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Security in Computing Systems
With Security in Computing Systems, Joachim Biskup introduces, surveys and assesses 
the fundamentals of security with respect to all activities that individuals or groups directly 
or indirectly perform by means of computers and computer networks.

He has organized his comprehensive overview on multilateral security into four cross- 
referencing parts: challenges and basic approaches; fundamentals of information flow and 
inference control; security mechanisms with an emphasis on control and monitoring on the 
one hand and on cryptography on the other; and implementations. Besides presenting  
informal surveys and introductions to these topics, the book carefully elaborates the 
fundamental ideas by at least partially explaining the required precise formalizations and 
outlining the achieved mathematical verifications. Moreover, the need to employ the various 
security enforcement methods in a well-coordinated way is emphasized and thoroughly 
exemplified, and this includes case studies on UNIX, Oracle/SQL, CORBA, Kerberos,  
SPKI/SDSI and PGP.

Overall, this monograph provides a broad and comprehensive description of computer  
security threats and countermeasures, ideal for graduate students or researchers in academia 
and industry who require an introduction to the state of the art in this field. In addition,  
it can be used as the basis for graduate courses on security issues in computing.
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Part I

Challenges and Basic Approaches



1   Interests, Requirements, Challenges, and Vulnerabilities
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A notion of security 
 

a computing system is secure 

iff 

it satisfies the intended purposes 
without violating relevant informational (or other) rights
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Basic security interests

• availability of data and activities

• confidentiality of information and actions

• integrity of the computing system

• authenticity of actors

• non-repudiation of their actions
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Fundamental aspects of security 

• security is a a comprehensive property 

• security design reflects the interests of participants

• conflicts must be balanced

• security requirements identify informational activities and their threats 

• security interests comprise
– availability 
– confidentiality 
– integrity 
– authenticity
– non-repudiation

• security mechanisms aim at
– preventing security violations
– limiting the damage caused by violations 
– compensating their consequences
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Security evaluation

• whether, or to what extent, 
do security mechanisms satisfy the security requirements?

• which assumptions are underlying the evaluation?

• which kind of trust is assigned to participants or system components?

• do the risks recognized justify 
the expenditure for the security mechanisms selected?
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Requirements by legislation: important examples

• privacy acts detailing the principles of informational self-determination
first declare a general and protecting forbiddance, 
and then allow the processing of personal data under specific conditions

• telecommunication and services acts 
enable the public and commercial exploitation of informational activities, and
lay foundations for legally binding transactions 
in public administration and private commerce

• intellectual property acts 
support and extend the traditional concept of 
authors’ (or their publishers’) copyright in texts or images 
to all kinds of electronic multimedia objects

• criminal acts 
identify definitely offending behavior within computing systems 
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Privacy and informational self-determination 

• an individual determines by himself 
which personal information he is willing to share with group members 
in a specific social role

• an individual selects his social roles under his own responsibility

• other agents respect the intended separation of roles, 
refraining from unauthorized information flows between different roles

Joachim Biskup

father: Torsten, Ulrike

husband: Barbara

taxpayer: revenue officer

patient: physicians

university professor

colleague: faculty staff 

lecturer: students

examinator: candidates
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Protection rules for personal data 

• based on permission: 
personal data should be processed only by permission, 
expressed in a law or with the explicit consent of the person concerned

• need-to-know: 
processing personal data should be restricted to actual needs, 
preferably by avoiding the collection of personal data at all or
by converting it into nonpersonal data by anonymization

• collected from the source: 
personal data should be collected from the person concerned

• bound to original purpose: 
personal data should be processed only for the well-defined purpose 
for which it was originally collected
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• subject to inspection:
a person concerned should be informed about the kind of processing 
that employs his personal data

• under ongoing control:
“wrong” personal data should be corrected; 
“no longer needed” personal data should be deleted

• with active support: 
agents processing personal data are obliged to actively pursue 
the privacy of the persons concerned
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Requirements by security evaluation criteria

• Trusted Computer System Evaluation Criteria (TCSEC), 
known as the Orange Book, 
issued by the US Department of Defense

• Information Technology Security Evaluation Criteria (ITSEC), 
jointly published by some European countries 

• Common Criteria for Information Technology Security Evaluation (CC), 
a version of which has also become an ISO standard 
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Common Criteria: security functionality
• Audit, as the basis of monitoring and analyzing the behavior of participants

• Communication, with an emphasis on providing evidence 
for sending and receiving of messages

• User Data Protection, with an emphasis on enforcing 
availability, integrity and confidentiality of the users’ objects

• Identification and Authentication, for enforcing 
authenticity with non-repudiation and accountability

• Privacy, including 
non-observability, anonymity, pseudonymity and unlinkability

• Protection of the Trusted Security Functions, which deals with the installation,
administration and operation of security mechanisms, i.e., 
how security mechanisms are securely protected in turn

• Resource Utilization, including fault tolerance, priorization and scheduling

• Target of Evaluation Access, including log-in procedures

• Trusted Path/Channel, dealing with the physical link between 
a (human) participant and the (processor of the) technical device employed
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Common Criteria: evaluation assurance levels 

• EAL1: functionally tested 

• EAL2: structurally tested

• EAL3: methodically tested and checked 

• EAL4: methodically designed, tested and reviewed 

• EAL5: semiformally designed and tested 

• EAL6: semiformally verified design and tested

• EAL7: formally verified design and tested
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Common Criteria: top-level assurance classes 

• Configuration Management
 

• Delivery and Operation
 

• Development
 

• Guidance Documents

• Life Cycle Support
 

• Tests

• Vulnerabilities 

for each of the subclasses of the assurance classes, 
appropriate assurance levels are required
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A practical checklist for evaluations

• a comprehensive view of the circumstances 

• answers to the following questions:
– on what other components, in what layers, is the system based?
– in what environment is the system embedded?
– in what institution or company is the system used?

communication

hardware 

system under evaluation 

supporting layers

supported layers

institution/company_1
   institution/company_2

environment � information society

     network 
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Issues for the actual version, configuration and circumstances
• security policy: 

are the security requirements explicitly expressed?

• authorization: 
is every access (execution of an operation by a subject on an object),
preceded by an explicit permission 
(granting a corresponding access right/a suitable cryptographic key)? 

• control: 
is such a permission controlled before execution, 
(by checking access rights/by the need for a suitable cryptographic key)?

• authenticity: 
is the authenticity of all items checked before the execution?

• monitoring: 
can intrusions be detected, though potentially only afterwards, and 
can any resulting damage be limited or compensated?

• total overage: 
do the security mechanisms cover all accesses and messages?
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Construction principles
• open design: 

the design and the actual implementation of security mechanisms 
may or even must be made public (“no security by obscurity”) 

• fail-safe defaults:
any informational activity within a computing system is forbidden 
unless it has been explicitly permitted

• fine granularity:
elementary, independent activity classes are defined as units of control 

• need-to-know/need-to-act: 
permissions are granted only if they are strictly needed 

• complete mediation:
permissions are granted to well-defined single activity executions

• economy of mechanisms: 
the main burden of security enforcement is put on technical mechanisms 

• complexity reduction: 
the security mechanisms are appropriately concentrated 
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Message transmission: a basic abstraction for challenges 

• captured by an assignment statement of the form R:=S 

• the content m of the memory part denoted by S 
is transmitted to the memory part denoted by R

• S writes into R, or 
R reads from S, or 
some mechanism pushes the transmission

  Sender S                                                                                  Receiver R

m

meaningful message
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Transmission control in distributed computing systems: example

sender::send_data(receiver,message)

receiver::receive_data(sender,message)

.

Sender S Receiver R

(S,R,m)

send_data receive_data. . . . . . . . . . . .

message: m

receiver: R sender: S

message:  m
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Information flow
• a transmitted message, 

seen as a string (of letters and, ultimately, of 0’s and 1’s), 
is not necessarily meaningful concerning content 
for a receiver or any other observer

• it may happen and can even be sensible that 
an observed string appears random and without information: 

from the point of view of the observer, 
the message transmission has not caused an information flow

• in other cases, an observer succeeds in 
assigning a meaning to the observed string, 
roughly in the following sense: 

he determines an assertion 
expressing the truth of some aspect of his considerations; 
if, additionally, the observer has newly learnt this truth, 
then the message transmission has caused 
an information flow from the observer’s point of view
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Information flow based on message transmission 
1. observing a message: consider a string m

2.   assigning meaning: determine a sentence Δm

3.   expressing knowledge: form presupposition Π as a collection of sentences
testing novelty: infer whether Π implies Δm

updating the knowledge: if novel (not implied), add Δm to Π and reorganize,

4.   resulting in Πnew . 

 Sender S Receiver R

m

 observing message: m. . . . . .

assigning
meaning:   �m

knowledge:      �       /   �new

      message as string

testing
novelty

updating
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Information flow and message transmission

• a message transmission does not necessarily cause 
an information flow for any observer

• sometimes an observer has to infer implications 
in order to let a message transmission appear 
as an information flow from his point of view

• for such an inference, the observer can exploit a priori knowledge 
such as a previously acquired key

• for an actual inference, 
the observer needs appropriate computational means
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Inspection and exception handling: basic approach

• a message transmission can be accidently disturbed or deliberately distorted,
with the effect that the receiver observes a modified or even forged message

• as a provision against such unfortunate events, 
senders generate redundancy in the form of auxiliary objects, in particular:
– additional (check) bits for encoding
– copies for fault-tolerant computing
– cryptographic exhibits for authentication

• participants agree on protocols to exploit the redundancy, in particular:
– to detect and correct errors for decoding
– to detect and recover from faults for fault-tolerant computing
– to detect forgeries for authenticity verification
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Inspection and exception handling: summary 

   Sender S  Receiver R

select_encode(tolerant(m,Aut(akS,m),...),...)

. . . . . .

return messages

. . . . . .

encoding

preparing for faults

authenticating

message: m

decoding

recovering from faults

verifying authenticity

message: m

        receive        send       send     receive

with error correction with check bits
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Security interests reconsidered 
in terms of message transmission/information flow

• each participant should express his interests 
with respect to the service considered
(here: message transmission /information flow)

• some interests mainly expect reliable correctness, i.e., 
correct execution of the specified service even in the presence of threats, 
and maybe also additional evidence for actual executions 

• other interests mainly require confinement, i.e., 
that nobody can misuse the service for unwanted effects 
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Threats: originators and causes
originators
• the interest holder himself

• participants directly involved in the service

• participants who have implemented the service

• other participants who are authorized to share the computing system

• intruders from outside

• manufacturers, vendors and administrators

originators might threat the service 
• harmlessly and accidently

• maliciously and deliberately

causes might range from
• improper requirements, through

• faulty implementations or

• wrong administration, to

• unfortunate external events
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Security interests: an expanded list
• availability

• integrity: correct content

• integrity: unmodified state

• integrity: detection of modification

• authenticity

• non-repudiation

• confidentiality

• non-observability

• anonymity

• accountability

• evidence

• integrity: temporal correctness

• separation of roles

• covert obligations

• fair exchange

• monitoring and eavesdropping
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Integrity: unmodified state 

Sender S Receiver R

m / m� (S,R,m�)

(S,R,m)

message:  m message: m
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Authenticity 

Sender S Receiver R

(S,R,m)(S,,)

(S,,)other
participants
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Confidentiality
. 

Sender S Receiver R

(S,R,m)

other
participants
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Interest Autonomy Cooperation

availability �,+ +,�

integrity: correct content � �

integrity: unmodified state � �

integrity: detection of modification + �

authenticity + �

non-repudiation �,+ +

confidentiality + �

non-observability + �

anonymity + �

accountability �,� +

evidence �,+ +

integrity: temporal correctness + �

separation of roles + �

covert obligations + �

fair exchange + �

monitoring and eavesdropping � +

Autonomy and cooperation: a classification of security interests 
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Trust and threats

• while interacting, one participant might see another one 
both as a wanted partner 
and as a potentially threatening opponent

• at least some limited trust has to be assigned to some participants involved

• components of a computing system might fail, 
but a user has to trust at least some components
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Crucial points of multilateral security 

• the trust needed should be minimized 
while simultaneously maximizing the achievable functionality, 
thereby facing the potential threat from the untrusted parts

• each participant should autonomously assign trust at their own discretion

• as far as possible, 
assigned trust should be justified, and 

the assigning participant should have the power 
to verify the trustworthiness and 
to control the actual behavior of the trusted realm
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Confident and optimistic approach

the administrator chooses relatively weak security mechanisms, 
roughly expecting the following: 

at relatively low cost, 

only slightly affecting the standard operations,

most of the anticipated threats are effectively covered, 

but exceptional violations (hopefully rare) might still be possible; 

such violations will, hopefully, manageable or acceptable, 

though potentially at high cost
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Provisional and pessimistic approach 

the administrator selects relatively strong security mechanisms, 
roughly expecting the following: 

at relatively high cost, 

greatly affecting the standard operations, 

all anticipated threats are effectively covered
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Optimistic approach versus pessimistic approach

• cheap versus expensive

• basically unaffected standard operations versus an essential security overhead

• approximate versus complete coverage of threats

• toleration versus strict avoidance of exceptional violations

example: access control
optimistic: we audit all activities and, 

taking random samples or in cases of suspicion, 
analyze the audit trail for violations only afterwards

pessimistic: we fully control all requests for activities and 
decide them in advance

example: trading
optimistic: cooperating participants issue exhibits by themselves, 

which are subject to later evaluation by a trusted third party 
only in the case of disputes

pessimistic: every trade is mediated and supervised by a trusted notary
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Computing system: layered design 

switches assembler 
language 

command 
language 

data 
definition/ 
manipulation 
language 

application 
language 

��higher�� 
programming 
language 

information system programming 

application 
system 

operating system: administration of processes, memory,

assembler: translation of symbolic addresses, mnemonics, macros 

(real) physical device(s) 

 

processor (main) memory: externals:
programs (for screen, 

keyboard, mouse,
disk memory, 
scanner,
network controller 
... 

network connection 

transfer 

control: 

system 

instruction 
interpreter 

arithmetic 

and 
machine 
languages 

virtual machines 
and applications),
runtime data,
application data 

files (programs), input/output devices, network 

and logic 
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Internal structure of a processor and its memory 

 

   data base

program base

arithmetic logic unit 

 address bus

instruction 

 accu-

instruction register 

  address 

    

program 

memory addresses 
cells

 buffer

(instruction and) data bus 

mulator register

interpreter

counter   register 
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Features of computing and basic vulnerabilities: overview 

processor memory externals 

operating/network system

application system

interface 
device

personal 
device

overall

universality, no data-program

rewritable

virtuality

multi-user functionality,
 
 

user-to-devicehardware

no personalization 

no identity

�real world� meaning

processor memory externals 

operating/network system

application system

processor memory externals 

operating/network system

application system

personal 
device

processor memory externals 

operating/network system

application system

interface 
device

local area network

local area network

processor memory externals 

operating/network system

application system

wide area network

limited control
 

indistinguishable

not expressed
abstract semantics

access pathmemory complexity

complexity

parallel processes,
virtual memory 

over remote sites 

remote behavior

distinctionprogram-storing

processor memory externals 

operating/network system

application system

processor memory externals 

operating/network system

application system
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Features of computing and basic vulnerabilities: one component 
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Features of computing and basic vulnerabilities: networks 
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Features and vulnerabilities
virtuality “virtual security” corrupted or 

circumvented in supporting layers

overall complexity no global, complete understanding;
unexpected interferences

universality, program-storing imposed (malicious) “computable will”

processors without identity masquerades

devices without personalization masquerades, repudiated human–device binding

no data–program distinction program (self-)modification 
(buffer overflow attacks)

rewritable memory program and data modification

hardware complexity hidden functionality, covert channels

user-to-device access path exposed attack target 

multi-user functionality, parallel processes 
and virtual memory

unintended interferences by resource sharing 

abstract semantics of virtual layers incorrect translation, 
non-captured but security-relevant aspects

“real-world” meaning not expressed unperceived attack possibilities

seemingly restricted functionality universality by simulation

(identifiable) virtual digital objects 
represented by bit string

unauthorized copying 
(double spending of coins)

limited control over remote sites remote activities only derivable by inferences

indistinguishable remote behavior eavesdropping, 
message manipulation and forgery, 
(malicious) message production
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2   Key Ideas and Combined Techniques
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Key ideas for technical security enforcement mechanisms

• redundancy 
enables one 
to infer needed information, 
to detect failures and attacks and 
to recover from such unfortunate events

• isolation 
prevents unwanted information flows or interference

• indistinguishability 
makes maliciously planned observations 
appear random or uniformly expected 
and thus useless
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Redundancy: important examples

• spare equipment and emergency power

• recovery copies for data and programs

• deposit of secrets

• switching networks with multiple connections

• fault-tolerant protocols:
– infer a hidden original state from observations and auxiliary redundancy 

and reconstruct it accordingly 
– abort a failing operation and restart it 

from a saved or reconstructed previous state, 
or even to redo a completed operation 

– take a majority vote regarding the actual outputs of computations 
performed independently and in parallel

• error-detecting and error-correcting codes

• cryptographic pieces of evidence
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Isolation

• physical/programming-based isolations 
requiring explicit access decisions at runtime, 
in order to enable the restricted usage of the isolated components 
according to declared permissions

• virtual cryptographic isolations 
employing more implicit access decisions 
based on the distribution of secret keys
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund    Security in Computing Systems: Key Ideas and Combined Techniques - 07. 04. 2011 46



Physical/programming-based isolations: a global view  
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Physical/programming-based isolations: a local view  
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Spatial separation and entrance control

• spatially separate an autonomously operated, stand-alone computing system 
in a dedicated closed room with locked doors (and windows) 

• operate an effective entrance control 
enabling only authorized individuals to enter and 
then to (unrestrictedly) use the system 

• may suffer from serious threats: 
– authorized individuals might not match the interests, 

owing to organizational weaknesses or unresolved conflicts

– two or more authorized individuals might (unrestrictedly) 
interfere and collaborate

– an (unrestrictedly) authorized individual might 
misuse the trust for unexpected and unwanted goals

– the entrance control might fail, and some 
unauthorized individual might then (unrestrictedly) exploit the system
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Temporal separation and isolated memory

• several participants can share a computing system
either strictly in sequence or overlapping in time

• the participants might then interfere, 
when the processes executed on behalf of them access common memory 

• if sharing is done strictly in sequence, after finishing a job, 
completely erase all memory contents,
i.e., reestablish an agreed normal state, 
maintained as an invariant of any usage of the computing system

• if sharing is done so that there is overlapping in time, 
adapt the notion of a normal state and take additional measures:
– ensure that the allocated process spaces 

(containing programs to be executed, runtime stacks, heaps, etc.) 
always remain strictly isolated:
one process can never access memory locations 
currently reserved for a different process

– ground these measures on physical tamper-resistant mechanisms
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Memory protection and privileged instructions

• memory protection physically restrict memory accesses with respect to
– addresses and 
– the mode of the operation requested 

• ensured behavior of the processor’s instruction interpreter: 
if the next instruction must be fetched from a memory location address or 
a machine instruction of the kind instr = [  operation  ,   address  ] is considered,

 then the request is actually executed 
iff 
a specific protection condition is satisfied 

 

• a protection condition might depend on 
– the process, 
– the activity requested and 
– the address referred to
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Basis register and bound register  
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Memory tags 
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Tags as usage classes: examples

• read access to an executable instruction 
(fetching into the instruction register) 
by any user process or by special operating system processes

• read access to arbitrary data 
(loading into a data register) 
by any user process or by special operating system processes

• write access with arbitrary data 
(storing from a data register) 
by any user process or by special operating system processes

• read access to data of a specific type 
(e.g., integer, string, address or pointer), 
which has to be suitably recognized by the context or other means

• write access with data of a specific type 
(e.g., integer, string, address or pointer), 
which has to be suitably recognized by the context or other means.
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Basis register and bound register versus memory tags 

Basis register and 
bound register Memory tags

Extra memory 2 registers linear in the size of memory

Operational 
overhead

assigning the registers;
calculating and comparing addresses 
during memory accesses

assigning the memory tags;
checking conformance 
during memory accesses

Abstraction layer 
of separated items

dynamically allocated 
address spaces

instances of types
known to the processor

Granularity more coarse 
(according to the memory requirements 
of dynamically generated, active items)

more fine
(according to the size of instances of 
static types)

Protection goal
primarily achieved

isolation of active items
for avoiding unintended 
sharing of memory

isolation of instances of types 
for avoiding unintended usage

Coordination
with higher layers

relative addressing, 
as usually employed

mapping of more application-oriented 
types to usage classes denoted by tags

Deployment widespread, 
mostly together with other mechanisms 
of indirect addressing

seldom, 
mostly only in a simple variation
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Privileged instructions 
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Further isolation mechanisms

• separate process spaces

• object-oriented encapsulation 

• security kernels 

• stand-alone systems

• separate transmission lines

• security services in middleware 

• firewalls 

• cryptographic isolation
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Indistinguishability

• blurs specific informational activities 
by making them indistinguishable from random or uniformly expected events

• thus prevents an unauthorized observer to infer 
the details or even the occurrence of a specific activity

• might be achieved by employing 
– randomness or 
– standardized behavior
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Indistinguishability by randomness

some explicit randomness is generated, 

and then the specific activity considered 
has this randomness superimposed on it 

such that the activity appears (sufficiently) random itself 

used in cryptography: the secret key is randomly selected 
from a very large number of possibilities, 

and the randomness of the secret key is transformed 
into (some sufficient degree of  ) randomness 
of the activity to be protected 
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Example for superimposing randomness: encryption
• two possible plaintexts: 0 with probability q

1 with probability 1 – q  

• source of randomness: two equally distributed keys, 0 and 1,
 with probability 1/2, independently of the plaintext

• the randomness of the keys is then superimposed on the plaintexts:
 

=

= =  

0

1

 plaintexts x with probabilities ciphertexts y 

random keys k with equal distribution 

“loss” ≅ 0

“win” ≅ 1

0 with p0=1/2

1 with p1=1/2

1 with p1=1/2

0 with p0=1/2

with q

with (1– q)

 

Prob y 0=[ ] Prob x 0=[ ] Prob k 0=[ ]⋅ Prob x 1=[ ] Prob k 1=[ ]⋅+

q 1 q–( )+( ) 1
2
---⋅ 1

2
---
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Encryption: indistinguishability of plaintexts

described in terms of a mental experiment: 

• attempt: construct an efficient accepting device 
that discriminates (hidden) plaintexts 
on the basis of observing (visible) ciphertexts

• insight: such a device cannot exist: 
an observed ciphertext does not contain 
any information about the underlying plaintext, 

thus this plaintext and the alternative one 
remain completely indistinguishable
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Example for superimposing randomness: authentication 

• two possible objects, 0 and 1

• source of randomness: four equally distributed keys, 00, 01, 10 and 11, 
each of which is used with probability 1/4, 
independently of the object 

• the randomness of the keys is then superimposed on the objects: 

0

1

 objects x exhibits y 

random keys k with equal distribution 

“loss” ≅ 0

“win” ≅ 1

00 with p00= 1/4

01 with p01 = 1/4

11 with p11 = 1/4

 

11 with p11 = 1/4

10 with p10 = 1/4

10 with p10 = 1/4

00 with p00 = 1/4

01 with p01 = 1/4
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Authentication: indistinguishability of exhibits 

• suppose the exhibit 0 for the event “loss” is known

• then, either key 00 or key 11 has been secretly used: 

these keys still map the event “win” onto either exhibit, 0 or 1,
 

which are thus indistinguishable 
regarding their acceptance on the basis of the pertinent secret key  
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Indistinguishability by standardized behavior

a suitably designed standardized behavior, 
possibly consisting just of dummy activities, is foreseeably produced, 

and then the specific activity considered is hidden 
among the foreseeable behavior, 
for instance by replacing one of the dummy activities 
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Hiding among standardized behavior: examples
• non-observable activities

hiding the points in time of sending a message 
 by pretending to be uniformly active:
 – participant actually communicate with some partner:

prepares a corresponding document, 
appropriately adds the final destination of the communication,
pads the document with some additional material until it has the expected length, 
envelops all data, 
waits for the next agreed point in time, and
then sends the final message to the intermediate address used as a postbox

– participant wants no “real activity”: 
just sends a dummy message of the expected length 

• brokers and blackboards
employing a sort of fixed intermediate postbox to hide 
the sources and the final destinations of communications 

• group activities
authorizing group members to act on behalf of the community 
but without revealing the actor’s identity to observers outside the group
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Combined techniques: overview

• control and monitoring: 
identifiable agents can have access rights granted and revoked, and 
access requests of authenticated agents are intercepted by control components

 that decide on allowing or denying an actual access

• cryptography: 
secrets are generated and kept by agents: 
the secrets are exploited as cryptographic keys, 
distinguishing the key holder so that 
that agent is enabled to execute a specific operation in a meaningful way, 
in contrast to all other agents

• certificates and credentials:
digitally signed digital documents (digital legitimations), 
conceptually bind properties that are relevant for access decisions 
to specific agents, which are denoted only by public keys

 

(here, a public key is understood as a suitable reference to 
a private (secret) cryptographic key held by the agent considered)
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Participants and objects involved

• a human individual

• a (physical) personal computing device

• a (physical) interface device

• a physical computing device 
(with a processor as its main component, 
and running an operating system and other system software)

• a process

• an operating system kernel 

• a (physical) storage device

• a (virtual application) object
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Local identifiers: participants and their local connections  
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The fiction of an overall “connection”

conceptual perception:
an individual is permitted (or prohibited) to perform an action on an object

actual requirement:
the “natural identity” of a human individual 
must be appropriately reflected along the chain of local connections, 
ensuring that the messages involved are directed as expected, in particular: 

• between the human individual and the interface device: 
either directly or with the help of a secure personal computing device

• between the interface device and the physical computing device: 
a secure physical access path

• between one process and another local process: 
secure process communication

• between a process and the local storage: 
a secure operating system kernel
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Global identifiers: virtual end-to-end connections
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Provisions for authentication and proof of authenticity
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Peculiarities of human individuals: examples
• individual knowledge: 

– password, passphrase
– PIN (personal identification number) 
– personal data
– historic data 
– (discretionarily selected) cryptographic key 
– random number (nonce)

• physical possession:
– smartcard 
– personal(ized) computing device

• biological characteristics (biometrics ):
– fingerprints 
– eye pattern,
– genetic code
– speech sound

• individual (reproducible ) behavior: 
– pattern of keyboard striking
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Peculiarities of physical devices: examples

• tamper-resistant, physically implanted serial number

• tamper-resistant, physically implanted cryptographic key

• discretionarily selected cryptographic key

• random number
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Properties of verification data: informal version 

• (strong) correctness:
an exhibit presented is accepted
iff
it is authentic for the claimed identifier

• (extended) unforgeability:
knowing the verification data alone 
should not enable one to produce any matching exhibits
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Some contributions of cryptography 

• by applying encryption, 
any verification data can be persistently stored in encrypted form, 
such that only the recognizing system can exploit the verification data

• by applying asymmetric cryptographic authentication, 
a participant’s given peculiarity can be made 
to consist of a private (secret) authentication or signature key, 
and the corresponding public test key serves as the verification data

• by applying a collision-resistant one-way hash function, 
a (digital encoding of any) peculiarity is mapped to a hash value 
serving as stored verification data;
later on, the peculiarity can be shown as an exhibit, 
whose hash value is recomputed and compared with the stored value
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Issue of authentic verification data: trusted authorities  

peculiarity verification data 

participant recognizer

trusted authority 
show/prove peculiarity certify verification data
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Issue of freshness: challenge–response procedures

participant recognizer

request (with identifier)

challenge (with nonce)

response (with exhibits for receipt)
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Issue of malicious redirection by man-in-the-middle

sensitive data 

participant participant
assumed connection

redirected connection

man-in-the-middle “impersonated connection”
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Issue of malicious guessing or probing: carefully chosen exhibits 

syntactically possible items
“semantically likely” items

attacker’s
dictionaryselected item
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Permissions and prohibitions: the need for a layered approach

• participants by themselves, or 
some distinguished participants acting on behalf of the others, 
specify and declare the wanted permissions and prohibitions

• declarations are then (hopefully) appropriately represented 
by the means of the computing system and inside it

• representations are (hopefully) efficiently managed there, 
both for decisions on actual requests for an operational option and for updates

 

• decisions are effectively enforced, i.e., 
(hopefully) exactly those requests are successfully executed 
that have been declared permitted, and, 
accordingly, none of those that have been declared prohibited
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Specification of permissions and prohibitions: some guidelines

• alignment with the environment

• least privileges according to need-to-know or need-to-act

• separation of roles

• purpose binding

• separation of privileges
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund    Security in Computing Systems: Key Ideas and Combined Techniques - 07. 04. 2011 86



Requirements and mechanisms reconsidered 
security interests: 
• availability: requested data/action returned/executed in a timely manner

• integrity: an item’s state unmodified, or its modification detectable

• authenticity: claimed origin of data or action recognized as correct

• non-repudiation: correct origin of data or action provable to third parties

• confidentiality: information kept secret from unauthorized participants

• non-observability and anonymity: activities kept secret

• accountability: activities traceable to correct origin

key ideas for security mechanisms: 
• redundancy: adding additional data or resources 

to enable needed inferences, detect failures and attacks, 
or recover from them

• isolation: separating items 
to disable information flows and interferences

• indistinguishability: hiding data or activities by letting them appear to be
 random samples of a large collection or uniformly expected
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Combined techniques reconsidered 
 

• local control and monitoring: 
 – identity-based 

– identification and proof of authenticity 
– permissions as access rights
– control of intercepted requests and results
– monitoring of overall behavior

• cryptography: 
– secret-based 
– encryption, (cryptographic) authentication including digital signatures, 

anonymization, randomness, one-way hash functions, timestamps 
– more advanced protocols built from these blocks

• certificates and credentials: 
– property-based 
– features of local control and monitoring applied to requests 

that are accompanied by digitally signed assignments
of security-relevant properties 
to public keys
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Interests and enforcing mechanisms: summary (part 1) 

Interest Redundancy Isolation Indistinguisha-
bility

Control and 
monitoring Cryptography Certificates and

credentials

Availability provisionally multi-
plying (sub)objects or 
generating auxiliary 
objects to reconstruct 
lost or corrupted 
objects

attributing distin-
guishing identifiers 
or characterizing 
properties

confining threatening 
operations in the 
context of integrity

granting access rights 
for enabling permitted 
operations (and confin-
ing them as far as they 
are threatening)

detecting and recon-
structing losses and 
corruptions while inter-
cepting requests and 
results

generating and dis-
tributing secrets 
(keys) for enabling 
permitted operations

issuing documents 
about properties for 
enabling permitted 
operations (and con-
fining them as far as 
they are threatening)

Integrity provisionally generat-
ing auxiliary objects to 
detect modifications

confining operations 
on objects to dedi-
cated purposes

generating distin-
guishing secrets

making exhibits 
appear randomly 
selected for prevent-
ing forgeries

specifying prohibitions 
for rejecting or confin-
ing threatening opera-
tions

detecting unwanted 
modifications of 
objects

specifying prohibi-
tions for rejecting or 
confining threatening 
operations

Authenticity adding exhibits 
derived from a distin-
guishing secret

attributing distin-
guishing identifiers 

generating distin-
guishing secrets

making exhibits 
appear randomly 
selected for prevent-
ing forgeries

recognizing a requestor 
by identification and 
proof of authenticity

recognizing a 
requestor or actor by 
verifying crypto-
graphic exhibits

challenging a 
requestor and verify-
ing cryptographic 
exhibits in responses
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Interests and enforcing mechanisms: summary (part 2) 

Interest Redundancy Isolation Indistinguisha-
bility

Control and
monitoring Cryptography Certificates and

credentials

Non-
repudiation

adding cryptographic 
exhibits in the form of 
digital signatures 
derived from a distin-
guishing secret

generating distin-
guishing secrets

making exhibits 
appear randomly 
selected for prevent-
ing forgeries

proving an actor 
responsible by veri-
fying cryptographic 
exhibits in the form 
of digital signatures

assigning provable 
responsibility to issu-
ers of documents by 
verifying crypto-
graphic exhibits in the 
form of digital signa-
tures

Confidentiality

confining operations 
on objects to dedi-
cated purposes

making data appear 
randomly selected 
from a large collec-
tion of possibilities

specifying prohibitions 
for rejecting or confin-
ing threatening opera-
tions

prohibiting gain of 
information by 
encrypting data 

specifying prohibi-
tions for rejecting or 
confining threatening 
operations

Non-
observability/
anonymity

hiding activities in a 
large collection of 
possibilities

untraceably mediating 
requests and results 

superimposing ran-
domness

issuing documents 
about properties 
referring to public 
keys (rather than 
identities)

Accountability
adding cryptographic 
exhibits in the form of 
digital signatures or 
similar means derived 
from a distinguishing 
secret

attributing distin-
guishing identities

generating distin-
guishing secrets

logging and analyzing 
intercepted requests 
and results 

proving an actor 
responsible by veri-
fying cryptographic 
exhibits in the form 
of digital signatures 
or similar means

logging and analyzing 
intercepted requests 
and results
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Part II

Control and Monitoring



3   Fundamentals of Control and Monitoring
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Control and monitoring 
• identifiable agents can have access rights granted and revoked

• access requests of authenticated agents are intercepted by control components

• control components decide on allowing or denying an actual access 
 id

en
tit

y 
  identification 

and  

  proof of   
 authenticity 

  knowledge base

 access decision
and

  result inspection  

knowledge base

(modified) result

(modified)

result

� change    

� trigger further  
requests   

� generate and 
return result    

participating subjects   controlled objects
     

 identifier 
    with evidence    

  request for object   
or   

    update request for     
   knowledge bases    

...
...

...
...

...

on
  permissions and prohibitions 

monitoring

on 
usage history

request    

 and    
monitoring     

(might also be objects)   

internal state  

  (might also be subjects)
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Essential parts

• declaration of permissions and prohibitions

• control operations

• isolation, interception and mediation of messages

• proof of authenticity

• access decisions

• monitoring
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Declarations: subjects, objects and kinds of access

• conceptualize and denote the subjects: carriers of permissions and prohibitions

• where appropriate, treat collectives of subjects in a uniform way

• conceptualize and denote the objects: targets of permissions and prohibitions

• where appropriate, collect objects into
classes, domains or related aggregates for uniform treatment

• conceptualize and denote the kinds of access offered: 
from generic reading and writing 
to application-specific methods

• where appropriate, abstract from concrete accesses and 
instead refer to their (operational ) modes
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Declarations: expressive means 

• a permission or a prohibition can be directly expressed 
by explicitly naming the respective subject, object and operational mode

• preferably, the needed items are expressed in a more indirect way, 
employing a wide range of techniques of computer science 
(programming languages, knowledge engineering, ... ):

• in particular, syntactic means for
– collectives of subjects (e.g., hierarchies), 
– aggregates of objects (e.g., complex compositions) 
– modes of access (e.g., further method invocations) 
must be suitably handled at the semantic level 

• in general, techniques for deriving 
implicit properties of the items considered from explicit properties 
might be exploited
(e.g., inheritance rules, first-order logic reasoning, ... )
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund    Security in Computing Systems: Fundamentals of Control and Monitoring - 07. 4. 2011 96



Declarations: positive, negative and mixed approach

• positive approach:
only explicit permissions expressible,
and, by default, prohibitions defined as the absence of a permission

• negative approach:
only explicit prohibitions expressible,
and, by default, permissions defined as the absence of a prohibition

• mixed approach:
both explicit permissions and explicit prohibitions expressible, 
with a need for the resolution of conflicts and for completions
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Required completeness property for declarations

for any request 

of a subject s 

to access an object o 

in an operational mode m, 

the declared permissions and prohibitions entail 

a unique and definite access decision
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Control operations

• first level: 
permissions and prohibitions for the functionality of a system, i.e., for
functional operations

• second level: 
permissions and prohibitions for the control operations 
that manipulate the first-level functional permissions and prohibitions, 
including granting and revoking of functional permissions and prohibitions;

more advanced control operations deal with, e.g., 
transferring or delegating permissions and prohibitions 
to declare functional permissions and prohibitions

• further levels:
possible, but rarely employed
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Grantors and owners

• need to define which subjects may grant permissions and prohibitions 
– initially
– by means of some special qualifications

• example:
a (nearly) omnipotent administrator, 
known as root or superuser, is permitted

– to manage any kind of permissions and prohibitions

– to assign each subject that generates a new object 
the ownership of the creation, coupled with the permission 
to manage the permissions and prohibitions for that creation
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Control states

• the granting of permissions should be done with great care

• an administrator or owner planning some control operations has to
analyze the potential consequences regarding 
which subjects can eventually acquire which permissions

• more generally, for any control state resulting from control operations, 
such an analysis should be performed 
(unfortunately, in general computationally infeasible or even impossible)
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Required analysis property for control operations

for any control state resulting from control operations, 

the analysis problem regarding 

which subjects can eventually acquire which permissions 

should be computationally feasible 

or at least admit a computational approximation
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Isolation, interception and mediation of messages

• effective enforcement of declared permissions and prohibitions 
relies on an appropriate system architecture: 
– it strictly isolates subjects from objects
– it considers that some entity might act both as a subject and as an object 

• a subject should not be able to directly access any object 

• a subject can send a message containing an access request 
that will be intercepted by a separating control and monitoring component

• the control and monitoring component mediates the request, 
basically in three steps: 
– identification and proof of authenticity
– access decision and forwarding
– further monitoring
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Required complete mediation property

each request of a subject 

to access an object 

is intercepted and mediated 

by a control and monitoring component
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Proof of authenticity

• declared permissions and prohibitions refer to well-conceptualized subjects

• the control and monitoring component must relate 
the sender of any request message, an actual requestor, to a pertinent subject

• given a request message, 
the control and monitoring component must recognize the requestor 
as one of the conceptualized subjects, 
being aware of the possibility of a maliciously cheating agent 

• the requesting agent must provide some further evidence regarding itself; 
the control and monitoring component can then base a proof of authenticity on
– the freshly communicated evidence
– suitably maintained permanent verification data
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Required authenticity property

any mediation of an access request 

is based on a proof of authenticity 

of the requestor and, 

as far as needed, 

of the target object as well
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Access decisions

• once a requestor has been recognized as a conceptualized subject, 
the control and monitoring component takes an access decision 
by evaluating the request with respect to 
the previously declared permissions and prohibitions

• the declarations constitute a knowledge base on permissions and prohibitions, 
from which the access decision is derived as a logical consequence 

• such derivations might vary 
from simple lookup procedures to highly sophisticated reasoning 

• such reasoning might additionally consider 
the dynamic evolution of the controlled system, 
as conceptually represented by a knowledge base on the usage history

• such a knowledge base must be appropriately maintained 
by logging all relevant events
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund    Security in Computing Systems: Fundamentals of Control and Monitoring - 07. 4. 2011 107



Requirement for architecture of control

the control and monitoring component 

maintains suitably isolated knowledge bases 

on permissions and prohibitions and 

on the usage history
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Monitoring: inspecting results

• an accepted and forwarded request might produce some results 
that should be inspected afterwards 

• if the results are to be returned to the original requestor: 
the inspection might retain all or some parts of them:
– totally block the forwarding to the requestor, or 
– suitably modify the results before forwarding 

• if an internal state of an accessed object might have been changed or
further requests to other objects might have been triggered: 

the options for undoing such effects depend strongly 
on additional mechanisms such as transactions, seen as 
atomic actions that can be finally either completely committed or aborted

• in case of an abort, the effect should be (largely) indistinguishable 
from the situation where the access has not occurred at all
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Monitoring: auditing and intrusion detection

• complementary to access decisions and result inspection, 
the control and monitoring component can analyze 
all messages and possibly further audit data 
regarding an intrusion defense policy

• such a policy assists in classifying the activities actually occurring as 
either semantically acceptable or violating 

• the notions of permissions and prohibitions should be semantically related 
to the notions of acceptable behavior and violating behavior, respectively

• in general, however, these notions will not fully coincide because of 
–  inevitable shortcomings of the preventive access control mechanisms 
– efficiency considerations (leading to an optimistic approach) 
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Requirement for architecture of monitoring

complementarily to access decision and result inspection, 

the control and monitoring component 

audits and analyzes all activities regarding potential violations 

defined by an intrusion defence policy
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Imagined ideal and real world

• ideal world: 
– all subjects behave as expected

– all informational devices actually operate as completely specified

– correct and complete knowledge is available whenever needed

• real world: 
– such an imaginary scenario is not met with at all 

– security aims at managing the imperfections, including:
– potentially maliciously behaving subjects, 
– failing implementations of inadequate designs,
– decision making regarding remote subjects 
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Root of trust

• there always remains the need 
to base at least small parts of an overall computing system on trust 

• trust in a technical part usually means, 
or at least includes the requirement, 
that the participant controlling that part is trusted 

• as security is a multilateral property 
that respects potentially conflicting interests, 
trust is essentially context-dependent, i.e., 
subjectively assigned by one participant 
but refused by another one
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Issues of trust raised when the following problems are investigated

• does the control and monitoring component actually work as expected, 
intercepting and suitably mediating each access request?

• does it support availability by accepting permitted requests, and
does it preserve integrity and confidentiality by denying prohibited accesses?

• do participants permitted to execute control operations 
behave appropriately and honestly 
when granting, revoking, transferring or delegating permissions?

• do shown evidence and maintained verification data 
reflect the actual peculiarities of remote communication partners?
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4   Case Study: UNIX
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Some basic features of UNIX

• UNIX supports participants in 
– using their own workstation for their specific application tasks 
– cooperating with colleagues in server-based local networks for joint projects

• a participant can manage his own computing resources at his discretion, 
– either keeping them private 
– or making them available to other particular participants or to everybody

• security mechanisms 
– enforce the virtual isolation of identified, previously registered users 
– enable the deliberate sharing of resources

• the mechanisms are closely intertwined with the basic functional concepts of
files and processes, which are managed by the UNIX kernel

• the kernel acts as controller and monitor of all security-relevant accesses
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Basic blocks of control and monitoring (and cryptography)
• identification of registered users as participants

• passwords for user authentication at login time

• a one-way hash function for storing password data

• discretionary access rights concerning files as basic objects and 
three fundamental operational modes, read, write and execute

• owners, as autonomous grantors of access rights

• owners, groups and the full community of all users, as kinds of grantees

• right amplification for temporarily increasing the operational options of a user

• a superuser, capable of overriding the specifications of owners

• access control concerning the commands and the corresponding system calls
 

• monitoring of the functionality

• kernel-based implementation of control and monitoring
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Conceptual design of the operating system functionality

• UNIX provides a virtual machine 
that offers an external command interface 
with the following fundamental features: 

– identified participants can
 

– master processes that

– execute programs 

– stored in files

• the processes, in turn, can operate on files, 
in particular for reading and writing 
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ER model of fundamental functional features and security concepts

  participant

file

process

execution

  master

    access privileges   

owner     group     other
r w x     r w x    r w x

  member

   owner    group

group
master

 sgid

     group

available_
for

owned_
by

  suid

   share
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Participants, sessions and system calls

• a previously registered participant 
can start a session by means of the login command

 

• thereby the system 
– assigns a physical device for input and output data to him
– starts a command interpreter 

as the first process mastered by that participant

• afterwards, the participant can issue commands, 
which may possibly generate additional processes 
that are also mastered by him

• the commands invoke system calls that serve for 
– process management
– signaling 
– file management 
– directory and file system management 
– protection
– time management
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Processes as active subjects 

• execute (the program contained in) a file, and in doing so

• read or write in (usually other) files

• create new files and remove existing ones

• generate new (child) processes

• have a lifespan, 
starting with the generation by a father process and 
ending with a synchronization with the pertinent father process

• constitute a process tree:
– when the UNIX system is started, an initial process init is generated
– an already running (father) process can generate new (child) processes
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Lifespan of a process 

father process (child) process

fork

exec

exitwait

(child) process is generated 
by the father process

(child) process exchanges process space

(child) process synchronizes with
father process and is ended 
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Growing and shrinking of a process tree 

initial process    

��� child process for each   
physical device    

child process for  
command interpreter   

by login   

by a command that  
creates a new process   

by logout   

by a further command that 
creates a new process   
 

��� ���

���
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund    Security in Computing Systems: Case Study: UNIX - 07. 04. 2011 123



Files as passive objects

•  files are uniformly managed by the system using a file tree

• a file is identified by its path name within the file tree

• a file that constitutes a branching node in the file tree 
is a directory listing other files

• a file that constitutes a leaf in the file tree 
is a plain file containing data, 
which might be considered as an executable program
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Conceptual design of the security concepts
 

• a participant acts as the owner of the files created by him

• the system administrator assigns participants as members of a group: 
– a group comprises those participants that are entitled to share files
– an owner can make a file available for a group to share it

• for each file, the owner implicitly specifies three disjoint participant classes:
– himself as owner
– the members of the pertinent group, except the owner if applicable
– all other participants

• the owner of a file discretionarily declares access privileges 
for each of these classes – for the processes mastered  –  
by permitting or prohibiting the operations 
belonging to an operational mode: 
– read
– write
– execute
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Some operations with commands and their operational mode 

Operation with command 
on plain file

Operation with command 
on directory

Operational
mode

open file for reading: 
open( ,o_rdonly)

read content:   
read

open directory for scanning:
opendir

read next entry: 
readdir

read

open file for writing: 
open( ,o_wronly)

modify content:  write

delete content:       truncate

insert entry:      add

delete entry:     remove

rename entry:   rename

write

execute content as program: 
execute

select as current directory: 
cd 

execute
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Mastership and group mastership

• normally, 
a user is the master of the command interpreter process that he has started, 
and of all its descendants

• additionally, the (primary) group of that user is said to be the 
group master of all those processes 

• if a process requests an operation op on a file file, 
then the access privileges file.access_privileges 
are inspected according to the masterships of the process 
in order to take an access decision

• for each file, the owner can additionally set two execution flags, 
suid and sgid, 
that direct its usage as a program, or as a directory, respectively:
– for a plain file containing an executable program, 

the flag impacts on the mastership of an executing process

– for a directory, 
the flag impacts on the ownership of inserted files
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Refined ER model of the functional features and security concepts  
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Refined ER model: users
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Refined ER model: files  
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Refined ER model: processes  
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Different notions of a participant 
• a human individual

• the physical device 
from which the individual issued his last login command 

• an abstract user: 
– representing the previously registered human individual within the system: 

as a result of a successful login command, 
the abstract user is connected to the 
physical device from which the command was received

 

– uniquely identified by a username

– associated with further administrative data, e.g.: 
– password data
– full name, 
– (the path name of) home directory in the overall file tree
– (the path name of the file containing) command interpreter (shell file)

 

• a user identification, i.e., a cardinal number uid, 
which serves as a (not necessarily unique) surrogate for an abstract user
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System administrator

• is a human individual,
typically registered as a distinguished abstract user 
whose username is root and 
whose surrogate is superuser_id 
(in general, represented by 0)

• enjoys nearly unrestricted operational options
 

(consequently, so does any human individual 
who succeeds in being related to root)
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Groups

• a group is represented by a group identification, gid

• each abstract user is a primary member of one group, 
and can be a member of any further groups
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund    Security in Computing Systems: Case Study: UNIX - 07. 04. 2011 134



Mastership and group mastership refined
 

• all relationships of files/processes with participants/groups are interpreted as 
relationships with user identification/group identifications

• the master and the group master relationships are further differentiated 
in order to enable dynamic modifications

• a user identification uid 
(the surrogate of a user connected to a physical device 
from which a human individual has issued a login command) 
is seen as the original master of the command interpreter process 
generated during the login procedure 
and of all its descendants

• these processes are also said to have this uid as their real uid

• correspondingly, 
a group identification gid 
is seen as the original group master of these processes, 
which are also said to have this gid as their real gid 
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Current masterships

• normally, the original masterships are intended to determine the access 
decision when a process requests an operation on a file

• to distinguish between normal and exceptional cases, 
– an additional current mastership (an effective uid ) and 
– an additional current group mastership (an effective gid ) 
are maintained and actually employed for access decisions

• the current mastership and the current group mastership of a process 
are automatically manipulated according 
to the execution flags suid and sgid of the executed file: 
– normally, if the respective flag is not set, 

then the current mastership is assigned the original mastership, and 
the current group mastership is assigned the original group mastership 

– exceptionally, if the respective flag is set, 
then the current mastership is assigned 
the user identification of the owner of the file to be executed, and 
the current group mastership is assigned 
the group identification for which that file has been made available
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Right amplification

• the exceptional case is used for right amplification, 
to dynamically increase the operational options of a process 
while it is executing a file with a flag set

• the owner of that file allows all ‘‘participants’’ 
that are permitted to execute the file at all 
to act thereby as if they were the owner himself

• if the owner is more powerful than such a participant
(e.g., if the owner is the nearly omnipotent abstract user root), 
then the operational options of the participant are temporarily increased

• the current masterships and current group masterships 
can also be manipulated by special, suitably protected commands

• for this option, the additional 
saved mastership and saved group mastership 
are used to restore the original situation 
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Identification and authentication

• a human individual can act as a participant of a UNIX installation 
only if the system administrator has registered him in advance as user, 
thereby assigning a username to him 

• this assignment and further user-related data are stored in the files 
/etc/passwd and /etc/shadow

• the usernames serve for identification and for accountability of all actions

• whenever an individual submits a login command, 
the system 

– checks whether the username is known from a registration
by inspecting the file /etc/passwd :

 

if the username is found, it is considered as known, otherwise as unknown

 – evaluates whether the actual command is authentic, relying on:

– appropriate registrations

– the integrity of the underlying files 

© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund    Security in Computing Systems: Case Study: UNIX - 07. 04. 2011 138



Proof of authenticity by a password procedure
 

• if the individual can input the agreed password, 
then the command is seen as authentic 

• the system relies on 
– appropriate password agreements 
– the individual’s care in keeping his password secret 
– the integrity and confidentiality of the file /etc/shadow

• the confidentiality of this file is supported by several mechanisms:
 – passwords are not stored directly, 

but only their images under a one-way hash function

 – on any input of the password, 
the system immediately computes its hash value and 
compares that hash value with the stored value

• the hash values are stored in a specially protected file /etc/shadow:
– a write access to an entry (password modification) is allowed only if 

the request stems from root or from the pertinent user

– a read access to an entry is allowed only for authenticity evaluations
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Access decisions

• the kernel has to take access decisions concerning 
– a process as an active subject 
– a file as a controlled passive object 
– a requested operation 

• given a triple (process, file, operation), 
the kernel has to decide whether 
– the process identified by process is allowed 
– to actually execute the operation denoted by operation 
– on the file named file 

• two cases according to the effective user identification of the process,
 process.current_master:

– if process.current_master = superuser_uid, 
then nearly everything is considered to be allowed

– otherwise, a decision procedure is called
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Access decisions regarding normal users 

function decide(process, file, operation): Boolean;

if   process.current_master = file.owner
then return file.access_privileges.owner.mode(operation)

else
if  process.current_groupmaster = file.group
 OR
 EXISTS process.supplementary_groupmaster:
 process.supplementary_groupmaster = file.group

then return file.access_privileges.group.mode(operation)

else return file.access_privileges.other.mode(operation)
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Knowledge base on permitted operational options

• implemented by means of the fundamental functional features of UNIX 

• data about users and groups is stored in the special files 
– /etc/passwd 
– /etc/shadow
– /etc/group 

• these files are owned by the system administrator (under superuser_id) 

• the access privileges for these files are given by 
– r--|r--|r--
– rw-|---|--- 
– r--|r--|r--

• additionally, modifications of the files /etc/passwd and /etc/group 
are specially restricted to processes with the effective uid superuser_id

• security-relevant data about files is managed in i-nodes

• security-relevant data about processes is maintained in the process table
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Main entries of the administration files for users and groups 
 

/etc/passwd /etc/shadow /etc/group

username username groupname

reference to /etc/shadow hash value of password group password

user identification (uid) date of last modification group identification (gid)

gid of primary group maximum lifetime usernames of members

full name, comment date of expiration

path name of home directory 

path name of shell file
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Modifications of the knowledge base: user and group administration

• the commands useradd, usermod and userdel 
manipulate the entries for users 
in the files /etc/passwd, /etc/shadow and /etc/group: 

only executed for a process 
whose effective user identification is superuser_uid

• the commands groupadd, groupmod and groupdel 
manipulate the entries for groups 
in the file /etc/group:

 

only executed for a process 
whose effective user identification is superuser_uid
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Modifications of the knowledge base: password management

• the command passwd 
modifies an entry of a user in the file /etc/shadow: 

only executed for a process 
whose effective user identification is 

– superuser_uid 
or 
– equal to the user identification of the user 

whose password is requested to be changed
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Modifications of the knowledge base: login procedure

• the command login tries to identify and authenticate the issuer

• on success, the issuer is recognized as a known registered user
 

• by a system call fork, a new process is generated for that user
 

• that process, by use of a system call exec, 
starts executing the shell file of the user as a command interpreter

• the masterships and group masterships are determined as follows:
– the real uid, effective uid and saved uid are all assigned 

the user identification of the user, i.e., user.surrogate

– the real gid, effective gid and saved gid are all assigned
 the primary group of the user, i.e., user.primary_member

– the supplementary gid is assigned 
the set of elements of user.member

• subsequently, this process is treated as the original ancestor of all processes 
that are generated during the session started by the login command 
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Modifications of the knowledge base: mastership assignments

• normally, 
a process inherits its masterships and group masterships 
from its immediate ancestor

• exceptionally, 
masterships and group masterships are determined differently, namely if

– the file executed has an execution flag suid or sgid set, 
or 
– some explicit command modifies the implicit assignment
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Modifications of the knowledge base: file management

• the system call 
create(filename, access_privileges, suid, sgid) 
creates a new file

• the owner and the group share of the file are assigned 
the effective uid and the effective gid, respectively, 
of the creating process

• the access privileges and 
the execution flags suid and sgid are assigned 
according to the respective parameters of the call, 
possibly modified according to the mask umask
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Modifications of the knowledge base: masking access privileges

• the mask umask specifies nine truth values, 
one for each value contained in the parameter for the access privileges: 
– each mask value is complemented 
– the conjunction with the corresponding parameter value is taken 

• a mask value true (or 1) is complemented into false (or 0) and thus 
always results in the corresponding access privilege being set to false (or 0),
thereby expressing a prohibition

• in general, individuals are strongly recommended 
to prohibit write access to files with an execution flag suid or sgid set:

avoids unintended/malicious modification of the program contained, 
resulting in unwanted effects of right amplification

• the system call umask(new_umask) 
modifies the current nine truth values of the mask umask into 
the values specified by the parameter new_umask
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Modifications of the knowledge base: process management

• the system call fork generates a new process

• a subsequent system call exec(command_file) 
exchanges the content of its address space, thereby loading the program 
that is contained in the file specified as the parameter command_file, 
whose instructions are then executed

• masterships, group masterships and the mask umask of that process:

–  if the flags suid and sgid of the file command_file are not set, 
then the new process inherits all masterships and group masterships 
from its father process 

– if the flag suid is set, 
then the effective uid and the saved uid are assigned 
to command_file.owner  

 

– if the flag sgid is set, 
then the effective gid and the saved gid are assigned 
to command_file.group share  

– the mask umask is inherited from the father process
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Modifications of the knowledge base: execution flags

• the system call setuid(uid) assigns 
the masterships real uid, effective uid and saved uid 
the parameter value uid:

only executed for a process that satisfies the following precondition: 
the effective uid equals superuser_uid, 
or the real uid equals the parameter value uid 
(i.e., in the latter case, the original situation is restored)

• the system call seteuid(euid) assigns 
the current mastership effective uid 
the parameter value euid, 
which might be the real uid or the saved uid 

• thereby, while executing a file with the execution flag suid set, 
a process can repeatedly change its effective uid: 

the process can select 
the uid of that user who has generated the original ancestor, or 
the uid of the owner of the file executed
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Modifications of the knowledge base: some further manipulations

• the system calls setgid(gid) and setegid(egid)
manipulate the group masterships

• the command /bin/su -  
changes the effective uid of the currently executed process 
into superuser_uid 
(thus the system administrator can acquire the mastership of any process):

only executed if the issuer is successfully authenticated 
with the agreed password for the system administrator with username root

• the command chown changes the owner of a file:
only executed for a process that satisfies the following precondition:
the effective uid equals superuser_uid or 
equals the current owner of the file

• the command chmod changes the access privileges of a file:
only executed for a process that satisfies the following precondition: 
the effective uid equals superuser_uid or 
equals the current owner of the file
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Knowledge base on usage history

• basically, UNIX does not maintain an 
explicit knowledge base on the usage history for taking access decisions,

 except for keeping track of process generations

• most UNIX versions offer log services for monitoring that
 

– produce log data about issued commands and executed system calls

 – store that data in special log files
© 2009 Springer-Verlag Berlin Heidelberg / © 2010 Joachim Biskup TU Dortmund    Security in Computing Systems: Case Study: UNIX - 07. 04. 2011 153



Examples of UNIX log files

• the file lastlog contains the 
date of the last issuing of a login command for each of the registered users, 
whether successful or failed 

• the file loginlog contains 
entries about all failed issuings of a login command, 
comprising the username employed, the physical device used and the date

• the file pacct contains entries about all issued commands, 
including their date
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Examples of UNIX log files, continued

• the file sulog contains 
entries about all successful or failed attempts to issue the critical su command;

 for each attempt, the following is recorded: 
– success or failure 
– the username employed 
– the physical device used
– the date

• the files utmp or wtmp contain 
entries about the currently active participants;
in particular, the following is recorded:
– the username employed
– the physical device used
– the process identification of the original ancestor process 

that was started by the login command 
to execute the user’s command interpreter
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Audit services

• log services send their log data as audit messages to an audit service 
that unifies and prepares that data for persistent storage or further monitoring

• the audit service syslog works on audit messages that are sent 
– by the kernel, exploiting /dev/klog 
– by user processes, exploiting /dev/log 
– by network services, exploiting the UDP port 514

• the audit messages consist of four entries:

– the name of the program whose execution generated the message

– a classification of the executing process into one of a restricted number 
of event sources, called facilities, which are known as 
kern, user, mail, lpr, auth, daemon, news, uucp, local0, …, local7, mark

– a priority level, which is one of 
emerg(ency), alert, crit(ical), err(or), warning, notice, info(rmational),

 (from) debug(ging), none

– the actual notification of the action that has occurred
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Configuration of an audit service: example

• the system administrator can configure the audit service syslog 
using the file /etc/syslog.conf, 
which contains expressions of the form

 facility.priority destination 

• such an expression determines how an audit message 
– that stems from an event source classified as facility and 
– has the level priority should be treated, i.e., 
– to which destination it has to be forwarded 

• destination might denote
 

– the path name of a file 
– a username, 
– a remote address, 
– a pipe
– the wildcard * (standing for all possible receivers)
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Overall architecture
• control and monitoring are part of the operating system kernel

• the kernel realizes the system calls offered by UNIX 

• a system call is treated roughly as follows:
– the kernel checks the operator and the parameters of the call and 

then deposits these items in dedicated registers or storage cells

– a software interrupt or trap dispenses the calling process

– the program determined by the specified operator 
is executed with the specified parameters

– if applicable, return values for the calling process are deposited

– subsequently, the calling process can be resumed

• this procedure needs special hardware support for security: storage protection,
processor states, privileged instructions, process space separation, ...

• most UNIX installations are part of a network,
and thus employ various features for securing the connections 
to remote participants and the interactions with them
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5   Discretionary Access Control and Privileges
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Permissions and prohibitions as discretionary access rights

• access rights:
at least conceptually, maintained by an appropriate knowledge base 

• static aspects of the knowledge base: 
structures for representing access rights

• dynamic aspects of knowledge base:
operations on access rights:
– taking an access decision (including solving conflicts) 
– updating 
– analyzing (determining the possible future instances under updates) 
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ER model of lookup representation 

• an identifiable and registered subject that is a participant seen as a grantee

• a controlled object that is a possible operand of an access request

• an (operational) mode that signifies a set of operations on the object

• a relationship granted that a subject is permitted to 
perform any operation of a specified mode on an object

granted

 (controlled)
      object

   (operational)
         mode

   
    (registered)
       subject

grantee
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A relational implementation
• an instance:  

• access decisions by means of a simple lookup: 
function decide(subject, object, operation): Boolean;

return (subject, object, mode(operation)) ∈ Granted.

• updates:
explicitly inserting, modifying or deleting tuples

Granted                 Subject                       Object             (Operational) Mode 

                       
      user                      application                   execute
      user                      data_file                       read

 application                data_ file                     read
 application                data_ file                     write
 application                recovery_file               read

      user                      recovery_file              write
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Access control matrix/graph and privilege/access control lists
 

                       

                        
      

execute
application   user 

read

write

read

read, write

 

recovery_file

  data_file

 
                     application     data_ file     recovery_
                                                                    file

user                 execute           read            write

application                        read, write       read

    Cl(user) = { [application,execute],  [data_file,read],  [recovery_file,write] }

    Cl(application) = {  [data_file,read],  [data_file,write],  [recovery_file,read] }

a) access control matrix                                                     b) access control graph

c) privilege lists    

    Acl(recovery_file) = { [user,write],  [application,read] }

    Acl(data_file) = { [user,read],  [application,read],  [application,write] }

    Acl(application) = { [user,execute] }

d) access control  lists  
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Some features of more sophisticated knowledge base structures 
• privilege: aggregate of a controlled object and an operational mode

• collectives: grantee might be a
– group (understood as set of equally treated participants)
– role (seen as collection of privileges)

• grantor: might have an impact on access decisions or updates

• owner: assigned to a controlled object

• relationships on controlled objects (e.g., the part_of relationship) and
specializations of the object class (in particular: executable programs) 

• structural relationships and specializations for grantees and grantors

• masterships: a program is executed by a dynamically generated process 
that in turn is mastered by an individual participant

• inclusion relationships for the class of operational modes; 
specialization of modes into functional and administrative ones 

• usage constraints: temporal conditions, conditions on computing history, ...

• revocation semantics: might have cascading effects, by using the issue time

• negative privileges (access rights): explicit prohibitions
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Refined ER model for permissions  

grantee
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      mode
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grantee
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grantor

privilege
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      to
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ER model of structural relationships and specializations of objects  
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    at
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ER model of programs, processes and masterships  

item
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ER model of programs, processes and masterships (subpart)  

item

grantee

ISA

   
(registered)
    subject

grantee

privilege

grantor
granted

mastered_
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grantor

ISA ISA

 
   process
(runtime)
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© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund     Security in Computing Systems: Discretionary Access Control and Privileges - 07. 04. 2011 168



ER model of operational modes 

 functional
     mode

  (operational)
        mode

includes

ISA

 
      control
       mode

controlled_by 
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Functional modes in a pure object-oriented environment

• operations are called by sending, receiving and interpreting messages

• an object oact, acting as a subject, 
is granted a permission to invoke an operation op on an object oexec, i.e.,
oact is permitted to send a message to oexec , 
where the body of the message contains an identifier for the operation op
(subject oact sees the message as “controlled object” under operation send):
 oact is the activator of an operation to be performed by oexec 

• the object oexec, acting as a subject, 
is granted a permission to interpret a message received from the object oact 
such that the operation op denoted in the body of the message 
is actually executed
(subject oexec sees the message as “controlled object” under 
operation receive and interpret): 

oexec is the executor of an operation invoked by the object oact 
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• two permissions are independently granted: 
– a send permission to the activator and 
– a receive and interpret permission to the executor

• appropriate in distributed systems with autonomous components 
acting as activators and executors:

control and monitoring of send and receive and interpret
can be implanted into the channel between the activators and the executors
(like by firewalls)

• on the activator side, outgoing messages are controlled;
on the executor side, the incoming messages are inspected
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Control modes: examples

• granting a privilege to a subject as a grantee

• transferring a privilege to another subject

• taking a privilege from another subject

• delegating the usage of a privilege to another subject

• revoking a privilege from a subject

for controlling privileges, the following operation is also important:

• generating a new item: 
– classified as potentially acting as a subject, a controlled object or both
– supplied with some initial privileges 
– accessible by some privileges given to the creator 
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ER model of qualifications and conditions  
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ER Model of privileges with collectives  
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ER Model of privileges with collectives (subpart)  
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Role-based access control (RBAC)

• above: roles seen as an optional feature of discretionary access rights

• alternatively: role-based access control, RBAC, as specific approach:
– rich body of insight and tools 
– widely used in practice
– comprehensive treatment of implementation and application aspects 

• role-based access control can be simulated 
by privileges directly granted to individuals, 
essentially by expanding all implicit inferences due to roles

• some features for privileges can also be employed for roles, e.g.:
– functional and control roles, each having their own hierarchy
– various conditions 
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund     Security in Computing Systems: Discretionary Access Control and Privileges - 07. 04. 2011 176



Some specific pitfalls of RBAC

role concepts identified in the application environment 
are not properly translated into computing concepts, e.g.:

• an individual is charged with many obligations and tasks,
which can be partly overlapping and partly quite separate; 

simply defining one very powerful role for such an individual 
could violate need-to-know/act and separation of roles

• an organizational hierarchy is interpreted by operational power/authority: 
an individual acting in a higher organizational or social role is permitted 
to act like any individual in a lower organizational or social role
(a senior might take the right to perform all actions 
that his subordinates are permitted to perform); 

naively translating this idea into roles 
can turn out to be extremely dangerous 
(an omnipotent user who is not well trained to operate the system) 
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Semantics for access decisions

• conceptually:
decisions are taken by calling a function 
decide(subject, object, operation): Boolean

• simplest case: 
implemented by a lookup of a tuple 
(subject, object, mode(operation)) 
in a table 

• more sophisticated cases: 
complex inferences are necessary, 
based on various features managed by the knowledge base,
foundation on precise semantics, in particular:

– how to deal with hierarchical relationships between entities?

– how to resolve conflicts between permissions and prohibitions?

– how to always ensure a defined decision?
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Inheritance rules for hierarchical relationships: examples

Hierarchical relationship Permission Prohibition

subrole ≤R superrole upwards downwards

subobject ≤O superobject downwards downwards

more special mode ≤M more general mode downwards upwards
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund     Security in Computing Systems: Discretionary Access Control and Privileges - 07. 04. 2011 179



Conflict resolution by priority rules: examples

• prohibition prevails over permission

• specialization prevails over generalization
– considers a more special case as some kind of an exception to a larger case

– if only permissions (positive access rights) are explicitly declared, 
then in accordance with the default rule:

every request is prohibited 
unless it is explicitly proven to be permitted

• higher-ranked grantor prevails over lower-ranked grantor 
– sees grantors been ranked in a command hierarchy: 

orders of higher-ranked individuals invalidate 
conflicting orders of lower-ranked individuals
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A metarule for priority rules

• in general, priority rules cannot uniquely resolve all conflicts: 
several rules might be equally applicable but deliver different results

• a simple metarule for a collection of priority rules: 
– consider the rules of the collection in a fixed predetermined sequence;
– the result of the first applicable priority rule 

is taken as the final access decision

• this metarule can turn out to be rather dangerous: 
in general, the impact of sequencing rules 
is difficult to understand and to manage
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Completion rules: examples

• closed completion:
an undefined situation results in a final prohibition:

a request is finally permitted 
only if 
a permission can be derived from the information in the knowledge base

• open completion:
an undefined situation results in a final permission:

a request is finally permitted 
not only if a permission can be derived 
but also if no prohibition can be derived

in other terms:
if a permission can be derived 
or
if no prohibition can be derived
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Requirements for formal specification language/formal semantics

• expressiveness: a rich variety of conceptual features is covered

• manageability: administrators can easily declare their wishes

• completeness: for any request, an access decision can be inferred

• soundness: for any request, the access decision is unique

• computational efficiency: 
access decisions and control operations 
can be implemented such that the 
storage overheads and runtimes 
are acceptable in practical applications
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Flexible Authorization Framework: basic concepts

• Inst: set of instance objects
Coll: set of collections or similar concepts
≤ΙC : (for simplicity) common hierarchy (instance objects are minimal), 

denoting element_of relationships or part_of relationships

• Ind: set of individual users
Gr: set of groups 
≤UG  : (for simplicity) common hierarchy (users are minimal),

denoting group memberships or group containments

• Ro: set of roles 
≤R : hierarchy, denoting role comprising

• Mode: set of operational modes

• Rel1, … , Reln: some relations Rel1, … , Reln of appropriate arities, 
including the binary relation Owner
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Flexible Authorization Framework: basic concepts (continued)

• Grantee = Ind ∪ Gr ∪ Ro: set of (possible) grantees

• Object = Inst ∪ Coll ∪ Ro: set of (possible) controlled objects

• Qual = {pos, neg}: set of qualifications

• QGranted ⊆ Grantee × Object × Mode × Qual: 
relation for explicitly declared granted relationships, 
qualified as positive (for permissions) or negative (for prohibitions)

a role r can occur in a tuple of QGranted in two different positions: 

– in ( r , o , m , q ),
role r is grantee holding the privilege [o , m ]  with qualification q 

– in ( u , r , m ,  q ) with m  ∈{assign  ,  enable}, 
individual user u has role r assigned/enabled, qualified by q
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund     Security in Computing Systems: Discretionary Access Control and Privileges - 07. 04. 2011 185



Flexible Authorization Framework: basic concepts (continued)

• Done ⊆ Ind × Ro × Object × Mode × Time: 
relation for recording selected aspects ( u , r , o , m , t ) of the usage history: 

– an individual user u (assumed to have at most one role enabled)
– acting in a role r 
– has operated on an object o 
– in some mode m 
– at a specific time t
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Flexible Authorization Framework: concepts derived by rules 

• QGranted* ⊆ Grantee × Object × Mode × Qual: 
relation for extending the relation QGranted 
by further explicit qualified granted relationships, 
which might be conditional in terms of basic items and the usage history

• Derived ⊆ Grantee × Object × Mode × Qual: 
relation for representing implicit qualified permissions and prohibitions,
where an auxiliary relation Override together with appropriate rules is used 
to prepare for resolving conflicts

• Decide ⊆ Grantee × Object × Mode × Qual: 
relation for representing the overall security policy,
including final conflict resolution and enforcing completeness

• Error ⊆ {∅}: 
relation (Boolean predicate) to detect erroneous specifications
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Architecture of FAF: overview  
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Architecture: knowledge base on permissions and prohibitions  
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Architecture: access decisions 
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Syntax of Flexible Authorization Specification Language: outline
• vocabulary: 

– sorted constant symbols for any item occurring in the computing system
– sorted variables for such items
– sorted predicate symbols for the components

• terms: either constants (no further function symbols) or variables 

• atoms: formed by a predicate symbol followed by a list of terms; 
literal: either an atom or a negated atom (written as ¬ atom)

• rules: implicational formulas of the form 
atom ← literal1   ∧    …   ∧    literaln .

conclusion (head): single atom; 
premise (body): conjunction of atoms and, 

under some essential restrictions, of negated atoms

• facts: rules of the form atom ← . 

• strata: 6-level dependency structure of rules,
as roughly indicated in the architecture

• program: finite set of rules
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Strata of logical program in FASL 
 

Stratum Head Body Goal

1 Inst(t), Coll(t), Ind(t), 
Gr(t), Ro(t)

≤IC(t1, t2 ), 
≤UG(t1, t2 ), 
≤R (t1, t2 )

Owner(t1, t2 ), …

QGranted(t1, t2 , t3, t4 )

Done(t1, t2 , t3, t4 , t5 )

empty

empty, or the respective rela-
tion symbols

empty

empty

empty

facts for basic items

facts and recursive clo-
sure rules 
for hierarchies

facts for relations

facts for explicit 
granted relationships 

facts for 
usage history 

2 QGranted*(t1, t2 , t3, t4 ) literals for 
basic items, hierarchies, 
usage history

rules for explicit, 
granted relationships 
with conditions
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3 Override(t1, t2 , t3, t4 ) (not treated in this text) rules for preparing 
conflict resolution

4 Derived(t1, t2 , t3, t4 ) literals for
basic items, hierarchies, 
usage history, explicit 
granted relationships, 
conflict resolution;

atoms for implicit 
granted relationships

rules for implicit 
granted relation-
ships

recursive rules for 
implicit granted 
relationships

Stratum Head Body Goal
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5 Decide(t1, t2 , t3 , pos)

Decide(x, y, z, neg)
as head of a single rule 
with variables x,y,z

literals for basic items, 
hierarchies, usage his-
tory, explicit and implicit 
granted relationships;

the single literal 
¬ Decide(x, y , z , pos )

decision rules for 
final permissions

one default decision 
rule for 
final prohibitions

6 Error() literals for basic items, 
hierarchies, usage his-
tory, explicit and implicit 
granted relationships, 
decisions

integrity rules

Stratum Head Body Goal
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Semantics of a logical program in FASL

• semantics is determined as the unique minimal fixpoint of the program, 
with respect to stable/well-founded semantics for locally stratified programs

• a rule (under a suitable substitution of variables by constant symbols)
generates a new head fact from previously available body facts

• the rules of each stratum are exhaustively treated 
before proceeding to the next stratum 

• negative atoms from preceding strata are always treated
according to negation as failure 

• in stratum 5, the negative atom ¬ Decide(x, y , z , pos ) is first determined by 
negation as failure, and then the single rule for final prohibitions is used 

• concerning negation, there is a difference between 
– “negation of a permission” (a negated atom with qualification pos )
– “prohibition” (an atom with qualification neg  ) 

• stratum 5 finally resolves conflicts 
that may have potentially occurred in preceding strata
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A simple fragment of a security policy in FASL: scenario

• reading and writing a file pub_f of low sensitivity

• an individual user admin acting as administrator

• arbitrary requestors denoted by the variable x

• arbitrary operational modes denoted by the variable m
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A policy: explicit permissions/prohibitions in strata 1 and 2

administrator: granted a positive read privilege 
but a negative write privilege

owner of the file: acquires positives read and write privileges:

QGranted(admin,  pub_f, read, pos) ← .
QGranted(admin,  pub_f, write, neg) ← .

QGranted*(x,  pub_f, read, pos) ← Owner(x,pub_f).
QGranted*(x,  pub_f, write, pos) ← Owner(x,pub_f).
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A policy: implicit permissions/prohibitions in stratum 4

operational modes:
– read is considered to be included in write 
– corresponding inheritance rules are instantiated
– explicit statements are converted in implicit ones:

Derived(x,  pub_f, read, pos) ← Derived(x, pub_f, write, pos ).
Derived(x,  pub_f, write, neg) ← Derived(x, pub_f, read, neg ).

Derived(x,  pub_f, m, pos) ← QGranted(x, pub_f, m, pos ).
Derived(x,  pub_f, m, pos) ← QGranted*(x, pub_f, m, pos ).
Derived(x,  pub_f, m, neg) ← QGranted(x, pub_f, m, neg ).
Derived(x,  pub_f, m, neg) ← QGranted*(x, pub_f, m, neg ).
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A policy: decisions and conflict resolution in stratum 5

• read accesses are finally permitted 
if some implicit permission can be derived or 
if an implicit prohibition cannot be derived

• write accesses are finally permitted only in the former case

• thus, for both modes, a permission prevails over a prohibition

• while an open policy is stated for reading 
(finally permitted if no prohibition can be derived), and 
a closed policy is preferred for writing 
(finally permitted only if a permission can be derived):

Decide(x,  pub_f, read, pos) ← Derived(x, pub_f, read, pos ).
Decide(x, pub_f , read, pos) ← ¬ Derived(x, pub_f, read, neg ).
Decide(x,  pub_f, write, pos) ← Derived(x, pub_f, write, pos ).

• prohibitions, as generally required for stratum 5 of any logical program in 
FASL, one generic default decision rule is specified: 

Decide(x, y , z , neg) ← ¬ Decide(x, y , z , pos ).
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A policy: integrity enforcement in stratum 6

an implicit permission of a read or write access to the file pub_f  
together with the respective implicit prohibition is treated as an error, i.e., 
any update request resulting in such a situation should be rejected):

Error()← Derived(x, pub_f, read, pos )  ∧   Derived(x, pub_f, read, neg ).
Error()← Derived(x, pub_f, write, pos )  ∧   Derived(x, pub_f, write, neg ).
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Access decision on a functional request
• (  functional ) request ( s , o , op ) with 

– s is an individual requestor u or, if applicable, his enabled role r
– op is a wanted operation on a controlled object o such that m  =  mode(op)

• the unique minimal fixpoint SEM of the logical program is computed

• a preliminary access decision is taken:
function decide(s,o,op): Boolean;
if (s,o,mode(op),pos)∈SEM then return true fi; / permitted 
if (s,o,mode(op),neg)∈SEM then return false fi. / prohibited 

• if preliminary access decision returns false: 
request is immediately rejected; 

• otherwise: 
– an appropriate tuple ( u , r , o , m , t ) is tentatively inserted into Done, 
– fixpoint is recomputed and checked for integrity

• if the integrity is preserved: 
preliminary permission is confirmed/tentative insertion is committed; 
otherwise: request is rejected/tentative insertion is aborted
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund     Security in Computing Systems: Discretionary Access Control and Privileges - 07. 04. 2011 201



Access decision on an update request (control operation)

• an access decision is taken, 
similarly to what is done for a functional request

• a transaction is started

• the requested modifications are tentatively executed, 
allowing various revoking strategies to be implemented

• the Error predicate for checking integrity is evaluated 
using the fixpoint SEM

• depending on the result of the integrity check, 
the transaction either commits or aborts
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Strata, goals and responsible agents 

1 facts for 
basic items, hierarchies, relations

facts for 
explicit granted relationships 

facts for usage history 

automatic extraction from 
declarations and runtime data

system administrator and 
respective owners

monitoring component

2 rules for 
explicit granted relationships

respective owners and 
application administrator

3 rules for 
preparing conflict resolution

application administrator and 
security officer

4 (recursive) rules for 
implicit granted relationships

application administrator and 
security officer

5 decision rules for 
permissions and prohibitions

security officer

6 integrity rules application administrator and
security officer
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Basic properties of FAF

• expressiveness
– by design, many features of access control can be formally treated
– determined by the power of the chosen fragment of logic programming

• manageability
– layered approach supports reliable administration of access rights, 

even if the administration is not centralized but partially distributed
– for example, responsibilities can be reasonably assigned to 

– system components 
– several individual owners 
– a system administrator 
– an application administrator 
– a security officer

• completeness and soundness
– ensured by stratification and the restrictions imposed
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FASL programs are complete and sound: theorem

Let AS be a logical program 
according to the syntax of the Flexible Authorization Specification Language.

The following properties then hold:

• AS has a unique minimal fixpoint SEM as a stable/well-founded model.

• For each (functional) request ( s , o , op ), 
exactly one of the literals

( s , o , mode(op) , pos ) and ( s , o , mode(op)  , neg ) 

is an element of SEM.
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Proof idea

• existence of a unique minimal fixpoint is ensured by local stratification, i.e., 
the restrictions concerning negation

• completeness is enforced by the default decision rule for prohibitions 
together with negation as failure

• soundness is a consequence of having 
just one default decision rule for prohibitions
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Properties of FAF: efficiency

• general design allows 
tractable (polynomial-time computable) access decisions

• if advanced techniques of logic programming are employed, 
including materialization of the fixpoint SEM, 
then decisions with an acceptable delay appear to be achievable
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6   Granting and Revoking, and Analysis
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Granting

• a current holder of a privilege, as a grantor,
assigns this privilege to a subject as a further grantee

• in doing so, the grantor can declare the privilege to be grantable again

• the following options for a grantable attribute can be meaningful:
no: receiver must not grant the received privilege further

limited: receiver may grant the received privilege further, 
under the provision that the grantable attribute is then set to no

unlimited: receiver may grant the received privilege further, 
without any restrictions

• a privilege can ultimately be held by many grantees

• a single grantee might have repeatedly received a privilege in several ways,
from different grantors and 
at different issue times 
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund     Security in Computing Systems: Granting and Revoking, and Analysis - 07. 04. 2011 209



A model with simplifying assumptions

• originally: a privilege is held only by the owner of the object concerned

• later on: all grantings are recorded with the issue time and 
permit further unlimited grantings 

• this model can be implemented as a database relation KB with five attributes: 
– (Issue) Time 
– Grantor 
– Grantee/Subject 
– (Controlled ) Object
– (Operational ) Mode 

• a tuple (t, g, s, o, m)  ∈  KB means:
at the issue time t, 
a grantor g has assigned 
to the grantee/subject s a privilege with respect to 
the controlled object o 
for the operational mode m 

(where the special mode own indicates ownership)
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An ER model for grantings 

subject

owner  (controlled)
     object

  (operational)
        mode

grantee

privilege

grantor

 privilege

granted

 issue  time    
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An instance of a relational implementation  

KB                  Time                  Grantor               Grantee/ 
       Subject                 Object                  Mode 

0                       admin                 owner

1                       admin                 owner 

2                       owner 
3                       b 
4                       c 
5                       owner 
6                       d 
7                       c 

 Granted

    Grantor_Granted

H_Viewowner,o,m

m
 

m
m
m
m
m
m

own

o

o

o
o
o
o
o
o

 
b
c

c
e

d

d

© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund     Security in Computing Systems: Granting and Revoking, and Analysis - 07. 04. 2011 212



A grant graph corresponding to a history subrelation

• a subrelation H_Viewowner,o,m exhibits the full history of grantings 
for a single privilege [o, m] 
that originate directly or indirectly from the subject owner

• a corresponding grant graph 
represents each triple (time, grantor, grantee )  ∈  H_Viewowner,o,m 
by a labeled, directed edge with 
– origin grantor 
– target grantee 
– label time  

                  owner 

 b

    c                         d                          e
5                                         4                           6

 7

2 

1

Grantees = {owner, b, c, d, e}

H_Viewowner,o,m:
3
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A formalization of granting

procedure grantowner,o,m(time,grantor,grantee);
{ precondition: owner ∈ Grantees; 
import: Grantees, H_View, tmax

}
if   / access decision:
[grantor = owner  / owner is always permitted
OR 
EXISTS t, EXISTS x ∈ Grantees: (t,x,grantor) ∈ H_View

 / a current holder is permitted
]
AND tmax < time  / issue times are monotone
AND grantor ≠ grantee  / no self-granting
AND grantee ≠ owner   / no grantings for owner 

then   / updating of grant graph:
Grantees := Grantees ∪ {grantee}; / insert grantee 
H_View := H_View ∪ {(time,grantor,grantee)}

  / insert privilege with issue time
fi.
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Producing a grant graph: example  

is produced by the following calls, 
where all requested updates have been permitted:

grantowner,o,m( 2 , owner, b )
grantowner,o,m( 3 , b  , c )
grantowner,o,m( 4 , c , d )
grantowner,o,m( 5 , owner, c )
grantowner,o,m( 6 , d , e )
grantowner,o,m( 7 , c , d )

                  owner 

 b

    c                         d                          e
5                                         4                           6

 7

2 

1

Grantees = {owner, b, c, d, e}

H_Viewowner,o,m:
3
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Options for revocation semantics: examples 

Option Knowledge 
base

Precondition for 
permission/invariant

Postcondition for 
knowledge base

simple 
deletion

Granted revoker is 
administrator or owner

granting is completely 
deleted 

grantor-specific 
deletion

Grantor_
Granted

revoker has been grantor granting of revoker is 
deleted

deletion with 
renewed further 
grantings

Grantor_
Granted

revoker has been grantor 

invariant: unique grantor, and 
existence of unique granting 
chain from owner

granting is deleted, 
and
further grantings are 
renewed

deletion with 
deleted further 
grantings

Grantor_
Granted

revoker has been grantor

invariant: existence of grant-
ing chains from owner

granting is deleted, 
and 
invariant is satisfied

time-specific 
deletion with 
recursive 
revocation of 
further grantings

KB
(all
H_View 
instances)

revoker has been grantor

invariant: existence of time-
increasing granting chains 
from owner

KB´ is the instance that 
would be produced if 
revoker had never granted 
the privilege to grantee 
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Simple   deletion
• request:

revoker r wants to revoke privilege [o, m] from grantee s at time t

• precondition for a permission :

r = admin 
or 
(r, o, own) ∈ Granted 

 

• postcondition for knowledge base:
 

(s, o, m) ∉ Granted´ 

• implementation:
 

Granted    :=    Granted    \   {(s,o,m)}
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Grantor-specific   deletion
• request:

revoker r wants to revoke privilege [o, m] from grantee s at time t

• precondition for a permission :

(r, s, o, m) ∈ Grantor_Granted

• postcondition for knowledge base:

(r, s, o, m) ∉ Grantor_Granted´ 

• implementation:

Grantor_Granted := Grantor_Granted \ {(r,s,o,m)} 
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Deletion with renewed further grantings 

• precondition for a permission to revoker r :
(r, s, o, m) ∈ Grantor_Granted

• invariant for knowledge base: 
existence of unique granting chains from owner to grantees

• postcondition for knowledge base: 
(r, s, o, m) ∉ Grantor_Granted´ 
and
for all y ≠ r with (s, y , o, m) ∈ Grantor_Granted: 

(s, y , o, m) ∉ Grantor_Granted´ and (r, y , o, m) ∈ Grantor_Granted´  

• implementation:
Grantor_Granted := Grantor_Granted \ {(r,s,o,m)};
forall y do
if (s,y,o,m) ∈ Grantor_Granted  AND  y ≠ r
then 

Grantor_Granted := Grantor_Granted \ {(s,y,o,m)};
Grantor_Granted := Grantor_Granted ∪ {(r,y,o,m)}

fi  .
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Deletion with deleted further grantings
• request:

revoker r wants to revoke privilege [o, m] from grantee s at time t

• precondition for a permission to revoker r :
(r, s, o, m) ∈ Grantor_Granted

• invariant for knowledge base: 
existence of granting chains from owner to grantees

• postcondition for knowledge base: 
(r, s, o, m) ∉ Grantor_Granted´ 
and the invariant 

• (sketch of) implementation:
– the entry (r, s, o, m) is deleted in Grantor_Granted

– apply a graph search algorithm 
to enforce the invariant by minimal further deletions 
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Time-specific deletion with recursive revocation of further grantings

• precondition for a permission to revoker r :
(r, s, o, m) ∈ Grantor_Granted

• invariant for knowledge base: 
existence of issue time respecting granting chains from owner to grantees

• (informal) postcondition for knowledge base: 
KB´ is the instance 
that would have been produced 
if the revoker r had never granted the privilege [o, m] to the grantee s

• discussion of implementation:
– needs enough information to allow one to construct 

fictitious instances of the knowledge base 
that could have been produced in the past

– the information represented in KB suffices

– this information is also necessary 
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Recursive revocation 

procedure revokeowner,o,m(time,revoker,grantee);
{ precondition: owner � Grantees; 

import: Grantees, H_View, tmax}
/ at time the revoker invalidates his grantings 
/ of privilege [o,m] concerning object o of owner
/ to grantee

if / access decision:
tmax < time / issue times are monotone

then / updating of grant graph:
revoke*(time,revoker,grantee); / first call of recursive auxiliary procedure
delete isolated elements from Grantees except owner

fi.

procedure revoke*(t,x,y); / recursive auxiliary procedure for revokeowner,o,m
{ precondition: owner ��Grantees; 

import: Grantees, H_View, tmax}
if / access decision:

EXISTS tearly: tearly < t  AND  (tearly,x,y) � H_View
/ x has granted privilege to y before time t 

then / updating of grant graph:
H_View := H_View \ {(tearly,x,y) | tearly < t };

/ delete grantings from x to y before time t 

VALID := { tother | EXISTS xother: (tother,xother,y) � H_View };

if VALID 	 Ø then t := minimum(VALID) else t := 
�fi;
/ compute earliest different granting time t for y; 
/ if there is none, define this time as greater than all �real times�

forall w � Grantees do revoke*(t,y,w)
/ y recursively revokes all invalidated grantings, namely
/ those before the earliest different granting time t for y

fi.
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Recursive revocation: main procedure 

procedure revokeowner,o,m(time,revoker,grantee);
{ precondition: owner � Grantees; 

import: Grantees, H_View, tmax}
/ at time the revoker invalidates his grantings 
/ of privilege [o,m] concerning object o of owner
/ to grantee

if / access decision:
tmax < time / issue times are monotone

then / updating of grant graph:
revoke*(time,revoker,grantee); / first call of recursive auxiliary procedure
delete isolated elements from Grantees except owner

fi.

procedure revoke*(t,x,y); / recursive auxiliary procedure for revokeowner,o,m
{ precondition: owner ��Grantees; 

import: Grantees, H_View, tmax}
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Recursive revocation: recursive auxiliary procedure 

procedure revoke*(t,x,y); / recursive auxiliary procedure for revokeowner,o,m
{ precondition: owner ��Grantees; 

import: Grantees, H_View, tmax}
if / access decision:

EXISTS tearly: tearly < t  AND  (tearly,x,y) � H_View
/ x has granted privilege to y before time t 

then / updating of grant graph:
H_View := H_View \ {(tearly,x,y) | tearly < t };

/ delete grantings from x to y before time t 

VALID := { tother | EXISTS xother: (tother,xother,y) � H_View };

if VALID 	 Ø then t := minimum(VALID) else t := 
�fi;
/ compute earliest different granting time t for y; 
/ if there is none, define this time as greater than all �real times�

forall w � Grantees do revoke*(t,y,w)
/ y recursively revokes all invalidated grantings, namely
/ those before the earliest different granting time t for y

fi.
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Procedure call revoke(8,b,c): the run

                  owner 

b

 c                     d                      e
5                                4                     6

7

2                        3

Grantees = {owner, b, c, d, e}H_View

                  owner 

b

 c                     d                      e
5                                4                     6

7

2 

Grantees1 = {owner, b, c, d, e}H_View1

                  owner 

b

 c                     d                     e
5                                                       6

7

2 

Grantees2 = {owner, b, c, d, e}H_View2

                  owner 

b

 c                     d                      e
5 

7

2 

Grantees3 = {owner, b, c, d, e}H_View3

                  owner 

b

 c                     d 
5                                                       

7

2 

Granteesfinal = {owner, b, c, d}H_Viewfinal

Initial instance of grant graph H_View

First call of auxiliary procedure, 

Recursive calls for  w�	�d     

Recursive call for w = d,      

Recursive calls for  w�	�e 

All further recursive calls

Finally, all isolated nodes   

when the procedure 
revokeowner,o,m(8,b,c)
is called.

revoke*(8,b,c),  
delivers H_View1 with
VALID1 = {5} and  t1 = 5.  

do not change the grant graph.  

revoke*(5,c,d), 
delivers H_View2 with 
VALID2 = {7} and  t2 = 7.

do not change the grant graph. 

Recursive call for w = e, 
revoke*(7,d,e),
delivers H_View3 with
VALID3 = ����and  t3 = 
. 

do not change the grant graph.

are removed.  
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Procedure call revoke(8,b,c): call of auxiliary procedure

                  owner 

b

 c                     d                      e
5                                4                     6

7

2                        3

Grantees = {owner, b, c, d, e}H_View

                  owner 

b

 c                     d                      e
5                                4                     6

7

2 

Grantees1 = {owner, b, c, d, e}H_View1

Initial instance of grant graph H_View

First call of auxiliary procedure, 

Recursive calls for  w�	�d     

when the procedure 
revokeowner,o,m(8,b,c)
is called.

revoke*(8,b,c),  
delivers H_View1 with
VALID1 = {5} and  t1 = 5.  

do not change the grant graph.  
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Procedure call revoke(8,b,c): a recursive call

                  owner 

b

 c                     d                      e
5                                4                     6

7

2 

Grantees1 = {owner, b, c, d, e}H_View1

                  owner 

b

 c                     d                     e
5                                                       6

7

2 

Grantees2 = {owner, b, c, d, e}H_View2

First call of auxiliary procedure, 

Recursive calls for  w�	�d     

Recursive call for w = d,      

revoke*(8,b,c),  
delivers H_View1 with
VALID1 = {5} and  t1 = 5.  

do not change the grant graph.  

revoke*(5,c,d), 
delivers H_View2 with 
VALID2 = {7} and  t2 = 7.
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Procedure call revoke(8,b,c): a further recursive call

                  owner 

b

 c                     d                     e
5                                                       6

7

2 

Grantees2 = {owner, b, c, d, e}H_View2

                  owner 

b

 c                     d                      e
5 

7

2 

Grantees3 = {owner, b, c, d, e}H_View3

Recursive call for w = d,      

Recursive calls for  w�	�e 

revoke*(5,c,d), 
delivers H_View2 with 
VALID2 = {7} and  t2 = 7.

do not change the grant graph. 

Recursive call for w = e, 
revoke*(7,d,e),
delivers H_View3 with
VALID3 = ����and  t3 = 
. 
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Procedure call revoke(8,b,c): removing isolated nodes

                  owner 

b

 c                     d                      e
5 

7

2 

Grantees3 = {owner, b, c, d, e}H_View3

                  owner 

b

 c                     d 
5                                                       

7

2 

Granteesfinal = {owner, b, c, d}H_Viewfinal

All further recursive calls

Finally, all isolated nodes   

Recursive call for w = e, 
revoke*(7,d,e),
delivers H_View3 with
VALID3 = ����and  t3 = 
. 

do not change the grant graph.

are removed.  
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Dynamic and state-dependent permissions

• basic concepts ensure availability in two steps: 
– some administrator grants the needed permissions, permanently 

represented in a knowledge base on permissions and prohibitions

– a grantee can repeatedly employ his permissions 
whenever he himself wants to do so 

• the availability of a resource can 
be explicitly terminated by revoking the pertinent privileges

• one can further restrict the availability of a resource by employing 
the knowledge base on the usage history

• an administrator can express a policy that 
– “statically” permits a requestor to access a resource

– but additionally requires the validity of some “dynamic conditions” 
for any actual request 
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Control automatons

• static layer: 
the “principally permitted” options for using a computing system 
are declared in some suitable way

• dynamic layer:
control automatons specify security contexts by their states;

a security context represents the collection of 
those permissions (and prohibitions) 
that are actually exploitable by an individual or a community 
at a specific point in time
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Some purposes of a security context

• selecting a narrow subset of the “principally permitted” options or 
selecting one alternative out of several mutually exclusive possibilities

• monotonically decreasing the usability of “principally permitted” options; 
resetting previously decreased usability

• temporarily amplifying the “principally permitted” options for special tasks 

• partially implementing “principally permitted” options by means of 
runtime concepts of operating systems and programming languages

• enhancing the runtime complexity of access decisions with respect to the
“principally permitted” options, owing to appropriate precomputations

• sequencing the actual employment of “principally permitted” options
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State transitions of control automatons/switches of security contexts

• explicitly, 
owing to a control operation

• implicitly (as a side effect),
owing to a functional operation

• “spontaneously”, 
owing to an error condition or a detected security violation
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Role enabling and disabling: an example  
Granted   Role Object Mode

.
ri

…

.

ri

.

.

.

.
oi,1

…
oi,k

.

. 

.

.
mi,1

…
mi,k

.

.

Role_Assignment Subject Role
.
.
s
…
s
…
s

.

.
r1

…
ri

…
rn

.. .

Role_Enabling Subject Role
.
.
s
.

.

.
ri

.

lazy ri

r1

rn

role_monitor(s)

(s, r1, e
nable)

(s, r1, d
isable)

(s, ri, enable)

(s, ri, disable)(s, rn, enable)

(s, rn, disable)

current state 

.

.

.

.

.

.
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Information flow monitoring

• initially, 
an individual subject is statically granted a permission 
to access some information sources “in principle”

• while the individual is enjoying his privileges, 
a monitoring automaton aims at dynamically preventing the individual
from gathering “more information than intended”
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Chinese Walls 

• in principle: 
a participant can advise several companies, and thus
is permitted to access objects owned by different companies

• however: 
– if two companies are competing, then the consultant should not

simultaneously obtain information from both companies 

– any information flow from one company via a consultant 
to the other competing company must be strictly prevented

thus dynamically:
once the consultant has read an object owned by one company: 
– he is dynamically prohibited to access any object of a competing company

– to avoid transitive information flows, 
writing is restricted to objects of just that company
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund     Security in Computing Systems: Granting and Revoking, and Analysis - 07. 04. 2011 236



Experimental operating system HYDRA

• system maintains a runtime stack for procedure calls

• a procedure call triggers the dynamic creation of a local name space object 

• this object contains or references all runtime data needed, 
including the privileges needed to access other objects

• usually, these privileges are dynamically granted in two ways:
– the (dynamic) local name space object of the calling procedure 

can copy any selection of its own privileges and 
pass the copies as actual parameters

– the (static) program object of the called procedure
transmits its own privileges

• in general, the permissions of a specific execution of a procedure
are strictly bounded by the permissions held by the two source objects

• right amplification might supply a local name space object 
with a privilege that is neither held by the calling dynamic object 

nor possessed by the called static object
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Java protection framework: local and remote code

• the framework includes rules for deciding on access requests 
issued by the execution of either local or remote (program) code

• local code might be assumed to be “trustworthy” and thus 
qualify to discretionarily receive privileges to access local resources 

• remote code is seen to be potentially “suspicious” and thus 
treated with special care; 
as an extreme option, executed in a sandbox
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Java protection framework: enabling flexible cooperation

• subjects are formed by a set of Java classes characterized by: 
– origin
– acceptance of digital signatures
– certificates
– ...

• such a subject is assigned a protection domain, 
which is granted concrete privileges

• later on, 
all runtime instance objects of the pertinent classes 
inherit these privileges from the protection domain

• however, 
the usage of privileges is further dynamically restricted by stack inspection 
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Java stack inspection

• a runtime stack for each thread: 
to keep track of a chain of pending method invocations

• fundamental policy: 
a nested execution of a method 
may not be more powerful that any of its predecessors in the chain

• mechanism of stack inspection:
if a method execution requests to access a resource, 
then the mechanism inspects both 
– the privileges of the current protection domain 

assigned to the relevant subject

– the privileges of all protection domains 
assigned to the predecessors

• the request is permitted only if 
all items in the chain possess appropriate privileges

• there are further refinements, optimizations and even exceptions
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Workflow control

• an administrator statically declares a workflow schema

• suitable participants dynamically execute one or more workflow instances

• while an instance is progressing, at any point in time: 
– any participant scheduled to perform the next step 

should effectively receive the pertinent privileges

– all other participants deemed to be waiting for a call 
should be temporarily prevented from acting

– after the completion of a step, 
one or more succeeding steps must be enabled

• the workflow schema and the current state of an instance 
jointly specify a security context

• such a security context can be described by a control automaton,
suitably formed as a finite automaton or a Petri net
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Analysis of control states: basic problem

• may a subject s ever acquire a privilege [o, m] ? 

• can a subject s never acquire a privilege [o, m] ?

• given a current control state (permissions/prohibitions)
does there exist a sequence of permitted control operations 
such that, afterwards, a request 
– from subject s 
– to perform an operation of mode m 
– on object o 
is permitted ? 

• in the positive case, 
– which participants, 
– using which control operations, 
can achieve such acquisition? 
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Undecidability of the analysis problem of control states/operations

• elaborate a formal model for control state

• elaborate a formal model of control operation

• show that the halting problem is reducible to the analysis problem
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A model of control states
• time-independent declarations:

– I infinite set of potential system items; 
may act both as subject and as object

– Actor ⊆ I infinite set of actors; may request control operations

– Mode finite set of modes
FM ⊆ Mode set of functional modes 
KM ⊆ Mode set of control and relational modes 

– Priv := { [x, m] | x ∈ I  and  m ∈ Mode } set of privileges

• time-dependent control state (  Lt , Grantedt ,Condt ):
– t actual abstract time 

– Lt ⊆ I finite set of system items that are alive at time t 

– Grantedt ⊆ Lt × Lt × Mode
representing the actual permissions or 
other relationships at time t

– Condt possibly parameterized further condition 
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A model of control operations
• a control operation is a call of a parameterized control procedure:

procedure control_schema_ident
( formal_mode_list; formal_item_list );

{ import: Granted, L, Cond }

if subrelation Required is contained in relation Granted
AND 
condition Cond is satisfied

then modify Granted and, if required, also L;
if required, adapt Cond 

fi.

• a modification of Granted or L consists of a sequence of elementary actions:
– insert( s , o , m ): Granted := Granted  ∪ { ( s, o, m ) }

– delete( s , o , m ): Granted  := Granted     \    { ( s, o, m ) }

– create( y ): L := L  ∪ { y  } with y  ∉ L 

– destroy( y ): L := L     \    { y  }
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Reduction: simulation of TM configurations by of control states 

 k

 x1  x2  x3  xi  xe

m1            m2            m3           …               mi               …                 me             ~         ~  … 

       1                2                3                                  i                                   e              e+1          

own own own  own  ... ... own

m1 m2 m3 mi , k me , end

a configuration of TM:    

a simulating control state:   

the initial control state S1:    

 x1

~ , kinit ,end

a halting control state:    

 x1

m1, khalt

 own ...
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Reduction: simulation of TM moves by of control operations  

 x  y

own

m, k

 x  y

own

m´Case δ( k ,m) = (k´ ,m´ ,left):

simk,m(x,y):         if then

k´

 x  y

own

 x  y

own

k´Case δ( k ,m) = (k´ ,m´ ,right):

simk,m(x,y):         if then

m´m, k

 x  x  y

own

~, k´, end

sim_tape_extk,m(x,y): if then

m´m, k, end
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Some crucial insight

• though control operations appear to be very simple, 
they can be expressive enough 
to simulate the local behavior of a Turing machine

• together with the option to create new items, 
the computational power of universal programming languages is reached 

• we can try to achieve decidability, 
by suitably restricting the expressiveness, for example:

– just prevent the TM simulation 

– avoid the interaction of granting and taking together with creating

– employ suitable typing
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Generic take–grant operations and create
  

mode     

grantor                grantee                 object 

mode   

 grantor                grantee                object 

mode   

grant(mode;grantor,grantee,object):     grant

   grant

if

then

mode     

grantor               grantee                  object 

mode   

 grantor              grantee                 object 

mode   

take(mode;grantor,grantee,object):        take

       take

if

then

createN(creator,creation):
         N

creator creation
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Analysis problem for generic take, grant and create: theorem

consider Control: generic take, grant and create as control operations 
S1: a current control state (permissions/prohibitions)
s: a subject
o: an object
m: a mode

claim:
there exists a sequence of permitted control operations such that a request 
from subject s to perform an operation of mode m on object o is permitted  
iff 
there exists an item  p ∈ L1 such that
(i) (  p, o, m) ∈ Granted1

p already holds the examined privilege [ o , m ] in the original control state S1

(ii) p and s are take/grant-connected in the original control state S1

in the corresponding access control graph there is a path from p to s, 
such that, ignoring directions, 
each edge on the path is labeled with take or grant
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Reversing directions of grant and take privileges 

       grant

 si     si+1

       grant

     si+1 si

  n

 take, grant

       grant

     si+1 si

  n

 take,grant grant

 |⎯  |⎯ 

       take

    si+1

       take

     si+1 si

  n

 take, grant

       take

     si+1  si

  n

 take, grant grant

 |⎯  |⎯ 
si
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Privileges and information flow: extended analysis problem

• may a subject s ever be enabled 
to learn the information contained in some object o? 

• will a subject s never be enabled 
to learn the information contained in some object o? 
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Interactions of control operations and functional operations: example
 

    flow

    x1

 data

 data  

    flow

    x1

 data  data

 s = x0

 s = x0

 s = x0

    flow

    x2 = o

 

    flow

    x1

 data  data

 s = x0

    flow

    x2 = o

 data

    flow

    x1

 data  data

 s = x0

initial state with source s
containing data:    

control operations establish    
transmission edge to x1 for data: 

control operations establish    
transmission edge to x2 for data: 

functional operation     
transmits data to x1: 

functional operation  
transmits data to x2:   

 |⎯∗

 |⎯∗
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7   Mandatory Access Control and Security Levels 
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ER model 

• a security level assigned to a subject as a clearance 
roughly expresses a degree of its trustworthiness (concerning confidentiality) 

• A security level assigned to an object as a classification 
roughly expresses a degree of its sensitivity (concerning confidentiality)

 (controlled)
    object

 

   
  (registered)
     subject

  security level

 classified

  cleared
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Partial orders for relative trustworthiness and relative sensitivity

• use a partial order ≤SL on the set of security levels SL

• an ordering l1 ≤SL l2  expresses: 

– relative trustworthiness (“less trustworthy than”) for subjects

– relative sensitivity (“less sensitive than”) for objects
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Mandatory security policy

• information flows must respect the orderings between security levels: 

– a request is permitted 
only if 
the trustworthiness of the requestor (postulated properties of subject)
suffices for (are expected to cover)
the sensitivity of the target (protection requirements for object)

– information may flow from an item with level l1 to an item with level l2 
only if 
l1 ≤SL l2  

• we have to know exactly the direction of the potential information flows: 
– reading: from the accessed object to the requesting subject
– writing: from the requesting subject to the accessed object 
– any: function mode has to correctly assign mode read or write
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Access decisions to enforcing confidentiality

function decide(subject, object, operation): Boolean;

if mode(operation) = read 
then return classification(object) ≤SL clearance(subject) 
fi; 

if mode(operation) = write 
then return clearance(subject) ≤SL classification(object) 
fi. 

• the function decide is supported by a 
conceptual knowledge base (on permissions and prohibitions) expressing:
– cleared relationships of the form (subject, clearance) 

– classified relationships of the form (object, classification)

• the achievements are often briefly referred to as 
the read-down/write-up rule 
for upwards information flow
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Mandatory control of information flow: debates

• achievements rely on strong suppositions concerning: 
– a common understanding of security levels by all administrators
– correct assignments of operational modes to all operations

• achievements might be too restrictive:
– allow only unidirectional information flows
– thus prevent full back and forth communications

• achievements might nevertheless be too weak: 
– potential inferences about the results of permitted operations

are not captured in general 
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Dynamic mandatory access control

• so far: 
an object is statically assigned a fixed security level as its sensitivity

• now refined:
– treat an object as a container

– capture the dynamic evolution of the sensitivity of the content 
during a sequence of operations

– increase the classification for the object like a high-water mark, 
according to the most sensitive information that has ever flowed in

• convenient postulate:
the partial order ≤SL on the domain SL of security levels 
forms a finite lattice
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Security levels as a finite lattice: underlying assumptions

• domain SL of security levels:
to represent some aspects regarding information

• ≤SL is a partial order on the domain SL: 
to treat transitive information flows

• ≤SL allows infimums (greatest lower bounds) infSL( l1 , l2 ):
to capture the common part of the aspects represented by l1 and l2 

• ≤SL allows supremums (least upper bounds  ) supSL( l1 , l2 ): 
to capture the accumulation of the aspects represented by l1 and l2  
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Example of security levels: linear orders

to characterize information under the interest in confidentiality: 

open

secret
secret

top secret

confidential

open
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Example of security levels: power set lattices

to describe information by subject matter, 
using a set of keywords KW, e.g., 
KW = { avail(ability) , conf(identiality) , int(egrity) , auth(enticity) } 

     { avail }       { conf }   { int }        { auth }

�

{ avail,
  conf }

{ avail,
  int }

{ avail,
   auth }

{ conf,
   int }

{ conf,
   auth }

{ int,
   aut }

{ avail,
  conf,
  int }

{ avail,
  conf,
  auth }

{ avail,
  int,
  auth }

{ conf,
   int,
   auth }

{avail,
  conf,
  int,
  auth }
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Approximation of dependance by levels: container objects

• in principle, keep track of 
which items the current content of the container object co actually depends on

• as an efficient approximation, 
maintain a dynamic (high-water mark) security level slco (  t  ),
where t denotes the time parameter:

– if some data d is read from the container at some point in time t, 
then d inherits the container’s current security level slco (  t  ) 
as its dynamic classification

– if some data d, supposed to carry some security level sld , 
is written to the container co at some point in time t, 
then the container’s security level is updated to the 
least upper bound of the container’s previous level and the data’s level:

 slco (  t  ) := supSL  { slco (  t  – 1  ) ,  sld } 

• crucial issue: specify convincingly 
how the data d to be written obtains its dynamic classification sld
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Dynamic classification of data: expressions

• partial answer by the rule for reading: 
if data d is just read and then written without any further interactions, 

then take the inherited dynamic classification

• extended answer:
if  data d results from performing some operation op on arguments a and b,

each of which has only been read just before the operation,

then take the supremum of the inherited dynamic classifications

• generalized for arbitrary expressions: 
take the supremum of all the inherited dynamic classifications involved
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Dynamic classification of data: active subjects

for a subject su that actively participates in forming the data to be written:

• if the subject only persistently stores previously read data over time,

then treat the subject like a container, 
in particular,
su obtains a dynamic security level slsu(  t  )

• if a subject dynamically “generates” new data,

then let the data inherit
either the subject’s static clearance 
or some lower label
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Combining static and dynamic features: outline of a formal model

• each subject su obtains a static security level clearance( su ) 
expressing its trustworthiness

• each container object co obtains a static security level classification( co )
expressing its initial sensitivity

• all operations are monitored by a control automaton 
whose internal states are composed of 
the dynamic security levels slco (  t  ) and slsu(  t  ) 
for each container object co and each subject su, respectively

• for t  =  0, the dynamic security levels are initialized by:
– slco (  0  ) := classification ( co ), for each container object co
– slsu(  0  ) ≤SL clearance ( su ), for each subject su

• for t   >  0, an access request is decided 
according to the current state resulting from time t  – 1, 
and a state transition reflecting the decision is performed
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Static and dynamic features: access decisions and state transitions

• subject su requests to read from a container object co:
– access permitted iff slco (  t  – 1  ) ≤SL clearance( su )

– in the case of a permission, 
slsu (  t  ) := supSL  { slsu (  t  – 1 ) ,  slco(  t  – 1 ) }

• subject su requests to write to a container object co:
– access (always) permitted
– slco(  t  ) := supSL  { slsu (  t  – 1 ) ,  slco(  t  – 1 ) , l }, where l ≤SL clearance( su )

• satisfied security invariant ( for confidentiality):
slsu(  t  ) ≤SL clearance ( su ), for each subject su, at any point in time t

a subject sees only data 
which results from operating on arguments 
whose sensitivities have been classified as lower than or equal 
to the clearance of that subject
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Models attributed to Bell and LaPadula 

• exploring the fundamental concepts of:
– a “secure state”: satisfying a security invariant
– a “secure action”: preserving the invariant

• enforcing a *(star)-security property:
reading an object and subsequently writing to another object 
is permitted only if
the label of the former object is lower than or equal 
to the label of the latter object

• establishing a Basic Security Theorem: 
starting a system in a secure state and 
employing only secure actions 
guarantee that the system is “secure” (always satisfies the invariant)
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Downgrading

• pure mandatory approach:

only unidirectional information flows, 
“from low to high”

• many applications require exceptions, e.g.:

– critical information to be kept top secret for some time 
might age over the years and thus becomes less critical

– a subject acts in highly critical missions for some time
but subsequently is given a less critical task

• some downgrading of an object/subject is due, e.g.: 

– an original classification/clearance “top secret” 
is substituted by “confidential”
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Sanitation

• downgrading may possibly be preceded by sanitation, i.e.:

– data is inspected for parts that are still critical

– such data is then individually removed or 
suitably replaced by harmless variants
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Trusted subjects and violation of the basic security property

• downgrading and sanitation are performed 
by special subjects that are considered as trusted, i.e.,
being exempted from obeying the pure rules of mandatory access control

• downgrading may violate the basic security property: 

– only suitably relaxed formal security properties are still valid

– in the extreme case, 
there are no formal guarantees of confidentiality anymore 
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Confidentiality and integrity

• confidentiality security levels are designed to preserve confidentiality: 

– data can be distributed to the equally or higher-labeled items 

– such data can be written into these items

– all these items can be modified, and 
thus are subject to concerns about their integrity

– in general, integrity will not be preserved 

• close relationship between 
– “(no) information flow” 
– “(non)interference”

• these two notions are dual:
there might be an information flow from some item a to another item b
if and only if 
item a might interfere with item b 
(i.e., a might have an impact on the behavior of b)
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A dual approach to enforcing integrity

• fully dualize the mandatory approaches for preserving confidentiality, 
including the procedure for access decision

• a read-up/write-down rule for downwards interference is employed:

– reading is allowed upwards, i.e., 
from equally or higher-labeled items

– writing is allowed downwards, i.e., 
to equally or lower-labeled items
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Enforcing both confidentiality and integrity

• jointly apply 
the “read-down/write-up rule” and 
the “read-up/write-down rule”

• then only accesses within the set of equally labeled items are allowed,
independently of whether the operational mode is read or write

• this strong restriction might impede the wanted application functionality
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Additional integrity security levels

• use a separate set SLint of integrity security levels:
– an integrity security level assigned to a subject as a clearance 

expresses a degree of trustworthiness of the subject 
concerning preserving the integrity of items

– an integrity security level assigned to an object as a classification 
expresses a degree of sensitivity of the object 
concerning the need for its integrity to be preserved

• trustworthiness and sensitivity concerning confidentiality and 
the corresponding concepts concerning integrity 
might differ essentially

• accordingly, both kinds of security levels 
should be applied in parallel, 
simultaneously following both permission rules: 
– upwards information flow regarding confidentiality security levels
– downwards interference regarding  integrity security levels
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8   Inference Control
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Information gain

• an observer of a message or other event 
achieves an information gain 

if he can convert his a priori knowledge 
into strictly increased a posteriori knowledge 
– when adding the meaning of the message or event and 
– making all possible inferences 

• such a gain might 
remain merely potential or 
be actually realized, 

depending on 
– the fundamental computational capabilities and 
– the available computational resources of the observer
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Information, knowledge, computational capabilities and resources 

 message 

  observe message     

  assign meaning  

computational 

evaluate novelty         

 (gain of) 

  

(or event)    
experiences

  determine options for   
  potential implications     

    deploy resources and      
 actually infer implications      capabilities

and resources   

(explicitly
represented,
a priori and
revised)
knowledge

 revise knowledge   information   
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Information gain by an observer
• selects a framework for reasoning

as the pertinent communicative context or universe of discourse

• interprets an observation and assigns a meaning to the observation

• has some a priori knowledge

• employs a declarative notion of implication, using 
first-order logic, probabilities, vagueness, uncertainty, preferences, ... ,
and thus reasons about the fictitious implicational closure 

• computationally infers 
– deploying the computational resources available to him – 
selected or even all implications, and 
evaluates actual inferences concerning novelty

• treats the newly inferred implications as the information gained 

• appropriately revises his previous knowledge, 
thereby getting a posteriori knowledge
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Two extreme cases for the information gain

• the a priori knowledge and the a posteriori knowledge are identical:

– the knowledge has remained invariant 

– the observer has learnt nothing novel

– the set of possible worlds has not changed

• the a posteriori knowledge determines exactly one possible world: 

– the knowledge has become complete

– the observer has learnt any property expressible in the selected framework
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Enabling/preventing information flow concerning semantic objects 

gain
information

knowledge

(potentially corrected) accepted message m ,

and
computational
capabilities
and resources

about    
message sent 
as 
syntactic object 

actually observed message m´

considered as having integrity and being authentic 

enabling mechanisms that 
serve mainly for 
enforcing integrity and authenticity

 detect modifications   
              and
correct modifications   

gain
information

knowledge
and
computational
capabilities
and resources

about  
considered 
semantic objects 
   

   (gain of) information about considered semantic object 

enabling/preventing mechanisms that 
serve mainly for 
enforcing confidentiality
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Simple mathematical model: inversion of functions/solving equations

• framework for reasoning:
– function f  :  D → R 
– domain D  =   dom (   f   ) containing at least two elements 
– range R  =  range (   f   )
– an abstract assignment x → f  ( x ) of function values to arguments

• observation: 
– message m, seen as a syntactic object in the form of a bit string 

• interpretation:
– m, seen as a semantic object y  ∈  R, generated by the sender 

by applying the function f to some semantic object x  ∈  D 
– m possibly contains information 

about some (hidden) semantic object x ∈ D such that f  ( x )  =  y

• gain of information:
– try to invert the function f for the given range value y  
– attempt to find the solutions of the equation f  ( z )  =  y 

for the unknown variable z
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A classification of functions: an (everywhere) injective function

for each y  ∈  R there exists a unique z  ∈  D such that f  ( z )  =  y:

– the observer can potentially gain complete information 

– the actual gain depends on the observer’s possibilities
to actually compute the unique solution of the given equation
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A classification of functions: a nowhere injective function

for each y  ∈  R there exist at least two different domain values 
z1  ∈  D and z2  ∈  D such that f  ( z1 )  =  f  ( z2 )  =  y: 

• the observer cannot gain the sought information completely
(he cannot distinguish the candidate domain values) 

• the observer can possibly gain some partial information:
– his a posteriori knowledge comprises 

x  ∈  {z | f  ( z )  =  y} ⊆ D

– if {   z | f  ( z )  =  y} ≠ D, 
then the observer can potentially gain novel partial information;
he can exclude the possibility that the hidden object x is 
an element of the difference set D \ {z | f  ( z )  =  y }

– the actual partial gain depends 
on the observer’s possibilities to actually compute the relevant items
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A classification of functions: arbitrary functions

given the interpretation y  ∈  R of an observed message, 
the observer determines the pre-image { z | f  ( z )  =  y }:

• complete (potential) information gain: 
the pre-image contains exactly one element x, i.e.,

card { z | f  ( z )  =  y } = 1, and accordingly { z | f  ( z )  =  y } = { x }

• partial (potential) information gain: 
the pre-image contains at least two (indistinguishable) elements
but does not comprise the full domain D, i.e., 

card { z | f  ( z )  =  y }  > 1 and D \ { z | f  ( z )  =  y } ≠ ∅

• no information gain: 
the pre-image is equal to the full domain D, i.e., 

{ z | f  ( z )  =  y } = D

• framework not applicable: 
the pre-image is empty, i.e., 

{ z | f  ( z )  =  y } = ∅
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Exemplifying three cases regarding information gain 

      hidden 
    

   observed 
semantic object         semantic object     

D R
complete information gain 

partial information gain

framework not applicable

f
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Observing the result of a group operation
• group ( G , • , e )

– G set of group elements
– •  :  G  × G  → G binary group operation
– e neutral element

– inverse  :  G  → G  inversion with    xinverse •  x = e   for all x ∈ G

• group properties ensure the solvability of equations: 
every equation of the form k •  x = y , where two of the items are given, 
has a unique solution for the third item

• example: addition modulo 3  

           0          1          2
0         0          1          2
1         1          2          0
2         2          0          1 

observation:      y = 0
pre-image:        {(0,0),(2,1),(1,2)}

parameter  k

remaining argument   x

remaining argument 
for known parameter k=1:   2

set of possible remaining arguments 
for unknown parameter:       {0,1,2} 
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Information gain based on a parameter 
• observation:

y  ∈  G  result of an application of the group operation

• a partial information gain about the arguments:
G  × G \ {   ( k , x )  |  k •  x =  y } ≠  ∅  

• fix the first (or, similarly, the second) argument of the group operation 
to some parameter k  ∈  G: 
family of functions •k  :  G   → G, where   •k  ( x )  =  k •  x 

• observer knows k: 
complete information about the remaining argument, since
 •k  ( x )  =  y implies 

kinverse  •  y = kinverse  • (  k •  x  ) = (  kinverse  •   k )  •  x = e •  x = x

• observer does not know k:
no information about the remaining argument, since
{    x   |  there exists k  ∈ G : k •  x =  y } = G  
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Inference control by dynamic monitoring of a process  

  observer

    program

   executing
    dynamic

                     permitted 
 

           semantics           a priori      previous

  monitoring
 (case-by-case 
    decisions)

     process

        knowledge   observations

                   observations

  security
   policy
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Inference control by static verification and modification of a program

 observer

   (modified)

   executing

static verification

  permitted

          semantics           a priori
        knowledge

   (original)
   program

and modification
(global decisions)      program

     process

observations

  security
   policy
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Sequential programs: main constructs
• declaration of typed identifiers and 

generation of corresponding program variables, 
whose current values constitute a (storage ) state of an execution

• state transition, caused by 
– generating a new program variable
– destroying an existing one
– assigning a value to a program variable
– passing an actual parameter during a procedure call

• control of the execution sequence by 
– sequential composition of commands
– guarded commands such as a conditional or a repetition

• evaluation of an expression occurring 
– in an assignment
– as an actual parameter
– as a guard

• computation of a function value needed during the evaluation of an expression, 
where the function is implicitly given by a fundamental type 
or has been explicitly declared
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Sequential programs: an example

procedure flow(
in init, guard, x, y: integer; 
out result: integer);

local help: integer;

begin
help := 2;
help := help + init * init;

if guard ≥ 0 
then help := help + x 
else help := help + y 
fi;
result := help

end flow
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Goals of analysis

• information gain 
about the actual parameter values of the 
input variables init, guard, x and y, 

passed before the execution of the body, 

when the value of the output variable result 
is observed after the execution

• information gain 
that may arise during subparts of the executions
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Stepwise analysis: expressions and assignments

• assignment help  :=   2 
does not enable any information gain

• expression  help+init*init 
– evaluates the subexpression init*init :

observing the unidentified product value 
enables a nearly complete information gain 
about the actual parameter value of init passed 

– determines the final value of the full expression help+init*init: 
observing the sum value enables a 
complete information gain about the second argument, and, by transitivity,
a nearly complete information gain about the value of init passed 

• assignment help  :=   help+init*init 
causes an information flow 
from the carrier init 
over the sum value
to the carrier help
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Stepwise analysis: positive branch of guarded command

• assignment help  :=   help+x in the positive branch:
– evaluates the expression help+x
– delivers an unidentified sum value
– assigns this sum value to the reused local variable help 

• if the command is inspected separately, 
observing the sum value enables an information gain 
about neither the previous value of help nor the value of x  

• an observer can achieve a partial information gain 
about the pairs of these values 

• if the observer knows one of the argument values a priori, 
then the sum value uniquely determines the other argument value;
by transitivity, the same reasoning applies for the value of help

• the complete command causes some information flow 
from help and x back to help
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• the body is equivalent to the following command sequence:
help := 2;
help := help + init * init;
help := help + x; 
result := help

• final step can be understood as a direct, explicit data flow 
from the local variable help 
to the output variable result 

• by transitivity, the full sequence can be regarded as 
causing an information flow 

from init and x 
to result 
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Stepwise analysis: guarded command

if guard ≥ 0 then help := help + x else help := help + y fi

• the branch is selected by the actual parameter value of guard 

• in general, observing the value of help after this command is executed 
does not enable an information gain about the guarding variable

• such a gain is possible, e.g., with the additional a priori knowledge:
– the value of help is 2
– the value of x is greater than or equal to 8
– the value of y is less than 8

• the observed value of help is greater than or equal to 10 iff
the value of guard is greater than or equal to 0

• the observed value of help is less than 10   iff 
the value of guard is less than 0
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A classification of information flows
• direct information flow (direct data flow or message transmission)

– a value (not known to be a constant)
is explicitly transported from a variable to another one

– assignment commands, 
passing actual parameters,
providing arguments for the computation of a function

• indirect information flow 
– from the arguments to the value of the computation of a 

function

• transitive information flow 
– two “matching” information flows are combined
– command sequences,

nested expressions

• implicit information flow 
– a guarded command has an impact on the control; 

from the constituents of the guarding expression into the selected branch
– conditionals,

repetitions
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Reachability or actual reaching of a command 

• formally declared information flow:
the pertinent command is part of the program (seen as a text) 

• realizable (or existential ) information flow: 
the pertinent command is reachable 
for at most one execution with appropriate input values

• realized (or occurring ) information flow:
the pertinent command is actually reached during an execution
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Implicit flows without any direct flows: example

procedure implicit(
in x: boolean; 
out y: boolean);

local z: boolean;

begin
y:= false;
z:= false;
if x then z := true fi; 
if z then y := true fi

end implicit

• implicit flow from x to z by the guarded command if x then z  :=   true

• implicit flow from z to y by the guarded command if z then y  :=   true

• transitive flow by sequencing the implicit flows
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Implicit flows and the constantness problem: example

procedure difficult(
in x: integer; 
out y: integer);

function f(z: integer) : integer;
{ f   computes a total function, as implemented by the body;

f   returns the output value 0 on the actual input parameter value z  =  0}
begin …    end f;

begin
if f(x) = 0
then y := 1 
else y := 2
fi

end difficult
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Undecidability of information flows

• the function constantly returns 0:
– equivalent to the assignment command y  :=   1 
– no information flow

• there exists an actual input parameter value z  ≠  0 such that 
the function returns a different value:
– enables a partial gain of information 

about the actual parameter value x, by excluding 
either the value z 
or the specially treated value 0 

• an information flow occurs 
iff 
the locally defined function is non-constant 
(in general undecidable)
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Static compiler-based verification

• is a preventive mechanism of inference control

• employs the structures of high-level procedural programming languages 
in order to deal with implicit information flows due to guarded commands

• approximates the information flow from the argument components of the 
guard into the carriers manipulated in the pertinent scope of the guard:
– this scope is easily determined syntactically
– leaving the scope, the impact of the guard is reset appropriately

• is integrated into the functional analysis of the program, 
on the basis of compositional and procedural semantics 

• is supported by a pertinent compiler 

• considers the progressively more complex syntactical subparts of a program
as some kind of carriers of information
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Simplified version of a procedural language

• x1 , x2  ,  …  , y1 , y2  ,  … , z1 , z2  ,  … typed variables (variable v extension Dv)
x1 , x2  ,  … , y1 , y2  ,  … declared as formal parameters
z1 , z2  ,  … declared as local variables 

• command: one of the following well-formed constructs
– assignment to a variable (with an expression to be evaluated and assigned)
– sequence of commands (bracketed by begin–end, “;” used as delimiter)
– structured conditional (conditional forward jump/two-sided alternative)
– repetition (guard in front of the body: while instruction)
– procedure call (with appropriate actual parameters)

• procedure: identifier, formal parameters, local declarations, body 

• body: sequence of commands without global variables

• formal parameter
– either argument parameter (no assignments allowed)
– or result parameter bzw. argument/result parameter (preceded by var)

• program: procedure, which might contain nested local procedures
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Informal semantics: flow diagrams for commands  

u := exp(w1,…,wn)

exp(w1,…,wn)

true 

false

the flow diagram
for the command

exp(w1,…,wn)
true false

the flow diagram
for command_1

the flow diagram
for command_2

exp(w1,…,wn)

true 

false

the flow diagram
for the command
© Joachim Biskup, Technische Universität Dortmund     Security in Computing Systems: Inference Control - 07. 04. 2011   306



Policy specification for expressing permitted information flows 

• labels are taken from the power set lattice (℘Var  ,  ⊆  ,  ∩  ,  ∪  ) 
with respect to the set of all variables Var   =   { x1 , … , xm ,  y1 , … , yn ,  z1 , … , zk  } 

• declaring the static label sl (  v ) = V ⊆ Var for a variable v  ∈ Var is to permit
only information flows into v that originate from the variables in V

• the following restrictions apply:
– a formal argument parameter xi  must get {  xi  } as its static label

– a formal result parameter yj might get a static label Vj such that
yj ∉ Vj  ⊆ { x1 , … , xm ,  y1 , … , yn }, 
not containing any other pure result parameter

– a formal argument/result parameter yj might get a static label Vj such that
yj ∈Vj ⊆ { x1 , … , xm ,  y1 , … , yn }, 
not containing any pure result parameter 

identifier flow: type label
var

variable declaration 
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A procedure declaration with static labels

proc max (
 x1 : integer flow  {  x1  } ; argument parameter

x2 : integer flow  {  x2  } ; argument parameter
var y : integer flow  {  x1  , x2  } result parameter

) ;  

begin

if x1  > x2 then y := x1  

else y := x2  returns maximum

end
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Enforcing the intention of the static labels
• during the syntactical analysis: 

–  for all expressions and commands: a dynamic label dl ( . ) [numbered box]
– control invariant concerning the variables: dl ( v ) ⊆ sl ( v )
– additional control conditions concerning the compositional structures

• control conditions: 
– expressed in terms of the dynamic labels (circle)
– dynamically generated and verified

• initially (at leaves of syntax tree): 
– dynamic label of an occurrence of a variable: 

the respective static label (declared in the corresponding flow clause)
– dynamic label of an occurrence of a constant:

least label (empty set) 

• afterwards (at inner nodes of syntax tree): 
–  define dynamic labels stepwise in a bottom-up fashion 
– appropriately propagate the already available data up the syntax tree 
– approximate the relevant information content 
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Guidelines for verification rules
• functional expression: 

approximate information flow by the 
⊆-supremum of the labels of the arguments 

• assignment, including a procedure call (like a multiple assignment):
require following control condition:
label of the receiving carrier dominates labels of the data to be transported

• guarded command: 
require following control condition:
an implicit flow of the information 
represented by the label of the guarding expression 
is permitted for all assignments in the scope of the guard 

• composed command (sequence or alternative):
refer to all constructs, 
the assigned label is computed as the ⊆-infimum of the contributing labels 

• reaction: 
refuse execution after detecting a policy violation 
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Defining dynamic labels and generating control conditions: example 

if         x1                    >               x2         then       y          :=                x1                else   y           :=                x2

if            Boolean expression           then          command                     else     command

   expression   operator    expression                  assignment                                        assignment

        variable              >          variable              variable    :=         expression                      variable    :=         expression 

          x1                                      x2                        y                        variable                        y                        variable    

 x1                                                             x2 

 alternative conditional

 x1 , x21/2

 x11

 x11

 x22

 x22

 x11  x22  x1 , x2   3   

 x1 , x2   3   

 x14

 x14

 x14

 x1 , x2   5   

 x1 , x2   5   

 x26

 x26

 x26

 x1 , x2   3   

 x14  x1 , x2   3   �  x26  x1 , x2   5   �

 x1 , x2   5   

 x1 , x2   3    x1 , x2   5   

 x1 , x2   5   � x1 , x21/2  x1 , x2   3   ����

 x1 , x2   5    x1 , x2   3   ����
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Dynamic labels and control conditions 

Expression/command
e / C

Assigned dynamic label
dl ( e ) / dl ( C )

Generated 
control condition 

constant: e ≡ const ∅ , i.e., least element
variable: e ≡ v sl (  v ) , i.e., static label
functional expression: 
e ≡ f   (w1 , … , wn ) dl (  w1 ) ∪  ... ∪  dl (  wn  )

assignment: 
C ≡ u := e dl (  u ) dl (  e ) ⊆ dl (  C  )
sequence: 
C ≡ begin C1,…,Cm end dl (  C1 ) ∩  ... ∩  dl (  Cm  )
conditional jump:
C ≡ if e then C1 dl (  C1 ) dl (  e ) ⊆ dl (  C  )
alternative:
C ≡ if e then C1 else C2 dl (  C1 ) ∩ dl (  C2 ) dl (  e ) ⊆ dl (  C  )
repetition:
C ≡ while e do C1 dl (  C1 ) dl (  e ) ⊆ dl (  C  )
procedure call:
C ≡  P  (a1 , … , am , b1 , … , bn) dl (  b1 ) ∩  ... ∩  dl (  bn  )

for xi  ∈ sl (  yj ): dl (  ai ) ⊆ dl (  bj  )
for yi  ∈ sl (  yj ): dl (  bi ) ⊆ dl (  bj  )
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Compiler-based verification: theorem

Let P be a procedure with a totally defined semantic function | P  |. 

If P satisfies all generated control conditions, 
then the following property holds: 

for any execution of the calling of P, 
any realized information flow from a variable v to a variable w 
is permitted according to the declaration of the static label of w, i.e., 
all other information gains are blocked. 

• proof: 
by a structural induction     

• perspective: 
great potential, also regarding further advanced programming constructs, 
provided that 
– all constructs are compositionally structured
–  all constructs carefully avoid unforeseen side effects
– the approximations are acceptable (do not cause too many rejections)
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Resetting and downgrading dynamic labels

• whenever a program variable is assigned a new value, 
the previously held value is supposed to be lost:

the dynamic label of the variable is redefined 

• as a special case, 
if the expression is just a constant, 
then the new label is the least element of the lattice employed:

the dynamic label is completely reset

• whenever a structured command is properly left,
control is supposed to forget the value of guarding expression:

the dynamic label of the pertinent version of a control variable 
is reset to its value before the structured command was entered

• unfortunately, there seem to be no further generally applicable techniques for
forgetting information
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Decentralized label model: main emphasis

provide each individual owner of some information 
with a flexible and expressive means to specify the allowed receivers, 
when the execution of a program is shared
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Decentralized label model: outline
• label: set of policies consisting of an owner and a list of readers:

{ (owner1: reader1,1, … ) ,  … , (ownerk: reader k,1, … ) }

• assigning a label to 
a carrier (input channel, internal program variable, output channel, ... ) or 
some data (result of evaluation of an expression, ... ): 

the respective information content is permitted 
to be transferred to a principal prin 
iff 
that principal is a grantee of all policies in the label, i.e.,
iff 
prin ∈ {owner1 , reader1,1 , … } ∩ …  ∩ {owner k , reader k,1 , … 

• while information is being processed during the execution of a program, 
the static label of the receiving carrier must always be 
at least as restrictive as the dynamic label of the transferred data: 

each grantee for the receiving carrier is a 
grantee for the transferred information as well
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• while information is flowing, 
the labels assigned to a piece of information might become more restrictive: 

any deposit of a piece of information in a labeled carrier 
possibly excludes principals from accessing this (copy of the) information

• to maintain the needed availability of information, 
any of the owners can dynamically relax the exclusions by 
somehow downgrading (declassifying) their part of the label: 

by generating a copy of the information with a label 
that is less restrictive with respect to this owner’s grantees

• an owner can achieve this goal only if 
– he is a member of the specific authority set of principals 

on behalf of which the program execution is performed, and 
– the program contains a suitable command dedicated to such a relaxation

• when the dedicated command is executed, 
a copy is generated with a new label 
where this owner’s part is modified as described in the command
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Programming language Jif (Java Information Flow ) 

• implements features of the decentralized label model 

• extends (a sublanguage of  ) Java

• provides inference control by static verification of labeled programs 
as an extension to type checking: 
– analyzing the main constructs of Java for all kinds of information flows
– verifying the pertinent control conditions 

• demands some limited dynamic monitoring for downgrading

• dynamic monitoring also extends 
to granting authorities along chains of procedure calls, 
or dealing with additional runtime labels
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Inference control for parallel programs

• there are constructs for the parallel execution of several threads

• threads coordinate their actions and 
synchronize at specific points of their execution and 
thus introduce new kinds of implicit information flows

• suppose that one thread can only proceed 
if another thread has completed some specific actions:

then the latter thread appears like a guard for the former one 
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Inference control for parallel programs: example

x,y,z: boolean; 
s: semaphore;

begin
z:= false;

cobegin
thread_1: read(x);

if x then signal(s)

||

thread_2: y := false;
wait(s);
y := true

coend;

z:= y
end
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Inference control for parallel programs: analysis of the example

• accessing only the program variable y  , 
an observer of thread_2 can possibly infer the value of x read by thread_1:

since the assignment y:=true is guarded by the semaphore, 
which in turn is in the scope of the guard x in the conditional, 

observing the value true for y implies 
that x has been given the value true as well

• accessing only the program variable z  , 
an observer can possibly infer the value of x : 

since thread_2 terminates only if thread_1 signals the semaphore 
and
the synchronization occurs only if both threads terminate,

observing the value true for z implies 
that x has been given the value true as well
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Inferences based on covert channels

• semantics of programs is defined in terms of an abstraction 
designed to appropriately model the behavior of real computing devices

• inference control – as presented so far – refers to the pertinent abstraction

• accordingly, inference control correctly captures only those information flows 
that can be described in terms of the abstraction, 
but fails to deal with potential further flows over covert channels 
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An never-ending list of possibilities

• timing channels exploit observable differences in behavior in real time

• energy consumption channels exploit the fact that 
(hidden) different behaviors are related to 
observable differences in energy consumption

• similarly, other physical effects 
such as measured electromagnetic fields could be exploited

• storage channels exploit the status of shared storage containers

• exception-raising channels are based on observable parts of 
the exception handling within some protocol, 
where an exception is either triggered as 
an observable event within a specific context or not

• ...
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Some countermeasures against detected covert channels 

• “close a detected covert channel” 
by explicitly taking care that originally distinguishable events 
become indistinguishable for the suspected observer

• make the real execution time independent of some crucial input values,
by performing dummy operations if necessary

• decouple consumers of shared resources, 
by assigning predetermined access times

• unify protocol executions, 
by eliminating case-dependent exceptions
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Inference control for statistical information systems

• consider a specialized kind of information system and 
the dedicated usage of such systems for statistical purposes

• use here a simply model of an information system:
– r an instance
– R (  K  ,  V  ) a relation scheme 
– K attribute, declared as a key and 
– V attribute, seen as some dependent property 

whose values are real numbers

• interpret each tuple  (  k  ,  v  ) in the instance r: 
– key value k abstract identifier uniquely denoting an individual
– property value v some personal data, to be protected (kept secret)

• regulate access according to protection rules for personal data, e.g.:
seeing answers to statistical queries 
(e.g., mean or median for some sample sets of individuals) 
the statistician must not be able to infer 
the property of any particular individual
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• resolve conflict of interests: 
– statistician: availability of statistically aggregated data
– individuals: confidentiality of their personal data

• take care that, in general, 
there are no simple means to resolve the conflict:
– system refuses to give answers to immediately harmful queries

(e.g., queries related to samples of a size too small for hiding):

statistician might design sufficiently long query sequences 
to set up a solvable system of equations 
whose solution reveals some particular personal data

– system explores lying 
(e.g., replacing the correct values by (statistically) distorted values
adding some random “noise”) 
such that anticipated statistical queries are not “essentially affected”:

statistician might design calculations for “noise removal” 
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Summation as aggregate function: a functional model 

• r (hidden) fixed instance
N known size of r
{ 1 , … ,  N  } key values occurring in r

• q a query determining a sample set sample ( r , q ) of identifiers 

 

• query language is closed under Boolean combinations, e.g.,
sample ( r , q1 ∨ ¬q2 ) = sample ( r , q1 ) ∪ (  { 1 , … , N  } \ sample ( r , q2 )  ) 

• statistical aggregate function is summation: 
on input of a query q, 
the system returns the result 

sum ( r , q ) =   v
k sample r q( , )∈

k v( , ) r∈



© Joachim Biskup, Technische Universität Dortmund     Security in Computing Systems: Inference Control - 07. 04. 2011   327



Summation as aggregate function: a refusal approach

• t < N  / 2 some suitable threshold parameter 

• the system refuses the answer to a query q 
iff 
card sample ( r , q ) < t      or      card sample ( r , q ) > N – t

(the cardinality of the sample set is either too small or too large)
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Summation as aggregate function: a refusal situation

• supposed observation:
the system refuses a query q 

• additional assumptions:

– threshold t is suitably small 

– observer has some helpful a priori knowledge

– observer can select a query qtracker such that 
2·t  ≤ card sample ( r , qtracker ) ≤ N – 2·t 
© Joachim Biskup, Technische Universität Dortmund     Security in Computing Systems: Inference Control - 07. 04. 2011   329



Summation as aggregate function: a circumvention procedure

– observer: submits queries qtracker and ¬qtracker   
– system: answers correctly

– observer: submits the queries q1 ≡ q ∨ qtracker    and        q2 ≡ q ∨ ¬qtracker 

– system: reacts
– observer: 

case 1, system correctly returns both answers [sample set too small]: 
derives the refused result sum ( r , q ) by solving the linear equation
sum ( r , q1 ) + sum ( r , q2 ) = sum ( r , qtracker ) + sum ( r , ¬qtracker ) + sum ( r , q ) 

case 2, system refuses the answer to q1 (similarly for q2): 
[sample set for q too large; thus sample set for ¬q too small: 
thus case 1 holds for ¬q]

applies circumvention for ¬q and 
infers sum ( r , ¬q );

derives the refused answer sum ( r , q ) by solving the linear equation
sum ( r , q ) + sum ( r , ¬q ) = sum ( r , qtracker ) + sum ( r , ¬qtracker ) 
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Part III

Security Architecture 



9   Layered Design Including Certificates and Credentials
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Trust and trustworthiness

• items serving to found trustworthiness of a target:
– a security policy that meets explicitly claimed interests 
– an appropriately designed and reliably implemented functionality 
– verified knowledge 
– justified experience 
– compliance with social and legal rules
– effective assurances

• an individual (community) may decide to put trust in such a target: 
the decider’s own behavior 
is firmly grounded on the expectation 
that the target’s current or future actual behavior 
– often fully or at least partly hidden and thus only partially observable – 
will match the specified or promised behavior

• trust in the technical target is inseparably combined 
with trust in the agents controlling that target
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Some aspects of an informational concept of trust  

 human 
      

past

present

future

 technical target      
 control decides on trust in

         actual behavior

firmly expects      

inspects tr
ustw

orthiness  

    individual       

security
policy functionality

knowledge
experience
social/legal rules
assurance
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Establishing reasonable trust reductions 

• identify small parts of a computing system, 
if possible, preferably under your own and direct control, 
as indispensable targets of trust

• argue that the wanted behavior of the whole system 
is a consequence of justified trust 
in only these small components
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Trust reductions for control and monitoring 

• starting point:
an overall computing system consisting of 
clients, servers, networks and many other components

• reduction chain: 
– a distributed application subsystem 
– the underlying operating system installations 
– the operating system kernels 
– the “reference monitors” that implement access control within a kernel

• extended reduction to hardware support: 
– “trusted platform modules” 

(enforcing authenticity and integrity)

– personal computing devices
(storing and processing cryptographic secret keys) 
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Trust reductions for cryptography

• starting point:
an overall computing system consisting of 
clients, servers, networks and many other components

• reduction chain: 
– cryptographic mechanisms
– cryptographic key generation and distribution
– storing and processing secret keys
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Layered design: a fictitious architecture  
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Integrity and authenticity basis (trusted platform module) 
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Integrity and authenticity basis: main functions of an instance 
• enables the attached system to generate and store 

a tamper-resistant self-description regarding its actual configuration state:
– represented by a sequence of chained hash values 
– iteratively computed by a measurement process
– stored in protected platform configuration registers
– comparable with a previous or a normative state

• encapsulates and protects implementations of basic cryptographic blocks,
including the key generation, storage and employment: 
– symmetric encryption and decryption for internal data
– asymmetric decryption for external messages 
– asymmetric authentication (digital signatures) for external messages 
– anonymization by using public (authentication) keys as pseudonyms 
– random sequences for key generation and nonces
– one-way hash functions for generating the self-descriptions as hash values 
– inspection of timestamps by a built-in timer

• both globally identifies and personalizes the attached system: 
– physically implanted, worldwide unique asymmetric endorsement key 
– inserted authentication secret shared with the owner
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Secure booting and add-on loading: important assumptions

• the overall system, seen as a set of programs, is organized into 
a hierarchical component structure without loops

• there is one initial component that has authenticity and integrity, 
a bootstrapping program, 
evaluated at manufacturing time to be trustworthy, 
and securely implanted into the hardware, 
employing a tamper-resistant read-only memory

• each noninitial component (program) originates from a responsible source,
which can be verified in a proof of authenticity; 
such a proof is enabled by a certificate referring to the component 
and digitally signed by the pertinent source
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• each noninitial component has a well-documented state that can be measured;
such a state is represented as a hash value;
the expected state, as specified by the source, 
is documented in the certificate for the component

• each component, or some dedicated mechanism acting on behalf of it, 
can perform an authenticity and integrity check of another component, 
by measuring the actual state of the other component 
and comparing the measured value with the expected value

• the hardware parts involved are authentic and possess integrity, too, 
which is ensured by additional mechanisms or supposed by assigning trust

• the certificates for the components are authentic and possess integrity
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Basic booting and loading procedure

load initial component; 

repeat 
[invariant: all components loaded so far are authentic and possess integrity]

after having been completely loaded, a component 
– first checks a successor component for authenticity and integrity
– then, depending on the returned result,

either lets the whole procedure fail
or
loads the checked successor component

until all components are loaded
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Some extensions and variants

• recovery from failures 
the procedure automatically searches 
for an uncorrupted copy of the expected component

• chaining 
hash values are chained, superimposing the next value on the previous value, 
for producing a hash value of a sequence of components

• data with “integrity semantics” 
the procedure also inspect further data relevant to the overall integrity, 
such as separately stored installation parameters

• integrity measurement
the procedure recomputes the hash value of the component actually loaded and
stores this value into dedicated storage for reporting

• reporting
the recomputed and stored hash values are reported 
to external participants as the current self-description
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Middleware: functional and security services 

• managing the local fractions of the static and dynamic aspects of the system, 
including local control and monitoring

• enabling interoperability across the participating sites, and 
also contributing to global control and monitoring 
by regarding incoming and outgoing messages as access requests

• establishing virtual end-to-end connections to remote sites
(the session layer according to the ISO/OSI model), 
dealing in particular with 
– fault tolerance 
– authenticity 
– access rights 
– non-repudiation 
– accountability
– confidentiality
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Informational infrastructure and organizational environment 

• with regard to sites (i.e., their extended operating systems), 
enabling mutual authentication 
using certificates for the public parts of asymmetric key pairs, 
and generating and distributing symmetric session keys

• with regard to “user processes”, 
enabling autonomous tunneling:
wrapping data by encryption and authentication 
under the mastership of the endusers 
(as proposed for Virtual Private Networks, VPNs)

• enabling anonymity, 
by employing (the public parts of) asymmetric key pairs as pseudonyms, 
and by dedicated MIX servers with onion routing
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Middleware: support by underlying layers and global infrastructure 
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Middleware instantiation of control and monitoring

• for a distributed computing system, the isolation of participating subjects 
and controlled objects is split into two parts

• at a subject’s site, a subject, acting as a client, 
is confined concerning sending (messages containing) access requests

• at an object’s site, a target object, acting as a server, 
is shielded concerning receiving such (messages containing) access requests
and then actually interpreting them

• the fundamental permissions (and prohibitions) relationships 
between subjects and objects are represented by two complementary views

• a ternary discretionary granted relationship ( s , o , m ) is split into 
– a privilege (or capability) [ o , m ] for the subject s
– an entry [ s , m ] for the access control list of the object o

• a subject can be assigned security attributes (e.g., a privilege [ o , m ]); 
an object can be assigned control attributes (e.g., an entry [ s , m ]) 

• similarly, clearances of subjects and classifications of objects are assigned
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ER models of fundamental relationship classes for permissions 
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Fundamental relationship classes for permissions: distributed view 
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Programming languages: enforcing compile time features 

• object-orientation contributes a specific kind of encapsulation: 
an instance object is accessible only by the methods 
declared in the pertinent class

• explicit commands for the lifespan of instance objects assist in 
keeping track of the current object population, 
for example by generating (new) an instance object with explicit parameters 
and releasing (delete) it after finishing its usage, 
possibly together with erasing the previously allocated memory

• modularization of programs, 
together with strong visibility (scope) rules for declarations, 
crucially supports confinement

• strong typing of objects and designators, 
including typed references (disabling “pointer arithmetic”)
together with disciplined type embeddings (coercions ), 
prevent unintended usage
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• explicit interfaces of modules, procedures and other fragments, 
requiring full parameter passing and prohibiting global variables, 
shared memory or a related implicit supply of resources, 
avoid unexpected side effects

• explicit exception handling 
forces all relevant cases to be handled appropriately

• for parallel computing, 
(full) interleaving semantics and explicit synchronization 
help to make parallel executions understandable and verifiable

• for supporting inference control,
built-in declarations of permitted information flows are helpful

• if self-modification of programs is offered, 
it should be used only carefully, where favorable for strong reasons
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Programming languages: controlling runtime features

• runtime checks for array bounds

• runtime checks for types, 
in particular for the proper actual parameters of procedure calls

• actual enforcement of atomicity (no intervening operations), 
if supplied by the programming language

• dynamic monitoring of compliance with permitted information flows

• space allocation in virtual memory only:
physical-memory accesses must be mediated 
by the (micro)kernel of the operating system

• allocation of carefully separated memory spaces 
(with dedicated granting of access rights) for 
– the program (only execute rights) 
– its own static data (if possible, only read rights) 
– the runtime stack and the heap
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Software engineering: helpful recommendations

• explicitly guarding external input values and output values

• explicitly guarding values passed 
for the expected range, well-definedness or related properties

• elaborating a complete case distinction for guarded commands

• carefully considering visibility and naming conventions

• handling error conditions wherever appropriate

• restoring a safe execution state and immediately terminating 
after a security-critical failure has been detected 

• explicitly stating preconditions, invariants and postconditions

• verifying the implementation with respect to a specification

• inspecting executable code as well, in particular, 
capturing all interleavings for parallel constructs

• certifying and digitally signing executable code, 
possibly providing a hash value for measurements

• statically verifying the compliance with declarations 
of permitted information flows
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Distributed systems: real world and virtual view

• (real) world
a specific entity cannot directly see other entities: 
– other entities are hidden behind the interface to the communication lines

– the specific entity can only send/receive messages to/from other entities

• virtual view
that specific entity can produce a view on the basis of messages received: 
– security policies and permission decisions are grounded 

solely on the locally available visible view of the global (real) world

– another entity may possess various properties 
which might be relevant to security policies and permission decisions

– in most cases, such properties are assigned to an entity by a further entity

– in general, neither the other entities themselves nor their properties 
are visible to the specific entity

– we need a notifiable representation of such circumstances

– such a representation can be based on a public key infrastructure
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Hidden (real) world and a visible virtual view  
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Certificates/credentials and property assignment  
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Principals and entities  
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Digital document (certificate/credential): important fields

• subject 
contains the principal that visibly represents the entity under consideration

• content
textually describes the assigned property

• responsible agent
contains the principal that visibly represents the entity 
that is responsible for the property assignment and 
has generated and digitally signed the document

• signature
contains a digital signature for the document: valid iff 
it can be verified with the responsible agent’s public key for verification

• type
indicates the meaning/provides hints on how to process the document

• validity
limits the property assignment to a certain time period or 
restricts the usability of the document otherwise
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Characterizing properties: free and bound properties 

• free property (personal data, technical detail, skill, ability, ... )
expresses some feature of an entity by itself:

– other entities may base their security policies and permission decisions 
on shown free properties 

– but, in general, they will not have expressed 
any obligation as to whether to or how to do so

• bound property (a ticket, a capability, a role, ... )
expresses some relationship between a client entity and 
another entity which might act as a server:

– a server has declared in advance that it will recognize 
a shown bound property as a permission to use some of its services 

– possessing a bound property entails a promise 
that a specific service will be obtained
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund      Security in Computing Systems: Layered Design Including Certificates and Credentials - 07. 04. 2011 360



Characterizing properties 
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Administrative properties  
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Relationships and trust evaluations 

• the relationships of presumably captured by are ideal claims 
that do not necessarily hold

• a specific entity has to evaluate its individual trust about such an ideal claim:
– did the supposed assigning entity follow good practice 

in generating and signing the document?

– do the principals (keys) appearing in the document 
represent the supposed entities?

• the very purpose of the administrative properties is just 
to provide a reliable foundation for such trust evaluations
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund      Security in Computing Systems: Layered Design Including Certificates and Credentials - 07. 04. 2011 363



Evaluating trust: basic situation

• ideally, 
permission decisions are intended to be based on 
characterizing properties of entities appearing as clients

• actually, 
permission decisions must be based on available, visible digital documents, 
the contents of which mean the respective characterizing properties

• consider any such document as a main document 
from the point of view of an entity entitled to take a permission decision:
– is the literal meaning of the content indeed valid in the (real) world? 
– does the digital document capture a “real” property assignment?

• these questions are answered using further supporting documents, 
the contents of which mean appropriate administrative properties

• for each of these supporting documents, the same questions arise 
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Evaluating trust recursively

• the “main document” concerning a characterizing property 
is supported by a first level of “supporting documents” 
concerning administrative properties for that characterizing property

• for each “supporting document” at the i-th level, 
one of the following cases holds:

– either it is supported by further “supporting documents” at the next level,
expressing that the responsible agent of the former document 
represents a dependant of the responsible agents of the latter documents

– or it expresses that its responsible agent represents an origin 
for the characterizing property administered, 
expressed by the content of the “main document”

• to be helpful, the “main document” and its “supporting documents” 
should form a directed acyclic graph with respect to support

• as a special case, we may obtain just a chain
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Model of trusted authorities and licensing: an instance  
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Certificate types in the model of trusted authorities and licensing
 

Certificate type Content

identity certificate (X.509 term) identifying name

attribute certificate (X.509 term) personal attribute

accreditation certificate (mediation term) personal attribute

private certificate (Brands’ term) personal attribute

trustee self-certificate 
(X.509 term: 
root certificate)

administration status: trustee

license certificate
(X.509 term: 
certification authority certificate)

administration function: licensor
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Model of owners and delegation: an instance 

       

         

grant bound-property credential

challenge for grantee´s key

response

   response

request access and

          owner as
        delegator and

challenge for

grant 

       delegator/

 grantee of
   bound property 

verifier of 
 bound property

delegatee 

grant 

    grantor of 
 bound property/

     delegatee           (e.g., capability)

show bound properties 
and delegations 

grantee´s key

delegation credential

delegation credential
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund      Security in Computing Systems: Layered Design Including Certificates and Credentials - 07. 04. 2011 368



Credential types in the model of owners and delegation

Credential type Content

capability credential
(SPKI term: authorization certificate)

capability

bound-authorization-attribute credential bound-authorization attribute

delegation credential
(SPKI implementation: true delegation bit)

administration status: delegatee

 

. 
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund      Security in Computing Systems: Layered Design Including Certificates and Credentials - 07. 04. 2011 369



Converting free properties into bound properties: an instance 
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Firewalls

• computing systems in the large are composed from
partly federated and partly nested structures built from 
– individual subjects
– shared client computers and servers
– local area networks
– wide area networks 

• the techniques of control and monitoring are applicable 
at the borderline of any substructure aiming at 
– confining the inner side with respect to sending messages to the outside,

thereby restricting 
– the transfer of information to the outside
– the requests to foreign entities

– shielding the inner side with respect to receiving messages, 
thereby restricting 
– interference by foreign entities
– incoming requests
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Firewalls serving as LAN borderline and WAN server checkpoints  
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Checkpoints handling packets according to ISO/OSI model 

a firewall intercepts the packets passing the checkpoint
and examines the following layers, inspecting increasingly complex data:

• network to transport layer: only the packet headers

• transport to session layer: sequences of packet headers
 (e.g., compliance with session protocols)

• session to application layer: additionally, the packet contents 
(e.g., intended semantics of encoded messages)
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Packet filter 

• placed in a layer corresponding to the network and transport layers

• inspects (statelessly) only the header of each single intercepted packet

• based on a policy as a linear list of rules:
– if event then action form of the event–action rules 
– event expressed in terms of values of header fields
– action demands a forwarding, a blocking, 

some other simple option

• scans, for each packet considered, 
the linear list from the beginning until the first satisfied event is found; 
then this rule “fires” by performing the indicated action

 

• requires a careful arrangement of the rule ordering, 
to take care of the linear first-fit search
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Proxy
• placed in a layer corresponding to the session and application layers

• simulates the complete services of a higher-layer communication protocol

• deals (statefully), depending on the simulated protocol, 
with both the headers and the contents of sequences of packets

• divided into two strictly separated parts, 
each of which deals with the functionality of one side of the borderline

• operates an inner part (for LAN: confining the subjects inside): 
– inspects the outgoing packet stream (from inside the LAN)
– if permitted, and possibly modified, 

forwards the packets to the outer part

• operates an outer part (for LAN: supporting security interests of partners):
– inspects the stream received from inner part 
– if permitted, and possibly modified, 

forwards the packets to the partners outside 

• works correspondingly for incoming packet stream 
from outside (into the LAN) 
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Generic example of a LAN borderline firewall 
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10   Intrusion Detection and Reaction
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Ideals of control and monitoring 

• a security policy specifies exactly 
the wanted permissions and prohibitions

• administrators correctly and completely declare the policy

• subsequently, the policy is fully represented within the computing system

• the control and monitoring component can never be bypassed

• this component enforces the policy without any exception

• as a result, all participants are expected 
to be confined to employing the computing system 
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Shortcomings in reality

• the security policy is left imprecise or incomplete

• the declaration language is not expressive enough

• the internal representation contains flaws

• the enforcement does not cover all access requests

• administrators or users disable some control facilities for efficiency reasons

• intruders find a way to circumvent the control and monitoring component
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Some intricate difficulties

• in general, as indicated by undecidability results, 
control privileges and information flow requirements 
are computationally difficult to manage

• for the sake of efficiency, information flow requirements can 
only be roughly approximated by access rights

• a user might need some set of specific permissions for his obligations, 
but not all possible combinations of the permissions are seen to be acceptable

• a user might exercise his permissions excessively and 
thereby exhaust the resources of the computing system

• a user might exploit hidden operational options 
that have never been considered for acceptable usage
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Additional protection mechanisms

• the generic model of local control and monitoring provides a useful basis

• access requests are intercepted and thus can be documented persistently 
in the knowledge base on the usage history: extend to 

logging further useful data about computing activities, 
including data that is only indirectly related to a malicious user’s requests

• individual access requests are decided: extend to 
– auditing and analyzing request sequences/other recorded activities; 
– searching for intrusions (patterns of unexpected or unwanted behavior)
– reacting as far as is possible or convenient

• clearly, such additional secondary mechanisms 
cannot achieve perfection either; 
they should be designed to work complementarily, 
aiming at narrowing the gap left by the primary mechanisms
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Classifying behaviors or states 

• possible behaviors:
captures all operational options of the computing system considered

• explicitly permitted behaviors:
enforced according to privileges granted 

• (semantically) acceptable behaviors:
described by the “intended usage” of the system/security defense policy

• violating behaviors:
described by the “unwanted usage” of the system/security defense policy

possible 

explicitly permitted 

acceptable violating 
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund     Security in Computing Systems: Intrusion Detection and Reaction - 07. 04. 2011 382



Classification and monitoring task

• checking 
whether behaviors are remaining within the “acceptable behaviors” or 
whether they are going to approach a “violating behavior”

• separating “acceptable” behaviors from “violating” ones

• keeping track of histories

• exploring whether an inspected state transition could possibly be 
a dangerous step towards reaching a “violating behavior” 

• investigating whether a “violating behavior” has already been reached
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A simple model  
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Basic components
• event generation 

appropriately implanted in the monitored computing system, 
delivers local audit data to the monitoring system 

• audit database instance 
constitutes the intermediately stored audit data gathered for offline analysis

• analysis 
– directly inspects the currently delivered audit data in an online mode, or 
– examines a larger amount of audit data offline 
– raises alarms if suspicious behaviors or states are detected

• reaction
deals with alarms in basically three ways: 
– purely algorithmically generating a local response 

that intervenes in the monitored system 
– local reporting to a human security officer 
– sending appropriate messages to cooperating remote security agents
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Learning, operation and measurement for a policy 

  monitored system 
 

 

 

       analysis intrusion
  defense
  policy

    security officer      

 audit data     

alarms

            as 
classification task

measurement

learning training data    

     repository of 
 “experience data”
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Effectiveness of an analysis component: four possibilities

• component raises no alarm (it classifies the behavior as “acceptable”) 
and 
the “real status” of the behavior is indeed acceptable

• component raises an alarm (it classifies the behavior as “violating”)
and 
the “real status” of the behavior is indeed violating

• component raises an alarm (it classifies the behavior as “violating”), 
but 
the “real status” of the behavior is actually acceptable:
– component raises a false alarm
– classification result is said to be a false positive

• component raises no alarm (it classifies the behavior as “acceptable”), 
but 
the “real status” of the behavior is actually violating:
– component fails to generate a correct alarm
– classification result is said to be a false negative
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Signature-based approach: outline
• contributes to representing violating behaviors 

and constructing a corresponding recognizer

• long-term observation and evaluation of violating behaviors 
have led to a large collection of samples of known attacks

• a signature is a formal representation of a known attack pattern, 
preferably including its already seen or merely anticipated variations, 
in terms of generic events

• instances of events are recognized by the event generation and 
reported as audit data
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Signature-based approach: overly simplified case
• a signature σ is given as a finite time-ordered sequence of abstract events, 

taken from a finite event space Σ: σ  ∈  Σ∗

• the event space Σ is determined by the layer of the event generation, e.g.:
– operating system: system calls to the kernel 
– network system: packet moves 
– application, system: method invocations 

• depending on the actual location, intrusion detection systems 
are sometimes classified as host-based or network-based

• inputs of analysis component:

– σ  ∈  Σ∗: fully known signature, the intrusion defense policy

– β  ∈  Σ∞: an eventwise supplied behavior, (ongoing) recorded activities 
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• basic classification task: 
determine whether and where 
“the signature σ compactly occurs in the behavior β ”, i.e., 

find all position sequences for β that give the signature σ 
such that each prefix cannot be completed earlier
(or some similar property holds)

• analysis component must provide a corresponding recognizer,
which should raise an alarm for each such compact occurrence of σ in β

• abstract example:  

signature:  σ  =  x y z 

supplied behavior:  

    1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 ...       

β =  a a b a x c x a y b z a c b a x a a b y a a a a b b b a b z ... 

compact occurrence at
position sequence 5,9,11
 

compact occurrence at 

 
position sequence 16,20,30

compact occurrence at position sequence 7,9,11 
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Analysis component: some more sophisticated features 

• a compact occurrence of the signature σ can be spread widely:
while checking whether “σ compactly occurs in β ”, 

the recognizer must memorize and handle 
each detected occurrence of a prefix of σ in β 

until the prefix has been completed

• one would like to “forget” non-completed prefixes after a while:
– declare explicit escape conditions

– employ a sliding window of some appropriate length l for the behavior β

• a parameterized event  e[… ,  Ai  :  vi  ,  …] might consist of 
– an event type e 
– a list of specific attribute–value pairs Ai  :  vi

• a parameterized signature would be a sequence of parameterized events,
where some or all values might be replaced by variables: 
while searching for occurrences of the signature in the supplied behavior, 

the values in the signature have to match the audited values, 
whereas the variables in the signature are bound to audited values
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund     Security in Computing Systems: Intrusion Detection and Reaction - 07. 04. 2011 391



• thus each detected occurrence of a prefix of the parameterized signature 
is linked to a binding list for variables: 

once a variable is bound for a detected prefix, 
the binding also applies to the tail of the signature

• the recognizer must maintain a partially instantiated signature instance 
for each detected occurrence of a prefix, e.g.: 

signature: x[ID:v] y[ID:v] z[AR:loc]

supplied behavior:

x[ID:7]... x[ID:8]...y[ID:7]...z[AR:loc]...y[ID:8]...z[LOC:net]...z[AR:loc] 

occurrence with binding list v := 7 

occurrence with binding list v := 8 
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• to capture variations of an attack, 
several closely related event sequences might be represented concisely 
as a directed acyclic graph (dag) built from events: 

the recognizer has to search for a compact occurrence 
for any path from some start event to some end event 
within the supplied behavior

• “violating” behavior is described by hundreds of known attacks,
and thus by a large number of signatures: 

the analysis component has to handle them in parallel
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Signature-based approach: basic steps:

• learning phase: the administrator, assisted by a tool
– models the known attacks by an intrusion defense policy,

specified as a set of parameterized dag-like signatures
–  transforms the specified policy into an integrated collection of recognizers

• operation phase: recognizers
– instantiate the given signatures 

according to the prefixes and their bindings for variables,
as detected in the supplied behavior within a sliding window

– raise an alarm whenever an instantiation has been completed

• measurement phase: the administrator
– revises or refines the policy
– enlarging the length of the sliding window
– optimizes the recognizers

(diminishing/adapting dynamically the length of the sliding window, ... )
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Anomaly-based approach: outline 

• contributes to representing acceptable behaviors and 
constructing a corresponding recognizer for non-acceptable behaviors

• with some precautions, a large collection N ⊂ Σ∗of actual behaviors, i.e.,
sufficiently long event sequences generated as audit data in the past, 
is supposed to constitute a representative sample of “acceptable” behaviors

• a recognizer is constructed, trained to 
– let each collected behavior σ  ∈  N pass 

(seen as supposedly normal)

– let sufficiently similar behaviors pass as well 
(still seen as supposedly normal)

– raise an alarm for all other behaviors 
(seen as anomalous) 
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Anomaly-based approach: basic steps
• learning phase: the administrator 

– gathers a sample set N of supposedly normal behaviors
– selects a length l of a sliding window on the behaviors 
– employs a suitable tool for machine learning 

to construct an efficient finite-automaton-like recognizer 
for anomalous parts of behaviors

• operation phase: the recognizer
– searches for anomalous parts in the supplied behavior

within the sliding window
– raises an alarm whenever such a part has been detected

• measurement phase: the administrator
– adapts the sample set N or enlarges the length of the sliding window
– reconstructs the recognizer
– optimizes or even smooths the recognizer

(letting additional behaviors pass, 
diminishing the length of the sliding window, ... )
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Cooperation
• normalization 

maps local alarms to a common format with common semantics

• fusion 
discards obvious duplicate alarms generated by different sites 

• verification 
identifies irrelevant alarms and false positive alarms

• thread reconstruction 
gathers together alarms describing attacks with same origin and/or target

• session reconstruction 
correlates alarms that describe events on the network and in a host 

• focus recognition 
integrates alarms describing attacks with many targets and/or sources 

• multistep correlation 
combines alarms suspected to constitute a complex attack

• impact analysis and alarm prioritization 
determine the suspected effect of an attack to prioritize the respective alarm 
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Part IV

Cryptography



11   Fundamentals of Cryptography
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Cryptography  

cryptographic
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conceptually: (cryptographic)     conceptually: (cryptographic)    

     secrets

        request

secret (key)

result: 

controlled objects 

(mediated) request 

�raw� result  

participating subjects   
�   generate, store and employ secrets          
�  exploit physical isolation

...
...

...
...

...
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Cryptography 

• is usually closely intertwined with control and monitoring

• binds a successful and meaningful execution of an operation or interaction 
to providing a suitable secret key as input 

• achieves virtual isolation between participants: 
participants that share a cryptographic key are 
virtually isolated from those that do not

• enables cooperation in the presence of threats based on limited trust: 
participants that autonomously generate and secretly keep appropriate 
cryptographic keys can enforce their security interests by themselves
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund     Security in Computing Systems: Fundamentals of Cryptography - 07. 04. 2011 401



Basic cryptographic blocks

• encryption

• authentication

• anonymization

• randomness and pseudorandomness

• one-way hash functions

• timestamps
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Encryption: functionality

• the sender S transforms the original bit string m to be transmitted 
into another bit string m° 
such that only the designated receiver R (and possibly the sender) 
is enabled to recover the original bit string

• (probabilistic) key generation algorithm Gen (one parameter and one result):
– l security parameter (key length, ... )
– ( ekR , dkR ) matching key pair

• (probabilistic) encryption algorithm Enc (two parameters and one result):
– ekR encryption key   
– m plaintext (original message)
– m° = Enc ( ekR  , m ) ciphertext (transformed bit string)

• (probabilistic) decryption algorithm Dec (two parameters and one result):
– dkR decryption key 
– m° ciphertext
– m°° = Dec ( dkR  , m° ) (hopefully) recovered plaintext
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Encryption: correctness property

• encryption algorithm Enc and decryption algorithm Dec should be inverse
whenever a matching key pair (ekR, dkR) generated by Gen 
has been employed: 

for all plaintexts m,   Dec ( dkR , Enc ( ekR , m ) )  =  m 
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Encryption: secrecy property 
• naive version

for all plaintexts m, without a knowledge of the decryption key dkR , 
m cannot be “determined” from the ciphertext m°

• (informal) semantic version 
an unauthorized observer of a ciphertext cannot infer 
anything new about the corresponding plaintext, i.e.,

for all plaintexts m, without a knowledge of the decryption key dkR , 
any property of m that can be “determined” from the ciphertext m° 
could also be “determined” without knowing m° at all

• (informal) operational version 
an unauthorized observer of ciphertexts 
cannot separate apart any pair of ciphertexts, and thus 

cannot solve the problem of 
assigning a specific plaintext to a ciphertext
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Operational secrecy as indistinguishability

for a probabilistic setting, considering 
sequences of plaintexts and of matching key pairs 
of increasing length (taken as a security parameter),
we have indistinguishability of ciphertexts:

for any pair of plaintext sequences

and 
, 

without a knowledge of the sequence of decryption keys employed, 

the resulting sequences of ciphertexts are
“computationally indistinguishable”

m1' m1'' m1''' …, , ,( )

m2' m2'' m2''' …, , ,( )
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Basic assumptions

• approved algorithms Gen and Dec and Enc are publicly known

• decryption keys are strictly kept secret

• given approved algorithms and seen from the perspective of the endusers,
enforcing the confidentiality of messages by encryption 
basically relies only on

– selecting appropriate keys (as determined by the security parameter)

– actually hiding the decryption keys
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Relationship between the encryption key and the decryption key

• symmetric (or secret-key) mechanism: 
– the encryption key is (basically) equal to the decryption key 

• asymmetric (or public-key) mechanism: 
– the encryption key is essentially different from the decryption key

– an additional secrecy property (naive version) is required: 

the (private) decryption key dkR 

cannot be “determined” from the (public) encryption key ekR
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Symmetric encryption  

Sender S Receiver R

(S,R,Enc(ekR,m))

send_data receive_data. . . . . . . . . . . .

message: m

receiver: R sender: S

message: m

encryption_key: ekR

Enc(ekR,m)

Decrypt

decryption_key: dkR

Enc(ekR,m)

Encrypt ...

Generate_Key

. . .
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Asymmetric encryption  

Sender S Receiver R

(S,R,Enc(ekR,m))

send_data receive_data. . . . . . . . . . . .

message: m

receiver: R sender: S

message: m

encryption_key: ekR

Enc(ekR,m)
Encrypt

Decrypt Gen_Key

decryption_key: dkR

Enc(ekR,m)

Certify_Key
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Symmetric and asymmetric encryption mechanisms 

Feature Symmetric Asymmetric

generating and 
distributing keys

both partners are
equally involved

designated receiver has a 
distinguished role

protection 
requirements

key generation/
communication of the 
secret key 
and 
storage of the secret key 
must be protected on 
both sides 

key generation 

and 
storage of the private key 
must be protected on the 
side of the receiver only

contributions of the 
trusted third parties

generate and distribute 
secret keys

certify public keys
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Authentication: basic approach

designated sender S

• prepares for transmitting a bit string m as a message 
by computing another bit string redS,m 
as a cryptographic piece of evidence 
(cryptographic exhibit or cryptographic check redundancy)

• forwards the compound ( S , m , redS,m )
– S sender identification
– m original bit string
– redS,m computed bit string 

receiver

• receives such a compound of the form ( S° , m° , redS,m° ) 

• checks whether the message part originates from the claimed sender 
without modification by inspecting the included cryptographic exhibit
(must depend on both the designated sender and the message)

• either accepts (as authentic) or rejects the received message
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Authentication: functionality

• (probabilistic) key generation algorithm Gen (one parameter and one result):
– l security parameter (key length, ... )
– ( tkS , akS ) matching key pair

• (probabilistic) authentication algorithm Aut (two parameters and one result):
– akS authentication key   
– m message 
– redS,m = Aut ( akS  , m ) cryptographic exhibit

• (probabilistic) Boolean-valued authenticity verification algorithm Test
(three parameters and Boolean result):
– tkS test key/verification key
– m received message 
– red cryptographic exhibit 
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Authentication: (weak) correctness property

• authentication algorithm Aut and authenticity verification algorithm Test
should be complementary 
whenever a matching key pair  ( tkS  ,  akS  ) generated by Gen 
has been employed:

for all messages m, Test ( tkS , m , Aut ( akS , m ) ) = true
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Authentication: unforgeability 

• (naive) unforgeability property
for all messages m, 
without a knowledge of the authentication key akS , 
one cannot “determine” a bit string red such that Test ( tkS , m , red ) = true

• (naive) strong correctness property, 
complemented by a weak unforgeability property

for all messages m and for all bit strings red,
Test ( tkS , m , red ) = true iff red = Aut ( akS  , m )

and

without a knowledge of the authentication key akS ,
one cannot “determine” this solely accepted cryptographic exhibit
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Basic assumptions

• approved algorithms Gen, Aut and Test are publicly known

• authentication keys are strictly kept secret 

• given approved algorithms and seen from the perspective of the endusers,
enforcing the integrity and authenticity of messages 
(in the sense of detection of violations) by authentication
basically relies only on

– selecting appropriate keys (as determined by the security parameter)

– actually hiding the authentication keys
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Relationship between the test key and the authentication key

• symmetric (or secret-key) mechanism: 
– the test key is (basically) equal to the authentication key 

• asymmetric (or public-key) mechanism: 
– the test key is essentially different from the authentication key

– an additional secrecy property (naive version) is required: 

the (private) authentication key akS 

cannot be “determined” from the (public) test key tkS
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Symmetric authentication  

authenticity verification algorithm:

• recompute the cryptographic exhibit for the received message

• compare the result with the received exhibit

• the verification is seen as successful iff both exhibits are equal

Sender S Receiver R

(S,R,m,redS,m)

send_data receive_data. . . . . . . . . . . .

message: m

receiver: R sender: S

message: m

authent_key: akS

redS,m

Test

test_key: tkS

redS,m

Authent ...

Generate_Key

. . .

test_result:
true/false
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Asymmetric authentication (digital signing)  

Sender S Receiver R

 (S,R,m,redS,m)

send_data receive_data. . . . . . . . . . . .

message: m

receiver: R sender: S

message: m

redS,m
redS,m

Authent Gen_Key       

authent_key: akS

Test

test_key: tkS
test_result: true/false

Certify_Key
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Symmetric and asymmetric authentication mechanisms

Feature Symmetric Asymmetric

generating and 
distributing keys

both partners are
equally involved

designated sender has a 
distinguished role

protection 
requirements

key generation/
communication of the 
secret key and 
storage of the secret key 
must be protected on 
both sides 

key generation 

and 
storage of the private key 
must be protected on the 
side of the sender only

contributions of the 
trusted third parties

generate and distribute 
secret keys

certify public keys

non-repudiation/
digital signatures

no yes
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Anonymization

• the interest in anonymity or, more generally, in non-observability 
can be seen as strengthened forms of (message) confidentiality: 
– not only the message itself should be kept secret 
– but also the full activity of a message transmission

• from the point of view of an observer who is not designated 
to learn about an activity or a sequence of activities: 

any actually occurring activity 
is indistinguishable from 
any other activity in a preferably large activity domain 
from which the actually occurring activity has been selected 

• the actual activity is indistinguishably hidden 
in a preferably large domain of other possibilities, 
often called an anonymity class
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Sender anonymity 

• activity domain: 
participants S1  ,  …  ,  Sn   sending and receiving messages

• anonymity property:
by observing an actual message m, 
a non-designated observer cannot “determine” the actual sender Sj

• mechanism:
superimposed sending 

send ......send ......

message m

 sender S1 sender Sn

message m

    superimposed sending       

...

 group of participants

a)

  observer

from
sender Sj ?
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Sender–receiver anonymity 

observer

b)

receive ...... receive ......

send ......send ......

 sender S1  sender Sn

...

   receiver R1   receiver  Rn

message m1

message mn

...

message

message mi
from sender Sj  
to receiver Rk ?

mediating
MIX network  
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Anonymity by unlinkability 

c)

send
sign

receive
test... ... ...

 messages sent with exhibits        modified authentic     

    �blindly signing� participant   

observer

modified 

   (m1,red1),...,(mn ,redn) message (m ,red )   
from (mi ,redi) ?
(m ,red ) originates   
authentic message  
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Unlinkability and blind signatures

• activity domain:
– one distinguished participant issues (sends) digital documents 

(digitally signed messages) expressing some obligation to receivers

– receivers/holders present digital documents 
as a credential (digital legitimation ) to be redeemed
to the distinguished participant 

• unlinkability property:
knowing the issued documents {  (  m1  ,  red1  )  , …   , (  mn  ,  redn  )  } and
seeing a presented modified document (  m  ,  red  ) with a verified signature red, 
a non-designated observer 

cannot “determine” the link 
from the presented document 
to the corresponding issued document

• mechanism:

blind signatures
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund     Security in Computing Systems: Fundamentals of Cryptography - 07. 04. 2011 425



A classification of pseudonyms 

• regarding the dissemination of knowledge about 
the relationship between the pseudonym and the substituted subject, 
a pseudonym can be seen as 
– public  (e.g., a phone number of an employee) 

 – confidential (e.g., a bank account of a citizen)

– secret (also called an anonym)

• regarding the intended potentials for multiple use and 
the resulting linkability, there are 
– subject pseudonyms for a broad range of activities

– role pseudonyms for specific activities 

– relationship pseudonyms for activities addressing specific partners

– combined role–relationship pseudonyms for 
specific activities addressing specific partners

– transaction pseudonyms (event pseudonyms  ) for single use only 
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Meanings of the notion of “participant” and their relationships  
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Sufficient randomness 

• to achieve the indistinguishability goals of cryptographic mechanisms, 
sufficient randomness is needed

• a cryptographic mechanism superimposes 
the randomness of a secretly selected key, and possibly further inputs, 
on the returned items of interest such that 

the output items (ciphertexts, exhibits,  …  ) 
again appear to be randomly taken 

• making “sufficient randomness” algorithmically available 
is an outstanding open problem in computer science 

• in fact, precisely defining the notion of “sufficient randomness” 
has already turned out to be a great challenge 
that has raised various proposals for an answer
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Pseudorandom generator 

• is a deterministic polynomial-time algorithm

• stretches a seed, a short and supposedly random input, 
into a much larger output sequence 
appearing again to be “sufficiently random”

• delivers outputs that should be computationally indistinguishable from 
a family of (ideal) uniformly distributed sequences:

– there is no probabilistic polynomial-time algorithm 
that can distinguish the algorithmic outputs 
from the abstract ideal sequences 
with a non-negligible probability without knowing the seeds
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Guidelines for generating and employing pseudorandom sequences

• use some physical source for supplying (supposedly) 
“truly random” seeds of short length

• use a pseudorandom generator
for stretching a supposedly random input seed into 
a much larger output sequence appearing again to be “sufficiently random”

• design a cryptographic mechanism (for encryption, authentication, etc. ) 
– to take a “truly random” input 
– to superimpose the randomness of this input on the returned items 

(to be proven to comply with pertinent indistinguishability as well)

• for an actual implementation, however, replace 
the (ideal) “truly random” input 
by an actually available pseudorandom sequence 

• verify a compositionality property of the indistinguishability properties, 
to ensure that the replacement does not affect the quality of the returned items
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Goals of random input: examples

• to generate a secret key for some cryptographic mechanism: 
to designate its holder(s) as distinguished from all other participants

• to employ a random input as a nonce: 
to mark a message within some cryptographic protocol as unique and personal

• to pad a value from some (too small) domain with a random input:
to define a modified domain sufficiently large to prevent successful guessing

• to blind some data with a random input using a reversible algebraic operation: 
to present that data to somebody else without revealing the actual value

• most generally, to randomize some algorithm of a cryptographic mechanism:
to achieve a wanted indistinguishability property
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One-way hash functions

• some item of interest is often represented in a concise, disguised and 
unforgeable form, called a fingerprint, a digest or a hash value 

• concise:
– representation consists of a suitably short bit string of an agreed format
– a large domain of items is mapped onto a small domain of representations: 

there must be collisions 

• disguised: 
a represented item cannot be “determined” from its representation 

• unforgeable: 
nobody can “determine” a representation of an item 
without a knowledge of that item

• collision resistant:
nobody can “determine” pairs of items that share a representation
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Application: representations with fixed short format

• a cryptographic protocol might demand an argument 
complying with a fixed short format for further processing, 
but the items of interest might vary or even be of arbitrary length

• example: 
some authentication protocols digitally sign the representations 
instead of the represented items 
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Application: enforcing integrity (detection of modification) 

• at time 0: 
– map the item onto its representation (original hash value)
– store the item and its representation in different locations 

• at a later time i: 
– compare the retrieved representation (original hash value) with a 

recomputed representation of the retrieved item (recomputed hash value)

mat_time_0

item of interest  

time 

0

i
mat_time_i

item of interest  

potential
modification

h

one-way 

  h ( mat_time_0 )
original hash value 

h

one-way 

  h ( mat_time_i)

recomputed hash value 

hash function 

hash function 

=

true false

“supposedly
     intact” 

“modified”
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund     Security in Computing Systems: Fundamentals of Cryptography - 07. 04. 2011 434



One-way hash functions: functionality and properties 

• function h maps any element m of a (large) domain D (might be infinite) 
onto a bit string of a (short) fixed length l, i.e., 

onto an element of { 0 , 1}l

• an assigned value h ( m ) is called the hash value of m 

• the function h must be efficiently computable, i.e., 
there is an efficient algorithm H that computes h ( m ) on input of m

• the inversion of h must be computationally infeasible, i.e., 
the following roughly circumscribed one-way property is required:

for all values z ∈ { 0 , 1}l, 
one cannot “determine” a domain element m ∈ D such that h ( m )  =  z

• regarding the inevitable collisions (for large domain and short length),
the function h must be collision-resistant
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Weak collision-resistance property

• should protect against a fraud 
where a given message m is exchanged for another one:

• for all domain elements m ∈ D, 
one cannot “determine” a different domain element m´ ∈ D 
such that h ( m ) = h ( m´ )
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Strong collision-resistance property 

• should totally block any attempt at a fraudulent exchange

• one cannot “determine” 
two different domain elements m ∈ D and m´ ∈ D 
such that h ( m ) = h ( m´ )

• equivalent to requiring 
that one cannot “determine”
an element m ∈ D 
that violates the weak version
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Timestamps

• sometimes, integrity as temporal correctness should be supported

• in a proof of authenticity, the receiver should be able to evaluate 
– not only who has formed and sent a message 
– but also when these two events happened

• to prevent replay attacks or to achieve related goals,
before authenticating a message, the sender can include a current timestamp

• considering the time span between 
– when the message was formed and 
– when it was received, 
the receiver can decide whether he is willing 
to accept the message as authentic or not 

• all participants involved must share synchronized clocks; 
the receiver should take tolerable discrepancies in local times into account 
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• combined temporal correctness and unforgeability property is desired:

for all messages m with an included timestamp ts 
and suitably authenticated by the sender,
from the perspective of a receiver, 

the actual forming time of the message 
coincides with the included timestamp

• participants might prefer to employ weaker 
but more readily manageable means than timestamps

• if only relative forming times are important, 
the sender might include serial numbers (instead of timestamps)

• a receiver not willing to rely on synchronized clocks might 
ask a sender to follow a challenge–response procedure 
in order to obtain evidence for the freshness of a received message
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Quality in terms of attacks

• cryptography aims at enabling participants to autonomously enforce 
their security interests even in the presence of threats

• a threat is instantiated by somebody/something performing a specific attack

• attack in theoretical investigations: 
an execution of a polynomially time-bounded probabilistic Turing machine 

• attack in more practical investigations: 
exploiting a concrete attacking strategy 

• security requirements: 
to be specified in terms of attacks

• evaluating a cryptographic mechanism: 
includes an analysis of the mechanism’s robustness against attacks

• classification framework for attacks (on encryption mechanisms): 
here, from the point of view of attackers, describing their options for success 
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A classification framework for attacks against encryption 

• kind of success
– exact: exact new knowledge
– probability-theoretic: improved probability distribution

• extent of success
– universal: functional equivalence with decryption algorithm
– complete: gain of secret key 
– message-selective: plaintexts of selected ciphertexts
– message-existential: plaintext of some ciphertext

• target of attack
– affect human individuals
– exploit computing system
– affect individuals and the system in coordination
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• time of attack/attacked part
– subvert overall system
– subvert key generation
– subvert key distribution
– exploit message transmissions

• method of attack (against message transmissions)
– passive: observe messages [ciphertext/plaintext pairs]
– active: observe plaintexts [ciphertexts] of chosen ciphertexts [plaintexts]

• planning of active attack
– non-adaptive: choose statically at the beginning
– adaptive: choose dynamically depending on progress

• expectation of success
– probability-theoretic: upper bound for success probability
– complexity-theoretic: lower bound for needed resources
– combined: upper bound for success probability 

with limited resources
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Cryptographic security

• a participant designated to hold some secret or private keys 
must be able to secretly generate, store and use these keys; 
best if the participant controls a personal tamper-resistant computing device

• secret and private keys and possibly further items have to appear as random, 
and, accordingly, some source of randomness should be available; 
best possibility being a truly random physical source

• items to appear as random must have sufficient length 
to resist attacks based on exhaustive search and trials

• some assistance of a trusted third party is normally required

• various further external participants contribute 
to an application of a cryptographic mechanism; 
assigning trust to them should be based on 
open design and informational assurances
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12   Case Studies: PGP and Kerberos
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Pretty Good Privacy (PGP)

• supports participants of a distributed computing system 
in autonomously enforcing their security interests 
(confidentiality, integrity as detection of modification, 
authenticity, non-repudiation) 

• provides a user-friendly interface 
to encryption and authentication (digital signatures) to be employed 
– explicitly by means of a simple command language 
– transparently embedded into some appropriate application software

• may serve 
– to protect files on a local computer 
– to ensure end-to-end security in a global environment

• assists participants with the necessary key management, including assessment
– of claims that a public key belongs to a specific partner 
– of the trust in the respective issuers of such claims 
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Basic blocks

• symmetric encryption by a block cipher (IDEA, Triple-DES, AES, ... ), 
extended into a stream cipher with cipher block chaining (CBC) mode: 

applied to 
– plaintexts (files to be stored or messages to be sent)
– private asymmetric (decryption or signature) keys

• asymmetric encryption (RSA, ElGamal, ... ) within hybrid encryption: 
applied to secret session keys for symmetric encryption 

• authentication by digital signatures (RSA, ElGamal, ... ) 

• one-way hash function (MD5, ... ): 
to generate 
– a message digest from an original message
– a symmetric key from a passphrase
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• random generator  or pseudorandom generator: 
for generating symmetric session keys

• data compression: 
for reducing the redundancy of plaintexts

• passphrases:
for generating symmetric keys 
– to protect private asymmetric (decryption or signature) keys 
– for secure end-to-end connections 
– to protect the user’s own files

• key management by means of a private key ring and a public key ring: 
– for storing the user’s own private asymmetric keys
– for storing, assessing and selecting the public asymmetric keys

 of the user’s partners
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Conceptual design of secure message transmission 
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Secure message transmission: preparations 
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Secure message transmission: encryption and finalization 
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PGP parameters

• SelfIdent, 
denoting the participant acting as a sender

• passphrase, 
as an exhibit for a proof of authenticity of the sender

• PartnerIdent, 
denoting the intended receiver

• plaintext, 
to be communicated from the sender to the receiver
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Key management 

• only the keys for the asymmetric mechanisms are stored persistently

• a secret key for any symmetric mechanism employed is

– generated or recovered only when it is actually needed

– afterwards immediately destroyed
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Using a symmetric secret key for securing an asymmetric private key

• authentication is strongly needed
(owner is distinguished among all other participants): 
– authentication by demanding a passphrase
– from which the secret key is directly derived by a one-way hash function

• the secret key is never stored persistently 
but is always dynamically regenerated whenever it is required

• the task of keeping secret information is reduced to 
the burden of handling the passphrases, 
and thus is mainly shifted to the users of PGP in diminished form
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Using a symmetric secret key as a session key for the hybrid method

• the symmetric secret key is generated on the fly 
by a (pseudo)random generator,

used only once for encrypting content data 
by means of the block cipher employed, 

and then itself asymmetrically encrypted for later use 
when the content data must be recovered

• on the side of the participant acting as the encryptor, 
there is no need to keep the secret key

• on the side of the participant acting as the later decryptor, 
the secret key is held in encrypted form: 
when the non-encrypted form of the secret key is recovered, 
the first case applies, since authentication is strongly needed
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Private key ring 

• this ring contains the user’s own key pairs, each of which consists of 
– a private signature key and 
– the matching public verification key 
or 
– a private decryption key and 
– the matching public encryption key

• each private key is stored in encrypted form

• each private key is stored together with 
– a timestamp 
– a derived key identification for referencing the key pair
– an identification of the owner
– some further administrative data

• the access to a private key is secured by a passphrase that the owner selected 
when he issued the PGP command to generate and store a key pair
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Public key ring 

• this ring contains the 
– public verification keys and 
– public encryption keys 
of the owner’s communication partners 

• a key is complemented by 
– a timestamp 
– a derived key identification 
– an identification of the partner
– further administrative data 
– some further entries to be used to assess the public key
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Assessment of public keys 

U O
to be assessed as presumable holder 

 

 

       acting as 
C

C personally knows O, and     U trusts C

 U evaluates O as presumable owner 

certifying introducer          

C can certify this knowledgeto some grade

           of the private key     

                                    
matching the public key           

encryptor or verifier, who is
going to employ the public key    
for encryption or verification, respectively           

and the ownership 
of the key pair 
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund     Security in Computing Systems: Case Studies: PGP and Kerberos - 07. 04. 2011 457



Two basic relationships 

• one participant C(ertifier) personally knows another participant O(wner)
such that C can certify that a public key k belongs to O:

the participant O is the legitimate owner of the pertinent key pair and 
thus the actual holder of the matching private key;

the participant C (perceived as the introducer of O)
confirms such an ownership by issuing and digitally signing 
a key certificate, also known as an identity certificate, 
basically consisting of 
– an identification OIdent
– the public key k together with the pertinent digital signature

• one participant U(ser), willing to encrypt or to verify a message, 
may trust another participant C(ertifier) to various degrees 
to issue correct key certificates;

PGP suggests four trust grades (more sophisticated grades could be used): 
unknown, untrusted, marginally_trusted,completely_trusted 
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A derived relationship

• the participant U(ser) evaluates another participant O(wner) 
as the presumable owner of a public key k, 

on the basis of successfully verifying 
the digital signature of a key certificate
of the form ( OIdent  ,  k  )signature , 
issued and digitally signed by some introducer C(ertifier) 

• the grade of the evaluation of O is derived 
from the grade of the trust in the introducer C
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Participants, asymmetric keys, signatures and their relationships 
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Kerberos

• supports participants,
may be unknown to each other before interacting,
who are acting in a distributed computing system, 
– as a (functional) server
– as a client

• enables servers to specify and enforce a security policy 
that describes the permissions of potential clients 

• initializes and maintains secure end-to-end connections 
that achieve mutual authenticity and enforce confidentiality 

• proposes the use of a trusted third party, known as a Kerberos server, 
to dynamically act as a mediator on a request from of a client, 
on the basis of statically agreed relationships 
between the participants and the Kerberos server 
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Overall security achievements and trust 

• participants assign trust to the Kerberos server:

– each of the participants and the Kerberos server 
have to initially exchange a secret (key) 
for enabling symmetric authentication

– a server has to permanently delegate 
the granting of permissions to the Kerberos server 

– however, within Kerberos, permission granting is degenerated 
to allow accesses whenever proper authentication has been achieved
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Basic blocks

• symmetric encryption, 
– for evaluating the authenticity of messages 

on the basis of the possession of a secret symmetric key

– for enforcing the confidentiality and integrity of messages

• passwords, 
used as substitutes for the secret symmetric key 
agreed between a particular participant and the Kerberos server

• one-way hash function 
for dynamically regenerating a key from the substituting password

• random generator 
to generate symmetric session keys, 
to be used for a secure end-to-end connection 
during a client–server interaction
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• timestamps, 
used as indications of the freshness of messages

• nonces (random bit strings), 
used as challenges to be included in responses

• tickets, 
used as a special kind of credential that 
– encode privileges granted to a client as a grantee
– are shown to a server as a (self-protecting) controlled object

• validity specifications for tickets

• access decisions, 
taken by a server on the basis of shown tickets

• delegation 
of the issuing of tickets by the Kerberos server on behalf of a server
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Conceptual design: structures  
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Structure of a Kerberos server  
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Structures of a client and a functional server  
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Names, identifiers, addresses and keys

• Kerberos server 
– AS authentication server 
– TGS ticket-granting server    

• participant P (client Cl, Kerberos server Ker with components AS and TGS)
– IdP    unique identifier
– AddP   network address 
– KP secret symmetric key for a symmetric encryption method 
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Kerberos server

• Keys local table with:
– Ident(ifier) column for identifier IdP

– Sym(metric)K(ey) column for key KP of each registered participant P
– ... columns for further administrative data

• Granted local table with columns 
– Subject 
– Privilege 
to represent the permissions of clients to access services: 

– (Subject: IdCl  , Privilege: [IdFS , ]): 
the participant identified by IdCl is permitted, as a client, 
to access the services offered by the functional server identified by IdFS 

– (Subject: IdCl  ,   Privilege: [IdTGS , ]):
the participant identified by IdCl is permitted, as a client, 
to access the service of the ticket-granting server, 
which is identified by IdTGS and is a component of the Kerberos server
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A client 

• Keys local table referring to 
the identifier IdKer of the Kerberos server 

• however, for a human individual acting as a client,
the secret symmetric key is not permanently stored:

instead, the individual can choose a secret password, 
from which the symmetric key can be repeatedly computed 
by use of a one-way hash function
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Rounds of the Kerberos protocol

• each round is initialized by a client and has two messages

• first round,
executed once per client session (can be integrated within a login procedure): 

to authenticate the client for the later process of 
obtaining and exploiting a reusable ticket 
that expresses a privilege for a service

• second round,
performed once for each functional server 
that is contacted during a client session:

to actually grant the privilege to the client

• third round,
repeatedly called for each actual service invocation:

to exploit the granted privilege 
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Messages between a client, a Kerberos server and a functional server  

           Kerberos server

 

                               

      functional server

  client

       authentication server                                                                        ticket-granting server

1.1: request for a    
          

2.2: issue of a     2.1: request for a1.2: issue of a      
  

3.1: request for a      3.2: response       

 
ticket-granting ticket and a         
session key for TGS      

functional-service ticket       functional-service  
ticket and a    
session key for FS  

functional service     

ticket-granting ticket     
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Rough meanings of the six different Kerberos messages

• 1.1: a client requests a ticket-granting ticket from the authentication server

• 1.2: the authentication server issues a ticket-granting ticket for the client,
together with a session key for a secure end-to-end connection 
between the client and the ticket-granting server

• 2.1: a client requests a functional-service ticket 
from the ticket-granting server

• 2.2: the ticket-granting server issues a functional-service ticket for the client,
together with a session key for a secure end-to-end connection 
between the client and the functional server

• 3.1: a client requests a service invocation from the functional server 

• 3.2: the functional server responds to the client
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund     Security in Computing Systems: Case Studies: PGP and Kerberos - 07. 04. 2011 473



Simplified message 1.1

the client Cl 

• requests a ticket-granting ticket from the authentication server AS, 
to be shown to the ticket-granting server TGS 

• adds the wanted validity specification Validity1

• includes a nonce Nonce1

IdCl , IdTGS , Validity1 , Nonce1
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund     Security in Computing Systems: Case Studies: PGP and Kerberos - 07. 04. 2011 474



Simplified message 1.2

the authentication server AS 

• issues a ticket-granting ticket TicketTGS to the client Cl, 
to be shown to the ticket-granting server TGS

• attaches 
– a session key KCl,TGS for a secure end-to-end connection 

between the client Cl and the ticket-granting server TGS  

– the wanted Validity1

– the received Nonce1

where the attachments are encrypted with the client’s secret key KCl 

IdCl , TicketTGS , Enc( KCl , [ KCl,TGS , Validity1 , Nonce1 , IdTGS ] ) 
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Ticket-granting ticket

the ticket-granting ticket TicketTGS contains 
– the session key KCl,TGS   for a secure end-to-end connection 

between the client Cl and the ticket-granting server TGS 

– the client’s identifier IdCl 

– the client’s network address AddCl  

– the wanted Validity1

and is encrypted with the ticket-granting server’s secret key KTGS  

TicketTGS   = Enc( KTGS , [ KCl,TGS , IdCl , AddCl  , Validity1 ] )
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Simplified message 2.1

showing the ticket TicketTGS , the client Cl 

• requests a functional-service ticket from the ticket-granting server TGS, 
to be shown to the functional server FS

• adds the wanted validity specification Validity2 

• includes a nonce Nonce2 

• attaches

– an authentificator AuthCl,TGS   that encrypts the client’s identifier IdCl  
– a timestamp  TS3 

where the authentificator is encrypted with the session key KCl,TGS   

(which is made available to the ticket-granting server by the ticket TicketTGS )

IdFS , Validity2 , Nonce2 , TicketTGS , AuthCl,TGS  

where
AuthCl,TGS   = Enc( KCl,TGS , [ IdCl, TS3 ] ) 
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Simplified message 2.2

the ticket-granting server 

• issues a functional-service ticket TicketFS to the client Cl, 
to be shown to the functional server FS

• attaches

– a session key KCl,FS for a secure end-to-end connection 
between the client Cl and the functional server FS  

– the wanted Validity2  

– the received Nonce2 

where the attachments are encrypted with the session key KCl,TGS  

IdCl , TicketFS , Enc( KCl,TGS , [KCl,FS , Validity2 , Nonce2 , IdFS ] )
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Functional-service ticket

the functional-service ticket TicketFS contains

– the session key KCl,FS   for a secure end-to-end connection 
between the client Cl and the functional server FS  

– the client’s identifier IdCl 

– the client’s network address AddCl 

– the wanted Validity2  

and is encrypted with the functional server’s secret key KFS  

TicketFS   = Enc( KFS , [KCl,FS , IdCl , AddCl  , Validity2 ] ) 
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Simplified message 3.1

showing the ticket TicketFS , the client Cl 

• requests a service invocation from the functional server FS 

• includes

– an authentificator AuthCl,FS  

that encrypts the client’s identifier IdCl  

– a timestamp  TS4 

where the authentificator is encrypted with the session key KCl,FS   

(which is made available to the functional server by the ticket TicketFS )

TicketFS , AuthCl,FS  

where
AuthCl,FS   = Enc( KCl,FS , [ IdCl, TS4 ] )
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Simplified message 3.2

the functional server FS  

• responds to the client 
by sending back the received timestamp TS4, 

encrypted with the session key KCl,FS  

Enc( KCl,FS , TS4) 
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13   Symmetric Encryption 
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Encryption mechanism: functionality 

• underlying sets:
– D domain set of (possible) plaintexts
– R range set of (possible) ciphertexts
– K  =  EK × DK set K of (possible) keys, each of which comprises 

– ek  ∈  EK encryption key
– dk  ∈  DK decryption key 

• Gen : → K key generation algorithm, 
might take a natural number l as a security parameter

• Enc : EK × D → R encryption algorithm,  
transforms a plaintext x ∈ D 
into a ciphertext y  =  Enc ( ek ,  x ) ∈ R 
using an encryption key ek ∈ EK

• Dec : DK × R → D decryption algorithm, 
transforms a ciphertext y ∈ R 
into a plaintext x  =  Dec ( dk ,  y ) ∈ D 
using a decryption key dk ∈ DK
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Encryption mechanism: properties

• correctness 
using a generated key pair, 
any encryption can be reversed by the corresponding decryption, i.e., 

for all keys ( ek , dk ) ∈ EK  ×  DK generated by Gen, 
for all plaintexts x ∈ D:

 

Dec ( dk ,  Enc ( ek ,  x ) )  =  x 

• secrecy (naive version)
without knowing the pertinent decryption key dk, 
an (unauthorized) observer of a ciphertext y  =  Enc ( ek ,  x )  
cannot “determine” the corresponding plaintext x

(semantic version: such an observer 
can “determine” only those properties of the corresponding plaintext x 
that he could “determine” without knowing the ciphertext y at all)

• efficiency
algorithms Gen, Enc and Dec are efficiently computable
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Classification

• mode of operation: 
blockwise or streamwise

• relationship between keys: 
symmetric or asymmetric

• justification of a secrecy property: 
one-time key or one-way function or chaos
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Probability-theoretic secrecy property (one-time key approach) 

 possible   

y  observed

x1

xn

xi

k1

ki

kn

..
.

..
.

         

actual plaintext can    

actual plaintext   

with actual key   ..
.

..
.

sender Alice   attacker Malory  
possible keys:    

plaintexts:  - at least as many as plaintexts
          

    ciphertext;

      �basically only be guessed�  

with probability 1/n    

- actual key selected randomly
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Complexity-theoretic secrecy property (one-way function approach) 

y    observed xi

...
...

possible

matching plaintext xi

sender Alice     attacker Malory   

public encryption key      

      ciphertext;

  
  
  

plaintexts:

  

cannot be �feasibly determined�
since computational effort is too high
(without knowledge of the private key) 
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Empirical secrecy property (chaos approach/confusion and diffusion) 

y   observed

xa

xb

xi

ka

ki

kb

..
.

..
.

actual plaintext     

with actual key   

..
.

..
.

sender Alice  attacker Malory  

possible keys:

- pre-image set �obscure�   

..
.

..
.

    ciphertext;

         - sufficiently many
- actual key selected
  as randomly as achievable 

- all plaintexts in pre-image set   
  �approximately equiprobable�  

possible plaintexts
with pre-image set of y 
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One-time keys and perfect ciphers (Vernam)

• are based on 
– a sufficient (and „nearly necessary“) condition for perfectness, 

achieving probability-theoretic secrecy

– the resulting group-based construction

• are symmetric, 
having identical encryption key and decryption key

• are restricted to a single key usage 

• operate streamwise by considering a plaintext as a sequence of bits, 
each of which is treated separately
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One-time keys: treating a single bit 

• plaintext domain, ciphertext range and key set 
are chosen as { 0 , 1} 

• set { 0 , 1} is seen as the carrier of the 
group ( Z2 , + , 0 ) of residue classes modulo 2, 
where the residue classes are identified with their representatives 0 and 1 

• group operation of addition modulo 2 is identical to 
the Boolean operation XOR (exclusive or, denoted by the operator ⊕ ) 

0

1

0

1

plaintexts ciphertexts

    key 0 

Enc(0,x) = 0 ⊕ x =  x

0

1

0

1

plaintexts ciphertexts

    key 1

Enc(1,x) = 1 ⊕ x = 1 – x
delivers the identity permutation         delivers the exchanging permutation          
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One-time keys: handling bit strings of length n

• employ the corresponding product group:
– take the group ( Z2 , + , 0 ) n times
– define the group operation componentwise  

ki  keystream

plaintext

plaintext stream
xi

cipher_key : 

ki  keystream

cipher_key : 

ciphertext stream
yi = ki � xi

     recovered       

ki � (ki � xi) = xi

Generate_Cipher_Key : {0,1}n

( k1 , ... , kn) ( k1 , ... , kn)

 (x1 , ... , xn)

plaintext stream 

 receiver  sender
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One-time keys: underlying sets

• plaintexts: bit strings of length n, i.e., 
“streams” ( x1 , … , xn ) of length n over the set { 0 , 1}

• ciphertexts: bit strings of the same length n, i.e., 
“streams” ( y1 , … , yn ) of length n over the set { 0 , 1}

• keys: bit strings of the same length n, i.e., 
“streams” ( k1 , … , kn ) of length n over the set { 0 , 1}
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One-time keys: algorithms 

• key generation algorithm Gen(erate_Cipher_Key) 
selects a “truly random” cipher key ( k1 , … , kn )

• encryption algorithm Enc 
handles the plaintext ( x1 , … , xn ) and the cipher key ( k1 , … , kn ) as streams;
treats each corresponding pair of a plaintext bit xi and a cipher key bit ki 

as input for a XOR operation, yielding a ciphertext bit 
yi  =  ki ⊕ xi

• decryption algorithm Dec 
handles the ciphertext ( y1 , … , yn ) and the cipher key ( k1 , … , kn ) as streams;
treats each corresponding pair of a ciphertext bit yi and a cipher key bit ki 

as input for a XOR operation,
yielding the original plaintext bit xi correctly:

ki ⊕ yi  =  ki ⊕ ( ki ⊕ xi )  =  ( ki ⊕ ki ) ⊕ xi   =  0 ⊕ xi   =  xi 
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund      Security in Computing Systems: Symmetric Encryption - 07. 04. 2011 493



One-time keys: applications

• restriction to using a key only once is crucial: 
observing a ciphertext/plaintext pair, an attacker achieves complete success:
 solve, for each position i, the equation yi  =  ki ⊕ xi 

regarding the secret key bit as 
ki  =  yi ⊕ xi 

• considering the transmission of a single message: 
qualified to the best possible extent regarding secrecy and efficiency

• as a trade-off for the best secrecy – proved to be inevitable:
– secret cipher key can be used only once 
– secret cipher key must be as long as the anticipated plaintext

• as a stand-alone mechanism, 
pure one-time key encryption is practically employed 
only in dedicated applications with extremely high secrecy requirements

• however, basic approach is widely exploited in 
– variants
– subparts of other mechanisms 
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Stream ciphers with pseudorandom sequences (Vigenère)

• are a variant of the one-time key encryption mechanism

• are obtained by replacing the “truly random” cipher key 
by a pseudorandom one 
that is determined by a short(er) pseudo-key

• are symmetric

• operate streamwise by considering a plaintext as a sequence of bits, 
each of which is treated separately

• cannot be perfect or probability-theoretically secure in practice, 
since the pseudo-key is often substantially shorter than 
the generated cipher key 
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Vigenère: overall structure  

ki   keystream

pseudo_key : pk

ki   keystream

pseudo_key : pk

Generate_Pseudo_Key : PK

 plaintext stream
xi

plaintext
 (x1 , ... , xn)

ciphertext stream
yi = ki � xi

      recovered        

ki � (ki � xi) = xi

plaintext stream

pseudorandom
    generator
   

pseudorandom
     generator
    

      receiver
 

                             sender
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DES (Data Encryption Standard)

• has been a most influential example of the chaos approach, used worldwide 

• designed by IBM and the National Security Agency (NSA) of the USA

• standardized by the National Bureau of Standards (NBS) 
in 1976/77 for “unclassified government communication”

• adopted by the American National Standards Institute (ANSI) 
in 1981 for commercial and private applications

• is a symmetric mechanism, admitting multiple key usage

• operates blockwise, where the block length is 64 bits

• has a key length of 56 bits:
today, the pure form of this mechanism is considered to be outdated, 
as it suffers from a too short key length 

• has a still useful variant: Triple-DES 
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Triple-DES

inputs:
– a plaintext x / a ciphertext y
– three different keys k1, k2, k3   

encryption algorithm: successively perform

– an encryption with k1, 
– a decryption with k2

– another encryption with k3

yielding the ciphertext y as

Enc ( k3 , Dec ( k2 , Enc ( k1 ,  x ) ) )

decryption algorithm: perform corresponding inverse algorithms to obtain

Dec ( k1 , Enc ( k2 , Dec ( k3  ,  y) ) )
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DES: overall structure  
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IDEA (International Data Encryption Algorithm) 

• was developed as an alternative to DES

• is a further example of the chaos approach

• combines 
– a DES-like round structure operating on block parts and round keys 
– algebraic group operations

• was adopted for Pretty Good Privacy (PGP), 
but never reached common acceptance

• is symmetric, admitting multiple key usage

• operates blockwise, where the block length is 64 bits

• has a key length of 128 bits, 
still sufficient from today’s perspective 
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund      Security in Computing Systems: Symmetric Encryption - 07. 04. 2011 500



IDEA: overall structure 
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AES–Rijndael (Advanced Encryption Standard)

• was designed by the Belgian researchers J. Daemen and V. Rijmen,
winner of a public competition and evaluation, organized by the NIST

• follows the chaos approach, producing confusion and diffusion

• is symmetric, admits multiple key usage, operates blockwise

• permits block lengths varying from 128 bits to any larger multiple of 32 bits

• permits key length varying from 128 bits to any larger multiple of 32 bits 

• is somehow restricted for standardization:
– block length is fixed at 128 bits 
– key length is restricted to be 128, 192 or 256 bits,

today regarded as sufficient to resist exhaustive search and trial attacks

• combines several long-approved techniques 
– operating roundwise on block parts and round keys
– superimposing the randomness of the key on the blocks using XOR 
– permuting the positions of a block or a key
– employing of advanced algebraic operations showing one-way behavior
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• operates on the following sets:
– plaintexts: 

bit strings (blocks over { 0 , 1}) of length 128 (or a larger multiple of 32), 
represented as a byte matrix of 4 rows and 4 columns, 
thus having 16 entries of 8 bits each 

– ciphertexts: 
bit strings (blocks) of the same length as the plaintext blocks

– keys: 
bit strings of length 128 (or a larger multiple of 32), 
again represented as a byte matrix like the plaintexts

• employs three algorithms as follows
– key generation: select a “truly random” bit string of length 128

– encryption: perform byte matrix transformations, see next pages

– decryption: invert the byte matrix transformations in reverse order, 
employing the round keys accordingly
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Encryption algorithm AES (  k ,  x ) 

• takes a key k and a plaintext x as input

• represents them as byte matrices

• operates on the current byte matrices

• uses some preprocessing and postprocessing 

• performs 10 (or more for larger block or key lengths) uniform rounds 

• executes four steps in one round: 

(1) bytewise substitutions 

(2) permutations that shift positions within a row

(3) transformations on columns and 

(4) bitwise XOR operations with the round key
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Structure of the AES–Rijndael symmetric block cipher 

substituting bytes

shifting rows

transforming columns 

XOR superimposing bits 

XOR superimposing bits 

expanding the key

plaintext block key

ciphertext block  f
in

al
 r

ou
n

d
   

   
   

   
ro

u
n

d
s 

2 
to

 1
0 

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

 r
ou

n
d

 1
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
p

re
p

ro
ce

ss
in

g
(p

os
tp

ro
ce

ss
in

g)
   

 

© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund      Security in Computing Systems: Symmetric Encryption - 07. 04. 2011 505



AES–step (1): bytewise substitutions

• step (1) is defined by a non-linear, invertible function SRD on bytes, i.e., 
each byte of the current matrix is independently substituted by applying SRD

• invertibility ensures that a correct decryption is possible 

just by applying the inverse function SRD
– 1

• non-linearity is aimed at achieving confusion, in terms of both 
– algebraic complexity
– small statistical correlations between argument and value bytes

• the substitution function SRD has two convenient representations:
– tabular representation organized as a lookup table of size 16×16
– algebraic representation
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Tabular representation of the substitution function

argument byte a: seen as composed of two hexadecimal symbols li and co 
value byte v: table entry for line li and column co
 

0 1 2 3 4 5 6 7 8 9 A B C D E F
0 63 7C 77 7B F2 6B 6F C5 30 01 67 2B FE D7 AB 76
1 CA 82 C9 7D FA 59 47 F0 AD D4 A2 AF 9C A4 72 C0
2 B7 FD 93 26 36 3F F7 CC 34 A5 E5 F1 71 D8 31 15
3 04 C7 23 C3 18 96 05 9A 07 12 80 E2 EB 27 B2 75
4 09 83 2C 1A 1B 6E 5A A0 52 3B D6 B3 29 E3 2F 84
5 53 D1 00 ED 20 FC B1 5B 6A CB BE 39 4A 4C 58 CF
6 D0 EF AA FB 43 4D 33 85 45 F9 02 7F 50 3C 9F A8
7 51 A3 40 8F 92 9D 38 F5 BC B6 DA 21 10 FF F3 D2
8 CD 0C 13 EC 5F 97 44 17 C4 A7 7E 3D 64 5D 19 73
9 60 81 4F DC 22 2A 90 88 46 EE B8 14 DE 5E 0B DB
A E0 32 3A 0A 49 06 24 5C C2 D3 AC 62 91 95 E4 79
B E7 C8 37 6D 8D D5 4E A9 6C 56 F4 EA 65 7A AE 08
C BA 78 25 2E 1C A6 B4 C6 E8 DD 74 1F 4B BD 8B 8A
D 70 3E B5 66 48 03 F6 0E 61 35 57 B9 86 C1 1D 9E
E E1 F8 98 11 69 D9 8E 94 9B 1E 87 E9 CE 55 28 DF
F 8C A1 89 0D BF E6 42 68 41 99 2D 0F B0 54 BB 16
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Algebraic representation of the substitution function

• the representation treats a byte as an element of the finite field GF(28), where
each bit of a byte is seen as 
a coefficient of a polynomial with degree at most 7

• the multiplicative structure is defined by 
the usual multiplication of polynomials, followed by a reduction 

modulo the irreducible polynomial x8  +  x4  +  x3  +  x  +  1 

• the function SRD has a representation of the form 

SRD (  a ) = f  (  a– 1 )), where 

– the inversion operation refers to the multiplicative structure of GF(28)

– f is an affine function in GF(28), basically described by 
– a suitable 8×8 bit matrix F 
– a suitable constant byte c 
such that

f   ( a  )  =  (  F   ×   a ) ⊕ c
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AES–step (2): permutations shifting positions within a row 

• step (2) is defined by the offsets to be used for each of the rows: 
the offsets are 0, 1, 2 and 3 byte positions, meaning that

– the first row remains invariant 

– the second, third and fourth rows are shifted 
by 8, 16 and 24 bit positions, respectively, to the left 

• the shiftings are aimed at achieving good diffusion, 
and can be easily redone for a correct decryption
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AES–step (3): transformations on columns

• step (3) is defined by a linear, invertible function MCRD on “columns”:

each column of the current matrix is considered as an element of { 0 , 1}32 
and independently substituted by applying MCRD

• invertibility ensures that a correct decryption is possible

• the specific selection of MCRD is aimed mainly at achieving diffusion, 
now regarding the rows of the byte matrices

• additionally, the selection was influenced by efficiency reasons

• MCRD admits an algebraic definition in terms of polynomial multiplication: 

MCRD

a0

a1

a2

a3 
 
 
 
 
 
 
 

02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02

a0

a1

a2

a3

×=
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AES–step (4): bitwise XOR operations with the round key

• XOR superimposes the randomness of the sophisticatedly manipulated key 
on the intermediate state of the byte matrix

• effects of the superimposition can be correctly undone 
by applying these XOR operations with the same key arguments

• round keys are inductively computed 
by employing complex algebraic operations, 
while at the same time achieving an acceptable efficiency

• for the given block length and key length of 128 bits each 
(or suitably adapted for other possible lengths), 
the initial 4×4 byte matrix for the key k given as input 
is expanded into a 4×(1  +  10)·4 byte matrix, i.e., 
for each of the 10 rounds, 
four new columns are generated and taken as the round key
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AES: key expansion 

• the key expansion scheme distinguishes between 
the first column of a new round key and the remaining columns,
but each column i is defined in terms of the 
– corresponding column i  –  4  of the preceding round key
– the immediately preceding column i  –  1 

• remaining columns: 
the column i is computed by directly applying the bitwise XOR operation

• first column: 
the preceding column is first transformed by a non-linear function 
that is a suitable composition of 
– the bytewise application of the substitution function SRD

– a permutation that shifts the positions in a column

– the addition of a round constant
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AES: decryption

• there is a straightforward decryption algorithm: 
basically, it performs the inverses of all byte matrix transformation 
in reverse order, employing the round keys accordingly

• the design also includes an equivalent decryption algorithm: 
it maintains the sequence of steps within a round, 
replacing the steps by their respective inverses
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AES: efficiency

• NIST requirements: 
successor of DES should enable an efficiently implementation on smartcards,
which could, for example, be used as personal computing devices

• the Rijndael proposal: 
the community was convinced regarding efficiency for implementations 
in both hardware and software

• the construction as a whole: 
high efficiency is enabled even though it operates on structures 
consisting of 128 bits (or even more)

• in combination with some block mode: 
transmission rates are suitable for large multimedia objects

• like any other symmetric block cipher: 
usage as part of a hybrid encryption method is possible
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Stream ciphers using block modes

• underlying block cipher 
encrypts plaintext blocks and decrypts ciphertext blocks of a fixed length lB

• fragmentation
– divides a longer message into appropriate fragments

– treats the resulting stream of fragments
by using the block cipher in what is known as 
a block mode (mode of operation) 
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Two basic approaches to fragmentation

• (1) the original message is divided into fragments of 
length equal to exactly the block length lB of the underlying block cipher

(2) the block cipher treats the fragments 
– either separately (electronic codebook) 
– or in a suitably chained way (cipher block chaining)

• (1) the original message is divided into fragments 
of length l ≤ lB  (typically, l = 1 or l = 8)
such that a plaintext stream of bits or bytes results

(2) the underlying block cipher is used 
to generate a corresponding (apparently pseudorandom) cipher key stream
that is superimposed on the plaintext stream 
by using the XOR operation 
(cipher feedback, output feedback, counter-with-cipher-block-chaining)

can be seen as a variant of the one-time key encryption mechanism, 
where perfectness is abandoned for the sake of 
a reusable, short key as demanded by the underlying block cipher
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Electronic Codebook (ECB) Mode  

 plaintext

plaintext

sender  receiver

Generate_Block_Key : K

Block_Enc:

 encrypt  

Block_Dec:

k k

ciphertext block stream

recovered

block stream
xi    yi = Block_Enc(k ,xi)

(x1,x2, ...)

1 block  
at a time 

decrypt
1 block
at a time

plaintext
block stream
xi
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Cipher Block Chaining (CBC) Mode  

plaintext

sender  receiver

Generate_Block_Key : K

Block_Enc:

 encrypt  

Block_Dec:

k k

  ciphertext block stream

recovered

xi yi = Block_Enc(k , xi� yi�1)

(x1,x2,...)

1 block  
at a time 

decrypt
1 block
at a time

plaintext
block stream

xi

plaintext
block stream

 store
yi 

 store
yi 

 yi�1  yi�1 

initialization 
 vector       
init         

initialization 
 vector 
init         
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CBC: correctness
• encryption algorithm Enc: 

– for the first block x1,
Enc ( k ,  x1 ) := Block_Enc ( k , x1 ⊕   init )

– for all further blocks xi with i > 1,
Enc ( k , xi ) := Block_Enc ( k , xi   ⊕   Enc ( k , xi−1 ) ) 

• decryption algorithm Dec:
– for i = 1,

Dec ( k , y1 ) := Block_Dec ( k , y1 )   ⊕   init 
 =  Block_Dec ( k , Block_Enc ( k , x1   ⊕   init )  )   ⊕   init
 = ( x1   ⊕   init )   ⊕   init = x1

– for i > 1,
Dec ( k , yi )
:= Block_Dec ( k , yi )   ⊕   yi−1

=  Block_Dec ( k , Enc ( k , xi ) )   ⊕   Enc ( k , xi−1 )
=  Block_Dec ( k , Block_Enc ( k , xi ⊕ Enc ( k , xi−1) ) )   ⊕   Enc ( k , xi−1 )
=  ( xi   ⊕   Enc ( k , xi−1 ) )   ⊕   Enc ( k , xi−1 ) = xi 
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CBC: producing a message digest

• characteristic feature of the cipher block chaining mode:
all blocks are treated in a connected way 
requiring strict serialization

• the last resulting ciphertext block seen as a message digest: 
this block can be employed as a 
piece of cryptographic evidence (a cryptographic exhibit) 
for an authenticity verification algorithm
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Cipher Feedback (CFB) Mode

• follows the second basic approach,
achieving a variant of the one-time key encryption mechanism

• generates the required pseudorandom cipher key stream 
by means of the encryption algorithm Block_Enc(ryption) 
of the underlying block cipher

• does not employ the corresponding decryption algorithm, 
and thus cannot be used for an asymmetric block cipher

• extracts the cipher key stream from the outputs of the block cipher encryption, 
whose inputs are taken as a feedback from the ciphertext stream

• uses an initialization vector init as a seed, 
which must be used only once
but can be communicated to the receiver without protection

• example: fragment length l = 8 
block size of the underlying block cipher lB  = 64
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CFB: overall structure  

ciphertext element stream

sender

Generate_Block_Key : K

k

8
8
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64shifti
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64 shifti
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64

8 8 8
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plaintext
element stream
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 plaintext
(x1,x2,...)

 select
left byte

 select
left byte

Block_Enc:

 encrypt  
1 block  
at a time 

Block_Enc:

 encrypt  
1 block  
at a time 

initialization vector         
                          init

store
and 
shift

store
and 
shift

yi = xi  �  Left(Block_Enc(k,shifti))

initialization vector         
                          init

xi

    recovered     
    plaintext
element stream
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CFB: correctness

• encryption algorithm Enc:
for each plaintext byte xi,
Enc ( k , xi ) := xi   ⊕   Left ( Block_Enc ( k , shift_senderi ) ).

• decryption algorithm Dec
for each ciphertext byte yi,

Dec ( k , yi ) := yi   ⊕   Left ( Block_Enc ( k , shift_receiveri ) )
= ( xi ⊕  Left ( Block_Enc ( k , shift_senderi ) ) ) 

⊕   Left ( Block_Enc ( k , shift_receiveri ) ) 
= xi , 

provided shift_senderi = shift_receiveri 

• required equality of the shifti inputs on both sides is achieved 
by using the same initialization vector init and then, inductively, 
by employing the same operations and inputs to generate them 
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund      Security in Computing Systems: Symmetric Encryption - 07. 04. 2011 523



CFB: producing a message digest

• characteristic feature of the cipher feedback mode:
the last resulting ciphertext block 
depends potentially on the full plaintext stream

• the last resulting ciphertext block seen as a message digest: 
this block can be employed as a 
piece of cryptographic evidence (a cryptographic exhibit) 
for an authenticity verification algorithm
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Output Feedback (OFB) Mode

• follows the second basic approach

• required pseudorandom cipher key stream is generated 
as for the cipher feedback mode, except of the following

• the block cipher encryption takes the feedback directly from its own outputs

• since only the encryption algorithm of the underlying block cipher is involved,
this mode cannot be used for an asymmetric block cipher

• example:
– fragment length: l = 8 

– block size of the underlying block cipher: lB  = 64
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Output Feedback (OFB) Mode: overview  
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store
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Counter-with-Cipher-Block-Chaining Mode (CCM)

• generates a pseudorandom cipher key stream 
by encrypting a sequence of counters counti 
using the underlying block encryption

• computes the counters by 

counti   :=   init + i mod ,

assuming a block size lB of the block cipher and 
taking an initialization vector init of that size 

• cannot be used for an asymmetric block cipher

• exploits that for each i = 1 , 2, … : 
– the pair of the counter counti and the corresponding plaintext block xi 

can be treated independently of all other pairs, as for ECB

– the counter counti is independent of the ciphertext stream 
(and thus of the plaintext stream), as for OFB

2
lB
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• achieves authenticated encryption:

– additionally performs CBC encryption 
without transmitting the resulting ciphertext blocks

– superimposes the last resulting CBC ciphertext block yfin 

on the counter count0 = init

– appends the resulting block yfin ⊕ count0 as a message digest
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Features of block modes

• initialization vector: 
– some computational overhead is necessary 

– a parameterization of the encryption is achieved: 
if the initialization vector is varied for identical messages and kept secret, 
then the encryption could even be seen as probabilistic

• fault tolerance, for the sake of availability:
propagation of a modification error is considered:

– in the plaintext stream

– during transmission, in the ciphertext stream: 

– all modes recover shortly after a modification error

– OFB and CCM even behave optimally
(only the error position is affected) 
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• modification error in the plaintext stream: 

– ECB, OFB and the main part of CCM recover
shortly after the error position or totally prevent propagation

– for CBC, CFB and the digest production part of CCM, 
an error might “diffuse” through the full succeeding cipher stream: 

accordingly, the resulting final cipher block can be seen as a 
message digest and can thus be employed as 
a piece of cryptographic evidence (a cryptographic exhibit ) 

• synchronization errors owing to lost fragments:

for all modes, additional measures must be employed, e.g., 
by suitably inserting separators at agreed fragment borders
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Rudimentary comparison of block modes 

ECB CBC CFB OFB CCM

Initialization
vector /
parameterization

no yes yes yes yes

Propagation of 
error in plaintext 
fragment

limited to 
block

unlimited 
up to end of 
stream

unlimited 
up to end of 
stream

limited to 
error 
position

limited to 
error position, 
except for 
superimposed 
last CBC cipher 
block

Suitable for 
producing a 
message digest

no by last 
cipher block

by last 
cipher block

no by superim-
posed last CBC 
cipher block

Propagation of 
error in 
ciphertext fragment

limited to 
block

limited to 
block and 
succeeding 
block

limited to 
block and 
succeeding 
block

limited to 
error
position

limited to error 
position
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Some rough advice to a security administrator 

• electronic codebook mode
is suitable for short, randomly selected messages 
such as nonces or cryptographic keys of another mechanism

• cipher block chaining mode 
might be employed for long files with any non-predictable content

• cipher feedback mode, output feedback mode and counter mode
support the transmission of a few bits or bytes, 
e.g., as needed for connections between a central processing unit
and external devices such as a keyboard and monitor

• output feedback mode and counter mode 
might be preferred for highly failure-sensitive applications, 
since modification errors are not propagated at all
(except for the added message digest)
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14   Asymmetric Encryption and Digital Signatures with RSA
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Asymmetric encryption  

Sender S Receiver R

(S,R,Enc(ekR,m))

send_data receive_data. . . . . . . . . . . .

message: m

receiver: R sender: S

message: m

encryption_key: ekR

Enc(ekR,m)
Encrypt

Decrypt Gen_Key

decryption_key: dkR

Enc(ekR,m)

Certify_Key
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Complexity-theoretic secrecy property (one-way function approach) 

y    observed xi

...
...

possible

matching plaintext xi

sender Alice     attacker Malory   

public encryption key      

      ciphertext;

  
  
  

plaintexts:

  

cannot be �feasibly determined�
since computational effort is too high
(without knowledge of the private key) 
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Family of one-way functions with trapdoors

parameterized family of functions fk such that for each k:

• function fk : Dk → Rk 
is injective and computable in polynomial time

• inverse function fk
–1 : Rk → Dk  

is computationally infeasible without a knowledge of k  

• inverse function fk
–1 : Rk → Dk  

is computable in polynomial time 
if k (the private key) is used as an additional input

it is an outstanding open problem of computer science, 
closely related to the open problem of whether P  ≠ NP,
whether such families actually exist 
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RSA functions

• an RSA function  is a number-theoretic function where 

– ( p , q , d ) is used as the private key
– ( n , e ) as the public key

• the designated secret holder generates, randomly and confidentially,
two different, sufficiently large prime numbers p and q

• n :=  
is published as the modulus of the ring ( Zn , + , · , 0 , 1 ): 
– all computations are performed in this ring
– the multiplicative group is formed by those elements 

that are relatively prime to the modulus n, i.e., 

Zn* = { x | 0 < x < n with gcd ( x , n )  =  1 }

– this group has a cardinality φ(n)  =  
– Euler phi function φ, 

is used for investigating properties of exponents for exponentiations 

RSAp q d, ,
n e,

p q⋅

p 1–( ) q 1–( )⋅
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• the designated secret holder randomly selects 
the second component e of the public key such that 
1  <  e   <  φ(n)  and  gcd ( e , φ( n ) )  =  1

• additionally, the designated secret holder confidentially computes 
the third component d of the private key 
as the multiplicative inverse of e modulo φ( n ):
1  <  d   <  φ(n)  and   ≡  1 mod φ(n)

– in principle, multiplicative inverses can be efficiently computed 
– in this specific situation a knowledge of φ( n ) is needed, 

which requires one to know the secretly kept prime numbers p and q 

• the RSA function for the selected parameters is defined by 

 : Zn → Zn with 

 mod n

– can be computed by whoever knows the public key ( n , e )
– the required properties of 

injective one-way functions with trapdoors (are conjectured to) hold

e d⋅

RSAp q d, ,
n e,

RSAp q d, ,
n e, x( ) xe=
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Injectivity and trapdoor: theorem 

in the setting of the RSA function , 

for all x ∈ Zn ,

 ≡ x mod n

RSAp q d, ,
n e,

xe( )d
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Injectivity and trapdoor: sketch of proof

the following congruences modulo n are valid for all x ∈ Zn:

≡   exponentiation rules

≡   = , definition of d

≡   exponentiation rules

Case 1, x ∈ Zn*: 

multiplicative group Zn* has order φ(n):  ≡  ≡ 1 mod n 

thus:  ≡ x mod n

Case 2, x ∉ Zn*: 
case assumption: gcd ( x , n )  ≠  1 
n product of prime numbers p and q: gcd ( x , p )  ≠  1 or gcd ( x , q )  ≠  1
show for each subcase:  ≡ x mod p and  ≡ x mod q

by the definitions of n, p and q 

and Chinese remainder theorem:  ≡ x mod n 

xe( )d xe d⋅

xk φ n( )⋅ 1+ e d⋅ k φ n( )⋅ 1+

x xφ n( )( )k⋅

xφ n( )( )k 1k

xe( )d

xe( )d xe( )d

xe( )d
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Subcase 2a

gcd ( x , p )  ≠  1: 

p is prime: p divides x and 
thus any multiple of x as well

hence:  ≡ x mod p

similarly: 
gcd ( x , q )  ≠  1  implies

 ≡ x mod q

xe( )d

xe( )d
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Subcase 2b

gcd ( x , p )  =  1: 

then x ∈ Zp* and, accordingly, 
the following congruences modulo p are valid:

 ≡   definition of φ(n)

≡ exponentiation rules

≡  ≡ 1  x ∈ Zp* has order φ(p) = 

as in Case 1, we then obtain the following congruences modulo p:

 ≡  exponentiation rules

≡   = , definition of d

≡  exponentiation rules
≡  ≡ x  congruence shown above

similarly: 
gcd ( x , q )  =  1 implies

 ≡ x mod q 

xφ n( ) x p 1–( ) q 1–( )⋅

xp 1–( )q 1–

1q 1– p 1–

xe( )d xe d⋅

xk φ n( )⋅ 1+ e d⋅ k φ n( )⋅ 1+

x xφ n( )( )k⋅
x 1⋅

xe( )d
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Factorization conjecture of computational number theory

the factorization problem 
restricted to products of two prime numbers, i.e., 

given a number n of known form n = 
where p and q are prime numbers, 

to determine the actual factors p and q, 
is computationally infeasible

p q⋅
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RSA conjecture

if the non-keyed inversion problem for RSA functions 
was computationally feasible, 

then the factorization problem 
would be computationally feasible as well 

specialized RSA conjecture

if the non-keyed inversion problem for RSA functions 
by means of determining the private exponent d from an argument–value pair 

was computationally feasible, 

then the factorization problem 
would be computationally feasible as well
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RSA conjecture and further conjectures

• RSA conjectures roughly says: 
“factorization” is feasibly reducible to “RSA inversion”

• the converse claim, namely:
“RSA inversion” is feasibly reducible to “factorization”,
provably holds: 

if an “attacker” was able to feasibly factor the public modulus n 
into the prime numbers actually employed, 
then he could feasibly determine the full private key 
by just repeating the computations of the designated secret holder
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Some similar proven claims

“factorization” is feasibly reducible to any of the following problems, 
and vice versa: 

• Euler problem: 
given a number n of known form n = , 
where p and q are prime numbers, 

to determine the value φ(n)

• public-key-to-private-exponent problem: 
given the public key ( n , e ), 

to determine the private exponent d 

p q⋅
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Conjectures and proven claims about feasible reducibility  

factorization problem:  
n [ p , q ]

RSA inversion problem:  
[ ( n , e )     ,      y   ]                           x

  public key          value                            argument 

[ ( n , e )    ,       ( x , y )  ]                 d
 public key    argument-value pair        private exponent 

number         prime factors 

Euler problem:  
n  φ( n )
 number         Euler value 

public-key-to-private-exponent problem:   
(n,e)                  d
   public key                private exponent 

conjectured 

 proven

 p
ro

ve
n

 proven

 proven

conjectured to be infeasible 
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RSA asymmetric block cipher

• is an example of the one-way function approach 

• is based on RSA functions and their properties

• is asymmetric, admitting multiple key usage

• operates blockwise, where the block length is determined 
by the parameters of the underlying RSA function

• achieves complexity-theoretic security, provided: 
– the factorization conjecture and the RSA conjecture hold 
– the key is properly generated and sufficiently long 
– some additional care is taken
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RSA encryption: protocol outline
• key generation: 

selecting a private key (  p , q , d  ) and a public key ( n , e ) for  

• preprocessing of a message m, using an agreed hash function:
– adding a nonce non (for probabilistic encryption) 
– adding the hash value h (m , non) (for authenticated encryption) 

• encryption: computing    y  =  x e mod n
for x   =   ( m , non , h (m , non) ) , 
if interpretable as a positive number less than n 

• decryption: computing    y d mod n 
for received message y 

• postprocessing of the decryption result:
– extracting the three components 
– recomputing the hash value of the first two components 
– comparing this hash value with the third component (received hash value): 

if the received hash value is verified, 
the first component is returned as the (presumably) correct message

RSAp q d, ,
n e,
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RSA encryption: underlying sets

for each fixed setting of an RSA function :

• plaintexts: 
bit strings over the set { 0 , 1} 
of some fixed length lmes ≤ ld n 

• ciphertexts: 
bit strings over the set { 0 , 1}, 
basically of length ld n
(binary representation of a positive number less than n (residue modulo n)) 

• keys: 
given the public key ( n , e ), 
in principle there is a unique residue modulo n 
that can be used as the private decryption exponent d , 
whose binary representation is a bit string, 
basically of length ld n  or less 
(from the point of view of the nondistinguished participants, 
this decryption exponent cannot be “determined”)

RSAp q d, ,
n e,
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RSA: key generation Gen

• selects a security parameter l
that basically determines the length of the key

• generates randomly two large prime numbers p and q 
of the length required by the security parameter

• computes the modulus n  :=  

• selects randomly an encryption exponent e 
that is relatively prime to φ(n)  =  

• computes the decryption exponent d as the 
solution of   ≡  1 mod φ(n)

p q⋅

p 1–( ) q 1–( )⋅

e d⋅
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RSA: encryption algorithm Enc 

• takes a possibly padded message m of length lmes  as a plaintext

• generates a random bit string non as a nonce of length lnon 

• computes a hash value h ( m , non ) of length lhash  

• concatenates these values with appropriate separators: 
the resulting bit string x must, basically, have length ld   n
(lmes + lnon + lhash ≤ ld n , 
binary representation of a positive number less than n (residue modulo n) )

• taking the public key ( n , e ), 
computes and returns the ciphertext 

y = x e mod n
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RSA: decryption algorithm Dec

• taking the first component n of the public key ( n , e ) 
and the third component d of the private key ( p , q , d ), 
inverts the given ciphertext y by computing 

x´ =   y d mod n 

• decomposes the result x´ into 
– message part m´
– nonce part non´ 
– hash value part hash´
according to the separators employed

• inspects the received hash value:
– if h ( m´ , non ́  ) = hash´, 

then m´ is returned as the (supposedly) correct message 
– otherwise, an error is reported
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RSA: fundamental properties

• to be considered: correctness, secrecy and efficiency

• the modulus n should have a length of at least 1024;
even a larger length might be worthwhile to resist dedicated attacks

• there is a trade-off between secrecy and 
efficiency, roughly estimated: 

– key generation consumes time O (  ( ld   n)4  )
– operations of modular arithmetic, needed for encryption and decryption,

consume time at most O (  ( ld   n)3  ) 

• high performance can be achieved in practice 
by employing specialized algorithms for both software and hardware

• there are some known weaknesses of specific choices of the parameters

• preprocessing and postprocessing are necessary:
– probabilistic encryption demanded for sophisticated secrecy property
– added nonce needed for several purposes
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RSA: added nonce 

• enlarges the search space for the straightforward inversion algorithm
that an attacker could use 
given a ciphertext and the public key

• prevents a known ciphertext/plaintext vulnerability, 
by ensuring that a given plaintext m 
will produce different ciphertexts when being sent multiple times
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RSA: authenticated encryption 

• needed to prevent active attacks enabled by the 
multiplicativity property ( homomorphism property ) of exponentiation:

for all x, y and w :  ,
which is inherited by any RSA function

• example of an attack to decrypt an observed ciphertext y: 
– select a multiplicatively invertible element u  ∈  Zn*

– compute t := , by employing the public key ( n , e ) 
– somehow succeed in presenting t as a (harmless-looking) ciphertext 

to the holder of the private key and obtain 

the corresponding plaintext t d with property 

– solve the congruence for the wanted value yd by computing

• this attack will not succeed with the employment of a hash function, provided 
this hash function does not suffer from the same multiplicativity property

x y⋅( )w xw yw⋅=

y ue⋅   mod n

td   y ue⋅( )d   yd ue d⋅⋅   yd u⋅   mod n≡ ≡ ≡

yd td u 1–⋅   mod n=
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Asymmetric authentication (digital signing)
 

Sender S Receiver R

 (S,R,m,redS,m)

send_data receive_data. . . . . . . . . . . .

message: m

receiver: R sender: S

message: m

redS,m
redS,m

Authent Gen_Key       

authent_key: akS

Test

test_key: tkS
test_result: true/false

Certify_Key
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RSA asymmetric digital signatures

• is an example of the one-way function approach

• is based on RSA functions and their properties

• is asymmetric, admitting multiple key usage

• achieves complexity-theoretic security, provided: 
– the factorization conjecture and the RSA conjecture hold 
– the key is properly generated and sufficiently long
– some additional care is taken

• is obtained by exchanging the roles of encryption and decryption,

given a suitable RSA function  with 

– private key (  p , q , d  ) 
– public key ( n , e ), 

RSAp q d, ,
n e,
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RSA digital signatures: protocol outline

• preprocessing of a message m using an agreed one-way hash function:
computing a hash value  h ( m ) 

• authentication: 
computing the “RSA decryption” of the hash value    

red   =   h ( m ) d mod    n, 

• verification: 
– computing the “RSA-encryption” of the cryptographic exhibit

red  e   mod n 
to recover the presumable hash value 

– comparing the result 
with the freshly recomputed hash value of the received message m 
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RSA digital signatures: underlying sets

• messages:
bit strings over the set { 0 , 1} 
that can be mapped by the agreed one-way hash function h 
to bit strings basically of length ld n
(positive numbers less than n (residues modulo n))

• cryptographic exhibits: 
bit strings over the set { 0 , 1}, 
basically of length ld n
(positive numbers less than n (residues modulo n))

• keys: 
given the public key ( n , e ), 
in principle there is a unique residue modulo n 
that can be used as the private decryption exponent d , 
whose binary representation is a bit string, basically of length ld n  or less; 
(from the point of view of the nondistinguished participants, 
this decryption exponent cannot be “determined”)
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund     Security in Computing Systems: Asymmetric Encryption and Digital Signatures with RSA - 07. 04. 2011 560



RSA digital signatures: three algorithms

• key generation algorithm Gen: 
same as for RSA encryption

• authentication (signature) algorithm Aut: 
– takes a message m of an appropriate length
– computes h ( m ), where h is an agreed one-way hash function

– returns red   =   h ( m ) d mod n

• verification algorithm Test: 
– takes the received cryptographic exhibit red

– computes hash   :=  red  e   mod   n 
– takes the received message m
– determines its hash value h ( m )
– checks whether this (correct) hash value equals the (received) value hash:

Test (  ( n , e )  , m , red ) returns true    iff     h ( m )   =   red  e   mod   n  
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RSA digital signatures: fundamental properties

• to be considered: correctness, unforgeability and efficiency

• basic aspects of these properties can be derived like for RSA encryption

• regarding correctness:
the commutativity of multiplication and exponentiation, i.e., 

for all b, e1, e2 :  

,

is inherited by

– encryption function x  e   mod   n 

– decryption function y d   mod   n

• these functions are mutually inverse, 
independent of the application order

b
e1( )

e2
b

e1 e2⋅
b

e2 e1⋅
b

e2( )
e1

= = =
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RSA encryption and digital signatures 

• any commutative (asymmetric) encryption mechanism 
with encryption algorithms Enc and Dec that satisfy, 

for all plaintexts or ciphertexts x and for all keys ( ek , dk )

Dec ( dk , Enc ( ek , x ) ) = Enc ( ek , Dec ( dk , x ) )

can be converted into an authentication (signature) mechanism 

• authentication: Aut ( dk , x ) = Dec ( dk , x ),
using the private decryption key dk as the authentication key

• verification: Test ( ek , x , red ) = true    iff    x  =  Enc ( ek , red ),
using the public encryption key ek as the test key

• correctness of the authentication 
is implied by the encryption correctness:
Enc ( ek ,  Aut ( dk , x )  ) = Enc ( ek ,  Dec ( dk , x )  ) = Dec ( dk , Enc ( ek , x ) ) = x 

• unforgeability is implied by the secrecy of the encryption
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ElGamal asymmetric block cipher

• is another well-known example of the one-way function approach

• is based on ElGamal functions and their properties

• is asymmetric, admitting multiple key usage

• operates blockwise, where the block length is 
determined by the parameters of the underlying ElGamal function

• achieves complexity-theoretic security, provided: 
– the discrete logarithm conjecture and the ElGamal conjecture hold
– the key is properly generated and sufficiently long
– some additional care is taken
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Asymmetric block ciphers based on elliptic curves

• are increasingly important examples of the one-way function approach

• are based on generalized ElGamal functions that 
are defined over appropriately constructed finite cyclic groups 
derived from elliptic curves based on a finite field 

• are asymmetric, admitting multiple key usage

• operate blockwise, where the 
block length is determined by the parameters of the underlying elliptic curve

• achieve complexity-theoretic security, provided:
– the pertinent discrete logarithm conjecture and related conjectures hold
– the key is properly generated and sufficiently long
– some additional care is taken

• offer a large variety of alternatives to the still predominant RSA approach,
and thus diminish the dependence on the special unproven conjectures

• promise to achieve the wanted degree of secrecy 
with improved efficiency in comparison with the RSA approach
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Asymmetric authentication by ElGamal and elliptic curves

• similar to encryption
© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund     Security in Computing Systems: Asymmetric Encryption and Digital Signatures with RSA - 07. 04. 2011 566



15   Some Further Cryptographic Protocol 
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Covert commitments

• committing : 
the committer discretionarily selects some value vcom 
and commits to this value, in a covert form regarding the receiver

• revealing : 
the committer reveals a value vshow to the receiver, 
who in turn either accepts or rejects it as the committed value

• binding property (combined correctness and unforgeability property):

for all values vcom :
 if the committer enters the revealing phase at all, 
then the receiver accepts the revealed value vshow 

if and only if it is the committed value vcom 

• secrecy property (after committing and before revealing):

for all values vcom , 
the receiver cannot “determine” 

the committed value vcom from the covert form
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Secret sharing

• distributing :
the owner of the secret v computes shares s1, … , sn and 
distributes them to appropriate receivers

• combining : 
for some threshold , t (or more) receivers collect their shares , … , 

 and use them to recover the secret

• correctness property:
for all values v : 

the receivers succeed in determining the secret value v 
from any set of t distinct shares , … , 

• secrecy property:
for all values v : 

the receivers cannot “determine” the secret value v
from any set of  shares

t n≤ si1
sit

si1
sit

t 1–
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Multiparty computations

• multiparty computations address a very general situation of 
cooperation in the presence of threats between n parties Pi

• parties aim at jointly computing the value y of some agreed n-ary function f:
– each Pi secretly provides an argument xi

– at the end, each Pi knows the computed value y  =  f  (  x1 ,  …  , xn  ) 
– no Pi learns anything new about the other parties’ arguments

• correctness property (with threshold t):
for all inputs  x1 ,  …  , xn   of the parties P1 ,  …  , Pn , respectively, with n   >  2,
if the adversary is formed by at most t attacking parties  (a strict minority),

then each of the honest parties obtains  f  (  x1 ,  …  , xn  ) as the final result

• secrecy property (with threshold t):
for all inputs  x1 ,  …  , xn   of the parties P1 ,  …  , Pn , respectively, with n   >  2,

an adversary formed by at most t attacking parties  (a strict minority)
cannot “determine” any of the secret inputs of the honest parties
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A trusted host with private input channels 
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A semi-trusted host operating on ciphertexts 
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Enc(. , x1)

Enc(., y)

Enc(., xn)

Enc(. , y)

Enc(. , y) semi-trusted
 host

.

.

.

 P1

y

x1dk1

en
cr

yp
t

de
cr

yp
t

 Pn

y

xndkn

en
cr

yp
t

de
cr

yp
t

© 2009 Springer-Verlag Berlin Heidelberg /© 2010 Joachim Biskup TU Dortmund     Security in Computing Systems: Some Further Cryptographic Protocol - 07. 04. 2011 572



Parties with protected local operations and message transmissions 
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A combined correctness and secrecy property (with threshold t)

whatever violations of correctness and secrecy 
can be achieved in the model of

parties cooperating by protected local operations and message transmissions 

can also (inevitably) happen in the trusted-host model, 
and thus, in particular,

without observing messages of the honest parties at all
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Index (erstellt von Katharina Diekmann)

Symbols
*-security property 269

A
a posteriori knowledge 278
a priori knowledge 22, 278
access control

graph 163
list 163
matrix 163

access decision 107
accountability 87
accreditation certificate 367
add-on loading 341
Advanced Encryption Standard 502–514
AES–Rijndael 502–514
anonymity 87, 346
anonymization 421–425
assurance class 14
assurance level 13
asymmetric authentication 419, 420
asymmetric encryption 410, 411, 446, 534

attack 440
attack pattern 388
attribute certificate 367
authentication 62, 412–415
authenticity 29, 87
authenticity and integrity check 342
availability 87

B
basis register 52, 55
behavior 382

acceptable 382, 395
explicitly permitted 382
possible 382
violating 382, 388

binary group operation 288
binding property

covert commitment 568
block cipher 446
block mode 515
bound property 360, 370
bound register 52, 55
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bound-authorization-attribute credential 369

C
capability credential 369
CBC 518–520, 530, 531
CC 11–14
CCM 527, 529, 530
certificate 341, 346
certificate type 367
certificates and credentials 66, 70, 88
certification authority certificate 367
CFB 521–524, 530, 531
challenge–response procedure 82
chaos 488
Chinese Wall 236
Cipher Block Chaining Mode 518–520, 530, 531
Cipher Feedback Mode 521–524, 530, 531
ciphertext 403
classification 255
clearance 255
collision resistant 432
collision-resistance 436, 437
Common Criteria for Information Technology Secu-

rity Evaluation 11–14
complete (potential) information gain 286, 287
complete mediation 17
completely_trusted (trust grade) 458

confidentiality 30, 87
control and monitoring 66, 67, 88, 103
control component 93
control mode 172
control operation 99
correctness property

authentication 414, 415
covert commitment 568
encryption 404, 484
multiparty computation 570, 574
secret sharing 569

Counter-with-Cipher-Block-Chaining Mode 

527, 529, 530, 531
covert channel 322
covert commitment 568
create 249
credential 464
credential type 369
cryptographic authentication 80
cryptography 66, 69, 88, 400–443

D
Data Encryption Standard 497, 499
decryption algorithm 483, 493
delegate 172
delegation credential 369
deletion with deleted further grantings 220
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deletion with renewed further grantings 219
DES 497, 499
digital document 359
digital signature 359, 419, 446
direct information flow 299
discrete logarithm conjecture 564
downgrading 270
dynamic inference control 290
dynamic security level 264

E
EAL 13
ECB 517, 530
effective gid 136
effective uid 136
Electronic Codebook Mode 517, 530, 531
ElGamal 564

authentication 566
conjecture 564
encryption 564
function 564

elliptic curves 565
encryption 60, 80, 403, 404
encryption algorithm 483, 493
end-to-end connection 461
Euler problem 546
evaluation assurance level 13

execute 121
execution flag 127

F
factorization conjecture 543, 558
fail-safe default 17
false negative 387
false positive 387
FASL 191
fine granularity 17
firewall 371
Flexible Authorization Framework 184–207
Flexible Authorization Specification Language 191
framework not applicable 286, 287
free property 360, 370

G
gid 135
grant 93, 172, 249
grant graph 213
grantable 209

limited 209
no 209
unlimited 209

grantee 209
grantor 164, 209
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grantor-specific deletion 218
group 117, 164
group operation 288

H
hash value 435
high-water mark 260, 264
hybrid encryption 446, 514
HYDRA 237

I
IDEA 500, 501
identity certificate 367, 458
implicit information flow 299
indirect information flow 299
indistinguishability 44, 58, 59, 64, 87
inference 280
inference control 277

dynamic 290
mathematical model 283
static 291

information flow 20, 22, 299
direct 299
implicit 299
indirect 299
transitive 299

information gain 278, 281
complete (potential) 286, 287
framework not applicable 286, 287
no 286
partial (potential) 286, 287

integrity 87
unmodified state 28

integrity and authenticity basis 339, 340
integrity measurement 344
International Data Encryption Algorithm 500, 501
intrusion 381
intrusion defense policy 110
intrusion detection 110, 377

anomaly-based 395
signature-based 389

isolation 44, 46, 87
physical/programming-based 46
virtual cryptographic 46

isolation mechanism 57

K
Kerberos 461–481

access decision 464
authentication server 468, 475
client 474
functional server 481
functional-service ticket 479
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protocol 471–481
server 461, 462, 466, 469
ticket 464
ticket-granting server 468, 478
ticket-granting ticket 476

key certificate 458
key generation algorithm 483, 493
key management 445, 447, 452
knowledge base 107

L
license certificate 367
limited (value of grantable) 209

M
mandatory security policy 257
man-in-the-middle attack 83
marginally_trusted (trust grade) 458
memory tag 53, 55
message transmission 20, 22
middleware 345
MIX server 346
multiparty computation 570

N
need-to-know/need-to-act 17

negative privilege 164
no (value of grantable) 209
non-observability 87
non-repudiation 87

O
object 95
OFB 525–526, 529, 530, 531
one-time key 486, 489
one-way function 487, 535, 536
one-way hash function 80, 432, 435, 446
one-way property 435
open design 17
Output Feedback Mode 525–526, 529, 530, 531
owner 117, 164, 368

P
packet filter 374
parallel program 319–321
parameterized event 391
parameterized signature 391
partial (potential) information gain 286, 287
PartnerIdent 451
passphrase 451
permission 97
PGP 445–460, 500
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plaintext 403
Pretty Good Privacy 445–460, 500
principal 356
private certificate 367
private key ring 447, 455
privilege 164
programming language 351
prohibition 97
proof of authenticity 105, 341
property 356, 357

administrative 362
bound 360, 370
characterizing 361
free 360, 370

property assignment 357
property conversion 370
proxy 375
pseudonym 426
pseudorandom generator 430
public key ring 447, 456
public-key mechanism 408
public-key-to-private-exponent problem 546

R
RBAC 176
read 121
read-down/write-up rule 258

read-up/write-down rule 274
recursive revocation 222–229
redundancy 44, 45, 87
revocation semantic 216

deletion with deleted further grantings 220
deletion with renewed further grantings 219
grantor-specific deletion 218
simple deletion 217
time-specific deletion with recursive revocation of 

further grantings 221
revoke 93, 172
role 164, 176
role-based access control 176
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RSA 537–563

authenticated encryption 556
conjecture 544, 558
decryption algorithm 553
digital signatures 557–563

algorithm 561
authentication 561
protocol 559
underlying sets 560
verification 561

encryption 549–552
algorithm 552
key generation 551
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function 537
private key 538
public key 538

S
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secrecy property

asymmetric mechanism 408, 417
covert commitment 568
encryption 405, 406, 484
multiparty computation 570, 574
secret sharing 569

secret key 59
secret sharing 569
secret-key mechanism 408
secure booting 341
security 3, 112
security interest 4, 5, 27, 87, 445
security level 255, 262
security mechanism 5, 87
security parameter 403
security policy 378, 461
SelfIdent 451
semi-trusted host 572
sequential program 292–298

sgid 127
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