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Abstract: Engineering performance-sensitive applications necessitates a deep comprehension of
the interactions between hardware and software. Although profiling tools are available to assist, they
often struggle to precisely analyze specific segments of an application. And, crucial information, such
as data object addresses, is challenging to relay from the application to external tools. This tutorial
demonstrates how these challenges can be addressed by using libraries that enable performance
profiling directly within the application.

1 Introduction

Understanding the interplay between software and hardware is paramount for optimizing
the performance of data-intensive applications, such as database management systems
(DBMSs). However, the architecture of modern hardware has grown increasingly complex—
including vast cache hierarchies, sophisticated memory systems, and advanced CPU cores
equipped with features like out-of-order execution, intricate branch prediction algorithms,
and simultaneous multi threading. This complexity introduces substantial challenges for
engineers trying to decipher the interaction of hardware and software, making performance
profiling a critical practice to pinpoint and—ideally—mitigate performance bottlenecks.

A variety of tools, such as Intel VTune [In24b], AMD 𝜇Prof [AM24], and Linux
Perf [DM10], support engineers in analyzing execution performance. Under the hood,
these tools utilize performance counters: dedicated registers baked into nearly all modern
processors that monitor low-level hardware events, such as the count of executed instructions
or cache hits and misses. By correlating these events with instruction pointers, the tools can
help to diagnose resource-intensive lines of code.

However, Linux Perf and suchlike—being external—typically profile the entire application,
complicating the targeted profiling of specific application segments. This limitation is
particularly problematic when analyzing micro-benchmarks, where the benchmark itself
may represent only a fraction of the overall runtime, or when attempting to distinguish
between different operational phases, such as the fill phase versus the lookup phase in,
for instance, tree benchmarks. Additionally, while these tools can correlate events with
higher-level constructs like code lines using the binary’s symbol names, they often miss the
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opportunity to leverage deeper, application-specific insights, such as the memory location
of data structure instances [No20]. Consequently, while it is possible to identify instructions
exhibiting high memory access latency, linking them to specific instances of data structures
remains elusive. Consider tree-like data structures as an example: Different tree levels
experience unique access patterns; nodes logically close to the root tend to stay in the CPU
cache, whereas nodes close to the leaves, accessed less frequently, are more likely to be
evicted. Since nodes are typically accessed using the same code, it becomes challenging to
pinpoint the true source of high access latency, which is primarily the node instance rather
than the line of code.

In this tutorial, we demonstrate how to address these challenges by integrating profiling
directly into the application. This integration allows for fine-grained profiling and the
injection of application-specific insights into the profiling results, thereby enhancing our
understanding of the interactions between software and hardware. The tutorial is structured
as follows: Section 2 provides background on performance profiling techniques. Section 3
illustrates how applications can manage hardware events, using a B+-tree as a running
example. Finally, Section 4 outlines the timeline and structure of this tutorial.

2 Using Performance Counters to Understand Hardware/Software
Interaction

Modern processors provide two different methods to gain an understanding of how software
interacts with the underlying hardware substrate. First, Performance Monitoring Units
(PMUs) can count the occurrence of low-level hardware events like cache misses throughout
the software’s execution cycle. Second, processors can periodically capture snapshots that
offer more fine-grained data, such as the currently executing instruction and the accessed
memory address.

2.1 Counting Hardware Events

For counting event statistics, PMUs are deployed in a timer-like fashion: They are pro-
grammed with specific events to count, started before the execution of code to monitor, and
stopped subsequently. The difference in recorded values before and after the execution reflects
the events’ occurrence during the software’s operational phase. This practice of recording
key performance indicators is both well-known and extensively used in professional system
engineering and academic research (e.g., [LLS13, ZF15, Be21, Sc23, Kü23, KMT24]).

While modern hardware provides a handful of PMUs that can record events simultaneously,
the spectrum of monitorable events has broadened significantly across recent processor
generations. For example, Intel’s Sandy Bridge architecture (launched in 2011) supports
approximately 1 900 distinct events, a number that has risen to over 16 000 with the



introduction of the Cascade Lake architecture in 2019. Notably, most of these events cover
uncore activities. Nevertheless, the diversity of these events varies across different CPU
generations and manufacturers, adding another layer of difficulty in comparing system
performance across chipmakers.

2.2 Detailed Analysis through Sampling

Although coarse-grained statistics can highlight inefficient executions, they seldom pinpoint
the exact origin of bottlenecks, such as which specific instruction causes cache misses or
branch mispredictions. For a more granular analysis, modern processors are equipped with
sampling-based mechanisms that periodically capture the current state of execution. The
general idea is to specify one or multiple trigger events along with a threshold; the PMU
will then count the trigger event and fire a sample upon reaching the threshold, for instance,
every 4 000th CPU cycle. Users can also dictate the specifics included in the sample, such
as the pointer of the currently executing instruction, the accessed memory address, details
of the access like latency and data origin, register values, and even branch and call stacks.

The most common method of utilizing these samples is code-based profiling, implemented
by various profiling tools such as VTune, AMD 𝜇Prof, and Linux Perf (particularly through
the Perf record subcommand). These tools focus on monitoring instruction pointers and
correlating them with higher-level programming constructs, e.g., C++ functions and lines
of code. This enables the identification of code that is executed frequently or consumes
significant execution time. The derived insights can pinpoint specific sections of code that
are critical bottlenecks, such as those causing CPU stalls while waiting for data transfers
from the memory subsystem.

2.3 Abstractions

Different CPU manufacturers implement sampling mechanisms in distinct ways [Sa23].
For instance, since the Nehalem architecture, Intel implements Processor Event-Based
Sampling (PEBS) [In24a, AH17, Yi20], which allows the PMU to leverage almost any
configurable event as a trigger for sampling. When the specified threshold is reached, the
CPU captures a snapshot and stores the sampled data into a dedicated hardware-managed
buffer. As this buffer fills, the CPU interrupts the kernel to transfer the samples into a
user-level buffer for further analysis.

AMD’s Instruction-Based Sampling (IBS) [Dr07, Dr10] works differently: Each CPU core
has two specific PMUs that can be used to sample either instruction fetching or execution
events—the latter based on executed CPU cycles or micro-operations [Sa23]. To that end,
the CPU counts either fetched instructions or executed cycles/micro-operations until the
threshold is met. Upon reaching this threshold, the CPU traces the next instruction through
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Fig. 1: Abstraction of different profiling approaches. The perf subsystem generalizes the utilization of
both across different CPUs and manufacturers, enabling several libraries to control PMUs.

the entire fetch or execution pipeline, allowing for the collection of diverse data types,
such as TLB statistics from instruction fetches or memory-based statistics from execution
monitoring. Since the ARMv8.2 ISA extension, ARM implements Statistical Profiling
Extension (SPE), a sampling procedure similar to Intel PEBS and AMD IBS [Mi24].
However, SPE is an optional feature, usually only implemented in high-performance cores
like the Neoverse N1 or the Cortex-A78.

These methodological differences extend to the configuration of the hardware and in-
terpretation of results. Hence, manufacturers typically develop tailored profiling tools,
such as Intel’s VTune and AMD’s 𝜇Prof. To bridge these variations, the Linux kernel
offers a unified solution through the perf subsystem, providing a standardized interface for
recording statistics and sampling across various CPUs and manufacturers. This subsystem
is deeply integrated within the kernel architecture and forms the foundation of the Linux
Perf tool, which is designed to handle both the recording of performance statistics and
detailed event sampling. Figure 1 illustrates the abstraction levels corresponding to various
manufacturer-specific examples.

3 Fine-granular Performance Monitoring

The mentioned instruments primarily wrap the counting of events and the recording of
samples throughout an application’s entire execution. This broad approach limits their
effectiveness in profiling, for example, counting cache misses only within a specific code
segment.

3.1 Phase-wise Event Counting

While the perf subsystem allows controlling PMUs from the application, its interface
is notably complex and can be challenging to utilize effectively. As a response to these
challenges, recent years have seen the development of several more generalized abstractions
on top of the perf subsystem to record performance counters and samples, e.g., [We16,
Da23, Le18, Mü23] (see Figure 1).



1 tree = Tree()
2 event_counter = EventCounter()
3 event_counter.add("cycles","instructions","cache-misses")

4 insert_workload = generate_insert_workload() // Generate workload data for inserts
5 lookup_workload = generate_lookup_workload() // and lookups

6 foreach tuple in insert_workload
7 tree.insert(tuple) // Populate the tree

8 event_counter.start() // Wrap event counting around the lookup phase
9 foreach key in lookup_workload

10 tree.lookup(key)

11 event_counter.stop()

12 results = event_counter.result() // Consume results for further processing

Fig. 2: Profiling only the lookup-phase of a tree benchmark using perf-cpp.

One example of such an abstraction is the perf-cpp [Mü23] library, which will be used as an
illustrative application in this tutorial. Similar to the Perf stat subcommand in Linux Perf,
perf-cpp enables to specify hardware events for counting. However, in contrast to Linux Perf,
perf-cpp provides the capability to control profiling directly from within the application,
which enables monitoring of specific code regions. For instance, when benchmarking a
tree-like data structure, it is common practice to exclude data generation from performance
measurements and to monitor individual phases, such as the fill and lookup phases, separately.
Figure 2 demonstrates the use of perf-cpp in this context: Following workload generation
(lines 4 and 5), the tree is populated with data (lines 6 and 7). Event counting begins just
before the lookup phase and ends thereafter (lines 8–11), enabling precise measurement of
only this phase. Upon executing all lookups, the results of the monitored hardware events
(see line 3) can be consumed and processed for further analysis (line 12).

3.2 Access Analysis via Sampling

While event counting provides an initial start-to-finish insight into the interaction between
hardware and software of specific code segments, it lacks details on how this interaction
evolves throughout the execution. Take, for instance, the case of a tree-like structure: Trees
are typically plagued by pointer-chasing, where the next node to visit during a traversal
is accessed directly after identification—leaving no space for the hardware- or software-
prefetcher to jump in. To address this challenge, the use of coroutines enables pipelining
of node accesses, effectively introducing a time gap between identifying and accessing
a node. This interval allows for transferring nodes closer to the CPU via software-based
prefetching [Jo18, Ps19, HLW20, MT21].



1 tree = Tree()
2 sampler = Sampler()
3 sampler.trigger("mem-loads")
4 sampler.memory_address(true)
5 sampler.memory_latency(true)

6 sampler.start()
7 foreach key in lookup_workload
8 tree.lookup(key)

9 sampler.stop()

10 results = sampler.result()
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Fig. 3: Sampling tree-lookups within the application and mapping samples to tree nodes.

Challenges. Although the combination of pipelining and prefetching is known for reducing
the number of CPU cycles spent waiting for data to arrive, these stalls have not been
entirely eliminated in former research. For a more in-depth analysis, sampling emerges as
an invaluable technique. However, tools like Linux Perf and Intel VTune predominantly rely
on code-based profiling that maps sampled instruction pointers to specific lines of code,
such as those checking a node’s latch or accessing its payload. This profiling can pinpoint
which code experiences high memory latency, though it often provides a somewhat skewed
view; access penalties vary across the tree, with higher levels near the root experiencing
greater cache locality than deeper, leaf nodes. While Linux Perf integrates memory-based
sampling, its efficacy is limited by the challenge of correlating sampled memory addresses
with application-specific data structures, like individual tree nodes.

Pinpointing Memory Latency. This is where in-application sampling becomes valuable:
By capturing access details such as memory addresses and latency directly within the
application, this method not only enables precise, fine-grained profiling of specific code
segments but also allows to enrich these samples with application-specific knowledge.

Figure 3 outlines this approach using perf-cpp: First, the lookup phase of a tree benchmark
is monitored by initiating the sampler prior to executing lookups and stopping it afterward
( 1 ). The gathered data ( 2 ) are subsequently correlated with specific tree nodes using a
dictionary that catalogs all node instances ( 3 ). Once all samples are accurately mapped to
their respective nodes, the average access latency for each tree node can be computed ( 4 ).

Analyzing Software Prefetching for B+-trees. We will now zoom into a detailed analysis
driven by in-application sampling, focusing on software prefetching techniques within
B+-trees. To take a close look, we augmented a well-established B+-tree implementa-
tion [LHN19] with coroutine-based pipelining and software-based prefetching techniques
as proposed by Psaropoulos et al. [Ps19]. For our experiments, we utilized the YCSB
benchmark [Co10] with 100 million records and lookup requests, executing the benchmark
on a single thread. Note that we used different node sizes: 4 kB nodes yield the best
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Fig. 4: Memory access latency for different node-segments (header, keys, payloads) in various tree
levels derived from sampling—without prefetching (left) and with software-based prefetching (right).

performance for the unmodified B+-tree, while software-prefetching necessitates smaller
nodes to avoid overwhelming the LFB [KMT24]. Therefore, for the prefetching version, we
employed nodes sized at 256 B.

As outlined in Figure 3, we configured perf-cpp to sample exclusively during the lookup
phase and requested to include memory addresses and latency details in the samples.
However, in contrast, each sample was not only mapped to a distinct tree node but to a
specific data segment within that node. This allows to aggregate memory latency data for
different segments of a node: the header (typically accessed first), the keys segment, and the
payload containing the value or child pointer.

Figure 4 presents the results, detailing the average access latency (in CPU cycles) for each
node segment at the top two and bottom two levels of the tree. The left side of the figure
illustrates the latency for the original B+-tree implementation without prefetching, while the
right side shows the outcomes with prefetching applied. Unsurprisingly, in both scenarios,
the root node exhibits cache locality, with latency comparable to those of the L1 data
cache—the same applies to the root’s straight child nodes. In contrast, the deeper levels,
such as the leaves, exhibit significantly higher access latency, reaching up to nearly 300
cycles when prefetching is not implemented. With prefetching applied, the latency for these
deeper node levels is significantly reduced, effectively doubling the throughput. Nonetheless,
the experiment indicates that many node accesses still experience noticeable latency.

Consequently, these insights can draw a range of optimizations to improve prefetching in



tree-like data structures. First, since the upper levels already benefit from cache locality,
prefetching these nodes is redundant. By omitting prefetching for nodes already sitting in
the cache, we can reduce instruction bandwidth spent on executing prefetch instructions
and minimize the overhead associated with coroutines: Nodes visited consecutively without
prefetching involved can be accessed within a single coroutine. In subsequent experiments,
we saw a modest improvement of approximately 4% when applying this optimization for the
first three tree levels. Note that the effectiveness of this optimization is heavily influenced
by the cache size and the size of the nodes.

Second, the findings suggest that prefetching is not being applied optimally, potentially due
to the prefetch distance—the time gap between executing the prefetch instruction and the
actual data access. In our implementation, this interval is dictated by a round-robin coroutine
scheduler (as described in [Ps17]) and a fixed number of coroutines2 active simultaneously:
Each coroutine is executed after all others yield the control flow. However, data movement
from memory into caches varies in duration; similarly, coroutines at different stages of
a traversal have variable execution times (particularly with the mentioned optimization
in place). Accordingly, the interval between prefetch and access varies and is hard to
control. This challenge becomes further complex when considering operations beyond
lookups that might experience more heterogeneous execution times. We believe that, to
enhance the effectiveness of prefetching combined with coroutines, adopting a more refined
scheduling approach could be beneficial—one that accounts for both the execution duration
of coroutines and the memory latency.

4 Projected Time-frame

The tutorial is intended as an interactive, hands-on tutorial with a duration of approximately
45 minutes. We plan to start with an introduction of the Linux perf subsystem and how
perf-cpp interacts with it (roughly 10 minutes).

Following this, we will give a practical introduction to performance profiling, including a
demonstration on how to set up the perf-cpp library (10 minutes).

Finally, the B-tree with optimistic lock coupling will serve as the poster child for a more
complex data structure. We plan to do a live demonstration on how sampling can be used to
e.g., identify the effectiveness of software prefetching as detailed in Section 3.2. This part is
explicitly intended for audience interaction, as we plan to provide a script (e.g., via GitHub),
that will build and execute the benchmark on the devices of the participants. We plan to
compare the results of the participants with our results to highlight the differences that can
occur on different types of hardware. We will also have some “backup” results from other
machines for comparisons (25 minutes).

2 We found that scheduling 12 coroutines simultaneously yielded the best performance on our system.
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