Breaking the Cycle - A Short Overview of Memory-Access
Sampling Differences on Modern x86 CPUs

Roland Kiithn Jan Miihlig* Jens Teubner
roland.kuehn@cs.tu-dortmund.de jan.muehlig@tu-dortmund.de jens.teubner@cs.tu-dortmund.de
TU Dortmund University TU Dortmund University TU Dortmund University

Abstract

As hardware complexity increases, profiling becomes essential for
understanding system behavior. This paper compares different x86
sampling implementations for memory access profiling, revealing
their complementary capabilities and limitations. Plus, we demon-
strate that current abstractions like the perf subsystem inadequately
expose platform-specific features.

ACM Reference Format:

Roland Kiithn, Jan Mihlig, and Jens Teubner. 2025. Breaking the Cycle - A
Short Overview of Memory-Access Sampling Differences on Modern x86
CPUs. In 21st International Workshop on Data Management on New Hardware
(DaMoN °25), June 22-27, 2025, Berlin, Germany. ACM, New York, NY, USA,
4 pages. https://doi.org/10.1145/3736227.3736241

1 Introduction

To fully utilize modern hardware, performance-sensitive applica-
tions must be designed with hardware-conscious principles (e.g., [5,
7, 13, 16, 20, 25, 27]). However, sophisticated mechanisms such as
out-of-order execution and memory prefetching have transformed
hardware into a black box—turning hardware-aware optimizations
into an uphill battle.

The silver lining lies in Performance Monitoring Units (PMUs)—
specialized components embedded within modern CPUs—which
allow engineers to examine software execution under a magnifying
glass (e.g., [6, 23]). Sampling-based profiling techniques, in par-
ticular, offer invaluable insights by revealing critical details such
as memory access patterns throughout execution. But, PMU imple-
mentations vary substantially across hardware vendors and CPU
generations: Diverse operating modes and consequently different
features complicate the comparison of software executions across
heterogeneous hardware platforms [26]. This challenge, however,
represents two sides of the same coin: These architectural differ-
ences can be leveraged advantageously when properly understood.

This paper presents a comparative analysis of two leading PMU-
based sampling techniques from the memory-access sampling per-
spective: Intel’s Processor Event-Based Sampling (PEBS) [4] and
AMD’s Instruction-Based Sampling (IBS) [10, 11]. We equip engi-
neers with critical knowledge about which platform unveils spe-
cific execution details, enabling them to select the right tool for

“The author is now at Huawei Research, Edinburgh, UK.

This work is licensed under a Creative Commons Attribution 4.0 International License.
DaMoN °25, Berlin, Germany

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1940-0/2025/06

https://doi.org/10.1145/3736227.3736241

Lamarr Institute for Machine
Learning and Artificial Intelligence

=
load [0x42] —»P TLB }—»P L1D He LFB }—»Q L2
L3 (local)
L3 (remote)
Instruction/uOp 1Op ”7;\/‘”.””
Retirement ¢—— Completion ¢ ain
Memory

Figure 1: Sequence of a memory access and the hardware com-
ponents involved !. The numbers indicate points at which
information can be obtained for the memory samples.

each analytical question. Furthermore, we demonstrate how com-
monly used abstractions—particularly the perf subsystem and the
command-line interface perf—fall short of exposing the full spec-
trum of capabilities across different hardware platforms, leaving
valuable performance insights on the table.

2 Memory Address Sampling on x86 plattforms

Nearly all modern x86 architectures are equipped with memory-
access sampling capabilities that can periodically generate a snap-
shot of the actual accessed logical and physical memory addresses
[23]. However, the collection of samples by the two prominent
vendors—AMD and Intel—differs significantly as already shown
n [26]. Intel’s PEBS facility explicitly allows to sample load and
store instructions (e.g., every x-th load instruction will create a
new sample) [12]. AMD employs a different strategy with its IBS,
where every x-th micro-operation (uOp), regardless of the type
(arithmetic, load/store, ...), will be tagged and traced throughout
the entire processing pipeline [1]. In addition to the accessed ad-
dresses, both hardware makers provide additional information in
their respective samples that allow deductions about the utiliza-
tion of critical system resources. To highlight which information
can be retrieved in IBS and PEBS, we will follow a memory request
through the various execution stages and reveal, at each stage, what
information both vendors provide in their samples (Figure 1).

TLB Access (@). If an instruction/pOp that accesses memory is
executed, the accessed logical address has to be translated into a
physical address by consulting the Translation Lookaside Buffers
(TLBs), which then returns the page address on a TLB hit, or issues
page walk to retrieve the physical page address from the page table
(on a miss). While PEBS merely reports the TLB hit/miss status, IBS
reports which level was hit and quantifies TLB refill latency [2], i.e.,
when the L1 TLB was refilled from the L2 TLB or a page walk was
issued due to a miss in both TLB levels.

https://doi.org/10.1145/3736227.3736241
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3736227.3736241

DaMoN ’25, June 22-27, 2025, Berlin, Germany

L1D Cache Access (@). After the address translation, the caches
will be consulted to find the requested data element!. If the data
element can be found in the L1 data cache (L1d), both sampling
implementations report the L1d as the data source. The latency
for the cache access, however, will only be reported by PEBS. In
contrast, IBS reports the latency when the request missed the L1d.

Line Fill Buffer and Memory Access (@ and @). If the data
element cannot be found in the L1d, the address of the cache line
that contains the data element will be written to the Line Fill Buffer
(LFB) (or Miss Address Buffer (MAB) on AMD systems?) and will
then be serviced by a higher cache level or the memory subsystem.
Once the memory request has been processed, both vendors report
information about the latency and the data source from which
the data element was retrieved (e.g., the last-level cache (LLC) or
the main memory). However, some key distinctions exist between
the sampling implementations from both vendors. If the cache
line is already registered in the LFB, PEBS reports the LFB as the
data source, while IBS reports the real source from which the data
was finally retrieved. In addition, IBS-samples also contain more
information about the memory request itself, like the page size,
the number of requested bytes, a flag if an LFB slot was allocated,
and the number of actual allocated LFB slots. This information can
be crucial, e.g., to identify bottlenecks caused by requests flooding
the LFB, since instructions/pOps stall until an LFB slot becomes
available [13].

PEBS distinguishes between loads and stores, counting load
prefetches as accesses to the L1d. IBS reports software prefetches
as such, although it does not report the cache miss latency.

Instruction/pOp retirement (@ and @). After the memory sub-
system has retrieved the requested data element, the instruction/pOp
will retire. In contrast to PEBS, which then only reports the total
latency for the instruction execution, IBS additionally reports the
cycles spent between the completion of the yOp and the point
where the pOp is considered as successfully retired.

Overall, IBS reports four latencies: For refilling the L1 TLB, for
fulfilling requests that miss the L1d, from tagging the pOp until
retirement, and separately from completion to retirement. PEBS
provides two latencies: data access and instruction retirement. Ad-
ditionally, further information such as the occupancy of the LFB is
also provided by samples from IBS.

Since sampling can introduce significant overhead to the operat-
ing system, when many samples are created, Intel’s PEBS offers the
possibility to filter the samples by latency and keep only samples
with latency higher than a configurable threshold. AMD introduced
this feature also with the latest Zen 5 micro-architecture [3].

Perf subsystem. The perf subsystem—baked into the Linux kernel—
allows to interact with PMUs and builds the foundation for the
perf command-line-interface. The accessible information from the
actual version of the perf subsystem seems to be leaned on the
details provided by PEBS. On Intel systems, it provides access to
nearly all sampled information, whereas on AMD systems many
details, such as the latency for TLB refills or the number of occupied

'n virtually-indexed-physically-tagged (VIPT) caches, the address translation and
cache access can be parallelized to a certain extent.

For the sake of simplicity, we use the term LFB in this paper, although we refer to the
MAB on AMD systems.

Roland Kiihn, Jan Miihlig, and Jens Teubner

LFB entries will not be shown. One way to get this information is
to read the raw samples that are provided by the perf subsystem.
However, these raw samples need to be manually processed to
yield the required information, for example, by using libraries like
perf-cpp [21].

A brief analysis of the IBS driver® for AMD CPUs in a recent
Linux kernel version indicates that its current implementation pri-
marily focuses on populating the existing perf data structures. To
accommodate e.g., additional latencies from IBS memory samples,
modifications to the driver and the PERF_SAMPLE_WEIGHT_STRUCT
may be considered. This struct is specifically designed to capture
different latencies [17] and may be easily adapted to support the
additional latencies offered by AMD CPUs.

Although implementing these modifications may require only
minor changes to existing data structures, the introduction of new
structures into the perf subsystem—such as those needed to re-
port outstanding memory requests via allocated MAB slots—could
prove more complex, as it would, e.g., necessitate more invasive
adaptations in profiling tools like perf.

3 Practical Insights

To briefly illustrate the architectural divergence between these
sampling mechanisms, we use a B*-tree [15, 28]* lookup operation
as our case study on a AMD Zen 4 system and a machine with
Intel’s Sapphire Rapids architecture.

Recording Data Access Information. We leverage memory-access
sampling (e.g., [18, 19, 22, 23]) through the perf subsystem via the
perf-cpp library [21]. Our implementation periodically captures
memory addresses and associated metrics—including comprehen-
sive latency characteristics—at fixed sampling intervals: Every
8000th load instruction on Intel architectures (using the mem-load
event) and every 8 000th zOp on AMD platforms (utilizing the the
IBS Op PMU). Notably, extracting granular metrics on the AMD
system necessitated explicit configuration of the PMU to record
raw values, as critical data points—particularly TLB refill latency—
remain obscured behind conventional interfaces.

For our experimental evaluation, we employ lookup operations
using the YCS Benchmark [9], executing 100 M lookups against a
tree populated with 100 M records. Figure 2 visualizes the access
latency distributions recorded via AMD’s IBS and Intel’s PEBS for
two critical tree levels: the root node (left) and leaf nodes (right).
The plots illustrate the average latency for individual lookups, seg-
mented according to the latency measurement capabilities of each
sampling implementation.

Unlike instruction sampling, which allows the correlation of
performance data with lines of code and functions, memory-access
sampling enables the direct mapping of samples including memory
addresses to specific tree nodes and their structural components
(e.g., headers, keys, and payloads). This distinction is crucial, as all
nodes share identical code paths, making instruction-based sam-
pling inadequate for analyzing access characteristics across distinct
nodes or tree levels.

Shttps://github.com/torvalds/linux/blob/v6.14/arch/x86/events/amd/ibs.c
4We borrowed the implementation from https://github.com/wangziqi2016/index-
microbench.

https://github.com/torvalds/linux/blob/v6.14/arch/x86/events/amd/ibs.c
https://github.com/wangziqi2016/index-microbench
https://github.com/wangziqi2016/index-microbench

Breaking the Cycle - A Short Overview of Memory-Access Sampling Differences on Modern x86 CPUs

Intel PEBS

DaMoN °25, June 22-27, 2025, Berlin, Germany

AMD IBS

| [data access [inste etirement

L1 TLB refill D cache miss |:| JOp tag-to-completion |:| #10p completion-to-retirement

L]

6r o /@\ 2 400

latency

L] ;

avg. latency
(CPU cycles)
I

oo

(=

oL ‘ ‘

avg
(CPU cycles
S

z@H on BB

header keys children

header keys payloads

Figure 2: The average access latency during B*-tree lookups at the root node (left) and the leaf nodes (right). Since IBS only
reports cache-miss latency, no latency is reported for the root node. The ;Op tag-to-completion latency is calculated by
subtracting §Op completion-to-retire latency from the ;Op tag-to-retire latency.

Observation: Memory-Sampling Events. Intel’s PEBS collects
samples by triggering on mem-load (and also mem-store) events [23],
whereas AMD’s IBS includes a dedicated PMU that tracks retiring
micro operations and records their complete memory-access context.
Consequently, a nominally identical sampling interval produces
architecture-dependent sample counts that scale with the applica-
tion’s memory intensity. In our benchmark, a sampling interval of
8000—i.e., every 8 000th load on Intel and 8 000th ;:Op on AMD—,
yields 8 348 memory samples on the Intel machine, yet the same
period results in more than 600 000 samples on the AMD system.
Note that we only count samples associated with the B*-tree.

To achieve a similar amount of memory samples on the AMD
system, it might be necessary to increase the sampling interval by an
order of magnitude. An additional caveat is that the IBS zOp-PMU
still records samples not inevitably linked to memory, even when
the engineer is only interested in memory access information. Those
extra samples are discarded during post-processing but nonetheless
add overhead.

Observation: L1d Miss vs. Access Latency. As one would expect,
the root node exhibits minimal access latency due to its tendency
to reside in the L1d (see left side of Figure 2). However, IBS reports
no latency measurements in this scenario, as it exclusively captures
cache miss events. In contrast, PEBS provides granular insights,
reporting 5 CPU cycles for L1d access and an additional 2 cycles
for instruction retirement. This subtle difference is particularly no-
ticeable when calculating an average latency over a set of accesses,
including both L1d hits and various cache misses. Consequently,
for a fair comparison between the two hardware substrates, L1d
hits should be excluded from the calculation.

Observation: TLB Latency. Leaf node accesses present a different
profile, frequently triggering cache and TLB misses. For the header
segment—typically the first segment accessed—IBS delivers detailed
timing breakdowns: approximately 200 cycles for TLB refill opera-
tions plus 230 cycles for cache miss resolution and ~ 90 cycles for
retiring the pOp. PEBS, however, presents a more consolidated view,
reporting 210 cycles for cache operations and roughly 160 cycles
for instruction retirement, with the latter inherently incorporating
TLB latency.

Observation: Identifying Software Prefetches. Another key di-
vergence between the two sampling facilities appears when demand
loads and software prefetches are intermixed. AMD’s IBS tags every
sample originating from an explicit software prefetch* instruc-
tion [8]—triggering an asynchronous cache fill—with an appropriate

flag. Intel’s PEBS offers no such feature: all memory reads—demand
or prefetch—enter the trace under the generic load category. Plus,
PEBS reports the data source and cache access latency of software
prefetches as if the access occurred in the L1 cache [12]—rendering
this information negligible for profiling prefetches.

However, although the perf subsystem nominally defines a cat-
egory for prefetches (along with loads and stores), the PEBS and
IBS drivers never raise that bit. Only recording and decoding the
raw IBS words allows users to discover data accesses invoked by
prefetch instructions as such.

Consequently, AMD systems allow measuring its standalone
latency—insights that matter as a prefetch itself may stall when, for
instance, the memory address is not found in the TLB or all LFB
slots are already occupied [13]. Simultaneously, IBS preserves the
data source, revealing exactly where the speculative line originated.
Together, the standalone latency and spatial origin form a precise
compass for choosing an effective prefetch distance—a task that
has often proved cumbersome (e.g., [14, 24]).

Observation: Detailed MAB Information. Beyond the distinc-
tion between loads and prefetches, IBS enriches each memory
record with two further cues: a bit that signals whether the re-
quest hit the MAB and a counter that reveals how many MAB slots
were occupied at sample time. PEBS, by contrast, simply reports
“LFB” as the data source whenever the line is still in flight and
suppresses the line’s ultimate supplier (L2, LLC, or DRAM).

The practical fallout is twofold. First, by correlating the prefetch
samples with the true lower-level source and the measured latency,
IBS lets users observe whether the prefetch arrived in time to hide
the miss or whether the demand load overtook it. PEBS likewise tells
us that the line was still in the LFB—hence accessed “too early” from
the load’s perspective—making it challenging to tune the distance
between the prefetch and the actual access quantitatively. Second,
the additional MAB-occupancy counter exposes situations in which
an otherwise helpful prefetch monopolizes the scarce buffer entries
and causes stalls for subsequent misses—buffer pressure that is
hardly visible under PEBS and must be inferred from secondary
symptoms [13].

4 Conclusion and Outlook

This paper provided a condensed overview of the differences in
memory-access sampling on recent x86 architectures. We showed
that hardware makers provide rich metadata in their memory sam-
pling mechanisms, yet the nature and visibility of this information
differs noticeably. For example, AMD and Intel offer distinct sorts

DaMoN ’25, June 22-27, 2025, Berlin, Germany

of access latency; AMD exposes prefetch flags and MAB-occupancy
metrics. But, not all information is clearly communicated through
the perf subsystem. These discrepancies complicate cross-platform
performance comparison but simultaneously open specialized opti-
mization avenues on both platforms.

This preliminary work serves as a foundation for further re-
search, as we intend to investigate other hardware architectures in
greater detail, including the Statistical Profiling Extension (SPE) in
recent ARMv8 systems.

Acknowledgments

We thank the anonymous reviewers for their helpful feedback and
suggestions. This work has received funding from the DFG Priority
Program “Disruptive Memory Technologies” (SPP2377) as part of
the project “Memory Diplomat” (grant number 502384507) and
has partly been funded by the Federal Ministry of Education and
Research of Germany and the state of North-Rhine Westphalia as
a part of the Lamarr-Institute for Machine Learning and Artificial
Intelligence.

References

[1] Advanced Micro Devices, Inc. 2024. AMD64 Technology. AMD64 Architecture
Programmer’s Manual - Volume 2: System Programming. Santa Clara, CA, USA.

[2] Advanced Micro Devices, Inc. 2024. Processor Programming Reference (PPR) for
AMD Family 19h Model 11h, Revision B2 Processors. Santa Clara, CA, USA.

[3] Advanced Micro Devices, Inc. 2024. Processor Programming Reference (PPR) for
AMD Family 1Ah Model 44h, Revision B0 Processors. Santa Clara, CA, USA.

[4] Soramichi Akiyama and Takahiro Hirofuchi. 2017. Quantitative Evaluation of
Intel PEBS Overhead for Online System-Noise Analysis. In Proceedings of the 7th
International Workshop on Runtime and Operating Systems for Supercomputers,
ROSS@HPDC. ACM, 3:1-3:8. doi:10.1145/3095770.3095773

[5] Cagri Balkesen, Jens Teubner, Gustavo Alonso, and M. Tamer Ozsu. 2013. Main-

memory hash joins on multi-core CPUs: Tuning to the underlying hardware. In

29th IEEE International Conference on Data Engineering. IEEE Computer Society,

362-373. doi:10.1109/ICDE.2013.6544839

Alexander Beischl, Timo Kersten, Maximilian Bandle, Jana Giceva, and Thomas

Neumann. 2021. Profiling dataflow systems on multiple abstraction levels. In

EuroSys '21: Sixteenth European Conference on Computer Systems, Antonio Bar-

balace, Pramod Bhatotia, Lorenzo Alvisi, and Cristian Cadar (Eds.). ACM, 474-489.

doi:10.1145/3447786.3456254

Peter A. Boncz, Stefan Manegold, and Martin L. Kersten. 1999. Database Archi-

tecture Optimized for the New Bottleneck: Memory Access. In Proceedings of

25th International Conference on Very Large Data Bases. Morgan Kaufmann, 54-65.

http://www.vldb.org/conf/1999/P5.pdf

David Callahan, Ken Kennedy, and Allan Porterfield. 1991. Software Prefetching.

In ASPLOS-IV Proceedings - Forth International Conference on Architectural Support

for Programming Languages and Operating Systems. ACM Press, 40-52. doi:10.

1145/106972.106979

Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell

Sears. 2010. Benchmarking cloud serving systems with YCSB. In Proceedings

of the 1st ACM Symposium on Cloud Computing. ACM, 143-154. doi:10.1145/

1807128.1807152

Paul J Drongowski. 2007. Instruction-based sampling: A new performance analy-

sis technique for AMD family 10h processors. Advanced Micro Devices 1, 3 (2007),

11.

Paul J. Drongowski, Lei Yu, Frank Swehosky, Suravee Suthikulpanit, and Robert

Richter. 2010. Incorporating Instruction-Based Sampling into AMD CodeAnalyst.

In IEEE International Symposium on Performance Analysis of Systems and Software,

ISPASS. IEEE Computer Society, 119-120. doi:10.1109/ISPASS.2010.5452049

Intel®. 2024. Intel® 64 and IA-32 Architectures Software Developer’s Manual.

https://cdrdv2.intel.com/v1/dl/getContent/671200. Accessed: March 20, 2025.

Roland Kiihn, Jan Miihlig, and Jens Teubner. 2024. How to Be Fast and Not

Furious: Looking Under the Hood of CPU Cache Prefetching. In Proceedings of

the 20th International Workshop on Data Management on New Hardware, DaMoN.

ACM, 9:1-9:10. doi:10.1145/3662010.3663451

Jaekyu Lee, Hyesoon Kim, and Richard W. Vuduc. 2012. When Prefetching Works,

When It Doesn’t, and Why. ACM Trans. Archit. Code Optim. 9, 1 (2012), 2:1-2:29.

doi:10.1145/2133382.2133384

G

=

[7

[

>
&

[9

=

[10

[11

[12]

(13

[14

[15

[16

(17

[19

[20

[21

[22

[23

[24

[25

[27

[28

]

Roland Kiihn, Jan Miihlig, and Jens Teubner

Viktor Leis, Michael Haubenschild, and Thomas Neumann. 2019. Optimistic Lock
Coupling: A Scalable and Efficient General-Purpose Synchronization Method.
IEEE Data Eng. Bull. 42,1 (2019), 73-84. http://sites.computer.org/debull/A19mar/
p73.pdf

Justin J. Levandoski, David B. Lomet, and Sudipta Sengupta. 2013. The Bw-Tree:
A B-tree for new hardware platforms. In 29th IEEE International Conference on
Data Engineering, ICDE. IEEE Computer Society, 302-313. doi:10.1109/ICDE.2013.
6544834

Kan Liang and Peter Zijlstra. 2021. perf/core: Add
PERF_SAMPLE_WEIGHT STRUCT. https://git kernel.org/pub/scm/linux/
kernel/git/tip/tip.git/commit/?id=2a6c6b7d7ad346f0679d0963cb19b3f0ea7ef32c.
Online; last accessed May 23, 2025.

Tongping Liu and Xu Liu. 2016. Cheetah: detecting false sharing efficiently and
effectively. In Proceedings of the 2016 International Symposium on Code Generation
and Optimization, CGO. ACM, 1-11. doi:10.1145/2854038.2854039

Xu Liu and John M. Mellor-Crummey. 2013. A data-centric profiler for parallel
programs. In International Conference for High Performance Computing, Network-
ing, Storage and Analysis, SC’13. ACM, 28:1-28:12. doi:10.1145/2503210.2503297
Stefan Manegold, Peter A. Boncz, and Martin L. Kersten. 2002. Optimizing Main-
Memory Join on Modern Hardware. IEEE Trans. Knowl. Data Eng. 14, 4 (2002),
709-730. doi:10.1109/TKDE.2002.1019210

Jan Mithlig. 2023. perf-cpp: Access Performance Counters from C++ Applications.
https://github.com/jmuehlig/perf-cpp. Accessed: March 20, 2025.

Jan Miihlig, Roland Kiihn, and Jens Teubner. 2025. Understanding Application Per-
formance on Modern Hardware: Profiling Foundations and Advanced Techniques.
In 3rd Workshop on Novel Data Management Ideas on Heterogeneous Hardware
Architectures (NoDMC). GL.

Stefan Noll, Jens Teubner, Norman May, and Alexander Bohm. 2020. Analyzing
memory accesses with modern processors. In 16th International Workshop on Data
Management on New Hardware, DaMoN, Danica Porobic and Thomas Neumann
(Eds.). ACM, 1:1-1:9. doi:10.1145/3399666.3399896

Georgios Psaropoulos, Thomas Legler, Norman May, and Anastasia Ailamaki.
2017. Interleaving with Coroutines: A Practical Approach for Robust Index Joins.
Proc. VLDB Endow. 11, 2 (2017), 230-242. doi:10.14778/3149193.3149202
Michael L. Samuel, Anders Uhl Pedersen, and Philippe Bonnet. 2005. Making
CSB+-Tree Processor Conscious. In Workshop on Data Management on New
Hardware, DaMoN. http://www-2.cs.cmu.edu/%7Edamon2005/damonpdf/2%
20making%20csb+%20trees%20processor%20conscious.pdf

Muhammad Aditya Sasongko, Milind Chabbi, Paul H. J. Kelly, and Didem Unat.
2023. Precise Event Sampling on AMD Versus Intel: Quantitative and Qualitative
Comparison. [EEE Trans. Parallel Distributed Syst. 34, 5 (2023), 1594-1608. doi:10.
1109/TPDS.2023.3257105

Ambuj Shatdal, Chander Kant, and Jeffrey F. Naughton. 1994. Cache Conscious
Algorithms for Relational Query Processing. In Proceedings of 20th International
Conference on Very Large Data Bases. Morgan Kaufmann, 510-521. http://www.
vldb.org/conf/1994/P510.PDF

Ziqi Wang, Andrew Pavlo, Hyeontaek Lim, Viktor Leis, Huanchen Zhang, Michael
Kaminsky, and David G. Andersen. 2018. Building a Bw-Tree Takes More Than
Just Buzz Words. In Proceedings of the 2018 International Conference on Man-
agement of Data, SIGMOD Conference 2018, Houston, TX, USA, June 10-15, 2018,
Gautam Das, Christopher M. Jermaine, and Philip A. Bernstein (Eds.). ACM,
473-488. doi:10.1145/3183713.3196895

https://doi.org/10.1145/3095770.3095773
https://doi.org/10.1109/ICDE.2013.6544839
https://doi.org/10.1145/3447786.3456254
http://www.vldb.org/conf/1999/P5.pdf
https://doi.org/10.1145/106972.106979
https://doi.org/10.1145/106972.106979
https://doi.org/10.1145/1807128.1807152
https://doi.org/10.1145/1807128.1807152
https://doi.org/10.1109/ISPASS.2010.5452049
https://cdrdv2.intel.com/v1/dl/getContent/671200
https://doi.org/10.1145/3662010.3663451
https://doi.org/10.1145/2133382.2133384
http://sites.computer.org/debull/A19mar/p73.pdf
http://sites.computer.org/debull/A19mar/p73.pdf
https://doi.org/10.1109/ICDE.2013.6544834
https://doi.org/10.1109/ICDE.2013.6544834
https://git.kernel.org/pub/scm/linux/kernel/git/tip/tip.git/commit/?id=2a6c6b7d7ad346f0679d0963cb19b3f0ea7ef32c
https://git.kernel.org/pub/scm/linux/kernel/git/tip/tip.git/commit/?id=2a6c6b7d7ad346f0679d0963cb19b3f0ea7ef32c
https://doi.org/10.1145/2854038.2854039
https://doi.org/10.1145/2503210.2503297
https://doi.org/10.1109/TKDE.2002.1019210
https://github.com/jmuehlig/perf-cpp
https://doi.org/10.1145/3399666.3399896
https://doi.org/10.14778/3149193.3149202
http://www-2.cs.cmu.edu/%7Edamon2005/damonpdf/2%20making%20csb+%20trees%20processor%20conscious.pdf
http://www-2.cs.cmu.edu/%7Edamon2005/damonpdf/2%20making%20csb+%20trees%20processor%20conscious.pdf
https://doi.org/10.1109/TPDS.2023.3257105
https://doi.org/10.1109/TPDS.2023.3257105
http://www.vldb.org/conf/1994/P510.PDF
http://www.vldb.org/conf/1994/P510.PDF
https://doi.org/10.1145/3183713.3196895

	Abstract
	1 Introduction
	2 Memory Address Sampling on x86 plattforms
	3 Practical Insights
	4 Conclusion and Outlook
	Acknowledgments
	References

