Breaking the Cycle - A Short Overview of Memory-Access
Sampling Differences on Modern x86 CPUs

Roland Kiithn Jan Miihlig Jens Teubner
roland.kuehn@cs.tu-dortmund.de jan.muehlig@tu-dortmund.de jens.teubner@cs.tu-dortmund.de
TU Dortmund University TU Dortmund University TU Dortmund University

Abstract load [0x42] _,‘0 L8 }—»‘o LD }—»P LFB }—»o L2
As hardware complexity increases, profiling becomes essential for | L3 (ocal |
understanding system behavior. This paper compares different x86 Instruction/uOp HOp L3 (remote)

. Retirement ~g—— Completion oo
sampling implementations for memory access profiling, revealing Main Memory

their complementary capabilities and limitations. Plus, we demon-
strate that current abstractions like the perf subsystem inadequately
expose platform-specific features.

1 Introduction

To fully utilize modern hardware, performance-sensitive applica-
tions must be designed with hardware-conscious principles (e.g., [5,
7,12, 14, 15, 18, 20]). However, sophisticated mechanisms such as
out-of-order execution and memory prefetching have transformed
hardware into a black box—turning hardware-aware optimizations
into an uphill battle.

The silver lining lies in Performance Monitoring Units (PMUs)—
specialized components embedded within modern CPUs—which
allow engineers to examine software execution under a magnifying
glass (e.g., [6, 17]). Sampling-based profiling techniques, in par-
ticular, offer invaluable insights by revealing critical details such
as memory access patterns throughout execution. But, PMU imple-
mentations vary substantially across hardware vendors and CPU
generations: Diverse operating modes and consequently different
features complicate the comparison of software executions across
heterogeneous hardware platforms [19]. This challenge, however,
represents two sides of the same coin: These architectural differ-
ences can be leveraged advantageously when properly understood.

This paper presents a comparative analysis of two leading PMU-
based sampling techniques from the memory-access sampling per-
spective: Intel’s Processor Event-Based Sampling (PEBS) [4] and
AMD’s Instruction-Based Sampling (IBS) [9, 10]. We equip engi-
neers with critical knowledge about which platform unveils spe-
cific execution details, enabling them to select the right tool for
each analytical question. Furthermore, we demonstrate how com-
monly used abstractions—particularly the perf subsystem and the
command-line interface perf—fall short of exposing the full spec-
trum of capabilities across different hardware platforms, leaving
valuable performance insights on the table.

2 Memory Address Sampling on x86 plattforms

Nearly all modern x86 architectures are equipped with memory-
access sampling capabilities that can periodically generate a snap-
shot of the actual accessed logical and physical memory addresses
[17]. However, the collection of samples by the two prominent
vendors—AMD and Intel—differs significantly as already shown
in [19]. Intel’s PEBS facility explicitly allows to sample load and
store instructions (e.g., every x-th load instruction will create a
new sample) [11]. AMD employs a different strategy with its IBS,
where every x-th micro-operation (uOp), regardless of the type

Figure 1: Sequence of a memory access and the hardware com-
ponents involved !. The numbers indicate points at which
information can be obtained for the memory samples.

(arithmetic, load/store, ...), will be tagged and traced throughout
the entire processing pipeline [1]. In addition to the accessed ad-
dresses, both hardware makers provide additional information in
their respective samples that allow deductions about the utiliza-
tion of critical system resources. To highlight which information
can be retrieved in IBS and PEBS, we will follow a memory request
through the various execution stages and reveal, at each stage, what
information both vendors provide in their samples (Figure 1).

TLB Access (@). If an instruction/uOp that accesses memory is
executed, the accessed logical address has to be translated into a
physical address by consulting the Translation Lookaside Buffers
(TLBs), which then returns the page address on a TLB hit, or issues
page walk to retrieve the physical page address from the page table
(on a miss). While PEBS merely reports the TLB hit/miss status, IBS
reports which level was hit and quantifies TLB refill latency [2], i.e.,
when the L1 TLB was refilled from the L2 TLB or a page walk was
issued due to a miss in both TLB levels.

L1D Cache Access (@). After the address translation, the caches
will be consulted to find the requested data element!. If the data
element can be found in the L1 data cache (L1d), both sampling
implementations report the L1d as the data source. The latency
for the cache access, however, will only be reported by PEBS. In
contrast, IBS reports the latency when the request missed the L1d.

Line Fill Buffer and Memory Access (@ and @). If the data ele-
ment cannot be found in the L1d, the address of the cache line that
contains the data element will be written to the Line Fill Buffer (LFB)
(or Miss Address Buffer (MAB) on AMD systems?) and will then be
serviced by a higher cache level or the memory subsystem. Once
the memory request has been processed, both vendors report in-
formation about the latency and the data source from which the
data element was retrieved (e.g., the L3 cache or the main mem-
ory). However, some key distinctions exist between the sampling
implementations from both vendors. If the cache line is already
registered in the LFB, PEBS reports the LFB as the data source,
while IBS reports the real source from which the data was finally
retrieved. In addition, IBS-samples also contain more information

'In virtually-indexed-physically-tagged (VIPT) caches, the address translation and
cache access can be parallelized to a certain extent.

2For the sake of simplicity, we use the term LFB in this paper, although we refer to the
MAB on AMD systems.

DaMoN ’25, June 23, 2025, Berlin, Germany

Intel PEBS

Roland Kiihn, Jan Miihlig, and Jens Teubner

AMD IBS

data access instr. retirement

L1 TLB refill [cache miss [[] 40p tag-to-completion [_] 110p completion-to-retirement

L]

L]

200

avg. latency
(CPU cycles)
=

(3

P Ty

avg. latency
(CPU cycles

AN N

header keys children

0

header keys payloads

Figure 2: The average access latency during B*-tree lookups at the root node (left) and the leaf nodes (right). Since IBS only
reports cache-miss latency, no latency is reported for the root node. The ;Op tag-to-completion latency is calculated by
subtracting Op completion-to-retire latency from the ;Op tag-to-retire latency.

about the memory request itself, like the page size, the number of
requested bytes, a flag if an LFB slot was allocated, and the number
of actual allocated LFB slots. This information can be crucial, e.g.,
to identify bottlenecks caused by requests flooding the LFB, since
instructions/puOps stall until an LFB slot becomes available [12].

PEBS distinguishes between loads and stores, counting load
prefetches as accesses to the L1d. IBS reports software prefetches
as such, although it does not report the cache miss latency.

Instruction/pOp retirement (@ and @). After the memory sub-
system has retrieved the requested data element, the instruction/pOp
will retire. In contrast to PEBS, which then only reports the total
latency for the instruction execution, IBS additionally reports the
cycles spent between the completion of the yOp and the point
where the pOp is considered as successfully retired.

Overall, IBS reports four latencies: For refilling the L1 TLB, for
fulfilling requests that miss the L1d, from tagging the pOp until
retirement, and separately from completion to retirement. PEBS
provides two latencies: data access and instruction retirement. Ad-
ditionally, further information such as the occupancy of the LFB is
also provided by samples from IBS.

Since sampling can introduce significant overhead to the operat-
ing system, when many samples are created, Intel’s PEBS offers the
possibility to filter the samples by latency and keep only samples
with latency higher than a configurable threshold. AMD introduced
this feature also with the latest Zen 5 micro-architecture [3].

Perf subsystem. The perf subsystem—baked into the Linux kernel—
allows to interact with PMUs and builds the foundation for the
perf command-line-interface. The accessible information from the
actual version of the perf subsystem seems to be leaned on the
details provided by PEBS. On Intel systems, it provides access to
nearly all sampled information, whereas on AMD systems many
details, such as the latency for TLB refills or the number of occupied
LFB entries will not be shown. One way to get this information is
to read the raw samples that are provided by the perf subsystem.
However the samples need to be manually processed to yield the
required information, for example, by using libraries like perf-cpp
[16].

3 Practical Latency Insights

To briefly illustrate the architectural divergence between these
sampling mechanisms, we use a B*-tree [13]* lookup operation as
our case study on a AMD Zen 4 system and a machine with Intel’s
Sapphire Rapids architecture.

3We borrowed the implementation from https://github.com/wangziqi2016/index-
microbench.

We utilize memory-access sampling through the perf subsys-
tem, periodically capturing memory addresses and access metrics—
including latency details—throughout lookup operations using the
YCS Benchmark [8] (100 M lookups against a tree populated with
100 M records). On the AMD system we had to instruct the perf
subsystem to record raw IBS values to access these detailed metrics—
particularly the TLB refill latency—as they remain inaccessible
through standard interfaces.

Figure 2 visualizes the access latency distributions recorded via
AMD’s IBS and Intel’s PEBS for two critical tree levels: the root
node (left) and leaf nodes (right). The plots illustrate the average
latency for individual lookups, segmented according to the latency
measurement capabilities of each sampling implementation. Unlike
instruction sampling, which allows the correlation of performance
data with lines of code and functions, memory-access sampling
enables the direct mapping of samples to specific tree nodes and
their structural components (e.g., headers, keys, and payloads).
This distinction is crucial, as all nodes share identical code paths,
making instruction-based sampling inadequate for analyzing access
characteristics across distinct nodes or tree levels.

As one would expect, the root node exhibits minimal access
latency due its tendency to reside in the L1d. However, IBS reports
no latency measurements in this scenario, as it exclusively captures
cache miss events. In contrast, PEBS provides granular insights,
reporting 5 CPU cycles for cache access and an additional 2 cycles
for instruction retirement.

Leaf node accesses present a different profile, frequently trigger-
ing cache and TLB misses. For the header segment—typically the
first component accessed—IBS delivers detailed timing breakdowns:
approximately 200 cycles for TLB refill operations plus 230 cycles
for cache miss resolution and ~ 90 cycles for retiring the pOp.
PEBS, however, presents a more consolidated view, reporting 210
cycles for cache operations and roughly 160 cycles for instruction
retirement, with the latter inherently incorporating TLB latency.

4 Conclusion and Outlook

This paper provided a condensed overview of the differences in
memory-access sampling on recent x86 architectures. We showed
that hardware makers provide valuable additional information in
their memory samples. However, not all information is clearly
communicated through the perf subsystem. This preliminary work
serves as a foundation for further research, as we intend to investi-
gate other hardware architectures in greater detail, including the
Statistical Profiling Extension (SPE) in recent ARMv8 systems.

https://github.com/wangziqi2016/index-microbench
https://github.com/wangziqi2016/index-microbench

Breaking the Cycle - A Short Overview of Memory-Access Sampling Differences on Modern x86 CPUs

References

[1

(5

l6

[10

]

=

=

[

Advanced Micro Devices, Inc. 2024. AMD64 Technology. AMD64 Architecture
Programmer’s Manual - Volume 2: System Programming. Santa Clara, CA, USA.
Advanced Micro Devices, Inc. 2024. Processor Programming Reference (PPR) for
AMD Family 19h Model 11h, Revision B2 Processors. Santa Clara, CA, USA.
Advanced Micro Devices, Inc. 2024. Processor Programming Reference (PPR) for
AMD Family 1Ah Model 44h, Revision B0 Processors. Santa Clara, CA, USA.
Soramichi Akiyama and Takahiro Hirofuchi. 2017. Quantitative Evaluation of
Intel PEBS Overhead for Online System-Noise Analysis. In Proceedings of the 7th
International Workshop on Runtime and Operating Systems for Supercomputers,
ROSS@HPDC. ACM, 3:1-3:8. doi:10.1145/3095770.3095773

Cagri Balkesen, Jens Teubner, Gustavo Alonso, and M. Tamer Ozsu. 2013. Main-
memory hash joins on multi-core CPUs: Tuning to the underlying hardware. In
29th IEEE International Conference on Data Engineering. IEEE Computer Society,
362-373. doi:10.1109/ICDE.2013.6544839

Alexander Beischl, Timo Kersten, Maximilian Bandle, Jana Giceva, and Thomas
Neumann. 2021. Profiling dataflow systems on multiple abstraction levels. In
EuroSys "21: Sixteenth European Conference on Computer Systems, Online Event,
United Kingdom, April 26-28, 2021, Antonio Barbalace, Pramod Bhatotia, Lorenzo
Alvisi, and Cristian Cadar (Eds.). ACM, 474-489. doi:10.1145/3447786.3456254
Peter A. Boncz, Stefan Manegold, and Martin L. Kersten. 1999. Database Archi-
tecture Optimized for the New Bottleneck: Memory Access. In Proceedings of
25th International Conference on Very Large Data Bases. Morgan Kaufmann, 54-65.
http://www.vldb.org/conf/1999/P5.pdf

Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell
Sears. 2010. Benchmarking cloud serving systems with YCSB. In Proceedings
of the 1st ACM Symposium on Cloud Computing. ACM, 143-154. doi:10.1145/
1807128.1807152

Paul J Drongowski. 2007. Instruction-based sampling: A new performance analy-
sis technique for AMD family 10h processors. Advanced Micro Devices 1, 3 (2007),
11.

Paul J. Drongowski, Lei Yu, Frank Swehosky, Suravee Suthikulpanit, and Robert
Richter. 2010. Incorporating Instruction-Based Sampling into AMD CodeAnalyst.
In IEEE International Symposium on Performance Analysis of Systems and Software,
ISPASS. IEEE Computer Society, 119-120. doi:10.1109/ISPASS.2010.5452049

[11

[12

[13

[14

[15

[16

(17

[19

[20

]

]

]

DaMoN ’25, June 23, 2025, Berlin, Germany

Intel®. 2024. Intel® 64 and IA-32 Architectures Software Developer’s Manual.
https://cdrdv2.intel.com/v1/dl/getContent/671200. Accessed: March 20, 2025.
Roland Kiithn, Jan Mihlig, and Jens Teubner. 2024. How to Be Fast and Not
Furious: Looking Under the Hood of CPU Cache Prefetching. In Proceedings of
the 20th International Workshop on Data Management on New Hardware, DaMoN.
ACM, 9:1-9:10. doi:10.1145/3662010.3663451

Viktor Leis, Michael Haubenschild, and Thomas Neumann. 2019. Optimistic Lock
Coupling: A Scalable and Efficient General-Purpose Synchronization Method.
IEEE Data Eng. Bull. 42,1 (2019), 73-84. http://sites.computer.org/debull/A19mar/
p73.pdf

Justin J. Levandoski, David B. Lomet, and Sudipta Sengupta. 2013. The Bw-Tree:
A B-tree for new hardware platforms. In 29th IEEE International Conference on
Data Engineering, ICDE. IEEE Computer Society, 302-313. doi:10.1109/ICDE.2013.
6544834

Stefan Manegold, Peter A. Boncz, and Martin L. Kersten. 2002. Optimizing Main-
Memory Join on Modern Hardware. IEEE Trans. Knowl. Data Eng. 14, 4 (2002),
709-730. doi:10.1109/TKDE.2002.1019210

Jan Miihlig. 2023. perf-cpp: Access Performance Counters from C++ Applications.
https://github.com/jmuehlig/perf-cpp. Accessed: March 20, 2025.

Stefan Noll, Jens Teubner, Norman May, and Alexander Bohm. 2020. Analyzing
memory accesses with modern processors. In 16th International Workshop on
Data Management on New Hardware, DaMoN 2020, Portland, Oregon, USA, June
15, 2020, Danica Porobic and Thomas Neumann (Eds.). ACM, 1:1-1:9. doi:10.1145/
3399666.3399896

Michael L. Samuel, Anders Uhl Pedersen, and Philippe Bonnet. 2005. Making
CSB+-Tree Processor Conscious. In Workshop on Data Management on New
Hardware, DaMoN. http://www-2.cs.cmu.edu/%7Edamon2005/damonpdf/2%
20making%20csb+%20trees%20processor%20conscious.pdf

Muhammad Aditya Sasongko, Milind Chabbi, Paul H. J. Kelly, and Didem Unat.
2023. Precise Event Sampling on AMD Versus Intel: Quantitative and Qualitative
Comparison. [EEE Trans. Parallel Distributed Syst. 34, 5 (2023), 1594-1608. doi:10.
1109/TPDS.2023.3257105

Ambuj Shatdal, Chander Kant, and Jeffrey F. Naughton. 1994. Cache Conscious
Algorithms for Relational Query Processing. In Proceedings of 20th International
Conference on Very Large Data Bases. Morgan Kaufmann, 510-521. http://www.
vldb.org/conf/1994/P510.PDF

https://doi.org/10.1145/3095770.3095773
https://doi.org/10.1109/ICDE.2013.6544839
https://doi.org/10.1145/3447786.3456254
http://www.vldb.org/conf/1999/P5.pdf
https://doi.org/10.1145/1807128.1807152
https://doi.org/10.1145/1807128.1807152
https://doi.org/10.1109/ISPASS.2010.5452049
https://cdrdv2.intel.com/v1/dl/getContent/671200
https://doi.org/10.1145/3662010.3663451
http://sites.computer.org/debull/A19mar/p73.pdf
http://sites.computer.org/debull/A19mar/p73.pdf
https://doi.org/10.1109/ICDE.2013.6544834
https://doi.org/10.1109/ICDE.2013.6544834
https://doi.org/10.1109/TKDE.2002.1019210
https://github.com/jmuehlig/perf-cpp
https://doi.org/10.1145/3399666.3399896
https://doi.org/10.1145/3399666.3399896
http://www-2.cs.cmu.edu/%7Edamon2005/damonpdf/2%20making%20csb+%20trees%20processor%20conscious.pdf
http://www-2.cs.cmu.edu/%7Edamon2005/damonpdf/2%20making%20csb+%20trees%20processor%20conscious.pdf
https://doi.org/10.1109/TPDS.2023.3257105
https://doi.org/10.1109/TPDS.2023.3257105
http://www.vldb.org/conf/1994/P510.PDF
http://www.vldb.org/conf/1994/P510.PDF

	Abstract
	1 Introduction
	2 Memory Address Sampling on x86 plattforms
	3 Practical Latency Insights
	4 Conclusion and Outlook
	References

