_2 can possibly infer the value of x read by thread_1:

since the assignment y:=true is guarded by the semaphore,
which in turn is in the scope of the guard x in the conditional,

observing the value true for y implies
that x has been given the value true as well

• accessing only the program variable z ,
an observer can possibly infer the value of x :

since thread_2 terminates only if thread_1 signals the semaphore
and
the synchronization occurs only if both threads terminate,

observing the value true for z implies
that x has been given the value true as well
© Joachim Biskup, Technische Universität Dortmund Security in Computing Systems: Inference Control - 07. 04. 2011 321

Inferences based on covert channels

• semantics of programs is defined in terms of an abstraction
designed to appropriately model the behavior of real computing devices

• inference control – as presented so far – refers to the pertinent abstraction

• accordingly, inference control correctly captures only those information flows
that can be described in terms of the abstraction,
but fails to deal with potential further flows over covert channels
© Joachim Biskup, Technische Universität Dortmund Security in Computing Systems: Inference Control - 07. 04. 2011 322

An never-ending list of possibilities

• timing channels exploit observable differences in behavior in real time

• energy consumption channels exploit the fact that
(hidden) different behaviors are related to
observable differences in energy consumption

• similarly, other physical effects
such as measured electromagnetic fields could be exploited

• storage channels exploit the status of shared storage containers

• exception-raising channels are based on observable parts of
the exception handling within some protocol,
where an exception is either triggered as
an observable event within a specific context or not

• ...
© Joachim Biskup, Technische Universität Dortmund Security in Computing Systems: Inference Control - 07. 04. 2011 323

Some countermeasures against detected covert channels

• “close a detected covert channel”
by explicitly taking care that originally distinguishable events
become indistinguishable for the suspected observer

• make the real execution time independent of some crucial input values,
by performing dummy operations if necessary

• decouple consumers of shared resources,
by assigning predetermined access times

• unify protocol executions,
by eliminating case-dependent exceptions
© Joachim Biskup, Technische Universität Dortmund Security in Computing Systems: Inference Control - 07. 04. 2011 324

Inference control for statistical information systems

• consider a specialized kind of information system and
the dedicated usage of such systems for statistical purposes

• use here a simply model of an information system:
– r an instance
– R (K , V) a relation scheme
– K attribute, declared as a key and
– V attribute, seen as some dependent property

whose values are real numbers

• interpret each tuple (k , v) in the instance r:
– key value k abstract identifier uniquely denoting an individual
– property value v some personal data, to be protected (kept secret)

• regulate access according to protection rules for personal data, e.g.:
seeing answers to statistical queries
(e.g., mean or median for some sample sets of individuals)
the statistician must not be able to infer
the property of any particular individual
© Joachim Biskup, Technische Universität Dortmund Security in Computing Systems: Inference Control - 07. 04. 2011 325

• resolve conflict of interests:
– statistician: availability of statistically aggregated data
– individuals: confidentiality of their personal data

• take care that, in general,
there are no simple means to resolve the conflict:
– system refuses to give answers to immediately harmful queries

(e.g., queries related to samples of a size too small for hiding):

statistician might design sufficiently long query sequences
to set up a solvable system of equations
whose solution reveals some particular personal data

– system explores lying
(e.g., replacing the correct values by (statistically) distorted values
adding some random “noise”)
such that anticipated statistical queries are not “essentially affected”:

statistician might design calculations for “noise removal”
© Joachim Biskup, Technische Universität Dortmund Security in Computing Systems: Inference Control - 07. 04. 2011 326

Summation as aggregate function: a functional model

• r (hidden) fixed instance
N known size of r
{ 1 , … , N } key values occurring in r

• q a query determining a sample set sample (r , q) of identifiers

• query language is closed under Boolean combinations, e.g.,
sample (r , q1 ∨ ¬q2) = sample (r , q1) ∪ ({ 1 , … , N } \ sample (r , q2))

• statistical aggregate function is summation:
on input of a query q,
the system returns the result

sum (r , q) = v
k sample r q(,)∈

k v(,) r∈

© Joachim Biskup, Technische Universität Dortmund Security in Computing Systems: Inference Control - 07. 04. 2011 327

Summation as aggregate function: a refusal approach

• t < N / 2 some suitable threshold parameter

• the system refuses the answer to a query q
iff
card sample (r , q) < t or card sample (r , q) > N – t

(the cardinality of the sample set is either too small or too large)
© Joachim Biskup, Technische Universität Dortmund Security in Computing Systems: Inference Control - 07. 04. 2011 328

Summation as aggregate function: a refusal situation

• supposed observation:
the system refuses a query q

• additional assumptions:

– threshold t is suitably small

– observer has some helpful a priori knowledge

– observer can select a query qtracker such that
2·t ≤ card sample (r , qtracker) ≤ N – 2·t
© Joachim Biskup, Technische Universität Dortmund Security in Computing Systems: Inference Control - 07. 04. 2011 329

Summation as aggregate function: a circumvention procedure

– observer: submits queries qtracker and ¬qtracker
– system: answers correctly

– observer: submits the queries q1 ≡ q ∨ qtracker and q2 ≡ q ∨ ¬qtracker

– system: reacts
– observer:

case 1, system correctly returns both answers [sample set too small]:
derives the refused result sum (r , q) by solving the linear equation
sum (r , q1) + sum (r , q2) = sum (r , qtracker) + sum (r , ¬qtracker) + sum (r , q)

case 2, system refuses the answer to q1 (similarly for q2):
[sample set for q too large; thus sample set for ¬q too small:
thus case 1 holds for ¬q]

applies circumvention for ¬q and
infers sum (r , ¬q);

derives the refused answer sum (r , q) by solving the linear equation
sum (r , q) + sum (r , ¬q) = sum (r , qtracker) + sum (r , ¬qtracker)
© Joachim Biskup, Technische Universität Dortmund Security in Computing Systems: Inference Control - 07. 04. 2011 330

© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems 07. 04. 2011 331

Part III

Security Architecture

9 Layered Design Including Certificates and Credentials
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Layered Design Including Certificates and Credentials - 07. 04. 2011 332

Trust and trustworthiness

• items serving to found trustworthiness of a target:
– a security policy that meets explicitly claimed interests
– an appropriately designed and reliably implemented functionality
– verified knowledge
– justified experience
– compliance with social and legal rules
– effective assurances

• an individual (community) may decide to put trust in such a target:
the decider’s own behavior
is firmly grounded on the expectation
that the target’s current or future actual behavior
– often fully or at least partly hidden and thus only partially observable –
will match the specified or promised behavior

• trust in the technical target is inseparably combined
with trust in the agents controlling that target
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Layered Design Including Certificates and Credentials - 07. 04. 2011 333

Some aspects of an informational concept of trust

 human

past

present

future

 technical target
 control decides on trust in

 actual behavior

firmly expects

inspects tr
ustw

orthiness

 individual

security
policy functionality

knowledge
experience
social/legal rules
assurance
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Layered Design Including Certificates and Credentials - 07. 04. 2011 334

Establishing reasonable trust reductions

• identify small parts of a computing system,
if possible, preferably under your own and direct control,
as indispensable targets of trust

• argue that the wanted behavior of the whole system
is a consequence of justified trust
in only these small components
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Layered Design Including Certificates and Credentials - 07. 04. 2011 335

Trust reductions for control and monitoring

• starting point:
an overall computing system consisting of
clients, servers, networks and many other components

• reduction chain:
– a distributed application subsystem
– the underlying operating system installations
– the operating system kernels
– the “reference monitors” that implement access control within a kernel

• extended reduction to hardware support:
– “trusted platform modules”

(enforcing authenticity and integrity)

– personal computing devices
(storing and processing cryptographic secret keys)
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Layered Design Including Certificates and Credentials - 07. 04. 2011 336

Trust reductions for cryptography

• starting point:
an overall computing system consisting of
clients, servers, networks and many other components

• reduction chain:
– cryptographic mechanisms
– cryptographic key generation and distribution
– storing and processing secret keys
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Layered Design Including Certificates and Credentials - 07. 04. 2011 337

Layered design: a fictitious architecture

integrity and
authenticity
basis

processor memoryexternal

microkernel

“user” (application/ process
server

file memory
server

external
server

security
server

application

middleware

local
operating
system

hardware

application security policy application functionality

message interception and access decision

 federated object system security
attributes

control
attributes

end-to-end
requirements

network

application:
 permissions
 prohibitions

session:
 fault-tolerance
 authenticity
 access rights
 non-repudiation
 accountability
 confidentiality

transport:

 network:

datalink:

 packets

 routing

 frames

physical:
 bits

middleware)
processes

(object)
server

devices
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Layered Design Including Certificates and Credentials - 07. 04. 2011 338

Integrity and authenticity basis (trusted platform module)

 measurement
 process for
self-description

cryptographic

 control
 operations blocks

storage
root key

temporary

for secret
key slots

keys

ownership request
with authentication
secret to be shared

 control requests with
owner authentication secret

measurement
 requests

certification of
attestation
identity keys

platform

registers
configuration

for hash values

 endorsement key

 attestation
 identity keys

 owner
authentication secret

 references of tree
of protected objects
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Layered Design Including Certificates and Credentials - 07. 04. 2011 339

Integrity and authenticity basis: main functions of an instance
• enables the attached system to generate and store

a tamper-resistant self-description regarding its actual configuration state:
– represented by a sequence of chained hash values
– iteratively computed by a measurement process
– stored in protected platform configuration registers
– comparable with a previous or a normative state

• encapsulates and protects implementations of basic cryptographic blocks,
including the key generation, storage and employment:
– symmetric encryption and decryption for internal data
– asymmetric decryption for external messages
– asymmetric authentication (digital signatures) for external messages
– anonymization by using public (authentication) keys as pseudonyms
– random sequences for key generation and nonces
– one-way hash functions for generating the self-descriptions as hash values
– inspection of timestamps by a built-in timer

• both globally identifies and personalizes the attached system:
– physically implanted, worldwide unique asymmetric endorsement key
– inserted authentication secret shared with the owner
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Layered Design Including Certificates and Credentials - 07. 04. 2011 340

Secure booting and add-on loading: important assumptions

• the overall system, seen as a set of programs, is organized into
a hierarchical component structure without loops

• there is one initial component that has authenticity and integrity,
a bootstrapping program,
evaluated at manufacturing time to be trustworthy,
and securely implanted into the hardware,
employing a tamper-resistant read-only memory

• each noninitial component (program) originates from a responsible source,
which can be verified in a proof of authenticity;
such a proof is enabled by a certificate referring to the component
and digitally signed by the pertinent source
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Layered Design Including Certificates and Credentials - 07. 04. 2011 341

• each noninitial component has a well-documented state that can be measured;
such a state is represented as a hash value;
the expected state, as specified by the source,
is documented in the certificate for the component

• each component, or some dedicated mechanism acting on behalf of it,
can perform an authenticity and integrity check of another component,
by measuring the actual state of the other component
and comparing the measured value with the expected value

• the hardware parts involved are authentic and possess integrity, too,
which is ensured by additional mechanisms or supposed by assigning trust

• the certificates for the components are authentic and possess integrity
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Layered Design Including Certificates and Credentials - 07. 04. 2011 342

Basic booting and loading procedure

load initial component;

repeat
[invariant: all components loaded so far are authentic and possess integrity]

after having been completely loaded, a component
– first checks a successor component for authenticity and integrity
– then, depending on the returned result,

either lets the whole procedure fail
or
loads the checked successor component

until all components are loaded
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Layered Design Including Certificates and Credentials - 07. 04. 2011 343

Some extensions and variants

• recovery from failures
the procedure automatically searches
for an uncorrupted copy of the expected component

• chaining
hash values are chained, superimposing the next value on the previous value,
for producing a hash value of a sequence of components

• data with “integrity semantics”
the procedure also inspect further data relevant to the overall integrity,
such as separately stored installation parameters

• integrity measurement
the procedure recomputes the hash value of the component actually loaded and
stores this value into dedicated storage for reporting

• reporting
the recomputed and stored hash values are reported
to external participants as the current self-description
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Layered Design Including Certificates and Credentials - 07. 04. 2011 344

Middleware: functional and security services

• managing the local fractions of the static and dynamic aspects of the system,
including local control and monitoring

• enabling interoperability across the participating sites, and
also contributing to global control and monitoring
by regarding incoming and outgoing messages as access requests

• establishing virtual end-to-end connections to remote sites
(the session layer according to the ISO/OSI model),
dealing in particular with
– fault tolerance
– authenticity
– access rights
– non-repudiation
– accountability
– confidentiality
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Layered Design Including Certificates and Credentials - 07. 04. 2011 345

Informational infrastructure and organizational environment

• with regard to sites (i.e., their extended operating systems),
enabling mutual authentication
using certificates for the public parts of asymmetric key pairs,
and generating and distributing symmetric session keys

• with regard to “user processes”,
enabling autonomous tunneling:
wrapping data by encryption and authentication
under the mastership of the endusers
(as proposed for Virtual Private Networks, VPNs)

• enabling anonymity,
by employing (the public parts of) asymmetric key pairs as pseudonyms,
and by dedicated MIX servers with onion routing
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Layered Design Including Certificates and Credentials - 07. 04. 2011 346

Middleware: support by underlying layers and global infrastructure

middleware software

operating system servers

microkernel

traditional hardware parts —— IAB/PCD —— next router connection

third parties for key and property certification (and hardware certification)

middleware software
for end-to-end connectionsfor local activities

 cryptographic
 blocks

network with

middleware

local
operating
system

local
hardware

network

environment

 servers etc.
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Layered Design Including Certificates and Credentials - 07. 04. 2011 347

Middleware instantiation of control and monitoring

• for a distributed computing system, the isolation of participating subjects
and controlled objects is split into two parts

• at a subject’s site, a subject, acting as a client,
is confined concerning sending (messages containing) access requests

• at an object’s site, a target object, acting as a server,
is shielded concerning receiving such (messages containing) access requests
and then actually interpreting them

• the fundamental permissions (and prohibitions) relationships
between subjects and objects are represented by two complementary views

• a ternary discretionary granted relationship (s , o , m) is split into
– a privilege (or capability) [o , m] for the subject s
– an entry [s , m] for the access control list of the object o

• a subject can be assigned security attributes (e.g., a privilege [o , m]);
an object can be assigned control attributes (e.g., an entry [s , m])

• similarly, clearances of subjects and classifications of objects are assigned
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Layered Design Including Certificates and Credentials - 07. 04. 2011 348

ER models of fundamental relationship classes for permissions

(controlled)
 object

 (registered)
 subject

(operational)
 mode

granted
 security level

classified

 cleared

a) centralized view

(controlled)
 object

 (registered)
 subject

privilege

assigned

assigned control attribute

ISA

ISA

(operational)
 mode

 clearance

classification

b) distributed view

entry of
access control list

entry of
capability list

security attribute

 attribute

 attribute
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Layered Design Including Certificates and Credentials - 07. 04. 2011 349

Fundamental relationship classes for permissions: distributed view

(controlled)
 object

 (registered)
 subject

privilege

assigned

assigned control attribute

ISA

ISA

(operational)
 mode

 clearance

classification

entry of
access control list

entry of
capability list

security attribute

 attribute

 attribute
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Layered Design Including Certificates and Credentials - 07. 04. 2011 350

Programming languages: enforcing compile time features

• object-orientation contributes a specific kind of encapsulation:
an instance object is accessible only by the methods
declared in the pertinent class

• explicit commands for the lifespan of instance objects assist in
keeping track of the current object population,
for example by generating (new) an instance object with explicit parameters
and releasing (delete) it after finishing its usage,
possibly together with erasing the previously allocated memory

• modularization of programs,
together with strong visibility (scope) rules for declarations,
crucially supports confinement

• strong typing of objects and designators,
including typed references (disabling “pointer arithmetic”)
together with disciplined type embeddings (coercions),
prevent unintended usage
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Layered Design Including Certificates and Credentials - 07. 04. 2011 351

• explicit interfaces of modules, procedures and other fragments,
requiring full parameter passing and prohibiting global variables,
shared memory or a related implicit supply of resources,
avoid unexpected side effects

• explicit exception handling
forces all relevant cases to be handled appropriately

• for parallel computing,
(full) interleaving semantics and explicit synchronization
help to make parallel executions understandable and verifiable

• for supporting inference control,
built-in declarations of permitted information flows are helpful

• if self-modification of programs is offered,
it should be used only carefully, where favorable for strong reasons
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Layered Design Including Certificates and Credentials - 07. 04. 2011 352

Programming languages: controlling runtime features

• runtime checks for array bounds

• runtime checks for types,
in particular for the proper actual parameters of procedure calls

• actual enforcement of atomicity (no intervening operations),
if supplied by the programming language

• dynamic monitoring of compliance with permitted information flows

• space allocation in virtual memory only:
physical-memory accesses must be mediated
by the (micro)kernel of the operating system

• allocation of carefully separated memory spaces
(with dedicated granting of access rights) for
– the program (only execute rights)
– its own static data (if possible, only read rights)
– the runtime stack and the heap
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Layered Design Including Certificates and Credentials - 07. 04. 2011 353

Software engineering: helpful recommendations

• explicitly guarding external input values and output values

• explicitly guarding values passed
for the expected range, well-definedness or related properties

• elaborating a complete case distinction for guarded commands

• carefully considering visibility and naming conventions

• handling error conditions wherever appropriate

• restoring a safe execution state and immediately terminating
after a security-critical failure has been detected

• explicitly stating preconditions, invariants and postconditions

• verifying the implementation with respect to a specification

• inspecting executable code as well, in particular,
capturing all interleavings for parallel constructs

• certifying and digitally signing executable code,
possibly providing a hash value for measurements

• statically verifying the compliance with declarations
of permitted information flows
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Layered Design Including Certificates and Credentials - 07. 04. 2011 354

Distributed systems: real world and virtual view

• (real) world
a specific entity cannot directly see other entities:
– other entities are hidden behind the interface to the communication lines

– the specific entity can only send/receive messages to/from other entities

• virtual view
that specific entity can produce a view on the basis of messages received:
– security policies and permission decisions are grounded

solely on the locally available visible view of the global (real) world

– another entity may possess various properties
which might be relevant to security policies and permission decisions

– in most cases, such properties are assigned to an entity by a further entity

– in general, neither the other entities themselves nor their properties
are visible to the specific entity

– we need a notifiable representation of such circumstances

– such a representation can be based on a public key infrastructure
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Layered Design Including Certificates and Credentials - 07. 04. 2011 355

Hidden (real) world and a visible virtual view

ISA

content property

responsible
 agent

 agent’s
 signature

 private key
 for signing

 public key

 public key
 for encryption

 private key
 for decryption

matches

 means

captures

 subject

 type

validity

ISA

principal

represents

 for verification

matches

 certificate/credential

 entity

individual computer …

 holds

property assignment

as
si

gn
er

ho
ld

er

 visible virtual view of hidden real world
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Layered Design Including Certificates and Credentials - 07. 04. 2011 356

Certificates/credentials and property assignment

content property

responsible
 agent

 agent’s
 signature

 means

captures

 subject

 type

validity

ISA

principal

 certificate/credential

 entity

property assignment

as
si

gn
er

ho
ld

er
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Layered Design Including Certificates and Credentials - 07. 04. 2011 357

Principals and entities

ISA

responsible
 agent

 agent’s
 signature

 private key
 for signing

 public key

 public key
 for encryption

 private key
 for decryption

matches

 subject

ISA

principal

represents

 for verification

matches

 entity

individual computer …

 holds

as
si

gn
er

ho
ld

er
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Layered Design Including Certificates and Credentials - 07. 04. 2011 358

Digital document (certificate/credential): important fields

• subject
contains the principal that visibly represents the entity under consideration

• content
textually describes the assigned property

• responsible agent
contains the principal that visibly represents the entity
that is responsible for the property assignment and
has generated and digitally signed the document

• signature
contains a digital signature for the document: valid iff
it can be verified with the responsible agent’s public key for verification

• type
indicates the meaning/provides hints on how to process the document

• validity
limits the property assignment to a certain time period or
restricts the usability of the document otherwise
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Layered Design Including Certificates and Credentials - 07. 04. 2011 359

Characterizing properties: free and bound properties

• free property (personal data, technical detail, skill, ability, ...)
expresses some feature of an entity by itself:

– other entities may base their security policies and permission decisions
on shown free properties

– but, in general, they will not have expressed
any obligation as to whether to or how to do so

• bound property (a ticket, a capability, a role, ...)
expresses some relationship between a client entity and
another entity which might act as a server:

– a server has declared in advance that it will recognize
a shown bound property as a permission to use some of its services

– possessing a bound property entails a promise
that a specific service will be obtained
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Layered Design Including Certificates and Credentials - 07. 04. 2011 360

Characterizing properties

property

characterizing administrative

 free property bound property

 identity personal attribute capability
 bound

 administrative_for administered_by

ISA

 property

ISA

 property

ISA

ISA

admin

authorization attribute

ISA

group membership
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Layered Design Including Certificates and Credentials - 07. 04. 2011 361

Administrative properties

property

characterizing administrative

 administration administration

 trustee/owner

 dependant:
licensee/delegatee

 distributor:
 issuer/grantor

intermediate:
licensor/delegator

 dependant_oforigin_for

 administrative_for administered_by

 origin:

ISA

 property

 function status

ISA

 property

ISA

ISA

 represented by
origin�dependant dags

admin

depend
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Layered Design Including Certificates and Credentials - 07. 04. 2011 362

Relationships and trust evaluations

• the relationships of presumably captured by are ideal claims
that do not necessarily hold

• a specific entity has to evaluate its individual trust about such an ideal claim:
– did the supposed assigning entity follow good practice

in generating and signing the document?

– do the principals (keys) appearing in the document
represent the supposed entities?

• the very purpose of the administrative properties is just
to provide a reliable foundation for such trust evaluations
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Layered Design Including Certificates and Credentials - 07. 04. 2011 363

Evaluating trust: basic situation

• ideally,
permission decisions are intended to be based on
characterizing properties of entities appearing as clients

• actually,
permission decisions must be based on available, visible digital documents,
the contents of which mean the respective characterizing properties

• consider any such document as a main document
from the point of view of an entity entitled to take a permission decision:
– is the literal meaning of the content indeed valid in the (real) world?
– does the digital document capture a “real” property assignment?

• these questions are answered using further supporting documents,
the contents of which mean appropriate administrative properties

• for each of these supporting documents, the same questions arise
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Layered Design Including Certificates and Credentials - 07. 04. 2011 364

Evaluating trust recursively

• the “main document” concerning a characterizing property
is supported by a first level of “supporting documents”
concerning administrative properties for that characterizing property

• for each “supporting document” at the i-th level,
one of the following cases holds:

– either it is supported by further “supporting documents” at the next level,
expressing that the responsible agent of the former document
represents a dependant of the responsible agents of the latter documents

– or it expresses that its responsible agent represents an origin
for the characterizing property administered,
expressed by the content of the “main document”

• to be helpful, the “main document” and its “supporting documents”
should form a directed acyclic graph with respect to support

• as a special case, we may obtain just a chain
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Layered Design Including Certificates and Credentials - 07. 04. 2011 365

Model of trusted authorities and licensing: an instance

 licensee or

 licensee /

issue

 holder of verifier of

challenge for holder´s key

response

verification loop to trusted authority

 trustee or

issue

issue

trusted (super)authority

show

as licensor

 issuer free property
free property

challenge for holder´s key

response

 license certificate

license certificate

free-property
certificate

free properties
with licenses

 licensor
 (sub)authority/
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Layered Design Including Certificates and Credentials - 07. 04. 2011 366

Certificate types in the model of trusted authorities and licensing

Certificate type Content

identity certificate (X.509 term) identifying name

attribute certificate (X.509 term) personal attribute

accreditation certificate (mediation term) personal attribute

private certificate (Brands’ term) personal attribute

trustee self-certificate
(X.509 term:
root certificate)

administration status: trustee

license certificate
(X.509 term:
certification authority certificate)

administration function: licensor
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Layered Design Including Certificates and Credentials - 07. 04. 2011 367

Model of owners and delegation: an instance

grant bound-property credential

challenge for grantee´s key

response

 response

request access and

 owner as
 delegator and

challenge for

grant

 delegator/

 grantee of
 bound property

verifier of
 bound property

delegatee

grant

 grantor of
 bound property/

 delegatee (e.g., capability)

show bound properties
and delegations

grantee´s key

delegation credential

delegation credential
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Layered Design Including Certificates and Credentials - 07. 04. 2011 368

Credential types in the model of owners and delegation

Credential type Content

capability credential
(SPKI term: authorization certificate)

capability

bound-authorization-attribute credential bound-authorization attribute

delegation credential
(SPKI implementation: true delegation bit)

administration status: delegatee

.
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Layered Design Including Certificates and Credentials - 07. 04. 2011 369

Converting free properties into bound properties: an instance

grant bound-property credential

 response

request access and

 owner as
 delegator and

challenge for grantee´s key

grant

 delegator/

 grantee of

verifier of
 bound property

delegatee

grant

 grantor of
 bound property/

 delegatee (e.g., capability)

show bound properties
and delegations

delegation credential

delegation credential

 licensee /

issue

challenge for holder´s key

response

issue

 show free properties issuer

challenge for holder´s key

response

license certificate

 with licenses free-property certificate

 licensee or

 trustee or

issue

trusted (super)authority

as licensor

license certificate

verification loop to trusted authority

 licensor
 (sub)authority/

 verifier of
free property

 holder of
free property

 bound property
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Layered Design Including Certificates and Credentials - 07. 04. 2011 370

Firewalls

• computing systems in the large are composed from
partly federated and partly nested structures built from
– individual subjects
– shared client computers and servers
– local area networks
– wide area networks

• the techniques of control and monitoring are applicable
at the borderline of any substructure aiming at
– confining the inner side with respect to sending messages to the outside,

thereby restricting
– the transfer of information to the outside
– the requests to foreign entities

– shielding the inner side with respect to receiving messages,
thereby restricting
– interference by foreign entities
– incoming requests
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Layered Design Including Certificates and Credentials - 07. 04. 2011 371

Firewalls serving as LAN borderline and WAN server checkpoints

a subject

a subject

a client

a server
…

firewall as
LAN borderline checkpoint

confining w.r.t.
sent messages

shielding w.r.t.
received messages

a local area network

firewall as
LAN borderline checkpoint

confining w.r.t.
sent messages

shielding w.r.t.
received messages

a local area network

firewall as
WAN server checkpoint:

confining

shieldingconfining

shielding

wide area network
customer protection and self-protection
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Layered Design Including Certificates and Credentials - 07. 04. 2011 372

Checkpoints handling packets according to ISO/OSI model

a firewall intercepts the packets passing the checkpoint
and examines the following layers, inspecting increasingly complex data:

• network to transport layer: only the packet headers

• transport to session layer: sequences of packet headers
 (e.g., compliance with session protocols)

• session to application layer: additionally, the packet contents
(e.g., intended semantics of encoded messages)

© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Layered Design Including Certificates and Credentials - 07. 04. 2011 373

Packet filter

• placed in a layer corresponding to the network and transport layers

• inspects (statelessly) only the header of each single intercepted packet

• based on a policy as a linear list of rules:
– if event then action form of the event–action rules
– event expressed in terms of values of header fields
– action demands a forwarding, a blocking,

some other simple option

• scans, for each packet considered,
the linear list from the beginning until the first satisfied event is found;
then this rule “fires” by performing the indicated action

• requires a careful arrangement of the rule ordering,
to take care of the linear first-fit search
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Layered Design Including Certificates and Credentials - 07. 04. 2011 374

Proxy
• placed in a layer corresponding to the session and application layers

• simulates the complete services of a higher-layer communication protocol

• deals (statefully), depending on the simulated protocol,
with both the headers and the contents of sequences of packets

• divided into two strictly separated parts,
each of which deals with the functionality of one side of the borderline

• operates an inner part (for LAN: confining the subjects inside):
– inspects the outgoing packet stream (from inside the LAN)
– if permitted, and possibly modified,

forwards the packets to the outer part

• operates an outer part (for LAN: supporting security interests of partners):
– inspects the stream received from inner part
– if permitted, and possibly modified,

forwards the packets to the partners outside

• works correspondingly for incoming packet stream
from outside (into the LAN)
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Layered Design Including Certificates and Credentials - 07. 04. 2011 375

Generic example of a LAN borderline firewall

packet
 filter

 packet
 filter

 proxy1 proxyk …

dedicated proxy hardware server1 serverl

 …

 local area network

 global area network

 auxiliary network
(demilitarized zone)
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Layered Design Including Certificates and Credentials - 07. 04. 2011 376

10 Intrusion Detection and Reaction
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Intrusion Detection and Reaction - 07. 04. 2011 377

Ideals of control and monitoring

• a security policy specifies exactly
the wanted permissions and prohibitions

• administrators correctly and completely declare the policy

• subsequently, the policy is fully represented within the computing system

• the control and monitoring component can never be bypassed

• this component enforces the policy without any exception

• as a result, all participants are expected
to be confined to employing the computing system
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Intrusion Detection and Reaction - 07. 04. 2011 378

Shortcomings in reality

• the security policy is left imprecise or incomplete

• the declaration language is not expressive enough

• the internal representation contains flaws

• the enforcement does not cover all access requests

• administrators or users disable some control facilities for efficiency reasons

• intruders find a way to circumvent the control and monitoring component
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Intrusion Detection and Reaction - 07. 04. 2011 379

Some intricate difficulties

• in general, as indicated by undecidability results,
control privileges and information flow requirements
are computationally difficult to manage

• for the sake of efficiency, information flow requirements can
only be roughly approximated by access rights

• a user might need some set of specific permissions for his obligations,
but not all possible combinations of the permissions are seen to be acceptable

• a user might exercise his permissions excessively and
thereby exhaust the resources of the computing system

• a user might exploit hidden operational options
that have never been considered for acceptable usage
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Intrusion Detection and Reaction - 07. 04. 2011 380

Additional protection mechanisms

• the generic model of local control and monitoring provides a useful basis

• access requests are intercepted and thus can be documented persistently
in the knowledge base on the usage history: extend to

logging further useful data about computing activities,
including data that is only indirectly related to a malicious user’s requests

• individual access requests are decided: extend to
– auditing and analyzing request sequences/other recorded activities;
– searching for intrusions (patterns of unexpected or unwanted behavior)
– reacting as far as is possible or convenient

• clearly, such additional secondary mechanisms
cannot achieve perfection either;
they should be designed to work complementarily,
aiming at narrowing the gap left by the primary mechanisms
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Intrusion Detection and Reaction - 07. 04. 2011 381

Classifying behaviors or states

• possible behaviors:
captures all operational options of the computing system considered

• explicitly permitted behaviors:
enforced according to privileges granted

• (semantically) acceptable behaviors:
described by the “intended usage” of the system/security defense policy

• violating behaviors:
described by the “unwanted usage” of the system/security defense policy

possible

explicitly permitted

acceptable violating
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Intrusion Detection and Reaction - 07. 04. 2011 382

Classification and monitoring task

• checking
whether behaviors are remaining within the “acceptable behaviors” or
whether they are going to approach a “violating behavior”

• separating “acceptable” behaviors from “violating” ones

• keeping track of histories

• exploring whether an inspected state transition could possibly be
a dangerous step towards reaching a “violating behavior”

• investigating whether a “violating behavior” has already been reached
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Intrusion Detection and Reaction - 07. 04. 2011 383

A simple model

 monitored system
 (or a component)

 system administration

 event generation

 analysis

 online offline

 audit database
 instance

 audit
 schema

intrusion
 defense
 policy

 reaction
templates

 reaction

 (local) cooperation (local)
response reporting

in
st

al
la

ti
on

 a
n

d
 c

on
fi

gu
ra

ti
on

(local) security officer
cooperating remote security agents

(local) audit data

 remote data

alarms
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Intrusion Detection and Reaction - 07. 04. 2011 384

Basic components
• event generation

appropriately implanted in the monitored computing system,
delivers local audit data to the monitoring system

• audit database instance
constitutes the intermediately stored audit data gathered for offline analysis

• analysis
– directly inspects the currently delivered audit data in an online mode, or
– examines a larger amount of audit data offline
– raises alarms if suspicious behaviors or states are detected

• reaction
deals with alarms in basically three ways:
– purely algorithmically generating a local response

that intervenes in the monitored system
– local reporting to a human security officer
– sending appropriate messages to cooperating remote security agents
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Intrusion Detection and Reaction - 07. 04. 2011 385

Learning, operation and measurement for a policy

 monitored system

 analysis intrusion
 defense
 policy

 security officer

 audit data

alarms

 as
classification task

measurement

learning training data

 repository of
 “experience data”
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Intrusion Detection and Reaction - 07. 04. 2011 386

Effectiveness of an analysis component: four possibilities

• component raises no alarm (it classifies the behavior as “acceptable”)
and
the “real status” of the behavior is indeed acceptable

• component raises an alarm (it classifies the behavior as “violating”)
and
the “real status” of the behavior is indeed violating

• component raises an alarm (it classifies the behavior as “violating”),
but
the “real status” of the behavior is actually acceptable:
– component raises a false alarm
– classification result is said to be a false positive

• component raises no alarm (it classifies the behavior as “acceptable”),
but
the “real status” of the behavior is actually violating:
– component fails to generate a correct alarm
– classification result is said to be a false negative
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Intrusion Detection and Reaction - 07. 04. 2011 387

Signature-based approach: outline
• contributes to representing violating behaviors

and constructing a corresponding recognizer

• long-term observation and evaluation of violating behaviors
have led to a large collection of samples of known attacks

• a signature is a formal representation of a known attack pattern,
preferably including its already seen or merely anticipated variations,
in terms of generic events

• instances of events are recognized by the event generation and
reported as audit data
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Intrusion Detection and Reaction - 07. 04. 2011 388

Signature-based approach: overly simplified case
• a signature σ is given as a finite time-ordered sequence of abstract events,

taken from a finite event space Σ: σ ∈ Σ∗

• the event space Σ is determined by the layer of the event generation, e.g.:
– operating system: system calls to the kernel
– network system: packet moves
– application, system: method invocations

• depending on the actual location, intrusion detection systems
are sometimes classified as host-based or network-based

• inputs of analysis component:

– σ ∈ Σ∗: fully known signature, the intrusion defense policy

– β ∈ Σ∞: an eventwise supplied behavior, (ongoing) recorded activities
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Intrusion Detection and Reaction - 07. 04. 2011 389

• basic classification task:
determine whether and where
“the signature σ compactly occurs in the behavior β ”, i.e.,

find all position sequences for β that give the signature σ
such that each prefix cannot be completed earlier
(or some similar property holds)

• analysis component must provide a corresponding recognizer,
which should raise an alarm for each such compact occurrence of σ in β

• abstract example:

signature: σ = x y z

supplied behavior:

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 ...

β = a a b a x c x a y b z a c b a x a a b y a a a a b b b a b z ...

compact occurrence at
position sequence 5,9,11

compact occurrence at

position sequence 16,20,30

compact occurrence at position sequence 7,9,11
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Intrusion Detection and Reaction - 07. 04. 2011 390

Analysis component: some more sophisticated features

• a compact occurrence of the signature σ can be spread widely:
while checking whether “σ compactly occurs in β ”,

the recognizer must memorize and handle
each detected occurrence of a prefix of σ in β

until the prefix has been completed

• one would like to “forget” non-completed prefixes after a while:
– declare explicit escape conditions

– employ a sliding window of some appropriate length l for the behavior β

• a parameterized event e[… , Ai : vi , …] might consist of
– an event type e
– a list of specific attribute–value pairs Ai : vi

• a parameterized signature would be a sequence of parameterized events,
where some or all values might be replaced by variables:
while searching for occurrences of the signature in the supplied behavior,

the values in the signature have to match the audited values,
whereas the variables in the signature are bound to audited values
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Intrusion Detection and Reaction - 07. 04. 2011 391

• thus each detected occurrence of a prefix of the parameterized signature
is linked to a binding list for variables:

once a variable is bound for a detected prefix,
the binding also applies to the tail of the signature

• the recognizer must maintain a partially instantiated signature instance
for each detected occurrence of a prefix, e.g.:

signature: x[ID:v] y[ID:v] z[AR:loc]

supplied behavior:

x[ID:7]... x[ID:8]...y[ID:7]...z[AR:loc]...y[ID:8]...z[LOC:net]...z[AR:loc]

occurrence with binding list v := 7

occurrence with binding list v := 8
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Intrusion Detection and Reaction - 07. 04. 2011 392

• to capture variations of an attack,
several closely related event sequences might be represented concisely
as a directed acyclic graph (dag) built from events:

the recognizer has to search for a compact occurrence
for any path from some start event to some end event
within the supplied behavior

• “violating” behavior is described by hundreds of known attacks,
and thus by a large number of signatures:

the analysis component has to handle them in parallel
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Intrusion Detection and Reaction - 07. 04. 2011 393

Signature-based approach: basic steps:

• learning phase: the administrator, assisted by a tool
– models the known attacks by an intrusion defense policy,

specified as a set of parameterized dag-like signatures
– transforms the specified policy into an integrated collection of recognizers

• operation phase: recognizers
– instantiate the given signatures

according to the prefixes and their bindings for variables,
as detected in the supplied behavior within a sliding window

– raise an alarm whenever an instantiation has been completed

• measurement phase: the administrator
– revises or refines the policy
– enlarging the length of the sliding window
– optimizes the recognizers

(diminishing/adapting dynamically the length of the sliding window, ...)
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Intrusion Detection and Reaction - 07. 04. 2011 394

Anomaly-based approach: outline

• contributes to representing acceptable behaviors and
constructing a corresponding recognizer for non-acceptable behaviors

• with some precautions, a large collection N ⊂ Σ∗of actual behaviors, i.e.,
sufficiently long event sequences generated as audit data in the past,
is supposed to constitute a representative sample of “acceptable” behaviors

• a recognizer is constructed, trained to
– let each collected behavior σ ∈ N pass

(seen as supposedly normal)

– let sufficiently similar behaviors pass as well
(still seen as supposedly normal)

– raise an alarm for all other behaviors
(seen as anomalous)
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Intrusion Detection and Reaction - 07. 04. 2011 395

Anomaly-based approach: basic steps
• learning phase: the administrator

– gathers a sample set N of supposedly normal behaviors
– selects a length l of a sliding window on the behaviors
– employs a suitable tool for machine learning

to construct an efficient finite-automaton-like recognizer
for anomalous parts of behaviors

• operation phase: the recognizer
– searches for anomalous parts in the supplied behavior

within the sliding window
– raises an alarm whenever such a part has been detected

• measurement phase: the administrator
– adapts the sample set N or enlarges the length of the sliding window
– reconstructs the recognizer
– optimizes or even smooths the recognizer

(letting additional behaviors pass,
diminishing the length of the sliding window, ...)
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Intrusion Detection and Reaction - 07. 04. 2011 396

Cooperation
• normalization

maps local alarms to a common format with common semantics

• fusion
discards obvious duplicate alarms generated by different sites

• verification
identifies irrelevant alarms and false positive alarms

• thread reconstruction
gathers together alarms describing attacks with same origin and/or target

• session reconstruction
correlates alarms that describe events on the network and in a host

• focus recognition
integrates alarms describing attacks with many targets and/or sources

• multistep correlation
combines alarms suspected to constitute a complex attack

• impact analysis and alarm prioritization
determine the suspected effect of an attack to prioritize the respective alarm
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Intrusion Detection and Reaction - 07. 04. 2011 397

© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems 07. 04. 2011 398

Part IV

Cryptography

11 Fundamentals of Cryptography
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Fundamentals of Cryptography - 07. 04. 2011 399

Cryptography

cryptographic

 secrets

conceptually: (cryptographic) conceptually: (cryptographic)

 secrets

 request

secret (key)

result:

controlled objects

(mediated) request

�raw� result

participating subjects
� generate, store and employ secrets
� exploit physical isolation

...
...

...
...

...

 (indicated by the gray areas)

 mechanisms

 only meaningful for
 matching secret (key)

cryptographic
 mechanisms

 control component knowledge base on permissions
(and prohibitions)

...
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Fundamentals of Cryptography - 07. 04. 2011 400

Cryptography

• is usually closely intertwined with control and monitoring

• binds a successful and meaningful execution of an operation or interaction
to providing a suitable secret key as input

• achieves virtual isolation between participants:
participants that share a cryptographic key are
virtually isolated from those that do not

• enables cooperation in the presence of threats based on limited trust:
participants that autonomously generate and secretly keep appropriate
cryptographic keys can enforce their security interests by themselves
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Fundamentals of Cryptography - 07. 04. 2011 401

Basic cryptographic blocks

• encryption

• authentication

• anonymization

• randomness and pseudorandomness

• one-way hash functions

• timestamps
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Fundamentals of Cryptography - 07. 04. 2011 402

Encryption: functionality

• the sender S transforms the original bit string m to be transmitted
into another bit string m°
such that only the designated receiver R (and possibly the sender)
is enabled to recover the original bit string

• (probabilistic) key generation algorithm Gen (one parameter and one result):
– l security parameter (key length, ...)
– (ekR , dkR) matching key pair

• (probabilistic) encryption algorithm Enc (two parameters and one result):
– ekR encryption key
– m plaintext (original message)
– m° = Enc (ekR , m) ciphertext (transformed bit string)

• (probabilistic) decryption algorithm Dec (two parameters and one result):
– dkR decryption key
– m° ciphertext
– m°° = Dec (dkR , m°) (hopefully) recovered plaintext
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Fundamentals of Cryptography - 07. 04. 2011 403

Encryption: correctness property

• encryption algorithm Enc and decryption algorithm Dec should be inverse
whenever a matching key pair (ekR, dkR) generated by Gen
has been employed:

for all plaintexts m, Dec (dkR , Enc (ekR , m)) = m
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Fundamentals of Cryptography - 07. 04. 2011 404

Encryption: secrecy property
• naive version

for all plaintexts m, without a knowledge of the decryption key dkR ,
m cannot be “determined” from the ciphertext m°

• (informal) semantic version
an unauthorized observer of a ciphertext cannot infer
anything new about the corresponding plaintext, i.e.,

for all plaintexts m, without a knowledge of the decryption key dkR ,
any property of m that can be “determined” from the ciphertext m°
could also be “determined” without knowing m° at all

• (informal) operational version
an unauthorized observer of ciphertexts
cannot separate apart any pair of ciphertexts, and thus

cannot solve the problem of
assigning a specific plaintext to a ciphertext
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Fundamentals of Cryptography - 07. 04. 2011 405

Operational secrecy as indistinguishability

for a probabilistic setting, considering
sequences of plaintexts and of matching key pairs
of increasing length (taken as a security parameter),
we have indistinguishability of ciphertexts:

for any pair of plaintext sequences

and
,

without a knowledge of the sequence of decryption keys employed,

the resulting sequences of ciphertexts are
“computationally indistinguishable”

m1' m1'' m1''' …, , ,()

m2' m2'' m2''' …, , ,()
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Fundamentals of Cryptography - 07. 04. 2011 406

Basic assumptions

• approved algorithms Gen and Dec and Enc are publicly known

• decryption keys are strictly kept secret

• given approved algorithms and seen from the perspective of the endusers,
enforcing the confidentiality of messages by encryption
basically relies only on

– selecting appropriate keys (as determined by the security parameter)

– actually hiding the decryption keys
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Fundamentals of Cryptography - 07. 04. 2011 407

Relationship between the encryption key and the decryption key

• symmetric (or secret-key) mechanism:
– the encryption key is (basically) equal to the decryption key

• asymmetric (or public-key) mechanism:
– the encryption key is essentially different from the decryption key

– an additional secrecy property (naive version) is required:

the (private) decryption key dkR

cannot be “determined” from the (public) encryption key ekR
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Fundamentals of Cryptography - 07. 04. 2011 408

Symmetric encryption

Sender S Receiver R

(S,R,Enc(ekR,m))

send_data receive_data.

message: m

receiver: R sender: S

message: m

encryption_key: ekR

Enc(ekR,m)

Decrypt

decryption_key: dkR

Enc(ekR,m)

Encrypt ...

Generate_Key

. . .
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Fundamentals of Cryptography - 07. 04. 2011 409

Asymmetric encryption

Sender S Receiver R

(S,R,Enc(ekR,m))

send_data receive_data.

message: m

receiver: R sender: S

message: m

encryption_key: ekR

Enc(ekR,m)
Encrypt

Decrypt Gen_Key

decryption_key: dkR

Enc(ekR,m)

Certify_Key
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Fundamentals of Cryptography - 07. 04. 2011 410

Symmetric and asymmetric encryption mechanisms

Feature Symmetric Asymmetric

generating and
distributing keys

both partners are
equally involved

designated receiver has a
distinguished role

protection
requirements

key generation/
communication of the
secret key
and
storage of the secret key
must be protected on
both sides

key generation

and
storage of the private key
must be protected on the
side of the receiver only

contributions of the
trusted third parties

generate and distribute
secret keys

certify public keys
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Fundamentals of Cryptography - 07. 04. 2011 411

Authentication: basic approach

designated sender S

• prepares for transmitting a bit string m as a message
by computing another bit string redS,m
as a cryptographic piece of evidence
(cryptographic exhibit or cryptographic check redundancy)

• forwards the compound (S , m , redS,m)
– S sender identification
– m original bit string
– redS,m computed bit string

receiver

• receives such a compound of the form (S° , m° , redS,m°)

• checks whether the message part originates from the claimed sender
without modification by inspecting the included cryptographic exhibit
(must depend on both the designated sender and the message)

• either accepts (as authentic) or rejects the received message

© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Fundamentals of Cryptography - 07. 04. 2011 412

Authentication: functionality

• (probabilistic) key generation algorithm Gen (one parameter and one result):
– l security parameter (key length, ...)
– (tkS , akS) matching key pair

• (probabilistic) authentication algorithm Aut (two parameters and one result):
– akS authentication key
– m message
– redS,m = Aut (akS , m) cryptographic exhibit

• (probabilistic) Boolean-valued authenticity verification algorithm Test
(three parameters and Boolean result):
– tkS test key/verification key
– m received message
– red cryptographic exhibit
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Fundamentals of Cryptography - 07. 04. 2011 413

Authentication: (weak) correctness property

• authentication algorithm Aut and authenticity verification algorithm Test
should be complementary
whenever a matching key pair (tkS , akS) generated by Gen
has been employed:

for all messages m, Test (tkS , m , Aut (akS , m)) = true
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Fundamentals of Cryptography - 07. 04. 2011 414

Authentication: unforgeability

• (naive) unforgeability property
for all messages m,
without a knowledge of the authentication key akS ,
one cannot “determine” a bit string red such that Test (tkS , m , red) = true

• (naive) strong correctness property,
complemented by a weak unforgeability property

for all messages m and for all bit strings red,
Test (tkS , m , red) = true iff red = Aut (akS , m)

and

without a knowledge of the authentication key akS ,
one cannot “determine” this solely accepted cryptographic exhibit
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Fundamentals of Cryptography - 07. 04. 2011 415

Basic assumptions

• approved algorithms Gen, Aut and Test are publicly known

• authentication keys are strictly kept secret

• given approved algorithms and seen from the perspective of the endusers,
enforcing the integrity and authenticity of messages
(in the sense of detection of violations) by authentication
basically relies only on

– selecting appropriate keys (as determined by the security parameter)

– actually hiding the authentication keys
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Fundamentals of Cryptography - 07. 04. 2011 416

Relationship between the test key and the authentication key

• symmetric (or secret-key) mechanism:
– the test key is (basically) equal to the authentication key

• asymmetric (or public-key) mechanism:
– the test key is essentially different from the authentication key

– an additional secrecy property (naive version) is required:

the (private) authentication key akS

cannot be “determined” from the (public) test key tkS
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Fundamentals of Cryptography - 07. 04. 2011 417

Symmetric authentication

authenticity verification algorithm:

• recompute the cryptographic exhibit for the received message

• compare the result with the received exhibit

• the verification is seen as successful iff both exhibits are equal

Sender S Receiver R

(S,R,m,redS,m)

send_data receive_data.

message: m

receiver: R sender: S

message: m

authent_key: akS

redS,m

Test

test_key: tkS

redS,m

Authent ...

Generate_Key

. . .

test_result:
true/false
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Fundamentals of Cryptography - 07. 04. 2011 418

Asymmetric authentication (digital signing)

Sender S Receiver R

 (S,R,m,redS,m)

send_data receive_data.

message: m

receiver: R sender: S

message: m

redS,m
redS,m

Authent Gen_Key

authent_key: akS

Test

test_key: tkS
test_result: true/false

Certify_Key
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Fundamentals of Cryptography - 07. 04. 2011 419

Symmetric and asymmetric authentication mechanisms

Feature Symmetric Asymmetric

generating and
distributing keys

both partners are
equally involved

designated sender has a
distinguished role

protection
requirements

key generation/
communication of the
secret key and
storage of the secret key
must be protected on
both sides

key generation

and
storage of the private key
must be protected on the
side of the sender only

contributions of the
trusted third parties

generate and distribute
secret keys

certify public keys

non-repudiation/
digital signatures

no yes
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Fundamentals of Cryptography - 07. 04. 2011 420

Anonymization

• the interest in anonymity or, more generally, in non-observability
can be seen as strengthened forms of (message) confidentiality:
– not only the message itself should be kept secret
– but also the full activity of a message transmission

• from the point of view of an observer who is not designated
to learn about an activity or a sequence of activities:

any actually occurring activity
is indistinguishable from
any other activity in a preferably large activity domain
from which the actually occurring activity has been selected

• the actual activity is indistinguishably hidden
in a preferably large domain of other possibilities,
often called an anonymity class
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Fundamentals of Cryptography - 07. 04. 2011 421

Sender anonymity

• activity domain:
participants S1 , … , Sn sending and receiving messages

• anonymity property:
by observing an actual message m,
a non-designated observer cannot “determine” the actual sender Sj

• mechanism:
superimposed sending

sendsend

message m

 sender S1 sender Sn

message m

 superimposed sending

...

 group of participants

a)

 observer

from
sender Sj ?
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Fundamentals of Cryptography - 07. 04. 2011 422

Sender–receiver anonymity

observer

b)

receive receive

sendsend

 sender S1 sender Sn

...

 receiver R1 receiver Rn

message m1

message mn

...

message

message mi
from sender Sj
to receiver Rk ?

mediating
MIX network
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Fundamentals of Cryptography - 07. 04. 2011 423

Anonymity by unlinkability

c)

send
sign

receive
test...

 messages sent with exhibits modified authentic

 �blindly signing� participant

observer

modified

 (m1,red1),...,(mn ,redn) message (m ,red)
from (mi ,redi) ?
(m ,red) originates
authentic message
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Fundamentals of Cryptography - 07. 04. 2011 424

Unlinkability and blind signatures

• activity domain:
– one distinguished participant issues (sends) digital documents

(digitally signed messages) expressing some obligation to receivers

– receivers/holders present digital documents
as a credential (digital legitimation) to be redeemed
to the distinguished participant

• unlinkability property:
knowing the issued documents { (m1 , red1) , … , (mn , redn) } and
seeing a presented modified document (m , red) with a verified signature red,
a non-designated observer

cannot “determine” the link
from the presented document
to the corresponding issued document

• mechanism:

blind signatures
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Fundamentals of Cryptography - 07. 04. 2011 425

A classification of pseudonyms

• regarding the dissemination of knowledge about
the relationship between the pseudonym and the substituted subject,
a pseudonym can be seen as
– public (e.g., a phone number of an employee)

 – confidential (e.g., a bank account of a citizen)

– secret (also called an anonym)

• regarding the intended potentials for multiple use and
the resulting linkability, there are
– subject pseudonyms for a broad range of activities

– role pseudonyms for specific activities

– relationship pseudonyms for activities addressing specific partners

– combined role–relationship pseudonyms for
specific activities addressing specific partners

– transaction pseudonyms (event pseudonyms) for single use only
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Fundamentals of Cryptography - 07. 04. 2011 426

Meanings of the notion of “participant” and their relationships

network

R1

IP1

Rn

IPn

� application-oriented

computing devices pseudonyms

P1

Pn

human

� possibly determined

... ...

individuals

or
action- (event-)

by application
� might be inferrable

from public
knowledge

oriented
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Fundamentals of Cryptography - 07. 04. 2011 427

Sufficient randomness

• to achieve the indistinguishability goals of cryptographic mechanisms,
sufficient randomness is needed

• a cryptographic mechanism superimposes
the randomness of a secretly selected key, and possibly further inputs,
on the returned items of interest such that

the output items (ciphertexts, exhibits, …)
again appear to be randomly taken

• making “sufficient randomness” algorithmically available
is an outstanding open problem in computer science

• in fact, precisely defining the notion of “sufficient randomness”
has already turned out to be a great challenge
that has raised various proposals for an answer
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Fundamentals of Cryptography - 07. 04. 2011 428

Pseudorandom generator

• is a deterministic polynomial-time algorithm

• stretches a seed, a short and supposedly random input,
into a much larger output sequence
appearing again to be “sufficiently random”

• delivers outputs that should be computationally indistinguishable from
a family of (ideal) uniformly distributed sequences:

– there is no probabilistic polynomial-time algorithm
that can distinguish the algorithmic outputs
from the abstract ideal sequences
with a non-negligible probability without knowing the seeds
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Fundamentals of Cryptography - 07. 04. 2011 429

Guidelines for generating and employing pseudorandom sequences

• use some physical source for supplying (supposedly)
“truly random” seeds of short length

• use a pseudorandom generator
for stretching a supposedly random input seed into
a much larger output sequence appearing again to be “sufficiently random”

• design a cryptographic mechanism (for encryption, authentication, etc.)
– to take a “truly random” input
– to superimpose the randomness of this input on the returned items

(to be proven to comply with pertinent indistinguishability as well)

• for an actual implementation, however, replace
the (ideal) “truly random” input
by an actually available pseudorandom sequence

• verify a compositionality property of the indistinguishability properties,
to ensure that the replacement does not affect the quality of the returned items
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Fundamentals of Cryptography - 07. 04. 2011 430

Goals of random input: examples

• to generate a secret key for some cryptographic mechanism:
to designate its holder(s) as distinguished from all other participants

• to employ a random input as a nonce:
to mark a message within some cryptographic protocol as unique and personal

• to pad a value from some (too small) domain with a random input:
to define a modified domain sufficiently large to prevent successful guessing

• to blind some data with a random input using a reversible algebraic operation:
to present that data to somebody else without revealing the actual value

• most generally, to randomize some algorithm of a cryptographic mechanism:
to achieve a wanted indistinguishability property
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Fundamentals of Cryptography - 07. 04. 2011 431

One-way hash functions

• some item of interest is often represented in a concise, disguised and
unforgeable form, called a fingerprint, a digest or a hash value

• concise:
– representation consists of a suitably short bit string of an agreed format
– a large domain of items is mapped onto a small domain of representations:

there must be collisions

• disguised:
a represented item cannot be “determined” from its representation

• unforgeable:
nobody can “determine” a representation of an item
without a knowledge of that item

• collision resistant:
nobody can “determine” pairs of items that share a representation
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Fundamentals of Cryptography - 07. 04. 2011 432

Application: representations with fixed short format

• a cryptographic protocol might demand an argument
complying with a fixed short format for further processing,
but the items of interest might vary or even be of arbitrary length

• example:
some authentication protocols digitally sign the representations
instead of the represented items
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Fundamentals of Cryptography - 07. 04. 2011 433

Application: enforcing integrity (detection of modification)

• at time 0:
– map the item onto its representation (original hash value)
– store the item and its representation in different locations

• at a later time i:
– compare the retrieved representation (original hash value) with a

recomputed representation of the retrieved item (recomputed hash value)

mat_time_0

item of interest

time

0

i
mat_time_i

item of interest

potential
modification

h

one-way

 h (mat_time_0)
original hash value

h

one-way

 h (mat_time_i)

recomputed hash value

hash function

hash function

=

true false

“supposedly
 intact”

“modified”
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Fundamentals of Cryptography - 07. 04. 2011 434

One-way hash functions: functionality and properties

• function h maps any element m of a (large) domain D (might be infinite)
onto a bit string of a (short) fixed length l, i.e.,

onto an element of { 0 , 1}l

• an assigned value h (m) is called the hash value of m

• the function h must be efficiently computable, i.e.,
there is an efficient algorithm H that computes h (m) on input of m

• the inversion of h must be computationally infeasible, i.e.,
the following roughly circumscribed one-way property is required:

for all values z ∈ { 0 , 1}l,
one cannot “determine” a domain element m ∈ D such that h (m) = z

• regarding the inevitable collisions (for large domain and short length),
the function h must be collision-resistant
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Fundamentals of Cryptography - 07. 04. 2011 435

Weak collision-resistance property

• should protect against a fraud
where a given message m is exchanged for another one:

• for all domain elements m ∈ D,
one cannot “determine” a different domain element m´ ∈ D
such that h (m) = h (m´)
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Fundamentals of Cryptography - 07. 04. 2011 436

Strong collision-resistance property

• should totally block any attempt at a fraudulent exchange

• one cannot “determine”
two different domain elements m ∈ D and m´ ∈ D
such that h (m) = h (m´)

• equivalent to requiring
that one cannot “determine”
an element m ∈ D
that violates the weak version
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Fundamentals of Cryptography - 07. 04. 2011 437

Timestamps

• sometimes, integrity as temporal correctness should be supported

• in a proof of authenticity, the receiver should be able to evaluate
– not only who has formed and sent a message
– but also when these two events happened

• to prevent replay attacks or to achieve related goals,
before authenticating a message, the sender can include a current timestamp

• considering the time span between
– when the message was formed and
– when it was received,
the receiver can decide whether he is willing
to accept the message as authentic or not

• all participants involved must share synchronized clocks;
the receiver should take tolerable discrepancies in local times into account
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Fundamentals of Cryptography - 07. 04. 2011 438

• combined temporal correctness and unforgeability property is desired:

for all messages m with an included timestamp ts
and suitably authenticated by the sender,
from the perspective of a receiver,

the actual forming time of the message
coincides with the included timestamp

• participants might prefer to employ weaker
but more readily manageable means than timestamps

• if only relative forming times are important,
the sender might include serial numbers (instead of timestamps)

• a receiver not willing to rely on synchronized clocks might
ask a sender to follow a challenge–response procedure
in order to obtain evidence for the freshness of a received message
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Fundamentals of Cryptography - 07. 04. 2011 439

Quality in terms of attacks

• cryptography aims at enabling participants to autonomously enforce
their security interests even in the presence of threats

• a threat is instantiated by somebody/something performing a specific attack

• attack in theoretical investigations:
an execution of a polynomially time-bounded probabilistic Turing machine

• attack in more practical investigations:
exploiting a concrete attacking strategy

• security requirements:
to be specified in terms of attacks

• evaluating a cryptographic mechanism:
includes an analysis of the mechanism’s robustness against attacks

• classification framework for attacks (on encryption mechanisms):
here, from the point of view of attackers, describing their options for success
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Fundamentals of Cryptography - 07. 04. 2011 440

A classification framework for attacks against encryption

• kind of success
– exact: exact new knowledge
– probability-theoretic: improved probability distribution

• extent of success
– universal: functional equivalence with decryption algorithm
– complete: gain of secret key
– message-selective: plaintexts of selected ciphertexts
– message-existential: plaintext of some ciphertext

• target of attack
– affect human individuals
– exploit computing system
– affect individuals and the system in coordination
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Fundamentals of Cryptography - 07. 04. 2011 441

• time of attack/attacked part
– subvert overall system
– subvert key generation
– subvert key distribution
– exploit message transmissions

• method of attack (against message transmissions)
– passive: observe messages [ciphertext/plaintext pairs]
– active: observe plaintexts [ciphertexts] of chosen ciphertexts [plaintexts]

• planning of active attack
– non-adaptive: choose statically at the beginning
– adaptive: choose dynamically depending on progress

• expectation of success
– probability-theoretic: upper bound for success probability
– complexity-theoretic: lower bound for needed resources
– combined: upper bound for success probability

with limited resources
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Fundamentals of Cryptography - 07. 04. 2011 442

Cryptographic security

• a participant designated to hold some secret or private keys
must be able to secretly generate, store and use these keys;
best if the participant controls a personal tamper-resistant computing device

• secret and private keys and possibly further items have to appear as random,
and, accordingly, some source of randomness should be available;
best possibility being a truly random physical source

• items to appear as random must have sufficient length
to resist attacks based on exhaustive search and trials

• some assistance of a trusted third party is normally required

• various further external participants contribute
to an application of a cryptographic mechanism;
assigning trust to them should be based on
open design and informational assurances
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Fundamentals of Cryptography - 07. 04. 2011 443

12 Case Studies: PGP and Kerberos
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Case Studies: PGP and Kerberos - 07. 04. 2011 444

Pretty Good Privacy (PGP)

• supports participants of a distributed computing system
in autonomously enforcing their security interests
(confidentiality, integrity as detection of modification,
authenticity, non-repudiation)

• provides a user-friendly interface
to encryption and authentication (digital signatures) to be employed
– explicitly by means of a simple command language
– transparently embedded into some appropriate application software

• may serve
– to protect files on a local computer
– to ensure end-to-end security in a global environment

• assists participants with the necessary key management, including assessment
– of claims that a public key belongs to a specific partner
– of the trust in the respective issuers of such claims
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Case Studies: PGP and Kerberos - 07. 04. 2011 445

Basic blocks

• symmetric encryption by a block cipher (IDEA, Triple-DES, AES, ...),
extended into a stream cipher with cipher block chaining (CBC) mode:

applied to
– plaintexts (files to be stored or messages to be sent)
– private asymmetric (decryption or signature) keys

• asymmetric encryption (RSA, ElGamal, ...) within hybrid encryption:
applied to secret session keys for symmetric encryption

• authentication by digital signatures (RSA, ElGamal, ...)

• one-way hash function (MD5, ...):
to generate
– a message digest from an original message
– a symmetric key from a passphrase
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Case Studies: PGP and Kerberos - 07. 04. 2011 446

• random generator or pseudorandom generator:
for generating symmetric session keys

• data compression:
for reducing the redundancy of plaintexts

• passphrases:
for generating symmetric keys
– to protect private asymmetric (decryption or signature) keys
– for secure end-to-end connections
– to protect the user’s own files

• key management by means of a private key ring and a public key ring:
– for storing the user’s own private asymmetric keys
– for storing, assessing and selecting the public asymmetric keys

 of the user’s partners
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Case Studies: PGP and Kerberos - 07. 04. 2011 447

Conceptual design of secure message transmission

passphrase

SelfIdent private

encrypted private

private

one-way asymmetric
authentication

plaintext

plaintext

data

(pseudo)random

symmetric

final message

encrypted

public
associated key identification

public

PartnerIdent

one-way symmetric key

plaintext with digital signature

associated

digital

encrypted

hash function

hash function

signature key
of sender

key identification

 key ring

signature

format-complying
 concatenation

for message digest and

 compression

 generator

session key

 key ring

key identification of

of verification key

message
digest

of encryption key

encryption key
of receiver

format-complying
concatenation and
further preparation

symmetric
session key

symmetric
decryption

asymmetric
encryption

symmetric
encryption

verification key

signature key
of sender

version of
plaintext with
concatenations
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Case Studies: PGP and Kerberos - 07. 04. 2011 448

Secure message transmission: preparations

passphrase

SelfIdent private

encrypted private

private

one-way asymmetric
authentication

plaintext

plaintext

data

one-way symmetric key

plaintext with digital signature

associated

digital

hash function

hash function

signature key
of sender

key identification

 key ring

signature

format-complying
 concatenation

for message digest and

 compression

key identification of

of verification key

message
digest

symmetric
decryption

verification key

signature key
of sender
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Case Studies: PGP and Kerberos - 07. 04. 2011 449

Secure message transmission: encryption and finalization

data

(pseudo)random

symmetric

final message

encrypted

public
associated key identification

public

PartnerIdent

plaintext with digital signature

encrypted

for message digest and

 compression

 generator

session key

 key ring

key identification of

of encryption key

encryption key
of receiver

format-complying
concatenation and
further preparation

symmetric
session key

asymmetric
encryption

symmetric
encryption

verification key

version of
plaintext with
concatenations
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Case Studies: PGP and Kerberos - 07. 04. 2011 450

PGP parameters

• SelfIdent,
denoting the participant acting as a sender

• passphrase,
as an exhibit for a proof of authenticity of the sender

• PartnerIdent,
denoting the intended receiver

• plaintext,
to be communicated from the sender to the receiver
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Case Studies: PGP and Kerberos - 07. 04. 2011 451

Key management

• only the keys for the asymmetric mechanisms are stored persistently

• a secret key for any symmetric mechanism employed is

– generated or recovered only when it is actually needed

– afterwards immediately destroyed
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Case Studies: PGP and Kerberos - 07. 04. 2011 452

Using a symmetric secret key for securing an asymmetric private key

• authentication is strongly needed
(owner is distinguished among all other participants):
– authentication by demanding a passphrase
– from which the secret key is directly derived by a one-way hash function

• the secret key is never stored persistently
but is always dynamically regenerated whenever it is required

• the task of keeping secret information is reduced to
the burden of handling the passphrases,
and thus is mainly shifted to the users of PGP in diminished form
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Case Studies: PGP and Kerberos - 07. 04. 2011 453

Using a symmetric secret key as a session key for the hybrid method

• the symmetric secret key is generated on the fly
by a (pseudo)random generator,

used only once for encrypting content data
by means of the block cipher employed,

and then itself asymmetrically encrypted for later use
when the content data must be recovered

• on the side of the participant acting as the encryptor,
there is no need to keep the secret key

• on the side of the participant acting as the later decryptor,
the secret key is held in encrypted form:
when the non-encrypted form of the secret key is recovered,
the first case applies, since authentication is strongly needed
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Case Studies: PGP and Kerberos - 07. 04. 2011 454

Private key ring

• this ring contains the user’s own key pairs, each of which consists of
– a private signature key and
– the matching public verification key
or
– a private decryption key and
– the matching public encryption key

• each private key is stored in encrypted form

• each private key is stored together with
– a timestamp
– a derived key identification for referencing the key pair
– an identification of the owner
– some further administrative data

• the access to a private key is secured by a passphrase that the owner selected
when he issued the PGP command to generate and store a key pair
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Case Studies: PGP and Kerberos - 07. 04. 2011 455

Public key ring

• this ring contains the
– public verification keys and
– public encryption keys
of the owner’s communication partners

• a key is complemented by
– a timestamp
– a derived key identification
– an identification of the partner
– further administrative data
– some further entries to be used to assess the public key
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Case Studies: PGP and Kerberos - 07. 04. 2011 456

Assessment of public keys

U O
to be assessed as presumable holder

 acting as
C

C personally knows O, and U trusts C

 U evaluates O as presumable owner

certifying introducer

C can certify this knowledgeto some grade

 of the private key

matching the public key

encryptor or verifier, who is
going to employ the public key
for encryption or verification, respectively

and the ownership
of the key pair
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Case Studies: PGP and Kerberos - 07. 04. 2011 457

Two basic relationships

• one participant C(ertifier) personally knows another participant O(wner)
such that C can certify that a public key k belongs to O:

the participant O is the legitimate owner of the pertinent key pair and
thus the actual holder of the matching private key;

the participant C (perceived as the introducer of O)
confirms such an ownership by issuing and digitally signing
a key certificate, also known as an identity certificate,
basically consisting of
– an identification OIdent
– the public key k together with the pertinent digital signature

• one participant U(ser), willing to encrypt or to verify a message,
may trust another participant C(ertifier) to various degrees
to issue correct key certificates;

PGP suggests four trust grades (more sophisticated grades could be used):
unknown, untrusted, marginally_trusted,completely_trusted
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Case Studies: PGP and Kerberos - 07. 04. 2011 458

A derived relationship

• the participant U(ser) evaluates another participant O(wner)
as the presumable owner of a public key k,

on the basis of successfully verifying
the digital signature of a key certificate
of the form (OIdent , k)signature ,
issued and digitally signed by some introducer C(ertifier)

• the grade of the evaluation of O is derived
from the grade of the trust in the introducer C
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Case Studies: PGP and Kerberos - 07. 04. 2011 459

Participants, asymmetric keys, signatures and their relationships

 public key private key matches derived

 key pair

 generating

Self

ISA

 participant

partner

 trust grade

identification

 certificate

 signature

signing

represents

 human individual
(real-world)

owner

key

 introducer/issuer

signature key

generator

(for certificate)

 key
identification

 inherited trust grade
 (derived from introducer)
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Case Studies: PGP and Kerberos - 07. 04. 2011 460

Kerberos

• supports participants,
may be unknown to each other before interacting,
who are acting in a distributed computing system,
– as a (functional) server
– as a client

• enables servers to specify and enforce a security policy
that describes the permissions of potential clients

• initializes and maintains secure end-to-end connections
that achieve mutual authenticity and enforce confidentiality

• proposes the use of a trusted third party, known as a Kerberos server,
to dynamically act as a mediator on a request from of a client,
on the basis of statically agreed relationships
between the participants and the Kerberos server
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Case Studies: PGP and Kerberos - 07. 04. 2011 461

Overall security achievements and trust

• participants assign trust to the Kerberos server:

– each of the participants and the Kerberos server
have to initially exchange a secret (key)
for enabling symmetric authentication

– a server has to permanently delegate
the granting of permissions to the Kerberos server

– however, within Kerberos, permission granting is degenerated
to allow accesses whenever proper authentication has been achieved
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Case Studies: PGP and Kerberos - 07. 04. 2011 462

Basic blocks

• symmetric encryption,
– for evaluating the authenticity of messages

on the basis of the possession of a secret symmetric key

– for enforcing the confidentiality and integrity of messages

• passwords,
used as substitutes for the secret symmetric key
agreed between a particular participant and the Kerberos server

• one-way hash function
for dynamically regenerating a key from the substituting password

• random generator
to generate symmetric session keys,
to be used for a secure end-to-end connection
during a client–server interaction
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Case Studies: PGP and Kerberos - 07. 04. 2011 463

• timestamps,
used as indications of the freshness of messages

• nonces (random bit strings),
used as challenges to be included in responses

• tickets,
used as a special kind of credential that
– encode privileges granted to a client as a grantee
– are shown to a server as a (self-protecting) controlled object

• validity specifications for tickets

• access decisions,
taken by a server on the basis of shown tickets

• delegation
of the issuing of tickets by the Kerberos server on behalf of a server
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Case Studies: PGP and Kerberos - 07. 04. 2011 464

Conceptual design: structures

IdKer AddKer

IdCl AddCl IdFS AddFS

 client functional server

IdAS

 Kerberos server

IdTGS

 ticket-granting server

 Attributes Ident SessK ...

 Keys Ident SymK ...

 Attributes Ident SessK Ticket ...

 Granted Subject Privilege ...

 IdKer KCl ...
 Keys Ident SymK ...

 IdKer KFS ...

 Keys Ident SymK ...
 IdTGS KTGS ...

 IdCl KCl ...

 IdFS KFS ...

 IdTGS KCl,TGS TTGS ...

 IdFS KCl,FS TFS ...

 IdCl KCl,FS ...

 IdCl [IdTGS ,] ...

 open (insecure) network

 IdCl [IdFS ,] ...

Attributes Ident SessK ...
 IdCl KCl,TGS ...

 authentication server
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Case Studies: PGP and Kerberos - 07. 04. 2011 465

Structure of a Kerberos server

IdKer AddKer

IdAS

 Kerberos server

IdTGS

 ticket-granting server

 Granted Subject Privilege ... Keys Ident SymK ...
 IdTGS KTGS ...

 IdCl KCl ...

 IdFS KFS ...

 IdCl [IdTGS ,] ...

 IdCl [IdFS ,] ...

Attributes Ident SessK ...
 IdCl KCl,TGS ...

 authentication server
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Case Studies: PGP and Kerberos - 07. 04. 2011 466

Structures of a client and a functional server

IdCl AddCl IdFS AddFS

 client functional server

 Attributes Ident SessK ...

 Keys Ident SymK ...

 Attributes Ident SessK Ticket ...

 IdKer KCl ...
 Keys Ident SymK ...

 IdKer KFS ...

 IdTGS KCl,TGS TTGS ...

 IdFS KCl,FS TFS ...

 IdCl KCl,FS ...

 open (insecure) network
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Case Studies: PGP and Kerberos - 07. 04. 2011 467

Names, identifiers, addresses and keys

• Kerberos server
– AS authentication server
– TGS ticket-granting server

• participant P (client Cl, Kerberos server Ker with components AS and TGS)
– IdP unique identifier
– AddP network address
– KP secret symmetric key for a symmetric encryption method
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Case Studies: PGP and Kerberos - 07. 04. 2011 468

Kerberos server

• Keys local table with:
– Ident(ifier) column for identifier IdP

– Sym(metric)K(ey) column for key KP of each registered participant P
– ... columns for further administrative data

• Granted local table with columns
– Subject
– Privilege
to represent the permissions of clients to access services:

– (Subject: IdCl , Privilege: [IdFS ,]):
the participant identified by IdCl is permitted, as a client,
to access the services offered by the functional server identified by IdFS

– (Subject: IdCl , Privilege: [IdTGS ,]):
the participant identified by IdCl is permitted, as a client,
to access the service of the ticket-granting server,
which is identified by IdTGS and is a component of the Kerberos server
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Case Studies: PGP and Kerberos - 07. 04. 2011 469

A client

• Keys local table referring to
the identifier IdKer of the Kerberos server

• however, for a human individual acting as a client,
the secret symmetric key is not permanently stored:

instead, the individual can choose a secret password,
from which the symmetric key can be repeatedly computed
by use of a one-way hash function
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Case Studies: PGP and Kerberos - 07. 04. 2011 470

Rounds of the Kerberos protocol

• each round is initialized by a client and has two messages

• first round,
executed once per client session (can be integrated within a login procedure):

to authenticate the client for the later process of
obtaining and exploiting a reusable ticket
that expresses a privilege for a service

• second round,
performed once for each functional server
that is contacted during a client session:

to actually grant the privilege to the client

• third round,
repeatedly called for each actual service invocation:

to exploit the granted privilege
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Case Studies: PGP and Kerberos - 07. 04. 2011 471

Messages between a client, a Kerberos server and a functional server

 Kerberos server

 functional server

 client

 authentication server ticket-granting server

1.1: request for a

2.2: issue of a 2.1: request for a1.2: issue of a

3.1: request for a 3.2: response

ticket-granting ticket and a
session key for TGS

functional-service ticket functional-service
ticket and a
session key for FS

functional service

ticket-granting ticket
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Case Studies: PGP and Kerberos - 07. 04. 2011 472

Rough meanings of the six different Kerberos messages

• 1.1: a client requests a ticket-granting ticket from the authentication server

• 1.2: the authentication server issues a ticket-granting ticket for the client,
together with a session key for a secure end-to-end connection
between the client and the ticket-granting server

• 2.1: a client requests a functional-service ticket
from the ticket-granting server

• 2.2: the ticket-granting server issues a functional-service ticket for the client,
together with a session key for a secure end-to-end connection
between the client and the functional server

• 3.1: a client requests a service invocation from the functional server

• 3.2: the functional server responds to the client
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Case Studies: PGP and Kerberos - 07. 04. 2011 473

Simplified message 1.1

the client Cl

• requests a ticket-granting ticket from the authentication server AS,
to be shown to the ticket-granting server TGS

• adds the wanted validity specification Validity1

• includes a nonce Nonce1

IdCl , IdTGS , Validity1 , Nonce1
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Case Studies: PGP and Kerberos - 07. 04. 2011 474

Simplified message 1.2

the authentication server AS

• issues a ticket-granting ticket TicketTGS to the client Cl,
to be shown to the ticket-granting server TGS

• attaches
– a session key KCl,TGS for a secure end-to-end connection

between the client Cl and the ticket-granting server TGS

– the wanted Validity1

– the received Nonce1

where the attachments are encrypted with the client’s secret key KCl

IdCl , TicketTGS , Enc(KCl , [KCl,TGS , Validity1 , Nonce1 , IdTGS])
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Case Studies: PGP and Kerberos - 07. 04. 2011 475

Ticket-granting ticket

the ticket-granting ticket TicketTGS contains
– the session key KCl,TGS for a secure end-to-end connection

between the client Cl and the ticket-granting server TGS

– the client’s identifier IdCl

– the client’s network address AddCl

– the wanted Validity1

and is encrypted with the ticket-granting server’s secret key KTGS

TicketTGS = Enc(KTGS , [KCl,TGS , IdCl , AddCl , Validity1])
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Case Studies: PGP and Kerberos - 07. 04. 2011 476

Simplified message 2.1

showing the ticket TicketTGS , the client Cl

• requests a functional-service ticket from the ticket-granting server TGS,
to be shown to the functional server FS

• adds the wanted validity specification Validity2

• includes a nonce Nonce2

• attaches

– an authentificator AuthCl,TGS that encrypts the client’s identifier IdCl
– a timestamp TS3

where the authentificator is encrypted with the session key KCl,TGS

(which is made available to the ticket-granting server by the ticket TicketTGS)

IdFS , Validity2 , Nonce2 , TicketTGS , AuthCl,TGS

where
AuthCl,TGS = Enc(KCl,TGS , [IdCl, TS3])
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Case Studies: PGP and Kerberos - 07. 04. 2011 477

Simplified message 2.2

the ticket-granting server

• issues a functional-service ticket TicketFS to the client Cl,
to be shown to the functional server FS

• attaches

– a session key KCl,FS for a secure end-to-end connection
between the client Cl and the functional server FS

– the wanted Validity2

– the received Nonce2

where the attachments are encrypted with the session key KCl,TGS

IdCl , TicketFS , Enc(KCl,TGS , [KCl,FS , Validity2 , Nonce2 , IdFS])
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Case Studies: PGP and Kerberos - 07. 04. 2011 478

Functional-service ticket

the functional-service ticket TicketFS contains

– the session key KCl,FS for a secure end-to-end connection
between the client Cl and the functional server FS

– the client’s identifier IdCl

– the client’s network address AddCl

– the wanted Validity2

and is encrypted with the functional server’s secret key KFS

TicketFS = Enc(KFS , [KCl,FS , IdCl , AddCl , Validity2])
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Case Studies: PGP and Kerberos - 07. 04. 2011 479

Simplified message 3.1

showing the ticket TicketFS , the client Cl

• requests a service invocation from the functional server FS

• includes

– an authentificator AuthCl,FS

that encrypts the client’s identifier IdCl

– a timestamp TS4

where the authentificator is encrypted with the session key KCl,FS

(which is made available to the functional server by the ticket TicketFS)

TicketFS , AuthCl,FS

where
AuthCl,FS = Enc(KCl,FS , [IdCl, TS4])
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Case Studies: PGP and Kerberos - 07. 04. 2011 480

Simplified message 3.2

the functional server FS

• responds to the client
by sending back the received timestamp TS4,

encrypted with the session key KCl,FS

Enc(KCl,FS , TS4)
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Case Studies: PGP and Kerberos - 07. 04. 2011 481

13 Symmetric Encryption
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Symmetric Encryption - 07. 04. 2011 482

Encryption mechanism: functionality

• underlying sets:
– D domain set of (possible) plaintexts
– R range set of (possible) ciphertexts
– K = EK × DK set K of (possible) keys, each of which comprises

– ek ∈ EK encryption key
– dk ∈ DK decryption key

• Gen : → K key generation algorithm,
might take a natural number l as a security parameter

• Enc : EK × D → R encryption algorithm,
transforms a plaintext x ∈ D
into a ciphertext y = Enc (ek , x) ∈ R
using an encryption key ek ∈ EK

• Dec : DK × R → D decryption algorithm,
transforms a ciphertext y ∈ R
into a plaintext x = Dec (dk , y) ∈ D
using a decryption key dk ∈ DK
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Symmetric Encryption - 07. 04. 2011 483

Encryption mechanism: properties

• correctness
using a generated key pair,
any encryption can be reversed by the corresponding decryption, i.e.,

for all keys (ek , dk) ∈ EK × DK generated by Gen,
for all plaintexts x ∈ D:

Dec (dk , Enc (ek , x)) = x

• secrecy (naive version)
without knowing the pertinent decryption key dk,
an (unauthorized) observer of a ciphertext y = Enc (ek , x)
cannot “determine” the corresponding plaintext x

(semantic version: such an observer
can “determine” only those properties of the corresponding plaintext x
that he could “determine” without knowing the ciphertext y at all)

• efficiency
algorithms Gen, Enc and Dec are efficiently computable
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Symmetric Encryption - 07. 04. 2011 484

Classification

• mode of operation:
blockwise or streamwise

• relationship between keys:
symmetric or asymmetric

• justification of a secrecy property:
one-time key or one-way function or chaos
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Symmetric Encryption - 07. 04. 2011 485

Probability-theoretic secrecy property (one-time key approach)

 possible

y observed

x1

xn

xi

k1

ki

kn

..
.

..
.

actual plaintext can

actual plaintext

with actual key ..
.

..
.

sender Alice attacker Malory
possible keys:

plaintexts: - at least as many as plaintexts

 ciphertext;

 �basically only be guessed�

with probability 1/n

- actual key selected randomly
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Symmetric Encryption - 07. 04. 2011 486

Complexity-theoretic secrecy property (one-way function approach)

y observed xi

...
...

possible

matching plaintext xi

sender Alice attacker Malory

public encryption key

 ciphertext;

plaintexts:

cannot be �feasibly determined�
since computational effort is too high
(without knowledge of the private key)
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Symmetric Encryption - 07. 04. 2011 487

Empirical secrecy property (chaos approach/confusion and diffusion)

y observed

xa

xb

xi

ka

ki

kb

..
.

..
.

actual plaintext

with actual key

..
.

..
.

sender Alice attacker Malory

possible keys:

- pre-image set �obscure�

..
.

..
.

 ciphertext;

 - sufficiently many
- actual key selected
 as randomly as achievable

- all plaintexts in pre-image set
 �approximately equiprobable�

possible plaintexts
with pre-image set of y
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Symmetric Encryption - 07. 04. 2011 488

One-time keys and perfect ciphers (Vernam)

• are based on
– a sufficient (and „nearly necessary“) condition for perfectness,

achieving probability-theoretic secrecy

– the resulting group-based construction

• are symmetric,
having identical encryption key and decryption key

• are restricted to a single key usage

• operate streamwise by considering a plaintext as a sequence of bits,
each of which is treated separately
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Symmetric Encryption - 07. 04. 2011 489

One-time keys: treating a single bit

• plaintext domain, ciphertext range and key set
are chosen as { 0 , 1}

• set { 0 , 1} is seen as the carrier of the
group (Z2 , + , 0) of residue classes modulo 2,
where the residue classes are identified with their representatives 0 and 1

• group operation of addition modulo 2 is identical to
the Boolean operation XOR (exclusive or, denoted by the operator ⊕)

0

1

0

1

plaintexts ciphertexts

 key 0

Enc(0,x) = 0 ⊕ x = x

0

1

0

1

plaintexts ciphertexts

 key 1

Enc(1,x) = 1 ⊕ x = 1 – x
delivers the identity permutation delivers the exchanging permutation
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Symmetric Encryption - 07. 04. 2011 490

One-time keys: handling bit strings of length n

• employ the corresponding product group:
– take the group (Z2 , + , 0) n times
– define the group operation componentwise

ki keystream

plaintext

plaintext stream
xi

cipher_key :

ki keystream

cipher_key :

ciphertext stream
yi = ki � xi

 recovered

ki � (ki � xi) = xi

Generate_Cipher_Key : {0,1}n

(k1 , ... , kn) (k1 , ... , kn)

 (x1 , ... , xn)

plaintext stream

 receiver sender
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Symmetric Encryption - 07. 04. 2011 491

One-time keys: underlying sets

• plaintexts: bit strings of length n, i.e.,
“streams” (x1 , … , xn) of length n over the set { 0 , 1}

• ciphertexts: bit strings of the same length n, i.e.,
“streams” (y1 , … , yn) of length n over the set { 0 , 1}

• keys: bit strings of the same length n, i.e.,
“streams” (k1 , … , kn) of length n over the set { 0 , 1}
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Symmetric Encryption - 07. 04. 2011 492

One-time keys: algorithms

• key generation algorithm Gen(erate_Cipher_Key)
selects a “truly random” cipher key (k1 , … , kn)

• encryption algorithm Enc
handles the plaintext (x1 , … , xn) and the cipher key (k1 , … , kn) as streams;
treats each corresponding pair of a plaintext bit xi and a cipher key bit ki

as input for a XOR operation, yielding a ciphertext bit
yi = ki ⊕ xi

• decryption algorithm Dec
handles the ciphertext (y1 , … , yn) and the cipher key (k1 , … , kn) as streams;
treats each corresponding pair of a ciphertext bit yi and a cipher key bit ki

as input for a XOR operation,
yielding the original plaintext bit xi correctly:

ki ⊕ yi = ki ⊕ (ki ⊕ xi) = (ki ⊕ ki) ⊕ xi = 0 ⊕ xi = xi
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Symmetric Encryption - 07. 04. 2011 493

One-time keys: applications

• restriction to using a key only once is crucial:
observing a ciphertext/plaintext pair, an attacker achieves complete success:
 solve, for each position i, the equation yi = ki ⊕ xi

regarding the secret key bit as
ki = yi ⊕ xi

• considering the transmission of a single message:
qualified to the best possible extent regarding secrecy and efficiency

• as a trade-off for the best secrecy – proved to be inevitable:
– secret cipher key can be used only once
– secret cipher key must be as long as the anticipated plaintext

• as a stand-alone mechanism,
pure one-time key encryption is practically employed
only in dedicated applications with extremely high secrecy requirements

• however, basic approach is widely exploited in
– variants
– subparts of other mechanisms
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Symmetric Encryption - 07. 04. 2011 494

Stream ciphers with pseudorandom sequences (Vigenère)

• are a variant of the one-time key encryption mechanism

• are obtained by replacing the “truly random” cipher key
by a pseudorandom one
that is determined by a short(er) pseudo-key

• are symmetric

• operate streamwise by considering a plaintext as a sequence of bits,
each of which is treated separately

• cannot be perfect or probability-theoretically secure in practice,
since the pseudo-key is often substantially shorter than
the generated cipher key
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Symmetric Encryption - 07. 04. 2011 495

Vigenère: overall structure

ki keystream

pseudo_key : pk

ki keystream

pseudo_key : pk

Generate_Pseudo_Key : PK

 plaintext stream
xi

plaintext
 (x1 , ... , xn)

ciphertext stream
yi = ki � xi

 recovered

ki � (ki � xi) = xi

plaintext stream

pseudorandom
 generator

pseudorandom
 generator

 receiver

 sender
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Symmetric Encryption - 07. 04. 2011 496

DES (Data Encryption Standard)

• has been a most influential example of the chaos approach, used worldwide

• designed by IBM and the National Security Agency (NSA) of the USA

• standardized by the National Bureau of Standards (NBS)
in 1976/77 for “unclassified government communication”

• adopted by the American National Standards Institute (ANSI)
in 1981 for commercial and private applications

• is a symmetric mechanism, admitting multiple key usage

• operates blockwise, where the block length is 64 bits

• has a key length of 56 bits:
today, the pure form of this mechanism is considered to be outdated,
as it suffers from a too short key length

• has a still useful variant: Triple-DES
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Symmetric Encryption - 07. 04. 2011 497

Triple-DES

inputs:
– a plaintext x / a ciphertext y
– three different keys k1, k2, k3

encryption algorithm: successively perform

– an encryption with k1,
– a decryption with k2

– another encryption with k3

yielding the ciphertext y as

Enc (k3 , Dec (k2 , Enc (k1 , x)))

decryption algorithm: perform corresponding inverse algorithms to obtain

Dec (k1 , Enc (k2 , Dec (k3 , y)))
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Symmetric Encryption - 07. 04. 2011 498

DES: overall structure

k

64

64

 delete each 8th bit
28 28

28

lk0

28

rk0

rki-1
28

lki-1
28

leftshift i leftshift i
28 28

permuting
 selection 28

2828

rkilki

rk16lk16

 (shortened) key:

32

32

48

ki

32

32

32

3232

32

32

po
st

pr
oc

es
sin

g

 p

er
fo

rm
in

g
 r

ou
nd

 i
 =

 1
,..

.,1
6

 w
ith

 F
ei

st
el

 n
et

w
or

k

 p

re
pr

oc
es

sin
g

32

32 32

32

plaintext block

 final permutation IP-1

3232

64
DES(k , x)

ciphertext block

r0l0

ri-1li-1

l16 r16

rili

 expanding perm.

 permutation P

Sub1 Sub8...

32
44

32

32

48

48
6 6

48

3232

64
x

64

28 28

key with parity bits

28 28

 initial permutation IP

28

lk16= lk0; rk16= rk0

D
E

S
fu

nc
tio

n

com
puting the round keys
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Symmetric Encryption - 07. 04. 2011 499

IDEA (International Data Encryption Algorithm)

• was developed as an alternative to DES

• is a further example of the chaos approach

• combines
– a DES-like round structure operating on block parts and round keys
– algebraic group operations

• was adopted for Pretty Good Privacy (PGP),
but never reached common acceptance

• is symmetric, admitting multiple key usage

• operates blockwise, where the block length is 64 bits

• has a key length of 128 bits,
still sufficient from today’s perspective
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Symmetric Encryption - 07. 04. 2011 500

IDEA: overall structure

x1 x2 x3 x4

k1
(1) k2

(1) k3
(1) k4

(1)

k5
(1)

k6
(1)

k1
(9) k2

(9) k3
(9) k4

(9)

y1 y2 y3 y4

ro
u

n
d

 1

 p

re
p

ro
ce

ss
in

g

se
lf

-i
n

v
er

se
 s

tr
u

ct
u

re

k

ey
ed

 a
lg

eb
ra

ic

o
p

er
a

ti
o

n
s

p

o
st

p
ro

ce
ss

in
g

ro
u

n
d

s
2

 t
o

 8

 x

 IDEA(k , x)

1616

16 16

1616

16 16
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Symmetric Encryption - 07. 04. 2011 501

AES–Rijndael (Advanced Encryption Standard)

• was designed by the Belgian researchers J. Daemen and V. Rijmen,
winner of a public competition and evaluation, organized by the NIST

• follows the chaos approach, producing confusion and diffusion

• is symmetric, admits multiple key usage, operates blockwise

• permits block lengths varying from 128 bits to any larger multiple of 32 bits

• permits key length varying from 128 bits to any larger multiple of 32 bits

• is somehow restricted for standardization:
– block length is fixed at 128 bits
– key length is restricted to be 128, 192 or 256 bits,

today regarded as sufficient to resist exhaustive search and trial attacks

• combines several long-approved techniques
– operating roundwise on block parts and round keys
– superimposing the randomness of the key on the blocks using XOR
– permuting the positions of a block or a key
– employing of advanced algebraic operations showing one-way behavior
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Symmetric Encryption - 07. 04. 2011 502

• operates on the following sets:
– plaintexts:

bit strings (blocks over { 0 , 1}) of length 128 (or a larger multiple of 32),
represented as a byte matrix of 4 rows and 4 columns,
thus having 16 entries of 8 bits each

– ciphertexts:
bit strings (blocks) of the same length as the plaintext blocks

– keys:
bit strings of length 128 (or a larger multiple of 32),
again represented as a byte matrix like the plaintexts

• employs three algorithms as follows
– key generation: select a “truly random” bit string of length 128

– encryption: perform byte matrix transformations, see next pages

– decryption: invert the byte matrix transformations in reverse order,
employing the round keys accordingly
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Symmetric Encryption - 07. 04. 2011 503

Encryption algorithm AES (k , x)

• takes a key k and a plaintext x as input

• represents them as byte matrices

• operates on the current byte matrices

• uses some preprocessing and postprocessing

• performs 10 (or more for larger block or key lengths) uniform rounds

• executes four steps in one round:

(1) bytewise substitutions

(2) permutations that shift positions within a row

(3) transformations on columns and

(4) bitwise XOR operations with the round key
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Symmetric Encryption - 07. 04. 2011 504

Structure of the AES–Rijndael symmetric block cipher

substituting bytes

shifting rows

transforming columns

XOR superimposing bits

XOR superimposing bits

expanding the key

plaintext block key

ciphertext block f
in

al
 r

ou
n

d

ro

u
n

d
s

2
to

 1
0

 r
ou

n
d

 1

p

re
p

ro
ce

ss
in

g
(p

os
tp

ro
ce

ss
in

g)

© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Symmetric Encryption - 07. 04. 2011 505

AES–step (1): bytewise substitutions

• step (1) is defined by a non-linear, invertible function SRD on bytes, i.e.,
each byte of the current matrix is independently substituted by applying SRD

• invertibility ensures that a correct decryption is possible

just by applying the inverse function SRD
– 1

• non-linearity is aimed at achieving confusion, in terms of both
– algebraic complexity
– small statistical correlations between argument and value bytes

• the substitution function SRD has two convenient representations:
– tabular representation organized as a lookup table of size 16×16
– algebraic representation
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Symmetric Encryption - 07. 04. 2011 506

Tabular representation of the substitution function

argument byte a: seen as composed of two hexadecimal symbols li and co
value byte v: table entry for line li and column co

0 1 2 3 4 5 6 7 8 9 A B C D E F
0 63 7C 77 7B F2 6B 6F C5 30 01 67 2B FE D7 AB 76
1 CA 82 C9 7D FA 59 47 F0 AD D4 A2 AF 9C A4 72 C0
2 B7 FD 93 26 36 3F F7 CC 34 A5 E5 F1 71 D8 31 15
3 04 C7 23 C3 18 96 05 9A 07 12 80 E2 EB 27 B2 75
4 09 83 2C 1A 1B 6E 5A A0 52 3B D6 B3 29 E3 2F 84
5 53 D1 00 ED 20 FC B1 5B 6A CB BE 39 4A 4C 58 CF
6 D0 EF AA FB 43 4D 33 85 45 F9 02 7F 50 3C 9F A8
7 51 A3 40 8F 92 9D 38 F5 BC B6 DA 21 10 FF F3 D2
8 CD 0C 13 EC 5F 97 44 17 C4 A7 7E 3D 64 5D 19 73
9 60 81 4F DC 22 2A 90 88 46 EE B8 14 DE 5E 0B DB
A E0 32 3A 0A 49 06 24 5C C2 D3 AC 62 91 95 E4 79
B E7 C8 37 6D 8D D5 4E A9 6C 56 F4 EA 65 7A AE 08
C BA 78 25 2E 1C A6 B4 C6 E8 DD 74 1F 4B BD 8B 8A
D 70 3E B5 66 48 03 F6 0E 61 35 57 B9 86 C1 1D 9E
E E1 F8 98 11 69 D9 8E 94 9B 1E 87 E9 CE 55 28 DF
F 8C A1 89 0D BF E6 42 68 41 99 2D 0F B0 54 BB 16
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Symmetric Encryption - 07. 04. 2011 507

Algebraic representation of the substitution function

• the representation treats a byte as an element of the finite field GF(28), where
each bit of a byte is seen as
a coefficient of a polynomial with degree at most 7

• the multiplicative structure is defined by
the usual multiplication of polynomials, followed by a reduction

modulo the irreducible polynomial x8 + x4 + x3 + x + 1

• the function SRD has a representation of the form

SRD (a) = f (a– 1)), where

– the inversion operation refers to the multiplicative structure of GF(28)

– f is an affine function in GF(28), basically described by
– a suitable 8×8 bit matrix F
– a suitable constant byte c
such that

f (a) = (F × a) ⊕ c
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Symmetric Encryption - 07. 04. 2011 508

AES–step (2): permutations shifting positions within a row

• step (2) is defined by the offsets to be used for each of the rows:
the offsets are 0, 1, 2 and 3 byte positions, meaning that

– the first row remains invariant

– the second, third and fourth rows are shifted
by 8, 16 and 24 bit positions, respectively, to the left

• the shiftings are aimed at achieving good diffusion,
and can be easily redone for a correct decryption
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Symmetric Encryption - 07. 04. 2011 509

AES–step (3): transformations on columns

• step (3) is defined by a linear, invertible function MCRD on “columns”:

each column of the current matrix is considered as an element of { 0 , 1}32
and independently substituted by applying MCRD

• invertibility ensures that a correct decryption is possible

• the specific selection of MCRD is aimed mainly at achieving diffusion,
now regarding the rows of the byte matrices

• additionally, the selection was influenced by efficiency reasons

• MCRD admits an algebraic definition in terms of polynomial multiplication:

MCRD

a0

a1

a2

a3

02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02

a0

a1

a2

a3

×=
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Symmetric Encryption - 07. 04. 2011 510

AES–step (4): bitwise XOR operations with the round key

• XOR superimposes the randomness of the sophisticatedly manipulated key
on the intermediate state of the byte matrix

• effects of the superimposition can be correctly undone
by applying these XOR operations with the same key arguments

• round keys are inductively computed
by employing complex algebraic operations,
while at the same time achieving an acceptable efficiency

• for the given block length and key length of 128 bits each
(or suitably adapted for other possible lengths),
the initial 4×4 byte matrix for the key k given as input
is expanded into a 4×(1 + 10)·4 byte matrix, i.e.,
for each of the 10 rounds,
four new columns are generated and taken as the round key
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Symmetric Encryption - 07. 04. 2011 511

AES: key expansion

• the key expansion scheme distinguishes between
the first column of a new round key and the remaining columns,
but each column i is defined in terms of the
– corresponding column i – 4 of the preceding round key
– the immediately preceding column i – 1

• remaining columns:
the column i is computed by directly applying the bitwise XOR operation

• first column:
the preceding column is first transformed by a non-linear function
that is a suitable composition of
– the bytewise application of the substitution function SRD

– a permutation that shifts the positions in a column

– the addition of a round constant
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Symmetric Encryption - 07. 04. 2011 512

AES: decryption

• there is a straightforward decryption algorithm:
basically, it performs the inverses of all byte matrix transformation
in reverse order, employing the round keys accordingly

• the design also includes an equivalent decryption algorithm:
it maintains the sequence of steps within a round,
replacing the steps by their respective inverses
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Symmetric Encryption - 07. 04. 2011 513

AES: efficiency

• NIST requirements:
successor of DES should enable an efficiently implementation on smartcards,
which could, for example, be used as personal computing devices

• the Rijndael proposal:
the community was convinced regarding efficiency for implementations
in both hardware and software

• the construction as a whole:
high efficiency is enabled even though it operates on structures
consisting of 128 bits (or even more)

• in combination with some block mode:
transmission rates are suitable for large multimedia objects

• like any other symmetric block cipher:
usage as part of a hybrid encryption method is possible
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Symmetric Encryption - 07. 04. 2011 514

Stream ciphers using block modes

• underlying block cipher
encrypts plaintext blocks and decrypts ciphertext blocks of a fixed length lB

• fragmentation
– divides a longer message into appropriate fragments

– treats the resulting stream of fragments
by using the block cipher in what is known as
a block mode (mode of operation)
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Symmetric Encryption - 07. 04. 2011 515

Two basic approaches to fragmentation

• (1) the original message is divided into fragments of
length equal to exactly the block length lB of the underlying block cipher

(2) the block cipher treats the fragments
– either separately (electronic codebook)
– or in a suitably chained way (cipher block chaining)

• (1) the original message is divided into fragments
of length l ≤ lB (typically, l = 1 or l = 8)
such that a plaintext stream of bits or bytes results

(2) the underlying block cipher is used
to generate a corresponding (apparently pseudorandom) cipher key stream
that is superimposed on the plaintext stream
by using the XOR operation
(cipher feedback, output feedback, counter-with-cipher-block-chaining)

can be seen as a variant of the one-time key encryption mechanism,
where perfectness is abandoned for the sake of
a reusable, short key as demanded by the underlying block cipher
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Symmetric Encryption - 07. 04. 2011 516

Electronic Codebook (ECB) Mode

 plaintext

plaintext

sender receiver

Generate_Block_Key : K

Block_Enc:

 encrypt

Block_Dec:

k k

ciphertext block stream

recovered

block stream
xi yi = Block_Enc(k ,xi)

(x1,x2, ...)

1 block
at a time

decrypt
1 block
at a time

plaintext
block stream
xi
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Symmetric Encryption - 07. 04. 2011 517

Cipher Block Chaining (CBC) Mode

plaintext

sender receiver

Generate_Block_Key : K

Block_Enc:

 encrypt

Block_Dec:

k k

 ciphertext block stream

recovered

xi yi = Block_Enc(k , xi� yi�1)

(x1,x2,...)

1 block
at a time

decrypt
1 block
at a time

plaintext
block stream

xi

plaintext
block stream

 store
yi

 store
yi

 yi�1 yi�1

initialization
 vector
init

initialization
 vector
init
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Symmetric Encryption - 07. 04. 2011 518

CBC: correctness
• encryption algorithm Enc:

– for the first block x1,
Enc (k , x1) := Block_Enc (k , x1 ⊕ init)

– for all further blocks xi with i > 1,
Enc (k , xi) := Block_Enc (k , xi ⊕ Enc (k , xi−1))

• decryption algorithm Dec:
– for i = 1,

Dec (k , y1) := Block_Dec (k , y1) ⊕ init
 = Block_Dec (k , Block_Enc (k , x1 ⊕ init)) ⊕ init
 = (x1 ⊕ init) ⊕ init = x1

– for i > 1,
Dec (k , yi)
:= Block_Dec (k , yi) ⊕ yi−1

= Block_Dec (k , Enc (k , xi)) ⊕ Enc (k , xi−1)
= Block_Dec (k , Block_Enc (k , xi ⊕ Enc (k , xi−1))) ⊕ Enc (k , xi−1)
= (xi ⊕ Enc (k , xi−1)) ⊕ Enc (k , xi−1) = xi
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Symmetric Encryption - 07. 04. 2011 519

CBC: producing a message digest

• characteristic feature of the cipher block chaining mode:
all blocks are treated in a connected way
requiring strict serialization

• the last resulting ciphertext block seen as a message digest:
this block can be employed as a
piece of cryptographic evidence (a cryptographic exhibit)
for an authenticity verification algorithm
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Symmetric Encryption - 07. 04. 2011 520

Cipher Feedback (CFB) Mode

• follows the second basic approach,
achieving a variant of the one-time key encryption mechanism

• generates the required pseudorandom cipher key stream
by means of the encryption algorithm Block_Enc(ryption)
of the underlying block cipher

• does not employ the corresponding decryption algorithm,
and thus cannot be used for an asymmetric block cipher

• extracts the cipher key stream from the outputs of the block cipher encryption,
whose inputs are taken as a feedback from the ciphertext stream

• uses an initialization vector init as a seed,
which must be used only once
but can be communicated to the receiver without protection

• example: fragment length l = 8
block size of the underlying block cipher lB = 64
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Symmetric Encryption - 07. 04. 2011 521

CFB: overall structure

ciphertext element stream

sender

Generate_Block_Key : K

k

8
8

64

64shifti

8

64

k

8

64

64 shifti

8

64

8 8 8

Left:Left:

 receiver

plaintext
element stream

xi

 plaintext
(x1,x2,...)

 select
left byte

 select
left byte

Block_Enc:

 encrypt
1 block
at a time

Block_Enc:

 encrypt
1 block
at a time

initialization vector
 init

store
and
shift

store
and
shift

yi = xi � Left(Block_Enc(k,shifti))

initialization vector
 init

xi

 recovered
 plaintext
element stream
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Symmetric Encryption - 07. 04. 2011 522

CFB: correctness

• encryption algorithm Enc:
for each plaintext byte xi,
Enc (k , xi) := xi ⊕ Left (Block_Enc (k , shift_senderi)).

• decryption algorithm Dec
for each ciphertext byte yi,

Dec (k , yi) := yi ⊕ Left (Block_Enc (k , shift_receiveri))
= (xi ⊕ Left (Block_Enc (k , shift_senderi)))

⊕ Left (Block_Enc (k , shift_receiveri))
= xi ,

provided shift_senderi = shift_receiveri

• required equality of the shifti inputs on both sides is achieved
by using the same initialization vector init and then, inductively,
by employing the same operations and inputs to generate them
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Symmetric Encryption - 07. 04. 2011 523

CFB: producing a message digest

• characteristic feature of the cipher feedback mode:
the last resulting ciphertext block
depends potentially on the full plaintext stream

• the last resulting ciphertext block seen as a message digest:
this block can be employed as a
piece of cryptographic evidence (a cryptographic exhibit)
for an authenticity verification algorithm
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Symmetric Encryption - 07. 04. 2011 524

Output Feedback (OFB) Mode

• follows the second basic approach

• required pseudorandom cipher key stream is generated
as for the cipher feedback mode, except of the following

• the block cipher encryption takes the feedback directly from its own outputs

• since only the encryption algorithm of the underlying block cipher is involved,
this mode cannot be used for an asymmetric block cipher

• example:
– fragment length: l = 8

– block size of the underlying block cipher: lB = 64
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Symmetric Encryption - 07. 04. 2011 525

Output Feedback (OFB) Mode: overview

 ciphertext element stream

 sender

Generate_Block_Key : K

k

8
8

64

64shifti

8

64

k

8

64

64 shifti

8

64

8 8 8

Left:Left:

 receiver

plaintext
element stream

xi

 plaintext
(x1,x2,...)

 select
left byte

 select
left byte

Block_Enc:

 encrypt
1 block
at a time

Block_Enc:

 encrypt
1 block
at a time

initialization vector
 init

store
and
shift

store
and
shift

yi = xi � Left(Block_Enc(k,shifti))

initialization vector
 init

xi

 recovered
 plaintext
element stream
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Symmetric Encryption - 07. 04. 2011 526

Counter-with-Cipher-Block-Chaining Mode (CCM)

• generates a pseudorandom cipher key stream
by encrypting a sequence of counters counti
using the underlying block encryption

• computes the counters by

counti := init + i mod ,

assuming a block size lB of the block cipher and
taking an initialization vector init of that size

• cannot be used for an asymmetric block cipher

• exploits that for each i = 1 , 2, … :
– the pair of the counter counti and the corresponding plaintext block xi

can be treated independently of all other pairs, as for ECB

– the counter counti is independent of the ciphertext stream
(and thus of the plaintext stream), as for OFB

2
lB
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Symmetric Encryption - 07. 04. 2011 527

• achieves authenticated encryption:

– additionally performs CBC encryption
without transmitting the resulting ciphertext blocks

– superimposes the last resulting CBC ciphertext block yfin

on the counter count0 = init

– appends the resulting block yfin ⊕ count0 as a message digest
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Symmetric Encryption - 07. 04. 2011 528

Features of block modes

• initialization vector:
– some computational overhead is necessary

– a parameterization of the encryption is achieved:
if the initialization vector is varied for identical messages and kept secret,
then the encryption could even be seen as probabilistic

• fault tolerance, for the sake of availability:
propagation of a modification error is considered:

– in the plaintext stream

– during transmission, in the ciphertext stream:

– all modes recover shortly after a modification error

– OFB and CCM even behave optimally
(only the error position is affected)
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Symmetric Encryption - 07. 04. 2011 529

• modification error in the plaintext stream:

– ECB, OFB and the main part of CCM recover
shortly after the error position or totally prevent propagation

– for CBC, CFB and the digest production part of CCM,
an error might “diffuse” through the full succeeding cipher stream:

accordingly, the resulting final cipher block can be seen as a
message digest and can thus be employed as
a piece of cryptographic evidence (a cryptographic exhibit)

• synchronization errors owing to lost fragments:

for all modes, additional measures must be employed, e.g.,
by suitably inserting separators at agreed fragment borders
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Symmetric Encryption - 07. 04. 2011 530

Rudimentary comparison of block modes

ECB CBC CFB OFB CCM

Initialization
vector /
parameterization

no yes yes yes yes

Propagation of
error in plaintext
fragment

limited to
block

unlimited
up to end of
stream

unlimited
up to end of
stream

limited to
error
position

limited to
error position,
except for
superimposed
last CBC cipher
block

Suitable for
producing a
message digest

no by last
cipher block

by last
cipher block

no by superim-
posed last CBC
cipher block

Propagation of
error in
ciphertext fragment

limited to
block

limited to
block and
succeeding
block

limited to
block and
succeeding
block

limited to
error
position

limited to error
position

© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Symmetric Encryption - 07. 04. 2011 531

Some rough advice to a security administrator

• electronic codebook mode
is suitable for short, randomly selected messages
such as nonces or cryptographic keys of another mechanism

• cipher block chaining mode
might be employed for long files with any non-predictable content

• cipher feedback mode, output feedback mode and counter mode
support the transmission of a few bits or bytes,
e.g., as needed for connections between a central processing unit
and external devices such as a keyboard and monitor

• output feedback mode and counter mode
might be preferred for highly failure-sensitive applications,
since modification errors are not propagated at all
(except for the added message digest)
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Symmetric Encryption - 07. 04. 2011 532

14 Asymmetric Encryption and Digital Signatures with RSA
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Asymmetric Encryption and Digital Signatures with RSA - 07. 04. 2011 533

Asymmetric encryption

Sender S Receiver R

(S,R,Enc(ekR,m))

send_data receive_data.

message: m

receiver: R sender: S

message: m

encryption_key: ekR

Enc(ekR,m)
Encrypt

Decrypt Gen_Key

decryption_key: dkR

Enc(ekR,m)

Certify_Key
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Asymmetric Encryption and Digital Signatures with RSA - 07. 04. 2011 534

Complexity-theoretic secrecy property (one-way function approach)

y observed xi

...
...

possible

matching plaintext xi

sender Alice attacker Malory

public encryption key

 ciphertext;

plaintexts:

cannot be �feasibly determined�
since computational effort is too high
(without knowledge of the private key)
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Asymmetric Encryption and Digital Signatures with RSA - 07. 04. 2011 535

Family of one-way functions with trapdoors

parameterized family of functions fk such that for each k:

• function fk : Dk → Rk
is injective and computable in polynomial time

• inverse function fk
–1 : Rk → Dk

is computationally infeasible without a knowledge of k

• inverse function fk
–1 : Rk → Dk

is computable in polynomial time
if k (the private key) is used as an additional input

it is an outstanding open problem of computer science,
closely related to the open problem of whether P ≠ NP,
whether such families actually exist
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Asymmetric Encryption and Digital Signatures with RSA - 07. 04. 2011 536

RSA functions

• an RSA function is a number-theoretic function where

– (p , q , d) is used as the private key
– (n , e) as the public key

• the designated secret holder generates, randomly and confidentially,
two different, sufficiently large prime numbers p and q

• n :=
is published as the modulus of the ring (Zn , + , · , 0 , 1):
– all computations are performed in this ring
– the multiplicative group is formed by those elements

that are relatively prime to the modulus n, i.e.,

Zn* = { x | 0 < x < n with gcd (x , n) = 1 }

– this group has a cardinality φ(n) =
– Euler phi function φ,

is used for investigating properties of exponents for exponentiations

RSAp q d, ,
n e,

p q⋅

p 1–() q 1–()⋅
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Asymmetric Encryption and Digital Signatures with RSA - 07. 04. 2011 537

• the designated secret holder randomly selects
the second component e of the public key such that
1 < e < φ(n) and gcd (e , φ(n)) = 1

• additionally, the designated secret holder confidentially computes
the third component d of the private key
as the multiplicative inverse of e modulo φ(n):
1 < d < φ(n) and ≡ 1 mod φ(n)

– in principle, multiplicative inverses can be efficiently computed
– in this specific situation a knowledge of φ(n) is needed,

which requires one to know the secretly kept prime numbers p and q

• the RSA function for the selected parameters is defined by

 : Zn → Zn with

 mod n

– can be computed by whoever knows the public key (n , e)
– the required properties of

injective one-way functions with trapdoors (are conjectured to) hold

e d⋅

RSAp q d, ,
n e,

RSAp q d, ,
n e, x() xe=
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Asymmetric Encryption and Digital Signatures with RSA - 07. 04. 2011 538

Injectivity and trapdoor: theorem

in the setting of the RSA function ,

for all x ∈ Zn ,

 ≡ x mod n

RSAp q d, ,
n e,

xe()d
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Asymmetric Encryption and Digital Signatures with RSA - 07. 04. 2011 539

Injectivity and trapdoor: sketch of proof

the following congruences modulo n are valid for all x ∈ Zn:

≡ exponentiation rules

≡ = , definition of d

≡ exponentiation rules

Case 1, x ∈ Zn*:

multiplicative group Zn* has order φ(n): ≡ ≡ 1 mod n

thus: ≡ x mod n

Case 2, x ∉ Zn*:
case assumption: gcd (x , n) ≠ 1
n product of prime numbers p and q: gcd (x , p) ≠ 1 or gcd (x , q) ≠ 1
show for each subcase: ≡ x mod p and ≡ x mod q

by the definitions of n, p and q

and Chinese remainder theorem: ≡ x mod n

xe()d xe d⋅

xk φ n()⋅ 1+ e d⋅ k φ n()⋅ 1+

x xφ n()()k⋅

xφ n()()k 1k

xe()d

xe()d xe()d

xe()d
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Asymmetric Encryption and Digital Signatures with RSA - 07. 04. 2011 540

Subcase 2a

gcd (x , p) ≠ 1:

p is prime: p divides x and
thus any multiple of x as well

hence: ≡ x mod p

similarly:
gcd (x , q) ≠ 1 implies

 ≡ x mod q

xe()d

xe()d
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Asymmetric Encryption and Digital Signatures with RSA - 07. 04. 2011 541

Subcase 2b

gcd (x , p) = 1:

then x ∈ Zp* and, accordingly,
the following congruences modulo p are valid:

 ≡ definition of φ(n)

≡ exponentiation rules

≡ ≡ 1 x ∈ Zp* has order φ(p) =

as in Case 1, we then obtain the following congruences modulo p:

 ≡ exponentiation rules

≡ = , definition of d

≡ exponentiation rules
≡ ≡ x congruence shown above

similarly:
gcd (x , q) = 1 implies

 ≡ x mod q

xφ n() x p 1–() q 1–()⋅

xp 1–()q 1–

1q 1– p 1–

xe()d xe d⋅

xk φ n()⋅ 1+ e d⋅ k φ n()⋅ 1+

x xφ n()()k⋅
x 1⋅

xe()d
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Asymmetric Encryption and Digital Signatures with RSA - 07. 04. 2011 542

Factorization conjecture of computational number theory

the factorization problem
restricted to products of two prime numbers, i.e.,

given a number n of known form n =
where p and q are prime numbers,

to determine the actual factors p and q,
is computationally infeasible

p q⋅
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Asymmetric Encryption and Digital Signatures with RSA - 07. 04. 2011 543

RSA conjecture

if the non-keyed inversion problem for RSA functions
was computationally feasible,

then the factorization problem
would be computationally feasible as well

specialized RSA conjecture

if the non-keyed inversion problem for RSA functions
by means of determining the private exponent d from an argument–value pair

was computationally feasible,

then the factorization problem
would be computationally feasible as well
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Asymmetric Encryption and Digital Signatures with RSA - 07. 04. 2011 544

RSA conjecture and further conjectures

• RSA conjectures roughly says:
“factorization” is feasibly reducible to “RSA inversion”

• the converse claim, namely:
“RSA inversion” is feasibly reducible to “factorization”,
provably holds:

if an “attacker” was able to feasibly factor the public modulus n
into the prime numbers actually employed,
then he could feasibly determine the full private key
by just repeating the computations of the designated secret holder
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Asymmetric Encryption and Digital Signatures with RSA - 07. 04. 2011 545

Some similar proven claims

“factorization” is feasibly reducible to any of the following problems,
and vice versa:

• Euler problem:
given a number n of known form n = ,
where p and q are prime numbers,

to determine the value φ(n)

• public-key-to-private-exponent problem:
given the public key (n , e),

to determine the private exponent d

p q⋅
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Asymmetric Encryption and Digital Signatures with RSA - 07. 04. 2011 546

Conjectures and proven claims about feasible reducibility

factorization problem:
n [p , q]

RSA inversion problem:
[(n , e) , y] x

 public key value argument

[(n , e) , (x , y)] d
 public key argument-value pair private exponent

number prime factors

Euler problem:
n φ(n)
 number Euler value

public-key-to-private-exponent problem:
(n,e) d
 public key private exponent

conjectured

 proven

 p
ro

ve
n

 proven

 proven

conjectured to be infeasible
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Asymmetric Encryption and Digital Signatures with RSA - 07. 04. 2011 547

RSA asymmetric block cipher

• is an example of the one-way function approach

• is based on RSA functions and their properties

• is asymmetric, admitting multiple key usage

• operates blockwise, where the block length is determined
by the parameters of the underlying RSA function

• achieves complexity-theoretic security, provided:
– the factorization conjecture and the RSA conjecture hold
– the key is properly generated and sufficiently long
– some additional care is taken
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Asymmetric Encryption and Digital Signatures with RSA - 07. 04. 2011 548

RSA encryption: protocol outline
• key generation:

selecting a private key (p , q , d) and a public key (n , e) for

• preprocessing of a message m, using an agreed hash function:
– adding a nonce non (for probabilistic encryption)
– adding the hash value h (m , non) (for authenticated encryption)

• encryption: computing y = x e mod n
for x = (m , non , h (m , non)) ,
if interpretable as a positive number less than n

• decryption: computing y d mod n
for received message y

• postprocessing of the decryption result:
– extracting the three components
– recomputing the hash value of the first two components
– comparing this hash value with the third component (received hash value):

if the received hash value is verified,
the first component is returned as the (presumably) correct message

RSAp q d, ,
n e,
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Asymmetric Encryption and Digital Signatures with RSA - 07. 04. 2011 549

RSA encryption: underlying sets

for each fixed setting of an RSA function :

• plaintexts:
bit strings over the set { 0 , 1}
of some fixed length lmes ≤ ld n

• ciphertexts:
bit strings over the set { 0 , 1},
basically of length ld n
(binary representation of a positive number less than n (residue modulo n))

• keys:
given the public key (n , e),
in principle there is a unique residue modulo n
that can be used as the private decryption exponent d ,
whose binary representation is a bit string,
basically of length ld n or less
(from the point of view of the nondistinguished participants,
this decryption exponent cannot be “determined”)

RSAp q d, ,
n e,
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Asymmetric Encryption and Digital Signatures with RSA - 07. 04. 2011 550

RSA: key generation Gen

• selects a security parameter l
that basically determines the length of the key

• generates randomly two large prime numbers p and q
of the length required by the security parameter

• computes the modulus n :=

• selects randomly an encryption exponent e
that is relatively prime to φ(n) =

• computes the decryption exponent d as the
solution of ≡ 1 mod φ(n)

p q⋅

p 1–() q 1–()⋅

e d⋅
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Asymmetric Encryption and Digital Signatures with RSA - 07. 04. 2011 551

RSA: encryption algorithm Enc

• takes a possibly padded message m of length lmes as a plaintext

• generates a random bit string non as a nonce of length lnon

• computes a hash value h (m , non) of length lhash

• concatenates these values with appropriate separators:
the resulting bit string x must, basically, have length ld n
(lmes + lnon + lhash ≤ ld n ,
binary representation of a positive number less than n (residue modulo n))

• taking the public key (n , e),
computes and returns the ciphertext

y = x e mod n
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Asymmetric Encryption and Digital Signatures with RSA - 07. 04. 2011 552

RSA: decryption algorithm Dec

• taking the first component n of the public key (n , e)
and the third component d of the private key (p , q , d),
inverts the given ciphertext y by computing

x´ = y d mod n

• decomposes the result x´ into
– message part m´
– nonce part non´
– hash value part hash´
according to the separators employed

• inspects the received hash value:
– if h (m´ , non ́) = hash´,

then m´ is returned as the (supposedly) correct message
– otherwise, an error is reported
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Asymmetric Encryption and Digital Signatures with RSA - 07. 04. 2011 553

RSA: fundamental properties

• to be considered: correctness, secrecy and efficiency

• the modulus n should have a length of at least 1024;
even a larger length might be worthwhile to resist dedicated attacks

• there is a trade-off between secrecy and
efficiency, roughly estimated:

– key generation consumes time O ((ld n)4)
– operations of modular arithmetic, needed for encryption and decryption,

consume time at most O ((ld n)3)

• high performance can be achieved in practice
by employing specialized algorithms for both software and hardware

• there are some known weaknesses of specific choices of the parameters

• preprocessing and postprocessing are necessary:
– probabilistic encryption demanded for sophisticated secrecy property
– added nonce needed for several purposes
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Asymmetric Encryption and Digital Signatures with RSA - 07. 04. 2011 554

RSA: added nonce

• enlarges the search space for the straightforward inversion algorithm
that an attacker could use
given a ciphertext and the public key

• prevents a known ciphertext/plaintext vulnerability,
by ensuring that a given plaintext m
will produce different ciphertexts when being sent multiple times
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Asymmetric Encryption and Digital Signatures with RSA - 07. 04. 2011 555

RSA: authenticated encryption

• needed to prevent active attacks enabled by the
multiplicativity property (homomorphism property) of exponentiation:

for all x, y and w : ,
which is inherited by any RSA function

• example of an attack to decrypt an observed ciphertext y:
– select a multiplicatively invertible element u ∈ Zn*

– compute t := , by employing the public key (n , e)
– somehow succeed in presenting t as a (harmless-looking) ciphertext

to the holder of the private key and obtain

the corresponding plaintext t d with property

– solve the congruence for the wanted value yd by computing

• this attack will not succeed with the employment of a hash function, provided
this hash function does not suffer from the same multiplicativity property

x y⋅()w xw yw⋅=

y ue⋅ mod n

td y ue⋅()d yd ue d⋅⋅ yd u⋅ mod n≡ ≡ ≡

yd td u 1–⋅ mod n=
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Asymmetric Encryption and Digital Signatures with RSA - 07. 04. 2011 556

Asymmetric authentication (digital signing)

Sender S Receiver R

 (S,R,m,redS,m)

send_data receive_data.

message: m

receiver: R sender: S

message: m

redS,m
redS,m

Authent Gen_Key

authent_key: akS

Test

test_key: tkS
test_result: true/false

Certify_Key
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Asymmetric Encryption and Digital Signatures with RSA - 07. 04. 2011 557

RSA asymmetric digital signatures

• is an example of the one-way function approach

• is based on RSA functions and their properties

• is asymmetric, admitting multiple key usage

• achieves complexity-theoretic security, provided:
– the factorization conjecture and the RSA conjecture hold
– the key is properly generated and sufficiently long
– some additional care is taken

• is obtained by exchanging the roles of encryption and decryption,

given a suitable RSA function with

– private key (p , q , d)
– public key (n , e),

RSAp q d, ,
n e,
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Asymmetric Encryption and Digital Signatures with RSA - 07. 04. 2011 558

RSA digital signatures: protocol outline

• preprocessing of a message m using an agreed one-way hash function:
computing a hash value h (m)

• authentication:
computing the “RSA decryption” of the hash value

red = h (m) d mod n,

• verification:
– computing the “RSA-encryption” of the cryptographic exhibit

red e mod n
to recover the presumable hash value

– comparing the result
with the freshly recomputed hash value of the received message m
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Asymmetric Encryption and Digital Signatures with RSA - 07. 04. 2011 559

RSA digital signatures: underlying sets

• messages:
bit strings over the set { 0 , 1}
that can be mapped by the agreed one-way hash function h
to bit strings basically of length ld n
(positive numbers less than n (residues modulo n))

• cryptographic exhibits:
bit strings over the set { 0 , 1},
basically of length ld n
(positive numbers less than n (residues modulo n))

• keys:
given the public key (n , e),
in principle there is a unique residue modulo n
that can be used as the private decryption exponent d ,
whose binary representation is a bit string, basically of length ld n or less;
(from the point of view of the nondistinguished participants,
this decryption exponent cannot be “determined”)
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Asymmetric Encryption and Digital Signatures with RSA - 07. 04. 2011 560

RSA digital signatures: three algorithms

• key generation algorithm Gen:
same as for RSA encryption

• authentication (signature) algorithm Aut:
– takes a message m of an appropriate length
– computes h (m), where h is an agreed one-way hash function

– returns red = h (m) d mod n

• verification algorithm Test:
– takes the received cryptographic exhibit red

– computes hash := red e mod n
– takes the received message m
– determines its hash value h (m)
– checks whether this (correct) hash value equals the (received) value hash:

Test ((n , e) , m , red) returns true iff h (m) = red e mod n
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Asymmetric Encryption and Digital Signatures with RSA - 07. 04. 2011 561

RSA digital signatures: fundamental properties

• to be considered: correctness, unforgeability and efficiency

• basic aspects of these properties can be derived like for RSA encryption

• regarding correctness:
the commutativity of multiplication and exponentiation, i.e.,

for all b, e1, e2 :

,

is inherited by

– encryption function x e mod n

– decryption function y d mod n

• these functions are mutually inverse,
independent of the application order

b
e1()

e2
b

e1 e2⋅
b

e2 e1⋅
b

e2()
e1

= = =
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Asymmetric Encryption and Digital Signatures with RSA - 07. 04. 2011 562

RSA encryption and digital signatures

• any commutative (asymmetric) encryption mechanism
with encryption algorithms Enc and Dec that satisfy,

for all plaintexts or ciphertexts x and for all keys (ek , dk)

Dec (dk , Enc (ek , x)) = Enc (ek , Dec (dk , x))

can be converted into an authentication (signature) mechanism

• authentication: Aut (dk , x) = Dec (dk , x),
using the private decryption key dk as the authentication key

• verification: Test (ek , x , red) = true iff x = Enc (ek , red),
using the public encryption key ek as the test key

• correctness of the authentication
is implied by the encryption correctness:
Enc (ek , Aut (dk , x)) = Enc (ek , Dec (dk , x)) = Dec (dk , Enc (ek , x)) = x

• unforgeability is implied by the secrecy of the encryption
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Asymmetric Encryption and Digital Signatures with RSA - 07. 04. 2011 563

ElGamal asymmetric block cipher

• is another well-known example of the one-way function approach

• is based on ElGamal functions and their properties

• is asymmetric, admitting multiple key usage

• operates blockwise, where the block length is
determined by the parameters of the underlying ElGamal function

• achieves complexity-theoretic security, provided:
– the discrete logarithm conjecture and the ElGamal conjecture hold
– the key is properly generated and sufficiently long
– some additional care is taken
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Asymmetric Encryption and Digital Signatures with RSA - 07. 04. 2011 564

Asymmetric block ciphers based on elliptic curves

• are increasingly important examples of the one-way function approach

• are based on generalized ElGamal functions that
are defined over appropriately constructed finite cyclic groups
derived from elliptic curves based on a finite field

• are asymmetric, admitting multiple key usage

• operate blockwise, where the
block length is determined by the parameters of the underlying elliptic curve

• achieve complexity-theoretic security, provided:
– the pertinent discrete logarithm conjecture and related conjectures hold
– the key is properly generated and sufficiently long
– some additional care is taken

• offer a large variety of alternatives to the still predominant RSA approach,
and thus diminish the dependence on the special unproven conjectures

• promise to achieve the wanted degree of secrecy
with improved efficiency in comparison with the RSA approach
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Asymmetric Encryption and Digital Signatures with RSA - 07. 04. 2011 565

Asymmetric authentication by ElGamal and elliptic curves

• similar to encryption
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Asymmetric Encryption and Digital Signatures with RSA - 07. 04. 2011 566

15 Some Further Cryptographic Protocol
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Some Further Cryptographic Protocol - 07. 04. 2011 567

Covert commitments

• committing :
the committer discretionarily selects some value vcom
and commits to this value, in a covert form regarding the receiver

• revealing :
the committer reveals a value vshow to the receiver,
who in turn either accepts or rejects it as the committed value

• binding property (combined correctness and unforgeability property):

for all values vcom :
 if the committer enters the revealing phase at all,
then the receiver accepts the revealed value vshow

if and only if it is the committed value vcom

• secrecy property (after committing and before revealing):

for all values vcom ,
the receiver cannot “determine”

the committed value vcom from the covert form

© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Some Further Cryptographic Protocol - 07. 04. 2011 568

Secret sharing

• distributing :
the owner of the secret v computes shares s1, … , sn and
distributes them to appropriate receivers

• combining :
for some threshold , t (or more) receivers collect their shares , … ,

 and use them to recover the secret

• correctness property:
for all values v :

the receivers succeed in determining the secret value v
from any set of t distinct shares , … ,

• secrecy property:
for all values v :

the receivers cannot “determine” the secret value v
from any set of shares

t n≤ si1
sit

si1
sit

t 1–
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Some Further Cryptographic Protocol - 07. 04. 2011 569

Multiparty computations

• multiparty computations address a very general situation of
cooperation in the presence of threats between n parties Pi

• parties aim at jointly computing the value y of some agreed n-ary function f:
– each Pi secretly provides an argument xi

– at the end, each Pi knows the computed value y = f (x1 , … , xn)
– no Pi learns anything new about the other parties’ arguments

• correctness property (with threshold t):
for all inputs x1 , … , xn of the parties P1 , … , Pn , respectively, with n > 2,
if the adversary is formed by at most t attacking parties (a strict minority),

then each of the honest parties obtains f (x1 , … , xn) as the final result

• secrecy property (with threshold t):
for all inputs x1 , … , xn of the parties P1 , … , Pn , respectively, with n > 2,

an adversary formed by at most t attacking parties (a strict minority)
cannot “determine” any of the secret inputs of the honest parties
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Some Further Cryptographic Protocol - 07. 04. 2011 570

A trusted host with private input channels

 f
 y

 xn

 y

 y
 trusted

 host

.

.

.

 Pn

y

xn

 x1

 P1

y

x1

y
 P1
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Some Further Cryptographic Protocol - 07. 04. 2011 571

A semi-trusted host operating on ciphertexts

f_encrypt

Enc(. , x1)

Enc(., y)

Enc(., xn)

Enc(. , y)

Enc(. , y) semi-trusted
 host

.

.

.

 P1

y

x1dk1

en
cr

yp
t

de
cr

yp
t

 Pn

y

xndkn

en
cr

yp
t

de
cr

yp
t

© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Some Further Cryptographic Protocol - 07. 04. 2011 572

Parties with protected local operations and message transmissions

Enc(. ,x1)

Enc(. ,xn)

.

.

.

 P1

y

x1

en
cr

yp
t

secrets

 Pn

y

xn

en
cr

yp
t

secrets

Enc(. , y) network for message transmission

messages
for jointly
simulating
f_encrypt

messages
for jointly
simulating
decrypt
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Some Further Cryptographic Protocol - 07. 04. 2011 573

A combined correctness and secrecy property (with threshold t)

whatever violations of correctness and secrecy
can be achieved in the model of

parties cooperating by protected local operations and message transmissions

can also (inevitably) happen in the trusted-host model,
and thus, in particular,

without observing messages of the honest parties at all
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Some Further Cryptographic Protocol - 07. 04. 2011 574

Index (erstellt von Katharina Diekmann)

Symbols
*-security property 269

A
a posteriori knowledge 278
a priori knowledge 22, 278
access control

graph 163
list 163
matrix 163

access decision 107
accountability 87
accreditation certificate 367
add-on loading 341
Advanced Encryption Standard 502–514
AES–Rijndael 502–514
anonymity 87, 346
anonymization 421–425
assurance class 14
assurance level 13
asymmetric authentication 419, 420
asymmetric encryption 410, 411, 446, 534

attack 440
attack pattern 388
attribute certificate 367
authentication 62, 412–415
authenticity 29, 87
authenticity and integrity check 342
availability 87

B
basis register 52, 55
behavior 382

acceptable 382, 395
explicitly permitted 382
possible 382
violating 382, 388

binary group operation 288
binding property

covert commitment 568
block cipher 446
block mode 515
bound property 360, 370
bound register 52, 55
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Index 07. 04. 2011 575

bound-authorization-attribute credential 369

C
capability credential 369
CBC 518–520, 530, 531
CC 11–14
CCM 527, 529, 530
certificate 341, 346
certificate type 367
certificates and credentials 66, 70, 88
certification authority certificate 367
CFB 521–524, 530, 531
challenge–response procedure 82
chaos 488
Chinese Wall 236
Cipher Block Chaining Mode 518–520, 530, 531
Cipher Feedback Mode 521–524, 530, 531
ciphertext 403
classification 255
clearance 255
collision resistant 432
collision-resistance 436, 437
Common Criteria for Information Technology Secu-

rity Evaluation 11–14
complete (potential) information gain 286, 287
complete mediation 17
completely_trusted (trust grade) 458

confidentiality 30, 87
control and monitoring 66, 67, 88, 103
control component 93
control mode 172
control operation 99
correctness property

authentication 414, 415
covert commitment 568
encryption 404, 484
multiparty computation 570, 574
secret sharing 569

Counter-with-Cipher-Block-Chaining Mode

527, 529, 530, 531
covert channel 322
covert commitment 568
create 249
credential 464
credential type 369
cryptographic authentication 80
cryptography 66, 69, 88, 400–443

D
Data Encryption Standard 497, 499
decryption algorithm 483, 493
delegate 172
delegation credential 369
deletion with deleted further grantings 220
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Index 07. 04. 2011 576

deletion with renewed further grantings 219
DES 497, 499
digital document 359
digital signature 359, 419, 446
direct information flow 299
discrete logarithm conjecture 564
downgrading 270
dynamic inference control 290
dynamic security level 264

E
EAL 13
ECB 517, 530
effective gid 136
effective uid 136
Electronic Codebook Mode 517, 530, 531
ElGamal 564

authentication 566
conjecture 564
encryption 564
function 564

elliptic curves 565
encryption 60, 80, 403, 404
encryption algorithm 483, 493
end-to-end connection 461
Euler problem 546
evaluation assurance level 13

execute 121
execution flag 127

F
factorization conjecture 543, 558
fail-safe default 17
false negative 387
false positive 387
FASL 191
fine granularity 17
firewall 371
Flexible Authorization Framework 184–207
Flexible Authorization Specification Language 191
framework not applicable 286, 287
free property 360, 370

G
gid 135
grant 93, 172, 249
grant graph 213
grantable 209

limited 209
no 209
unlimited 209

grantee 209
grantor 164, 209
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Index 07. 04. 2011 577

grantor-specific deletion 218
group 117, 164
group operation 288

H
hash value 435
high-water mark 260, 264
hybrid encryption 446, 514
HYDRA 237

I
IDEA 500, 501
identity certificate 367, 458
implicit information flow 299
indirect information flow 299
indistinguishability 44, 58, 59, 64, 87
inference 280
inference control 277

dynamic 290
mathematical model 283
static 291

information flow 20, 22, 299
direct 299
implicit 299
indirect 299
transitive 299

information gain 278, 281
complete (potential) 286, 287
framework not applicable 286, 287
no 286
partial (potential) 286, 287

integrity 87
unmodified state 28

integrity and authenticity basis 339, 340
integrity measurement 344
International Data Encryption Algorithm 500, 501
intrusion 381
intrusion defense policy 110
intrusion detection 110, 377

anomaly-based 395
signature-based 389

isolation 44, 46, 87
physical/programming-based 46
virtual cryptographic 46

isolation mechanism 57

K
Kerberos 461–481

access decision 464
authentication server 468, 475
client 474
functional server 481
functional-service ticket 479
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Index 07. 04. 2011 578

protocol 471–481
server 461, 462, 466, 469
ticket 464
ticket-granting server 468, 478
ticket-granting ticket 476

key certificate 458
key generation algorithm 483, 493
key management 445, 447, 452
knowledge base 107

L
license certificate 367
limited (value of grantable) 209

M
mandatory security policy 257
man-in-the-middle attack 83
marginally_trusted (trust grade) 458
memory tag 53, 55
message transmission 20, 22
middleware 345
MIX server 346
multiparty computation 570

N
need-to-know/need-to-act 17

negative privilege 164
no (value of grantable) 209
non-observability 87
non-repudiation 87

O
object 95
OFB 525–526, 529, 530, 531
one-time key 486, 489
one-way function 487, 535, 536
one-way hash function 80, 432, 435, 446
one-way property 435
open design 17
Output Feedback Mode 525–526, 529, 530, 531
owner 117, 164, 368

P
packet filter 374
parallel program 319–321
parameterized event 391
parameterized signature 391
partial (potential) information gain 286, 287
PartnerIdent 451
passphrase 451
permission 97
PGP 445–460, 500
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Index 07. 04. 2011 579

plaintext 403
Pretty Good Privacy 445–460, 500
principal 356
private certificate 367
private key ring 447, 455
privilege 164
programming language 351
prohibition 97
proof of authenticity 105, 341
property 356, 357

administrative 362
bound 360, 370
characterizing 361
free 360, 370

property assignment 357
property conversion 370
proxy 375
pseudonym 426
pseudorandom generator 430
public key ring 447, 456
public-key mechanism 408
public-key-to-private-exponent problem 546

R
RBAC 176
read 121
read-down/write-up rule 258

read-up/write-down rule 274
recursive revocation 222–229
redundancy 44, 45, 87
revocation semantic 216

deletion with deleted further grantings 220
deletion with renewed further grantings 219
grantor-specific deletion 218
simple deletion 217
time-specific deletion with recursive revocation of

further grantings 221
revoke 93, 172
role 164, 176
role-based access control 176
root 100
RSA 537–563

authenticated encryption 556
conjecture 544, 558
decryption algorithm 553
digital signatures 557–563

algorithm 561
authentication 561
protocol 559
underlying sets 560
verification 561

encryption 549–552
algorithm 552
key generation 551
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Index 07. 04. 2011 580

protocol 549
underlying sets 550

function 537
private key 538
public key 538

S
sanitation 271
secrecy property

asymmetric mechanism 408, 417
covert commitment 568
encryption 405, 406, 484
multiparty computation 570, 574
secret sharing 569

secret key 59
secret sharing 569
secret-key mechanism 408
secure booting 341
security 3, 112
security interest 4, 5, 27, 87, 445
security level 255, 262
security mechanism 5, 87
security parameter 403
security policy 378, 461
SelfIdent 451
semi-trusted host 572
sequential program 292–298

sgid 127
signature 359, 388
simple deletion 217
software engineering 354
standardized behavior 64, 65
star-security property 269
static inference control 291
subject 95
subobject 179
subrole 179
success 441
suid 127
superimposing randomness 59, 60, 62, 428
superobject 179
superrole 179
superuser 100
symmetric authentication 418, 420
symmetric encryption 409, 411, 446

T
take 172, 249
temporal separation 50
threat 440
ticket 464
time-specific deletion with recursive revocation of

further grantings 221
timestamp 438
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Index 07. 04. 2011 581

transfer 172
transitive information flow 299
trapdoor 536, 539
Triple-DES 498
trust 333, 334, 458
trust evaluation 363–365
trust grade 458

completely_trusted 458
marginally_trusted 458
unknown 458
untrusted 458

trust reduction 335–337
trusted authority 81
trusted host 571
trusted platform module 339
trusted third party 461
trustee self-certificate 367
trustworthiness 333
tunneling 346

U
uid 135
umask 149
universe of discourse 280
UNIX 115–158

access control 117
access privilege 125

discretionary access right 117
effective gid 136
effective uid 136
execute 121
execution flag 127
gid 135
group 125, 134
group mastership 135
lifespan of a process 122
mastership 135
operational mode 126
owner 125
participant class 125
process 121
process tree 121, 123
read 121
right amplification 117, 137
security concept 125
security mechanism 116
sgid 127
suid 127
superuser 117
uid 135
umask 149
write 121

unknown (trust grade) 458
unlimited (value of grantable) 209
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Index 07. 04. 2011 582

untrusted (trust grade) 458

V
Vernam 489
Vigenère 495
virtual end-to-end connection 75, 345
virtual isolation 401
Virtual Private Network 346
VPN 346

W
write 121
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund Security in Computing Systems: Index 07. 04. 2011 583

	Original source of these lecture notes
	Part I Challenges and Basic Approaches
	1 Interests, Requirements, Challenges, and Vulnerabilities
	A notion of security
	Basic security interests
	Fundamental aspects of security
	Security evaluation
	Requirements by legislation: important examples
	Privacy and informational self-determination
	Protection rules for personal data
	Requirements by security evaluation criteria
	Common Criteria: security functionality
	Common Criteria: evaluation assurance levels
	Common Criteria: top-level assurance classes
	A practical checklist for evaluations
	Issues for the actual version, configuration and circumstances
	Construction principles
	Message transmission: a basic abstraction for challenges
	Transmission control in distributed computing systems: example
	Information flow
	Information flow based on message transmission
	Information flow and message transmission
	Inspection and exception handling: basic approach
	Inspection and exception handling: summary
	Security interests reconsidered
	in terms of message transmission/information flow
	Threats: originators and causes
	Security interests: an expanded list
	Integrity: unmodified state
	Authenticity
	Confidentiality
	Autonomy and cooperation: a classification of security interests
	Trust and threats
	Crucial points of multilateral security
	Confident and optimistic approach
	Provisional and pessimistic approach
	Optimistic approach versus pessimistic approach
	Computing system: layered design
	Internal structure of a processor and its memory
	Features of computing and basic vulnerabilities: overview
	Features of computing and basic vulnerabilities: one component
	Features of computing and basic vulnerabilities: networks
	Features and vulnerabilities

	2 Key Ideas and Combined Techniques
	Key ideas for technical security enforcement mechanisms
	Redundancy: important examples
	Isolation
	Physical/programming-based isolations: a global view
	Physical/programming-based isolations: a local view
	Spatial separation and entrance control
	Temporal separation and isolated memory
	Memory protection and privileged instructions
	Basis register and bound register
	Memory tags
	Tags as usage classes: examples
	Basis register and bound register versus memory tags
	Privileged instructions
	Further isolation mechanisms
	Indistinguishability
	Indistinguishability by randomness
	Example for superimposing randomness: encryption
	Encryption: indistinguishability of plaintexts
	Example for superimposing randomness: authentication
	Authentication: indistinguishability of exhibits
	Indistinguishability by standardized behavior
	Hiding among standardized behavior: examples
	Combined techniques: overview
	Local control and monitoring
	Local control and monitoring
	Cryptography
	Certificates and credentials
	Certificates and credentials
	Participants and objects involved
	Local identifiers: participants and their local connections
	The fiction of an overall “connection”
	Global identifiers: virtual end-to-end connections
	Provisions for authentication and proof of authenticity
	Peculiarities of human individuals: examples
	Peculiarities of physical devices: examples
	Properties of verification data: informal version
	Some contributions of cryptography
	Issue of authentic verification data: trusted authorities
	Issue of freshness: challenge–response procedures
	Issue of malicious redirection by man-in-the-middle
	Issue of malicious guessing or probing: carefully chosen exhibits
	Permissions and prohibitions: the need for a layered approach
	Specification of permissions and prohibitions: some guidelines
	Requirements and mechanisms reconsidered
	Combined techniques reconsidered
	Interests and enforcing mechanisms: summary (part 1)
	Interests and enforcing mechanisms: summary (part 2)

	Part II Control and Monitoring
	3 Fundamentals of Control and Monitoring
	Control and monitoring
	Essential parts
	Declarations: subjects, objects and kinds of access
	Declarations: expressive means
	Declarations: positive, negative and mixed approach
	Required completeness property for declarations
	Control operations
	Grantors and owners
	Control states
	Required analysis property for control operations
	Isolation, interception and mediation of messages
	Required complete mediation property
	Proof of authenticity
	Required authenticity property
	Access decisions
	Requirement for architecture of control
	Monitoring: inspecting results
	Monitoring: auditing and intrusion detection
	Requirement for architecture of monitoring
	Imagined ideal and real world
	Root of trust
	Issues of trust raised when the following problems are investigated

	4 Case Study: UNIX
	Some basic features of UNIX
	Basic blocks of control and monitoring (and cryptography)
	Conceptual design of the operating system functionality
	ER model of fundamental functional features and security concepts
	Participants, sessions and system calls
	Processes as active subjects
	Lifespan of a process
	Growing and shrinking of a process tree
	Files as passive objects
	Conceptual design of the security concepts
	Some operations with commands and their operational mode
	Mastership and group mastership
	Refined ER model of the functional features and security concepts
	Refined ER model: users
	Refined ER model: files
	Refined ER model: processes
	Different notions of a participant
	System administrator
	Groups
	Mastership and group mastership refined
	Current masterships
	Right amplification
	Identification and authentication
	Proof of authenticity by a password procedure
	Access decisions
	Access decisions regarding normal users
	Knowledge base on permitted operational options
	Main entries of the administration files for users and groups
	Modifications of the knowledge base: user and group administration
	Modifications of the knowledge base: password management
	Modifications of the knowledge base: login procedure
	Modifications of the knowledge base: mastership assignments
	Modifications of the knowledge base: file management
	Modifications of the knowledge base: masking access privileges
	Modifications of the knowledge base: process management
	Modifications of the knowledge base: execution flags
	Modifications of the knowledge base: some further manipulations
	Knowledge base on usage history
	Examples of UNIX log files
	Examples of UNIX log files, continued
	Audit services
	Configuration of an audit service: example
	Overall architecture

	5 Discretionary Access Control and Privileges
	Permissions and prohibitions as discretionary access rights
	ER model of lookup representation
	A relational implementation
	Access control matrix/graph and privilege/access control lists
	Some features of more sophisticated knowledge base structures
	Refined ER model for permissions
	ER model of structural relationships and specializations of objects
	ER model of programs, processes and masterships
	ER model of operational modes
	Functional modes in a pure object-oriented environment
	Control modes: examples
	ER model of qualifications and conditions
	ER Model of privileges with collectives
	ER Model of privileges with collectives (subpart)
	Role-based access control (RBAC)
	Some specific pitfalls of RBAC
	Semantics for access decisions
	Inheritance rules for hierarchical relationships: examples
	Conflict resolution by priority rules: examples
	A metarule for priority rules
	Completion rules: examples
	Requirements for formal specification language/formal semantics
	Flexible Authorization Framework: basic concepts
	Flexible Authorization Framework: basic concepts (continued)
	Flexible Authorization Framework: basic concepts (continued)
	Flexible Authorization Framework: concepts derived by rules
	Architecture of FAF: overview
	Architecture: knowledge base on permissions and prohibitions
	Architecture: access decisions
	Syntax of Flexible Authorization Specification Language: outline
	Strata of logical program in FASL
	Semantics of a logical program in FASL
	A simple fragment of a security policy in FASL: scenario
	A policy: explicit permissions/prohibitions in strata 1 and 2
	A policy: implicit permissions/prohibitions in stratum 4
	A policy: decisions and conflict resolution in stratum 5
	A policy: integrity enforcement in stratum 6
	Access decision on a functional request
	Access decision on an update request (control operation)
	Strata, goals and responsible agents
	Basic properties of FAF
	FASL programs are complete and sound: theorem
	Proof idea
	Properties of FAF: efficiency

	6 Granting and Revoking, and Analysis
	Granting
	A model with simplifying assumptions
	An ER model for grantings
	An instance of a relational implementation
	A grant graph corresponding to a history subrelation
	A formalization of granting
	Producing a grant graph: example
	Options for revocation semantics: examples
	Simple deletion
	Grantor-specific deletion
	Deletion with renewed further grantings
	Deletion with deleted further grantings
	Time-specific deletion with recursive revocation of further grantings
	Recursive revocation
	Recursive revocation: main procedure
	Recursive revocation: recursive auxiliary procedure
	Procedure call revoke(8,b,c): the run
	Procedure call revoke(8,b,c): call of auxiliary procedure
	Procedure call revoke(8,b,c): a recursive call
	Procedure call revoke(8,b,c): a further recursive call
	Procedure call revoke(8,b,c): removing isolated nodes
	Dynamic and state-dependent permissions
	Control automatons
	Some purposes of a security context
	State transitions of control automatons/switches of security contexts
	Role enabling and disabling: an example
	Information flow monitoring
	Chinese Walls
	Experimental operating system HYDRA
	Java protection framework: local and remote code
	Java protection framework: enabling flexible cooperation
	Java stack inspection
	Workflow control
	Analysis of control states: basic problem
	Undecidability of the analysis problem of control states/operations
	A model of control states
	A model of control operations
	Reduction: simulation of TM configurations by of control states
	Reduction: simulation of TM moves by of control operations
	Some crucial insight
	Generic take–grant operations and create
	Analysis problem for generic take, grant and create: theorem
	Reversing directions of grant and take privileges
	Privileges and information flow: extended analysis problem
	Interactions of control operations and functional operations: example

	7 Mandatory Access Control and Security Levels
	ER model
	Partial orders for relative trustworthiness and relative sensitivity
	Mandatory security policy
	Access decisions to enforcing confidentiality
	Mandatory control of information flow: debates
	Dynamic mandatory access control
	Security levels as a finite lattice: underlying assumptions
	Example of security levels: linear orders
	Example of security levels: power set lattices
	Approximation of dependance by levels: container objects
	Dynamic classification of data: expressions
	Dynamic classification of data: active subjects
	Combining static and dynamic features: outline of a formal model
	Static and dynamic features: access decisions and state transitions
	Models attributed to Bell and LaPadula
	Downgrading
	Sanitation
	Trusted subjects and violation of the basic security property
	Confidentiality and integrity
	A dual approach to enforcing integrity
	Enforcing both confidentiality and integrity
	Additional integrity security levels

	8 Inference Control
	Information gain
	Information, knowledge, computational capabilities and resources
	Information gain by an observer
	Two extreme cases for the information gain
	Enabling/preventing information flow concerning semantic objects
	Simple mathematical model: inversion of functions/solving equations
	A classification of functions: an (everywhere) injective function
	A classification of functions: a nowhere injective function
	A classification of functions: arbitrary functions
	Exemplifying three cases regarding information gain
	Observing the result of a group operation
	Information gain based on a parameter
	Inference control by dynamic monitoring of a process
	Inference control by static verification and modification of a program
	Sequential programs: main constructs
	Sequential programs: an example
	Goals of analysis
	Stepwise analysis: expressions and assignments
	Stepwise analysis: positive branch of guarded command
	Stepwise analysis: guarded command
	A classification of information flows
	Reachability or actual reaching of a command
	Implicit flows without any direct flows: example
	Implicit flows and the constantness problem: example
	Undecidability of information flows
	Static compiler-based verification
	Simplified version of a procedural language
	Informal semantics: flow diagrams for commands
	Policy specification for expressing permitted information flows
	A procedure declaration with static labels
	Enforcing the intention of the static labels
	Guidelines for verification rules
	Defining dynamic labels and generating control conditions: example
	Dynamic labels and control conditions
	Compiler-based verification: theorem
	Resetting and downgrading dynamic labels
	Decentralized label model: main emphasis
	Decentralized label model: outline
	Programming language Jif (Java Information Flow)
	Inference control for parallel programs
	Inference control for parallel programs: example
	Inference control for parallel programs: analysis of the example
	Inferences based on covert channels
	An never-ending list of possibilities
	Some countermeasures against detected covert channels
	Inference control for statistical information systems
	Summation as aggregate function: a functional model
	Summation as aggregate function: a refusal approach
	Summation as aggregate function: a refusal situation
	Summation as aggregate function: a circumvention procedure

	Part III Security Architecture
	9 Layered Design Including Certificates and Credentials
	Trust and trustworthiness
	Some aspects of an informational concept of trust
	Establishing reasonable trust reductions
	Trust reductions for control and monitoring
	Trust reductions for cryptography
	Layered design: a fictitious architecture
	Integrity and authenticity basis (trusted platform module)
	Integrity and authenticity basis: main functions of an instance
	Secure booting and add-on loading: important assumptions
	Basic booting and loading procedure
	Some extensions and variants
	Middleware: functional and security services
	Informational infrastructure and organizational environment
	Middleware: support by underlying layers and global infrastructure
	Middleware instantiation of control and monitoring
	ER models of fundamental relationship classes for permissions
	Programming languages: enforcing compile time features
	Programming languages: controlling runtime features
	Software engineering: helpful recommendations
	Distributed systems: real world and virtual view
	Hidden (real) world and a visible virtual view
	Certificates/credentials and property assignment
	Principals and entities
	Digital document (certificate/credential): important fields
	Characterizing properties: free and bound properties
	Characterizing properties
	Administrative properties
	Relationships and trust evaluations
	Evaluating trust: basic situation
	Evaluating trust recursively
	Model of trusted authorities and licensing: an instance
	Certificate types in the model of trusted authorities and licensing
	Model of owners and delegation: an instance
	Credential types in the model of owners and delegation
	Converting free properties into bound properties: an instance
	Firewalls
	Firewalls serving as LAN borderline and WAN server checkpoints
	Checkpoints handling packets according to ISO/OSI model
	Packet filter
	Proxy
	Generic example of a LAN borderline firewall

	10 Intrusion Detection and Reaction
	Ideals of control and monitoring
	Shortcomings in reality
	Some intricate difficulties
	Additional protection mechanisms
	Classifying behaviors or states
	Classification and monitoring task
	A simple model
	Basic components
	Learning, operation and measurement for a policy
	Effectiveness of an analysis component: four possibilities
	Signature-based approach: outline
	Signature-based approach: overly simplified case
	Analysis component: some more sophisticated features
	Signature-based approach: basic steps:
	Anomaly-based approach: outline
	Anomaly-based approach: basic steps
	Cooperation

	Part IV Cryptography
	11 Fundamentals of Cryptography
	Cryptography
	Cryptography
	Basic cryptographic blocks
	Encryption: functionality
	Encryption: correctness property
	Encryption: secrecy property
	Operational secrecy as indistinguishability
	Basic assumptions
	Relationship between the encryption key and the decryption key
	Symmetric encryption
	Asymmetric encryption
	Symmetric and asymmetric encryption mechanisms
	Authentication: basic approach
	Authentication: functionality
	Authentication: (weak) correctness property
	Authentication: unforgeability
	Basic assumptions
	Relationship between the test key and the authentication key
	Symmetric authentication
	Asymmetric authentication (digital signing)
	Symmetric and asymmetric authentication mechanisms
	Anonymization
	Sender anonymity
	Sender–receiver anonymity
	Anonymity by unlinkability
	Unlinkability and blind signatures
	A classification of pseudonyms
	Meanings of the notion of “participant” and their relationships
	Sufficient randomness
	Pseudorandom generator
	Guidelines for generating and employing pseudorandom sequences
	Goals of random input: examples
	One-way hash functions
	Application: representations with fixed short format
	Application: enforcing integrity (detection of modification)
	One-way hash functions: functionality and properties
	Weak collision-resistance property
	Strong collision-resistance property
	Timestamps
	Quality in terms of attacks
	A classification framework for attacks against encryption
	Cryptographic security

	12 Case Studies: PGP and Kerberos
	Pretty Good Privacy (PGP)
	Basic blocks
	Conceptual design of secure message transmission
	Secure message transmission: preparations
	Secure message transmission: encryption and finalization
	PGP parameters
	Key management
	Using a symmetric secret key for securing an asymmetric private key
	Using a symmetric secret key as a session key for the hybrid method
	Private key ring
	Public key ring
	Assessment of public keys
	Two basic relationships
	A derived relationship
	Participants, asymmetric keys, signatures and their relationships
	Kerberos
	Overall security achievements and trust
	Basic blocks
	Conceptual design: structures
	Structure of a Kerberos server
	Structures of a client and a functional server
	Names, identifiers, addresses and keys
	Kerberos server
	A client
	Rounds of the Kerberos protocol
	Messages between a client, a Kerberos server and a functional server
	Rough meanings of the six different Kerberos messages
	Simplified message 1.1
	Simplified message 1.2
	Ticket-granting ticket
	Simplified message 2.1
	Simplified message 2.2
	Functional-service ticket
	Simplified message 3.1
	Simplified message 3.2

	13 Symmetric Encryption
	Encryption mechanism: functionality
	Encryption mechanism: properties
	Classification
	Probability-theoretic secrecy property (one-time key approach)
	Complexity-theoretic secrecy property (one-way function approach)
	Empirical secrecy property (chaos approach/confusion and diffusion)
	One-time keys and perfect ciphers (Vernam)
	One-time keys: treating a single bit
	One-time keys: handling bit strings of length n
	One-time keys: underlying sets
	One-time keys: algorithms
	One-time keys: applications
	Stream ciphers with pseudorandom sequences (Vigenère)
	Vigenère: overall structure
	DES (Data Encryption Standard)
	Triple-DES
	DES: overall structure
	IDEA (International Data Encryption Algorithm)
	IDEA: overall structure
	AES–Rijndael (Advanced Encryption Standard)
	Encryption algorithm AES (k , x)
	Structure of the AES–Rijndael symmetric block cipher
	AES–step (1): bytewise substitutions
	Tabular representation of the substitution function
	Algebraic representation of the substitution function
	AES–step (2): permutations shifting positions within a row
	AES–step (3): transformations on columns
	AES–step (4): bitwise XOR operations with the round key
	AES: key expansion
	AES: decryption
	AES: efficiency
	Stream ciphers using block modes
	Two basic approaches to fragmentation
	Electronic Codebook (ECB) Mode
	Cipher Block Chaining (CBC) Mode
	CBC: correctness
	CBC: producing a message digest
	Cipher Feedback (CFB) Mode
	CFB: overall structure
	CFB: correctness
	CFB: producing a message digest
	Output Feedback (OFB) Mode
	Output Feedback (OFB) Mode: overview
	Counter-with-Cipher-Block-Chaining Mode (CCM)
	Features of block modes
	Rudimentary comparison of block modes
	Some rough advice to a security administrator

	14 Asymmetric Encryption and Digital Signatures with RSA
	Asymmetric encryption
	Complexity-theoretic secrecy property (one-way function approach)
	Family of one-way functions with trapdoors
	RSA functions
	Injectivity and trapdoor: theorem
	Injectivity and trapdoor: sketch of proof
	Subcase 2a
	Subcase 2b
	Factorization conjecture of computational number theory
	RSA conjecture
	RSA conjecture and further conjectures
	Some similar proven claims
	Conjectures and proven claims about feasible reducibility
	RSA asymmetric block cipher
	RSA encryption: protocol outline
	RSA encryption: underlying sets
	RSA: key generation Gen
	RSA: encryption algorithm Enc
	RSA: decryption algorithm Dec
	RSA: fundamental properties
	RSA: added nonce
	RSA: authenticated encryption
	Asymmetric authentication (digital signing)
	RSA asymmetric digital signatures
	RSA digital signatures: protocol outline
	RSA digital signatures: underlying sets
	RSA digital signatures: three algorithms
	RSA digital signatures: fundamental properties
	RSA encryption and digital signatures
	ElGamal asymmetric block cipher
	Asymmetric block ciphers based on elliptic curves
	Asymmetric authentication by ElGamal and elliptic curves

	15 Some Further Cryptographic Protocol
	Covert commitments
	Secret sharing
	Multiparty computations
	A trusted host with private input channels
	A semi-trusted host operating on ciphertexts
	Parties with protected local operations and message transmissions
	A combined correctness and secrecy property (with threshold t)

	Index (erstellt von Katharina Diekmann)

