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Abstract

As hardware complexity increases, profiling becomes essential for
understanding system behavior. This paper compares different x86
sampling implementations for memory access profiling, revealing
their complementary capabilities and limitations. Plus, we demon-
strate that current abstractions like the perf subsystem inadequately
expose platform-specific features.
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1 Introduction

To fully utilize modern hardware, performance-sensitive applica-
tions must be designed with hardware-conscious principles (e.g., [5,
7, 13, 16, 20, 25, 27]). However, sophisticated mechanisms such as
out-of-order execution and memory prefetching have transformed
hardware into a black box—turning hardware-aware optimizations
into an uphill battle.

The silver lining lies in Performance Monitoring Units (PMUs)—
specialized components embedded within modern CPUs—which
allow engineers to examine software execution under a magnifying
glass (e.g., [6, 23]). Sampling-based profiling techniques, in par-
ticular, offer invaluable insights by revealing critical details such
as memory access patterns throughout execution. But, PMU imple-
mentations vary substantially across hardware vendors and CPU
generations: Diverse operating modes and consequently different
features complicate the comparison of software executions across
heterogeneous hardware platforms [26]. This challenge, however,
represents two sides of the same coin: These architectural differ-
ences can be leveraged advantageously when properly understood.

This paper presents a comparative analysis of two leading PMU-
based sampling techniques from the memory-access sampling per-
spective: Intel’s Processor Event-Based Sampling (PEBS) [4] and
AMD’s Instruction-Based Sampling (IBS) [10, 11]. We equip engi-
neers with critical knowledge about which platform unveils spe-
cific execution details, enabling them to select the right tool for
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Figure 1: Sequence of a memory access and the hardware com-
ponents involved !. The numbers indicate points at which
information can be obtained for the memory samples.

each analytical question. Furthermore, we demonstrate how com-
monly used abstractions—particularly the perf subsystem and the
command-line interface perf—fall short of exposing the full spec-
trum of capabilities across different hardware platforms, leaving
valuable performance insights on the table.

2 Memory Address Sampling on x86 plattforms

Nearly all modern x86 architectures are equipped with memory-
access sampling capabilities that can periodically generate a snap-
shot of the actual accessed logical and physical memory addresses
[23]. However, the collection of samples by the two prominent
vendors—AMD and Intel—differs significantly as already shown
n [26]. Intel’s PEBS facility explicitly allows to sample load and
store instructions (e.g., every x-th load instruction will create a
new sample) [12]. AMD employs a different strategy with its IBS,
where every x-th micro-operation (uOp), regardless of the type
(arithmetic, load/store, ...), will be tagged and traced throughout
the entire processing pipeline [1]. In addition to the accessed ad-
dresses, both hardware makers provide additional information in
their respective samples that allow deductions about the utiliza-
tion of critical system resources. To highlight which information
can be retrieved in IBS and PEBS, we will follow a memory request
through the various execution stages and reveal, at each stage, what
information both vendors provide in their samples (Figure 1).

TLB Access (@). If an instruction/pOp that accesses memory is
executed, the accessed logical address has to be translated into a
physical address by consulting the Translation Lookaside Buffers
(TLBs), which then returns the page address on a TLB hit, or issues
page walk to retrieve the physical page address from the page table
(on a miss). While PEBS merely reports the TLB hit/miss status, IBS
reports which level was hit and quantifies TLB refill latency [2], i.e.,
when the L1 TLB was refilled from the L2 TLB or a page walk was
issued due to a miss in both TLB levels.


https://doi.org/10.1145/3736227.3736241
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3736227.3736241

DaMoN ’25, June 22-27, 2025, Berlin, Germany

L1D Cache Access (@). After the address translation, the caches
will be consulted to find the requested data element!. If the data
element can be found in the L1 data cache (L1d), both sampling
implementations report the L1d as the data source. The latency
for the cache access, however, will only be reported by PEBS. In
contrast, IBS reports the latency when the request missed the L1d.

Line Fill Buffer and Memory Access (@ and @). If the data
element cannot be found in the L1d, the address of the cache line
that contains the data element will be written to the Line Fill Buffer
(LFB) (or Miss Address Buffer (MAB) on AMD systems?) and will
then be serviced by a higher cache level or the memory subsystem.
Once the memory request has been processed, both vendors report
information about the latency and the data source from which
the data element was retrieved (e.g., the last-level cache (LLC) or
the main memory). However, some key distinctions exist between
the sampling implementations from both vendors. If the cache
line is already registered in the LFB, PEBS reports the LFB as the
data source, while IBS reports the real source from which the data
was finally retrieved. In addition, IBS-samples also contain more
information about the memory request itself, like the page size,
the number of requested bytes, a flag if an LFB slot was allocated,
and the number of actual allocated LFB slots. This information can
be crucial, e.g., to identify bottlenecks caused by requests flooding
the LFB, since instructions/pOps stall until an LFB slot becomes
available [13].

PEBS distinguishes between loads and stores, counting load
prefetches as accesses to the L1d. IBS reports software prefetches
as such, although it does not report the cache miss latency.

Instruction/pOp retirement (@ and @). After the memory sub-
system has retrieved the requested data element, the instruction/pOp
will retire. In contrast to PEBS, which then only reports the total
latency for the instruction execution, IBS additionally reports the
cycles spent between the completion of the yOp and the point
where the pOp is considered as successfully retired.

Overall, IBS reports four latencies: For refilling the L1 TLB, for
fulfilling requests that miss the L1d, from tagging the pOp until
retirement, and separately from completion to retirement. PEBS
provides two latencies: data access and instruction retirement. Ad-
ditionally, further information such as the occupancy of the LFB is
also provided by samples from IBS.

Since sampling can introduce significant overhead to the operat-
ing system, when many samples are created, Intel’s PEBS offers the
possibility to filter the samples by latency and keep only samples
with latency higher than a configurable threshold. AMD introduced
this feature also with the latest Zen 5 micro-architecture [3].

Perf subsystem. The perf subsystem—baked into the Linux kernel—
allows to interact with PMUs and builds the foundation for the
perf command-line-interface. The accessible information from the
actual version of the perf subsystem seems to be leaned on the
details provided by PEBS. On Intel systems, it provides access to
nearly all sampled information, whereas on AMD systems many
details, such as the latency for TLB refills or the number of occupied

'n virtually-indexed-physically-tagged (VIPT) caches, the address translation and
cache access can be parallelized to a certain extent.

For the sake of simplicity, we use the term LFB in this paper, although we refer to the
MAB on AMD systems.
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LFB entries will not be shown. One way to get this information is
to read the raw samples that are provided by the perf subsystem.
However, these raw samples need to be manually processed to
yield the required information, for example, by using libraries like
perf-cpp [21].

A brief analysis of the IBS driver® for AMD CPUs in a recent
Linux kernel version indicates that its current implementation pri-
marily focuses on populating the existing perf data structures. To
accommodate e.g., additional latencies from IBS memory samples,
modifications to the driver and the PERF_SAMPLE_WEIGHT_STRUCT
may be considered. This struct is specifically designed to capture
different latencies [17] and may be easily adapted to support the
additional latencies offered by AMD CPUs.

Although implementing these modifications may require only
minor changes to existing data structures, the introduction of new
structures into the perf subsystem—such as those needed to re-
port outstanding memory requests via allocated MAB slots—could
prove more complex, as it would, e.g., necessitate more invasive
adaptations in profiling tools like perf.

3 Practical Insights

To briefly illustrate the architectural divergence between these
sampling mechanisms, we use a B*-tree [15, 28]* lookup operation
as our case study on a AMD Zen 4 system and a machine with
Intel’s Sapphire Rapids architecture.

Recording Data Access Information. We leverage memory-access
sampling (e.g., [18, 19, 22, 23]) through the perf subsystem via the
perf-cpp library [21]. Our implementation periodically captures
memory addresses and associated metrics—including comprehen-
sive latency characteristics—at fixed sampling intervals: Every
8000th load instruction on Intel architectures (using the mem-load
event) and every 8 000th zOp on AMD platforms (utilizing the the
IBS Op PMU). Notably, extracting granular metrics on the AMD
system necessitated explicit configuration of the PMU to record
raw values, as critical data points—particularly TLB refill latency—
remain obscured behind conventional interfaces.

For our experimental evaluation, we employ lookup operations
using the YCS Benchmark [9], executing 100 M lookups against a
tree populated with 100 M records. Figure 2 visualizes the access
latency distributions recorded via AMD’s IBS and Intel’s PEBS for
two critical tree levels: the root node (left) and leaf nodes (right).
The plots illustrate the average latency for individual lookups, seg-
mented according to the latency measurement capabilities of each
sampling implementation.

Unlike instruction sampling, which allows the correlation of
performance data with lines of code and functions, memory-access
sampling enables the direct mapping of samples including memory
addresses to specific tree nodes and their structural components
(e.g., headers, keys, and payloads). This distinction is crucial, as all
nodes share identical code paths, making instruction-based sam-
pling inadequate for analyzing access characteristics across distinct
nodes or tree levels.

Shttps://github.com/torvalds/linux/blob/v6.14/arch/x86/events/amd/ibs.c
4We borrowed the implementation from https://github.com/wangziqi2016/index-
microbench.
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Figure 2: The average access latency during B*-tree lookups at the root node (left) and the leaf nodes (right). Since IBS only
reports cache-miss latency, no latency is reported for the root node. The ;Op tag-to-completion latency is calculated by
subtracting §Op completion-to-retire latency from the ;Op tag-to-retire latency.

Observation: Memory-Sampling Events. Intel’s PEBS collects
samples by triggering on mem-load (and also mem-store) events [23],
whereas AMD’s IBS includes a dedicated PMU that tracks retiring
micro operations and records their complete memory-access context.
Consequently, a nominally identical sampling interval produces
architecture-dependent sample counts that scale with the applica-
tion’s memory intensity. In our benchmark, a sampling interval of
8000—i.e., every 8 000th load on Intel and 8 000th ;:Op on AMD—,
yields 8 348 memory samples on the Intel machine, yet the same
period results in more than 600 000 samples on the AMD system.
Note that we only count samples associated with the B*-tree.

To achieve a similar amount of memory samples on the AMD
system, it might be necessary to increase the sampling interval by an
order of magnitude. An additional caveat is that the IBS zOp-PMU
still records samples not inevitably linked to memory, even when
the engineer is only interested in memory access information. Those
extra samples are discarded during post-processing but nonetheless
add overhead.

Observation: L1d Miss vs. Access Latency. As one would expect,
the root node exhibits minimal access latency due to its tendency
to reside in the L1d (see left side of Figure 2). However, IBS reports
no latency measurements in this scenario, as it exclusively captures
cache miss events. In contrast, PEBS provides granular insights,
reporting 5 CPU cycles for L1d access and an additional 2 cycles
for instruction retirement. This subtle difference is particularly no-
ticeable when calculating an average latency over a set of accesses,
including both L1d hits and various cache misses. Consequently,
for a fair comparison between the two hardware substrates, L1d
hits should be excluded from the calculation.

Observation: TLB Latency. Leaf node accesses present a different
profile, frequently triggering cache and TLB misses. For the header
segment—typically the first segment accessed—IBS delivers detailed
timing breakdowns: approximately 200 cycles for TLB refill opera-
tions plus 230 cycles for cache miss resolution and ~ 90 cycles for
retiring the pOp. PEBS, however, presents a more consolidated view,
reporting 210 cycles for cache operations and roughly 160 cycles
for instruction retirement, with the latter inherently incorporating
TLB latency.

Observation: Identifying Software Prefetches. Another key di-
vergence between the two sampling facilities appears when demand
loads and software prefetches are intermixed. AMD’s IBS tags every
sample originating from an explicit software prefetch* instruc-
tion [8]—triggering an asynchronous cache fill—with an appropriate

flag. Intel’s PEBS offers no such feature: all memory reads—demand
or prefetch—enter the trace under the generic load category. Plus,
PEBS reports the data source and cache access latency of software
prefetches as if the access occurred in the L1 cache [12]—rendering
this information negligible for profiling prefetches.

However, although the perf subsystem nominally defines a cat-
egory for prefetches (along with loads and stores), the PEBS and
IBS drivers never raise that bit. Only recording and decoding the
raw IBS words allows users to discover data accesses invoked by
prefetch instructions as such.

Consequently, AMD systems allow measuring its standalone
latency—insights that matter as a prefetch itself may stall when, for
instance, the memory address is not found in the TLB or all LFB
slots are already occupied [13]. Simultaneously, IBS preserves the
data source, revealing exactly where the speculative line originated.
Together, the standalone latency and spatial origin form a precise
compass for choosing an effective prefetch distance—a task that
has often proved cumbersome (e.g., [14, 24]).

Observation: Detailed MAB Information. Beyond the distinc-
tion between loads and prefetches, IBS enriches each memory
record with two further cues: a bit that signals whether the re-
quest hit the MAB and a counter that reveals how many MAB slots
were occupied at sample time. PEBS, by contrast, simply reports
“LFB” as the data source whenever the line is still in flight and
suppresses the line’s ultimate supplier (L2, LLC, or DRAM).

The practical fallout is twofold. First, by correlating the prefetch
samples with the true lower-level source and the measured latency,
IBS lets users observe whether the prefetch arrived in time to hide
the miss or whether the demand load overtook it. PEBS likewise tells
us that the line was still in the LFB—hence accessed “too early” from
the load’s perspective—making it challenging to tune the distance
between the prefetch and the actual access quantitatively. Second,
the additional MAB-occupancy counter exposes situations in which
an otherwise helpful prefetch monopolizes the scarce buffer entries
and causes stalls for subsequent misses—buffer pressure that is
hardly visible under PEBS and must be inferred from secondary
symptoms [13].

4 Conclusion and Outlook

This paper provided a condensed overview of the differences in
memory-access sampling on recent x86 architectures. We showed
that hardware makers provide rich metadata in their memory sam-
pling mechanisms, yet the nature and visibility of this information
differs noticeably. For example, AMD and Intel offer distinct sorts
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of access latency; AMD exposes prefetch flags and MAB-occupancy
metrics. But, not all information is clearly communicated through
the perf subsystem. These discrepancies complicate cross-platform
performance comparison but simultaneously open specialized opti-
mization avenues on both platforms.

This preliminary work serves as a foundation for further re-
search, as we intend to investigate other hardware architectures in
greater detail, including the Statistical Profiling Extension (SPE) in
recent ARMv8 systems.
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