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Abstract

Due to the increasing gap between CPU performance and
memory bandwidth, memory access patterns play more and
more a significant role for an efficient data processing. The
current core assumption is that a sequential access pattern
delivers the best performance, especially when the data to be
processed is stored in adjacent memory locations (contigu-
ous memory). Given the continuous advances in memory
technologies, it is of course questionable whether this as-
sumption still holds true. To answer this question, we present
a comprehensive experimental comparison of the sequential
and the strided access pattern for data stored in contigu-
ous memory on modern disruptive memory systems in this
paper. As we are going to show, the core assumption must
be revised, as the strided access pattern with a well-chosen
stride size clearly outperforms the sequential access pattern.
Even a SIMD-accelerated sequential access is considerably
slower than the best-performing scalar strided access. In our
in-depth analysis, we explain the differences and highlight
further advantages of the strided access pattern.
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1 Introduction

The key objective of database systems is to reliably manage
data, where high query throughput and low query latency
are core requirements [1]. To satisfy these requirements,
database systems constantly adapt to novel hardware fea-
tures [2, 4-6, 8, 11, 13, 15, 20]. Therefore, it is not surprising
that current memory developments such as non-uniform
memory access (NUMA), high-bandwidth memory (HBM)
or remote memory designs such as RDMA or CXL are being
intensively researched to exploit their specific properties for
an efficient data processing [9, 11, 13, 16]. Moreover, these
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developments are accompanied by adjustments to the entire
memory subsystem to enable an efficient access to data in
different memory types. This is particularly noticeable on
Intel processors. For example, the 4™ generation of the Intel
Xeon Scalable processor architecture (Sapphire Rapids) not
only offers HBM, but also a significant overhaul of the cache
structure in terms of size and associativity compared to previ-
ous generations like the older 2" generation (Cascade Lake).
In addition, the 4™ generation includes improvements to the
structure of the Translation Lookaside Buffer (TLB).

Our Contribution and Outline: These memory sub-
system adjustments are very interesting, but the impact on
the different memory access patterns are only marginally
known [3, 7]. According to the state-of-the-art, it is still as-
sumed that a sequential access pattern provides the best
performance, especially if the data to be processed is stored
in adjacent memory locations (contiguous memory) [4, 17].
In this paper, we show that this assumption no longer ap-
plies for data stored in contiguous memory and that a strided
access pattern with a well-chosen stride size clearly outper-
forms sequential access patterns. A strided access pattern
is a variant of the sequential access pattern that realizes an
equidistant data access, i.e., there is a constant (but config-
urable) distance — greater than 1 — between accessed data
elements in a contiguous sequence. As data is now retrieved
from different non-consecutive positions in memory, it is
surprising that this strided access pattern can be more effi-
cient than a sequential access pattern. To present our insight,
the remainder of the paper is structured as follows:

e In Section 2, we present the detailed evaluation setup
and the overall results of our comparative evaluation
of the sequential and strided access patterns.

e Then, we deepen the analysis of the strided access pat-
tern by an in-depth investigation of several influencing
factors from the CPU side in Section 3.

o In Section 4, we evaluate and discuss the impact of our
obtained insights on different memory types, such as
HBM and remote memory.

The paper concludes with related work (Section 5) and a
summary including ongoing research activities (Section 6).

2 Access Pattern Comparison

To compare sequential with strided access patterns, we con-
ducted a systematic evaluation of the aggregation sum
(AggSum) operation, because the performance of this opera-
tion is mainly dominated by the memory performance and
therefore the employed access pattern. AggSum computes the
aggregating sum over a large column or array of integer data
(contiguous memory area). We focused our comparison on
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Figure 1. Single-threaded throughput results for AggSum over an 1 GiB array of uint64_t values.

the following variants: (1) sequential: AggSum will be com-
puted by sequentially iterating over the array and adding up
the elements one after the other. (2) simd-sequential: This
variant is an explicit SIMDified version of the sequential vari-
ant (using 512-bit AVX512 intrinsics). (3) strided: AggSum
using a strided access pattern as depicted in Listing 1. The
stride size is denoted as s, which also determines the number
of required passes over the data (outer loop). In each pass,
only every s array element is accessed (inner loop) with a
shifted starting position. For example, with a stride size of 2,
two passes over the array are necessary (outer loop). In the
first pass, the even array positions (0, 2, 4, ...) are sequentially
accessed (half of the elements), while in the second pass, the
odd positions (1, 3, 5, ...) are sequentially accessed (other half
of the data). (4) strided-unrolled: The last variant is an op-
timized version of the strided variant, where the inner loop
is explicitly unrolled. Especially for very large stride sizes,
where the inner loop only accesses very few array elements
in each pass, unrolling should provide an additional speed
advantage over the strided variant.

Evaluation Setup. We conducted our evaluation with
two generations of Intel Xeon Scalable CPUs, as shown in
Table 1. The newer generation (Sapphire Rapids architecture)
features 64 GiB of HBM, as well as larger cache sizes and
higher cache associativity compared to the older Cascade
Lake architecture. Moreover, the Data Translation Looka-
side Buffer (DTLB) and the Second-level Translation Looka-
side Buffer (STLB) are larger on the newer generation. All
AggSum variants were implemented in C++ and compiled
using g++ with the optimization flags -03 -march=native
-mavx512f as well as -fno-tree-vectorize to disable au-
tovectorization, so that the variants sequential, strided, and
strided-unrolled were executed in a scalar fashion. We evalu-
ated all variants single-threaded and for different data types,
suchasuint64_t or uint32_t. In this paper, we only present

uint64_t* data; /* assume data array is initialized =/
uint64_t sum = 0;
for (size_t i = 0; i <s; i++) {
for (size_t j = 0; j < total_elements/s; j++) {
sum += datali + j * s];

}

Listing 1. AggSum using a strided access pattern.

Table 1. System specification comparison.

Architecture || Cascade Lake Sapphire Rapids
Generation 274 Xeon Scalable | 4" Xeon Scalable
Name Gold 6240R Gold 9468
RAM DDR4 - 192GB DDR5 - 256GB

- HBM - 64GB
L1D Cache 32KiB (8-way) 48KiB (12-way)
L2 Cache 1MiB (16-way) 2MiB (16-way)
L3 Cache 35.75MiB (11-way) | 105MiB (15-way)
DTLB 64 Entries 96 Entries
STLB 1536 Entries 2048 Entries

the results for uint64_t, as we observed similar effects for
uint32_t. All experiments happened entirely in-memory
with an input array containing 1 GiB of randomly gener-
ated uint64_t values being allocated with aligned_alloc.
Based on a 4 KiB page size granularity, the array comprises
262.144 memory pages. All experiments were repeated 11
times with governor on performance and we report the mean
results. Since modern Intel CPUs feature sophisticated hard-
ware data prefetching mechanisms, we do not use software-
based prefetching [10, 14].

Evaluation Result A representative excerpt of our single-
threaded evaluation results for an 1 GiB array of uint64_t
values is illustrated in Figure 1. In both diagrams, the stride
size with a logarithmic scale is shown on the x-axis and the
throughput in GiB/s on the y-axis. In our experiments, we
explicitly pinned the execution of all AggSum variants on a
core of NUMA node 0 and placed the data array in the locally
attached DRAM of NUMA node 0 using numactl. Since the
array contained 227 uint64_t elements, we evaluated all pos-
sible stride sizes from 1 to 2%° in terms of number of elements.
From our results, we can derive the following general obser-
vations, which are not surprising at all: (a) As expected, the
simd-sequential variant achieves a higher throughput than
the sequential variant on both generations. This confirms
the state-of-the-art understanding that operations based on
a sequential access pattern can be optimized using SIMD. (b)
A strided access with a stride size of 1 (in terms of elements)
corresponds to a sequential access pattern resulting in equal
throughput values as visible on both generations. As stride
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Figure 2. Single-threaded throughput results for AggSum over an 1 GiB array of uint64_t values on Intel Sapphire Rapids.

size increases, throughput decreases continuously, reflecting
current understanding as well.

However, both diagrams in Figure 1 also reveal a surprising
insight: With increasing large stride sizes (around the stride

size of 21°), the throughput of the strided variant suddenly in-
creases in several steps. Moreover, the strided variant achieves
a similar throughput as the simd-sequential variant with
a stride size of 2?2 on the older Cascade Lake architec-
ture on the one hand. On the other hand, the strided vari-
ant clearly outperforms the simd-sequential variant on the
newer Sapphire Rapids architecture. While simd-sequential
only achieves a throughput of 19.8 GiB/s, the strided vari-
ant achieves — in the best — a much higher and remarkable
throughput of roughly 24 GiB/s for a stride size of 2213,

To explain the throughput behavior of the strided variant,
we slightly adapt the interpretation: The strided access log-
ically divides the data array into % partitions, where (a) n
is the total number of array elements and (b) s is the stride
size. Moreover, each partition consists of exactly s consec-
utive elements. In the i strided pass over the data (outer
loop in Listing 1), the i" element per partition is processed.
Based on that interpretation, Figure 2 shows our measured
throughput results for the different AggSum variants on the
newer Sapphire Rapids architecture. While a small stride
size leads to a high partition count, large stride sizes result
in small partition counts. As depicted in Figure 2, now the
interesting behavior occurs for small partition counts. Fig-
ure 2 also includes the results for the strided-unrolled variant
with unrolling only up to a partition count of 512. Again,
both strided variants clearly outperform the sequential as
well as the simd-sequential variant for small partition counts
(or large stride sizes). Moreover, it can be seen that unrolling
the inner loop of the strided access (cf. Listing 1) for small
partition counts provides a significant throughput boost.

3 In-depth Analysis

To analyze the throughput behavior of the strided variants
in detail, the starting point is Figure 2 including the setup
from Section 2. Generally, the following applies to all access
patterns: When an element of the data array is accessed, a
cache line is always loaded into the caches, which contains
a copy of the memory around this element. A cache line is

64 bytes in size — corresponding to 8 uint64_t values - on
our Intel (x86) systems. Moreover, if the memory subsystem
detects a sequential access pattern, the hardware prefetchers
will also prefetch the next cache line (or two) to boost the
access to the adjacent data elements.

Based on that, the memory subsystem is hardly stressed
by our sequential variants, because both variants iterate once
over the complete array and all data elements are processed
in sequence. This means the memory subsystem is only con-
cerned with the sequential prefetching of neighboring cache
lines through the different pages. Then, all elements of the
cache lines are aggregated by the CPU and here, the sequen-
tial and the simd-sequential variants differ. While the se-
quential variant executes 8 arithmetic instructions per cache
line, the simd-sequential variant only execute one arithmetic
SIMD instruction per cache line leading to a higher through-
put as shown in Figure 2.

In contrast, the strided variants heavily stress the memory
subsystem as data elements from different non-consecutive
memory positions in memory have to be loaded in sequential
manner. As shown in Figure 2, this stress can have a very
positive and a very negative effect on the throughput and
this can be explained using four main observations that we
have marked and highlighted in Figure 2:

(0]

For large numbers of partitions (> 4096), the throughput
of the strided variant is very low, but smoothly increases
for very large numbers of partitions (>22*) until finally
reaching the throughput of the sequential variant.

The partition count also represents the number of non-consec-
utive data elements that have to be sequentially loaded per
strided pass over the array. For each data element, (i) the
virtual address has to be translated into a physical address
and (ii) the corresponding cache line has to be fetched. Both
tasks overload the memory subsystem for larger partition
counts, as each data element requires a disjoint page to be
accessed. However, when the number of partitions becomes
very large (e.g., > 2%* partitions), multiple partitions can
then be found within a single page. Furthermore, since our
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(a) Sapphire Rapids System. (b) Cascade Lake System.
Figure 3. Excerpt of the throughput results for the partition
count range from 1024 to 4096.

AggSum operation operates on 1 GiB of data, with 22* parti-
tions, each partition corresponds to exactly one cache line.
This means that if the number of partitions further increases,
more than one partition will now reside within one cache
line. Since the partitions are accessed sequentially (see the
inner loop of Listing 1), accessing multiple partitions now
results in multiple accesses to the same cache line. We at-
tribute the increasing throughput with a very large number
of partitions (see Figure 2) to these effects.

(1]

In the partition count range from 1024 to 4096, a first
increase in throughput for the strided access can be ob-
served on both examined Intel CPUs.

Influence of the TLB. Figure 3 shows a zoom-in into the
throughput curves for the strided AggSum variant within the
partition count range from 1024 to 4096 for both examined
CPUs. In both diagrams in Figure 3, we can clearly observe
a performance increase on both systems once the number of
partitions is less than the combined capacity of both TLBs.
The increase point is in a different place on both systems, as
the examined systems have different TLB configurations for
4 KiB pages (cf. Table 1). Once the performance increases,
we can clearly observe an increase in STLB hits as well as
a decreased number of triggered page walks that fetch the
translation from the system’s page table. This observation
can be confirmed by using huge pages. With page sizes of
2 MiB and 1 GiB, a performance degradation cannot be ob-
served, since the TLB sizes on both systems are now sufficient
to hold all required translations. Therefore, we conclude that
an important influencing factor for the strided access pattern
is the size of the Translation Lookaside Buffer (TLB), since
multiple pages may need to be accessed.

Take away: When employing a strided access pattern, the
configuration and the capacity of the TLBs limit the number
of partitions to avoid significant performance degradations.

Anon.
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Figure 4. Excerpt of the throughput results for the partition
count range from 1 to 64 with hardware prefetchers enabled
and disabled.

(2)

A second significant increase in throughput on our sys-
tems can be observed for a small number of partitions
(< 64), which even exceeds the throughput of the simd-
sequential variant.

Influence of Hardware Prefetchers We attribute the ob-
served throughput increase primarily to the advanced hard-
ware prefetching mechanisms. Modern CPU architectures
are typically equipped with sophisticated prefetching mech-
anisms embedded into the hardware that detect memory
access patterns and proactively load data into the CPU cache
before it is explicitly requested. These hardware prefetch-
ers can not only identify simple ascending or descending
address patterns, but are also capable of tracking multiple in-
dependent memory streams simultaneously. Unfortunately,
exact implementation details of the hardware prefetchers are
often not publicly available. Both of our systems feature L1
hardware prefetchers that observe memory accesses and can
trigger additional prefetchers embedded in the L2 cache. To
better understand their impact on throughput, we conducted
a systematic evaluation by selectively enabling and disabling
the individual prefetchers at both levels of the cache hierar-
chy. As shown in Figure 4, turning off the L1 prefetchers has
only a minor impact on the overall performance. However,
turning off the L2 prefetchers resulted in a substantial drop
in throughput, highlighting their critical role for a strided
access. Furthermore, our experiments indicate that the L2
prefetchers seem to track up to 32 concurrent streams on
Intel’s older Cascade Lake architecture and up to 72 streams
on the newer Sapphire Rapids platform. Once the number of
concurrent non-consecutive memory accesses exceeds this
threshold, the prefetcher struggles to maintain its effective-
ness, leading to reduced performance.

Take away: The parallel sequential traversal of multiple par-

titions can lead to significant throughput increases; however,
the limits of the hardware prefetchers must be considered,
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Figure 5. Impact of different paddings put between partitions
to avoid that all partitions will be mapped to one cache set.

as the number of monitored streams varies between CPU
architectures. In most cases, only limited information is avail-
able regarding the number of parallel monitored streams, so
these parameters must be determined experimentally. The
methods described in this paper can be used to determine
these parameters.

(3]

On our systems, downward outliers in throughput were
observed for specific partition counts such as 8, 16, 24, ...

Influence of cache associativity We attribute this to neg-
ative interference with the caching subsystem on the CPU
that is caused by reading sequentially from multiple parti-
tions in close temporal proximity. In our experiments, the
amount of data is a power of two; therefore, certain partition
counts divide the data into multiples of two, which causes the
partition starting addresses to share a large number of lower
bits. Since caches may use the lower parts of the address for
mapping the cache line to its sets in the cache, the partitions
all map their cache lines to one or only a few number of
cache sets, thereby thrashing the cache even though there is
still free space in the caches.

To reduce the alignment of the partitions, a 576 byte
padding between the partitions was introduced. As the re-
sults in Figure 5 show, this measure is effective in reducing or
even mitigating the outliers at multiples of 8, but it also intro-
duces new outliers and retains certain old ones. The shown
correlation between throughput and L1 correlated stalls sub-
stantiates the cache associativity hypothesis, though further
investigation is required to better predict the performance
based on partition alignment and to verify whether cache
associativity is truly the sole cause of these outliers.

Take away: Data structures where multiple partitions are
expected to be traversed sequentially at the same time, such
as column-major tables and struct-of-array constructs, should
take care to disalign the starting addresses of their partitions
to a reasonable degree to avoid the negative effects of cache
associativity.
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4 Emerging Memory Technologies

In the previous sections, we focused exclusively on the com-
parison between the sequential and the strided AggSum vari-
ants with data residing in the local DRAM. However, modern
systems are increasingly complex and offer heterogeneous
memory with different latency and throughput properties.
This raises the question of whether, and if so in what form,
our observed insights on local DRAM can also be observed
on remote DRAM - such as in classic multi-socket environ-
ments — as well as on modern emerging memory technolo-
gies like HBM or remote memory connected via CXL. Table
2 summarizes our measured peak throughput values.

Remote DRAM. In a first step, we examined traditional
remote DRAM access as our Sapphire Rapids system features
two sockets. For these experiments, we explicitly pinned the
execution of all AggSum variants on a specific core on socket
1 and placed the data array in remote DRAM on socket 2.
If we compare the obtained throughput values for remote
DRAM with those for local DRAM (cf. Table 2), interesting
observations can be made: (1) The remote DRAM throughput
values for the sequential as well as the simd-sequential vari-
ant are significantly lower than for local DRAM. One reason
for this will be that the access latency for remote DRAM is
greater than for local DRAM. (2) In contrast, the strided vari-
ant shows a similar throughput for local and remote DRAM.
They only differ by less than 1% in peak performance; a peak
throughput of 23.96 GiB/s with 37 partitions on local DRAM
and 23.78 GiB/s with 36 partitions on remote DRAM can
be achieved. In this case, the memory subsystem appears to
compensate very well for the higher latency with this access
pattern. However, using loop unrolling, the peak throughput
of local DRAM access increases by 4 GiB/s, while no signifi-
cant changes for remote DRAM can be observed (cf. Table
2). Nevertheless, the results for strided access patterns are
promising, since data can now be processed in both local and
remote DRAM with nearly the same throughput behavior,
which is not the case for sequential access patterns. This
should have an effect on placement algorithms for data and
functions in multi-socket environments [12, 18].

We also conducted these experiments on our Cascade Lake
system consisting of four sockets. Interestingly, the older
generation is more affected by accesses to remote DRAM.
Although a very similar throughput curve to that of local
DRAM can be observed for remote DRAM, however, we see
performance losses of 30% in peak throughput for all AggSum
variants on remote DRAM. This makes once again clear the
changes to the memory subsystem on the Sapphire Rapids
architecture are disruptive, as they lead to different decisions
regarding an efficient data processing.

High Bandwidth Memory. In a second step, we also
evaluated our different AggSum variants on high-bandwidth
memory (HBM). On our Sapphire Rapids system, HBM is ex-
posed as additional NUMA nodes. In addition to evaluations
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Table 2. Single-threaded peak throughput results on a Sapphire Rapids system for AggSum over an 1 GiB array on different
memory devices. We present results from only one CXL card, as both cards exhibit similar behavior.

AggSum variant H DRAM (local) ‘ DRAM (remote) ‘ HBM (local) ‘ HBM (remote) ‘ CXL

sequential 11.97 GiB/s 7.86 GiB/s
simd-sequential 19.79 GiB/s 11.88 GiB/s
strided 23.96 GiB/s 23.78 GiB/s
strided-unrolled 27.97 GiB/s 24.07 GiB/s

of our AggSum variants on local HBM, we also investigated —
similar to the previous paragraph — the effects of accessing
remote HBM nodes (i.e., HBM connected to a remote CPU).
The obtained results are summarized in Table 2 and we can
make the following observations: (1) The throughput for the
sequential and the simd-sequential variants for local HBM is
slightly lower than for local DRAM. This was to be expected,
as the access latency for HBM is higher than for DRAM. In
the most favorable case (simd-sequential), the difference is
only 1 GiB/s. (2) As for the remote DRAM, the higher access
latency can be better hidden by strided access patterns so that
there are only marginal differences in throughput between
local DRAM and local HBM. (3) A particularly noteworthy
observation can be made when accessing remote HBM: As
shown in Table 2, the throughput on remote HBM barely
exceeded 10 GiB/s, whereas remote DRAM access achieved
over 23 GiB/s. Even if the strided variants of AggSum per-
form better than the sequential variant, the simd-sequential
variant performs best on remote HBM. The reason for this
is still unknown to us.

CXL. We also evaluated our AggSum variants using mem-
ory expansion cards (SMART Modular CXA-4F1W; SMART
Modular CXA-8F2W) connected via CXL (CXL 2.0 Type 3,
i.e.,, CXL.mem). The system was configured such that both
cards were exposed as additional NUMA nodes. Even with
this novel memory type and its special interconnect, we ob-
served improved peak performance for the strided variants
compared to the sequential one — at least for a small number
of partitions. However, unlike with all other memory types,
this only held for the variant without SIMD optimization. In
all scenarios, the highest throughput was achieved using the
simd-sequential variant. However, these results should be
currently interpreted with some caution: Even for accesses
to the locally attached cards, the peak throughput remained
relatively low at around 10 GiB/s, which is way below the
bandwidth limits of 16 or even 8 PCle lanes!

5 Related Work

The most relevant related work is the paper of Blom et al. [3].
In contrast to us, they evaluate more complex operations
such as Dense Matrix Vector Multiplication, 3x3 Convolu-
tion, or Stencil Computation with different memory access
patterns. They also conclude that switching from a sequen-
tial to a strided access pattern results in a performance boost.

1We are currently investigating this and will hopefully be able to present
reliable results in time for the camera-ready version.

9.67 GiB/s 5.73 GiB/s 7.12 GiB/s
18.79 GiB/s 10.02 GiB/s 10.12 GiB/s
23.97 GiB/s 9.37 GiB/s 9.18 GiB/s
27.84 GiB/s 9.52 GiB/s 9.11 GiB/s

However, their comprehensive evaluation is based only on
SIMDified implementations using AVX2 intrinsics without a
detailed analysis of the stride size. For the SIMDified imple-
mentation of a strided access, they use the GATHER instruction
and the efficient applicability of this instruction for such a
strided access has already been also demonstrated in [7, 19].
In these papers, however, the authors clearly demonstrate
that a strided access pattern provides a suitable alternative
to SIMD optimization for enhancing the throughput of scalar
code that employs a sequential access pattern. This aspect
should be examined in more detail in future work.

6 Conclusion and Future Work

In this paper, we presented a comprehensive experimental
comparison of sequential and strided access patterns for data
stored in contiguous memory on two different Intel processor
generations. As we have shown, a strided access pattern with
a well-chosen stride size clearly outperforms the sequential
access pattern. Even a SIMD-accelerated sequential access is
considerably slower than the most powerful scalar strided
access, as the advanced features of the memory subsystem
on the newer Intel processor generation are better utilized. In
particular, higher access latencies can be effectively hidden
with a strided pattern, leading to an increased throughput.
Our ongoing research activities are manifold. On the one
hand, we want to broaden the evaluation scope to include
AMD and ARM processors as well. In addition, we intend
to conduct more detailed analyses involving novel memory
technologies, as some interesting observations have to be
examined in more detail. Initial results on an Apple M4 chip
(ARM) indicated that similar effects can be seen (sequential
- 30.5 GiB/s; simd-sequential (NEON, 128-bit) - 32.4 GiB/s;
strided-unrolled - 59.4 GiB/s). With this broader focus, we
want to better understand the strided access pattern and its
influence on efficient data processing. On the other hand,
we want to simplify the usage of the strided access pattern.
Currently, the operations must be explicitly rewritten to
adopt this access pattern as shown in Listing 1. To overcome
this, it might make sense to adapt the memory allocation
so that data is read sequentially at the virtual level, but the
data is organized according to the strided access pattern
at the physical level. In this case, the optimization would
be completely transparent for applications. Therefore, the
overarching goal of our ongoing research is to establish the
strided access pattern as a modern way — and alternative
way to SIMD - to optimize the single-thread performance.
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