
1

Beyond Bandwidth Doubling:
Embrace Bit-Flips & Unlock Processing-in-NAND

Maximilian Berens, Yun-Chih Chen, Jian-Jia Chen, Jens Teubner
TU Dortmund University

prename.surname@cs.tu-dortmund.de

Abstract—NVMe SSDs offer unprecedented capacity and
bandwidth and new PCIe standards promise even more. However,
the underlying technology, NAND memory, already struggles with
significant heat and power consumption challenges. Just like
microprocessors before, NAND also experiences Dark Silicon,
preventing performance from improving at the same pace as
capacity. Much of the power (and thus heat) within a NAND chip
results from transferring data at a high rate, another symptom
of a compute-centric style of processing. Therefore, we argue for
data-centric Processing-in-NAND (PiN). However, PiN comes with
significant challenges, such as limited capabilities and the need
to cope with bit-flip errors. Even beyond Processing-in-Memory
(PiM), databases may soon have to accept that memory is not
error-free, an assumption that comes at a significant cost in
power, capacity and performance. Our discussion suggests that
no PiN design will serve as a singular, universally applicable
solution to the bandwidth problem. Instead, successful integration
into database architecture requires carefully identifying PiN-
compatible functionality and abstractions, and cooperation with
other innovations, such as Computational Storage and CXL.
Lastly, we analyze the fundamental error tolerance of Bloom
filters and binary sketches as PiM-compatible data structures,
which we believe may be of independent interest.

I. INTRODUCTION

NVMe SSDs are continually expanding their bandwidth and
capacity to meet growing data demands, with PCIe 5.0 cards
offering up to 12 GB/s of bandwidth and over 60 TB of
capacity. This makes them not only attractive for large-scale
analytic workloads, but also as “graceful extensions” of HTAP
in-memory databases [1]. However, even achieving the full
bandwidth of the hardware available today comes with signif-
icant challenges. For one, a full array of SSDs in a large server
consumes significant power and can easily surpass the TDP of
a large processing unit. For example, Micron’s 6550 ION SSD1

can draw 5-6.25W per PCIe lane and modern servers offer 96-
128 lanes per socket. To cope with the immense heat, devices
are known to significantly throttle their speed, which makes
dedicated cooling a necessity. Additionally, the underlying
technology, NAND flash memory, not only struggles with
power efficiency, but also reliability [2], [3].

Yet, upcoming PCIe 6.0 and 7.0 standards promise to
double bandwidth yet again. Soon, NVMe SSDs, and therefore
databases as well, may face the limits of Dennard scaling,
where no more performance gains can be achieved without
hitting physical limitations. Just like microprocessors before,
NAND has Dark Silicon, too, preventing performance from

1https://www.micron.com/products/storage/ssd/data-center-ssd/6550-ion

CPU
compute

SSD

Today

CPU
compute

SSDFPGA
compute

NAND NAND

+ Computational
Storage

CPU
compute

SSDFPGA
compute

NAND PiN
compute

+ Processing-
in-NANDThis Work

Fig. 1. Data-centric computing allows to shift the bottleneck. Left:
von Neumann-style architecture. Middle: Computational Storage architecture.
Right: Processing-in-NAND architecture.

improving at the same pace as capacity [2]. Much of the power
(and thus heat) within a NAND chip results from transferring
data at a high rate [4], which is yet another symptom of a
compute-centric style of processing.

Reducing data transmission, rather than relying solely on
bandwidth scaling, has emerged as a fundamental solution to
the bottleneck that is data transfer. Many researchers have
proposed data-centric approaches that push computations to
SSDs (e.g., Computational Storage [5]) or, even further, di-
rectly into flash memory chips through Processing-in-NAND
(PiN) [4], [6]–[9]. PiN, positioned furthest from the CPU at the
bottom of the memory hierarchy, has the greatest potential for
reducing data movement and thus represents a key step towards
pushing SSD performance scaling further, as illustrated in
Fig. 1. However, PiN is not a universal solution and comes
with inherent trade-offs.
No Magic Bullet: Power and transistors are finite resources
in every microchip. Adding more logic circuitry to NAND
memory, such as for computation or additional read-out func-
tionality, inevitably reduces capacity and increases cost. Since
fully utilizing complex logic without exceeding the chip’s
limited power budget is often impractical. Typically, only
simple logic can be embedded within memory, while more
complex logic is implemented outside the flash memory chip.

Off-the-shelf (OTS-) PiN takes a different approach by re-
purposing existing circuits within the memory chip to perform
basic calculations [4], [6]. This reduces data transfers at an
affordable $/TB cost while preserving the chip’s primary stor-
age functionality. However, OTS-PiN typically only supports



2

Device
Plane

BlockPage
NAND Cell

0 1 1
Page Buffers

ChannelPeripheral

Sensing

PCIe

Controller
/ECC

Host

Fig. 2. Simplified structure of a NAND flash memory chip, showing a plane
with its independent page buffers. Each page buffer handles one bit in a page.

primitive operations and may sacrifice some storage capacity
to improve reliability. Additionally, it generally lacks hardware
error correction, requiring applications to incorporate built-in
resilience against bit-flip errors.

In this paper, we explore how PiN could help databases
achieve performance growth beyond the limits of bandwidth
scaling. We begin by examining why newer generations of
NAND chips, despite their increased capacity, are approaching
the limits of performance scaling (§II). Next, we look at how
OTS-PiN offers a promising path forward and address its
practical constraints, such as the absence of hardware ECC
(§III-A). We also emphasize the importance of error-tolerant
data structures in databases (§III-B). Building on this, we
explore strategies for databases to effectively leverage OTS-
PiN (§IV). We then demonstrate that software-based error
tolerance can adapt flexibly to dynamic error rates, offering
greater efficiency than hardware-based approaches (§V). Fi-
nally, we analyze two widely used probabilistic data structures,
Bloom filters and binary sketches, thereby demonstrating their
suitability for PiN (§VI).

II. THE END OF NAND PERFORMANCE SCALING

Although recent generations of SSDs offer unprecedented
bandwidth, the access latency of NAND-flash memory has
actually been deteriorating for some time now [10]. This is
not apparent when looking at product descriptions, because
manufacturers are playing a whole deck of “tricks” to com-
pensate for the compromises that come with the quest for
ever-increasing capacity. However, as an SSD ages with usage,
NAND’s performance deterioration becomes visible [2].

A. Understanding Performance

To understand the issue and why NAND performance scal-
ing is in jeopardy, we will first describe the factors that impact
bandwidth: NAND parallelism and access latency. We then
discuss why the current tricks offer no sustainable path forward
and ultimately require us to rethink the current approach.
Flash Parallelism: To achieve sufficient bandwidth despite
high latency, SSDs employ various forms of parallelism. A
single SSD has multiple NAND-flash chips (usually 4-8), each

Read Retry

Queueing Sensing Channel ECC PCIe

Fig. 3. A breakdown of the steps that make up page read latency: Command
send and queuing, sensing, channel transfer, error-correction and external
transfer. Read-retry may increase the latency further.

partitioned into so called planes (usually 4-6)2. Each plane
contains a set of page-sized SRAM registers (page buffers in
Fig. 2) and is capable of sequentially serving requests target-
ing its (several hundred) flash blocks, each block containing
(thousands of) pages. For a write, an entire block must be
erased first before individual pages can be programmed, a so-
called “program-erase” (P/E) cycle. Reads are performed at
page granularity of usually 4 or 16 KiB.

Read Latency: When a read request is issued, a command is
first sent from the controller to the plane’s command queue.
To execute the read, the plane first “senses” the data into the
page buffers by applying a certain voltage. When a cell is
programmed, electrons are deposited to represent a charge.
During sensing, the cell may or may not have enough charge
to conduct the applied voltage, representing a single bit, called
“Single-Level Cell” (SLC) NAND. After the page is fully
sensed, it is transferred over a bus, which is shared by multiple
planes, to the device DRAM (“channel transfer” in Fig. 2) and
then checked for bit-flips. If the page passes error correction,
it will be send to the host via PCIe, otherwise the read
process may be restarted with different parameters to hopefully
observe fewer bit-flips. A breakdown of the entire latency can
be found in Fig. 3.

Capacity over Latency: Memory technology scaling was the
driver of both performance and capacity for a long time.
But decreasing the feature size of memory cells comes with
significant hurdles, namely high manufacturing cost and de-
grading performance and reliability [11]: To avoid this issue,
manufacturers have instead focused on 3D stacking [11]3 and
the number of layers is increasing [12].

Another way to scale up capacity is to store more than
one bit per cell. Because both initial programming charge and
sensing voltage can be varied between multiple levels, probing
for more than one state becomes possible: Triple-Level Cells
(TLC), for example, utilize the voltage stored in a cell to
represent for three bits, resulting in dividing the voltage range
into 23 (8) intervals, each associated with a different state.
Although this, too, increases capacity, access latency becomes
longer. Specifically, TLC requires up to seven read operations
to decode all data bits from a single cell, resulting in 2.3X
latency compared to SLC for the same amount of data (1 read
for 1 bit versus 7 reads for 3 bits).

Latency Mitigation: To mitigate the long latency, some
NVMe SSDs can initially write data in “SLC mode” by storing
only a one bit per cell. Once this initial capacity threshold
(about 20% to 30% of the advertised capacity) is exceeded, the

2We omit some levels of the hierarchy (package & die) for simplicity.
3As of 2021, the feature size actually increased from 14-15 nm to 38 nm

[11].



3

SSD switches to “TLC mode”. This can degrade random read
throughput by more than 30% [13]. Subsequently, latencies
deteriorate with increased capacity usage.

B. Errors in NAND Flash

Another important aspect of latency are bit-flips, or more
accurately, error correction. There are various situations for
errors to occur in NAND flash: Bits may “flip” during both
write or read processes, but the most common errors today are
retention errors caused by electrons leaking from a cell over
time4 [14], [15].

NAND is known to degrade on write, causing error rates to
differ temporally and spatially: Repeated program-and-erase
(P/E) cycles on the same block “age” the underlying material,
causing it to leak electrons faster and be generally more
susceptible to disturbances [14]. Further, due to lithographic
imperfections, the material quality across 3D-NAND layers
can vary, a phenomenon known as process variation [3]. Error
rates between pages can also differ, even though they are stored
in the same set of cells (a “word-line”) [14]. For additional
information on NAND flash errors see for example [3], [14].

Error guarantees for today’s memory have to be very strict
in order to ensure viability for a wide range of applications.
For enterprise SSDs, the JEDEC standard defines 10−15 as the
highest, acceptable uncorrectable bit error rate (UBER), i.e.,
after ECC [16]. The raw bit error rate (RBER) can be much
larger, i.e., in the order of 0.001 − 0.1, after a few days of
retention time [3], [15]. As a result, powerful error-correction
codes (ECC) are necessary to uphold the illusion of error-less
data stored in (actually very error-prone) memory.
Bit-Flips vs. Latency: Low-Density Parity-Check (LDPC),
the de-facto standard for ECC in SSDs, is applied iteratively:
If a step is not able to correct enough errors, the read-process is
restarted (see Fig. 3), applying different voltage levels during
sensing and a more heavy-weight error correction step. This
can have detrimental impact on the latency. For example, an
initial 85µs access latency can grow to more than 1ms due
to ECC [3]. As memory cells become smaller, fewer charges
are used to store data bits, making them more susceptible to
errors due to charge leakage. Thus, these so called “Fail-Slow”
symptoms in SSDs are expected to become more severe with
further technology scaling [2].
Error Mitigation: SSDs employ various strategies to avoid
errors. Ultimately, error rate, which directly impacts latency,
is dependent on many factors. For example, material quality,
endured P/E cycles, retention time (i.e., the time since a
page was written) and temperature: Heat causes cells to leak
electrons faster and disturbs signal transmission in electrical
circuits. To illustrate, a page can require up to 6 read-retries
when retained for 2 days at 85°C, which is equivalent to 168
days of retention time at 40°C [15]. This makes both passive
(cooling) and active heat-management (performance throttling)
a necessity in modern SSDs.

Another measure, relevant to later discussions on
processing-in-NAND, is data scrambling [14]: To avoid

4Depending on how multi-bit cells encode the different voltage levels,
retention errors can result in both types of bit-flips (0 → 1 and 1 → 0).

data-pattern-specific “program disturbance” errors, a page is
deterministically turned into a (pseudo random) stream of
equally many zeros and ones before being actually written.
Because data is de-scrambled only after it was already
retrieved from the NAND array, the ability to perform PiN
operations may be hindered. Some methods can alleviate this
problem by enhancing the programming step at the cost of
latency [6]. Further, the data structures discussed in V are
designed to achieve uniformity and independence between
bits, allowing to skip this measure.

When errors do rise beyond a certain rate, data is scrubbed
by writing the block to a different location [2]. Eventually,
blocks deemed too unreliable by the controller are decomis-
sioned, reducing (internal) capacity. To use up P/E cycles
uniformly is the concern of complex wear-leveling strategies
employed by the SSD controller. Notably, devices usually
opt for performance degradation over offering less storage
capacity to the host [2]. This requires allotting extra “hidden”
blocks solely for the purpose of replacing the ones that got
decomissioned.

C. Scaling Bandwidth & Dark NAND

The influence of temperature on the processor design has
been extensively discussed in the literature. The thermal issue
has led to the failure of Dennard scaling [17]. This has been
recognized as the dark silicon problem [17], in which silicons
are not able to be utilized due to high temperature. Temper-
ature also plays a critical role in maintaining data integrity,
but it also heavily influences the hardware design of NAND
flash chips. Just like microprocessors before, NAND flash
meets the end of Dennard scaling. With growing transistor
density, the power draw also increases, converting into heat.
Generally, ensuring stable functionality and longevity becomes
increasingly more difficult once we approach the limits of the
physical laws. As mentioned above, NAND technology scaling
was halted, focusing on capacity over performance.
Scaling Parallelism: Given stagnant access latencies, band-
width scaling within a single NAND flash chip may be gained
by scaling up the plane count. Although planes in modern
SSDs are only capable of very rudimentary logic functionality,
they are independent logic units and can independently serve
requests and therefore determine the level of parallelism within
a chip. But manufacturers today still primarily focus on
improving the number of pages per plane, rather than plane
count, as a way to reduce the cost per gigabyte. This decision
to invest chip area in memory cells rather than in peripheral
logic is influenced by economical rationales.

Even though the latency-component of channel transfers
is comparatively small (see Fig. 3), achieving it requires a
significant investment of instantaneous power for every single
transfer. Previous designs [18], that focus on parallelism over
capacity, draw significant amounts of power, require strong
cooling to compensate and are very expensive.
Dark NAND: Eventually, increasing the power draw beyond
a certain degree leads to “Dark NAND”, where not all parts of
the NAND chip can be used at any given point in time in order
to avoid surpassing the thermal budget. Explicit cooling and



4

thermal throttling are required to maintain stable operations.
Like its multicore scaling in the CPU counterpart [17], multi-
plane scaling is reaching its limit.

Note that our discussion so far focused on the relative
costs of the steps of reading data, instead of program &
erase, i.e., write, operations. Although writes do have higher
latency and cost more power, they are usually executed as
background operations in times of less device load. Further,
as we will argue below, the high, relative power requirements
of bus transfers during reads are what motivates processing-in-
memory as a potential avenue for future performance scaling.

Scaling Flash-Chips: Increasing the number of NAND-flash
chips per SSD as a means to improve bandwidth comes
with considerable disadvantages. Adding more chips is cost-
inefficient, i.e., doubling bandwidth also (at least) doubles cost.
Further, contention of shared, device internal resources, most
notably the power supply, DRAM and controller, increases.
Any new chip also represents an additional point of failure:
When a chip degrades over time (“ages”) beyond a critical
level, the device not only offers less capacity but also less
overall bandwidth. A single chip failing usually warrants
decommissioning the whole device, which becomes more
costly and increases material waste.

III. NEAR-DATA PROCESSING IS NOT ENOUGH

One of the largest factors of power consumption (although
not latency) during a NAND-flash read are channel transfers,
i.e., getting the data out of the plane’s page buffers. Thus,
methods that reduce data transfer volumes before they leave
the page buffers directly address the high power demand of
channel transfers and thus, the thermal limitations of NAND
flash design [4].

In this section, we first suggest PiN as a way to achieve
better power efficiency and argue for “Off-the-Shelf” PiN.
We describe two prominent representatives and their limits
as a basis for further discussions. In the second subsection,
we bring up the issue of randomly occurring bit-flips and the
cost of ECC, which has to be faced by both PiN and PiM.

A. Processing-in-NAND

PiN, a subset of Processing-in-Memory (PiM), promises
better power efficiency by empowering individual planes with
compute capabilities or, even more extreme, using the memory
array itself for computations. However, PiN’s functionality
is inherently limited because complex logic circuits compete
with memory for chip area and generate heat, which can
compromise memory reliability. This constrains technical and
economical feasibility. As a result, PiN designs typically face
two options: either specialize for a specific application or
support only a limited set of primitive operations.
Specialized PiN: In specialized circuits, functionality is tai-
lored to a narrow range of applications. Examples are con-
ditional page reads based on string-matching [7] or vector
multiplication [9]. This specialization makes these designs
less flexible and requires substantial extensions to existing

hardware designs. They are therefore less appealing to man-
ufacturers who generally prioritize more versatile, general-
purpose solutions with larger markets.

Off-The-Shelf PiN: Instead of creating a purpose-build design
from scratch, re-purposing functions in existing circuit designs
offers a different approach. The majority of space in a flash
chip is dedicated to memory cells. But the plane’s peripheral
circuit, i.e., the area close to the actual memory, contains a
rich amount of logic responsible for accessing or verifying
the memory. Off-The-Shelf (OTS) PiN makes use of these
circuits to conduct computations, thus limiting modifications
to the chip and lowering the adoption barrier.

In the following, we discuss Search-in-Memory (SiM) [4]
and FlashCosmos [6], two prominent examples of OTS PiN
that form a basis for further discussions.

a) Search-in-Memory: Search-in-Memory (SiM) re-
purposes existing circuits in conventional NAND flash chip
to support two new functions: the search command for fine-
grained matching and the gather command. search treats a
data page as an array of 8-byte words and matches an 8-byte
input key against each word stored in the target page, using a
(masked) bit-wise AND. It evaluates to True, iff all (relevant)
bits match. A search on a 4 KiB page therefore results in a
512-bit bitmap. The gather command pulls a subset of 64-
byte chunks, indicated by a bitmap operand, from a page. The
two commands always start with a page open command, which
senses the target page into the page buffers.

Unlike typical page reads, data from the page is not sent to
the SSD controller. Instead, a search command sends a query
word (the “key”) to the page buffer for comparison and only
transmits the result back. Multiple SiM commands can be run
on the page while it is cached in the registers. Once all relevant
commands have been completed, a page close command will
release the data from the register. When the SSD controller
executes SiM commands, it can reduce the clock rate of the I/O
bus to reduce the power consumption for the channel transfer.
This does not affect the latency of the operation because the
amount of transferred data is considerably reduced. SiM’s
efficiency relies heavily on making use of word-aligned arrays.

b) FlashCosmos: FlashCosmos [6] leverages the sensing
mechanism of NAND flash memory to perform bit-wise opera-
tions: NOT on a single page, AND across pages within the same
block, and OR across pages in different blocks. By combining
these basic operations, FlashCosmos can implement more
complex logic functions, such as NOR, while reducing data
transfer overhead by sending only a single “result page”
instead of multiple “operand pages.”

FlashCosmos requires careful placement of operand pages
to align with the logic operations being performed. For exam-
ple, if a bit-wise OR operation involves pages within the same
block, page migration is necessary to move one operand to
a different block. Moreover, unlike SiM, which sends queries
directly to the page buffer for matching, FlashCosmos requires
operands to be pre-programmed into memory. This makes
FlashCosmos less suitable for workloads with long compu-
tation sequences that produce multiple intermediate results, as
writing intermediates to NAND memory is slow. Despite these



5

limitations, SiM and FlashCosmos adhere to existing memory
sensing mechanisms and can complement each other.

Design Limitations: Beyond bit-wise logic, many basic oper-
ations supported by general purpose processors are based on
passing information “between bits”. Examples are popcnt
or integer addition, that requires a carry bit. Functions like
(word-wise) addition (or inequality) require complex circuits
and therefore represent substantial changes over current (OTS-
) NAND designs. In this sense, a plane’s page buffers should
be thought of as a set of independent 1-bit registers (“latches”)
instead of one “page-sized register”, similar to that of a CPU.

To still be able to implement search, which emits only
one bit per word, SiM makes use of Failed Bit Counting
(FBC) [19], which allows SSDs to verify the integrity of data
programmed into flash memory. A program operation requires
multiple rounds, with each round generating a pass/fail signal
from each page buffer to indicate whether the cells have
reached the target accuracy level. These signals are then ag-
gregated to determine if the programmed data meets reliability
requirements. This same circuitry can be adapted to perform
a (word-wise) popcnt operation, though the result must be
quantized to avoid high circuit overhead from precise counting.

B. Processing in Unreliable Memory

Generally, bit-flips pose a significant challenge for
processing-in-memory, because logic and memory are tightly
integrated, using techniques like 3D wafer bonding [20]
and Peripheral-under-Circuit (PuC). Bypassing existing ECC
mechanisms this way requires new approaches to error man-
agement, not just for NAND-based PiM.

Hardware Error Correction: Many data-center-grade
DRAM memory arrays are tightly integrated with ECC on the
same chip to present a seemingly error-free interface. However,
as memory cell becomes smaller, data reliability continues
to degrade, making on-die ECC increasingly costly and, at
times, ineffective [21]. For example, DRAM refresh overhead
has increased 9.4 times when scaling from 128Mbit to 16Gbit
chips [21]. Similarly, DDR5 ECC-DIMMs with on-die ECC
for single-bit error correction now incur a 32.8% increase in
area and parity overhead [22]. Despite these efforts to create
an error-free memory interface, errors are still inevitable as
memory reliability can deteriorate beyond ECC’s correction
capabilities. In some cases, ECC can even introduce additional
errors [21]. High-Bandwidth Memory (HBM), which builds
on DRAM technology, inherits these reliability challenges
while introducing additional error sources due to its multi-
layered architecture [23]. As memory scaling continues to
degrade reliability, applications that lack built-in resilience
against silent bit errors and rely solely on hardware-based error
correction face significant scalability challenges. Further, they
are more vulnerable to side-channel attacks like Rowhammer
[21], which can induce bit-flips even with ECC in place.

Hardware ECC conflicts with PiN: Hardware ECC requires
significant power and chip area, directly competing with
resources needed for PiM functionality. As a result, UPMEM
[24], a PiM implementation for DRAM, omits hardware ECC

entirely and relies on the assumption that the underlying
DRAM is error-free.

For NAND flash, the challenge is even greater due to its
inherently higher error susceptibility compared to DRAM.
Powerful ECC circuits like LDPC are essential to ensure
reliability but come with significant costs, including storage
overhead for parity bits, increased read latency, and substantial
demands on chip area and power. Additionally, these ECC cir-
cuits require significant testing and design costs. Consequently,
integrating ECC into PiN may be impractical [7], [25].
Over-Reliance on Hardware ECC: Many software systems
recognize that storage is not flawless but still assume that bit-
flips are rare [26]. For example, file systems and databases like
ZFS and RocksDB detect errors and simply abort operations,
expecting that a re-read will resolve the issue. However, as
memory reliability worsens with advanced technology, errors
are likely to become more frequent, making operation aborts
a common occurrence and causing severe service disruptions.
Error-Aware Software: Ultimately, solely relying on hard-
ware to maintain an error-free memory interface is both
costly and increasingly impractical. One way to address these
challenges is to expose information about error characteristics
to software, allowing it to make informed decisions and lessen
the burden (and reliance) on hardware-based ECC [21]. To
take it one step further, memory hardware may be bought with
different error guarantees [21]. We will continue the discussion
on error-aware software in §V.
Error-Tolerant Databases: The relevance of errors in
database applications has been a topic for some time now
[27]. For example, Koldiz et al. [28] suggest to use arithmetic
coding to enable robust computations and on-the-fly error de-
tection for in-memory databases. In [29], they suggest methods
to improve the reliability of B+-trees. While previous works
mostly focus on DRAM and are not necessarily compatible
with the PiN architectures considered in this paper, we believe
that many of their approaches still offer important pointers to
enable databases on increasingly less-reliable hardware.

IV. PROCESSING-IN-NAND FOR DATABASE PROCESSING

In this section, we discuss challenges of integrating PiN into
databases. We first claim that simply equipping NAND with
compute is not sufficient and requires a more holistic solution.
Then, we suggest secondary indexing as a prime candidate for
PiN, outlining several approaches. Thereafter, we discuss that
efficient integration also requires a suitable interface. The last
subsection mentions various other remaining challenges.

A. No Singular Solution

PiN alone cannot fully address NAND’s scaling bottleneck
due to its inherently limited functionality. Computational
Storage (CS), on the other hand, offers more flexibility by
implementing application-specific logic in compute units near
(i.e., outside) the memory chips [5], [30] (Fig. 1). While
PiN reduces internal data movement, CS complements it by
handling tasks PiN cannot, such as complex arithmetic or
aggregating PiN results. This creates a symbiotic relationship
that balances flexibility and data transfer efficiency.



6

This architecture enables a streaming data-flow approach,
where data from multiple sources is incrementally refined. By
the time it reaches the CPU, the data has been highly filtered
and condensed. This approach is similar to the concept of a
data-flow architecture [31] discussed in the context of cloud
environments.
Heterogeneous PiN: Generally, specialization provides higher
efficiency. In this sense, instead of just one type, a database
system may want to make use of various different PiN-capable
memories, each catering to a different function. For example,
one type of memory may be used for bitmap indices [6],
another for Bloom filters (see §VI-A) and yet another for
binary sketches (see §VI-B).

B. PiN for Secondary Indexing

Databases in an analytical context can require large indices
and systems often have to support high dimensional queries,
therefore benefiting heavily from columnar storage layouts.
Still, for queries with filter predicates, workloads can still
suffer from significant read amplification. Indices can help by
skipping irrelevant chunks, but they struggle with the large
access granularity of NAND-flash memory. File formats, such
as Apache Parquet and ORC, a (column) chunk of data may
even become significantly larger than a physical page. Being
usually light-weight, the indices, e.g, zone maps or Bloom
filters, employed in this context often sacrifice discriminative
power for flexibility, as well as cheap storage and evaluation.

One role we envision PiN to take over is bulk-index
evaluation [4], [6]. In such a scenario, PiN-capable memories
may contain index information and may be paired with regular,
“reliable” storage that contains the corresponding, actual data,
i.e., tables. When the host (declaratively) specifies relevant
data, the device may answer this query and provide local data
that qualifies. To avoid scanning the tables, it may instead
perform an index search implemented with PiN operations.
The device, which knows the mapping between index struc-
tures and tables, can then facilitate fetching the results from
the reliable (also device-local) storage, without involving the
host. The fetched data can be further refined and transformed
using a device-internal accelerator, before it is eventually send
to the host.
Benefits: Indices would no longer need to leave their under-
lying, persistent memory. This avoids initial deserialization
phases and frees up DRAM, SRAM caches and processors
in both host and device. Further, in case of ad-hoc queries,
i.e., where filter attributes change frequently, keeping various
different variants of indices may become feasible due to
the cheaper cost of NAND over DRAM. In essence, PiN
allows to transform NAND capacity improvements into better
application performance and more efficient usage of other
resources.
Simplicity preferred: Generally, the layout of data structures
must adhere to the “SIMD” processing style of PiN, which
relies on assessing the data on a page in a very specific way.
For instance, with FlashCosmos, only individual bits across 2
(or more) different pages can be combined logically, resulting
in a page-sized result. For Search-in-Memory, an 8 byte query

argument is compared individually with all 512 many 8 byte
words on a 4 KiB page. While only rudimentary, SiM performs
a “bit-wise aggregation” to check if all bits in a word did match
or not, producing a 512 bit result for the entire page. Notably,
many types of indices, such as B+-trees and zone maps, are
based on (integer or float) inequality instructions, which are
not easily available in OTS-PiN (see §III-A).

With this processing style, data should be carefully aligned,
and page-sized “arrays” of a single data type are preferred.
Workloads with complex arithmetic should not be offloaded to
PiN and are better handled by upper-layer compute units (see
§IV-A). PiN is most effective for tasks with simple primitives.
For example, it can be used to probe external hash table
buckets containing fixed-length hash fingerprints [4] or to
perform an exhaustive exact search across a large array of
embeddings, which are commonly used to represent images
or objects [32].

Bitmap Indices: With the continued trend of NAND towards
improved capacity, workloads may want to consider spending
more space on indices in order to accelerate their queries.
Especially more heavy-weight approaches, such as (binned)
bitmap indices, can occupy considerable storage space and
are often too large to be kept in DRAM, especially for high-
dimensional datasets. As a result, their high access cost can
make them unattractive in current von Neumann-style systems.
A PiN-based index evaluation entirely avoids moving the bulk
of index information to the host, reducing the interconnect
bottleneck and host’s page cache usage [4]. Although bitmap
indices have a larger storage footprint than, for instance,
the light-weight approaches used in Parquet, they have much
greater discriminative power. Further, the ability to combine
arbitrary attributes efficiently with simple logic instructions
ensures flexibility for ad-hoc queries, where the set of relevant
attributes may change from query to query. FlashCosmos
enables page-wise logic operations and therefore directly im-
plements the evaluation of bitmap indices [6].

Match-based Indices: PiN can be utilized to implement
partial index searches through masking. One example is
querying Bloom filter with a logical AND operation (see
§VI-A). Another example is querying a relational database
table encoded as compact keys. These keys are created by
concatenating truncated or compressed representations of mul-
tiple attribute values from a single tuple. Such key encoding is
often employed to run relational databases on top of NoSQL
storage engines, as exmplified by MyRocks5.

Storing these encoded keys in OTS-PiN-capable storage al-
lows SiM’s SEARCH operation to perform exhaustive “fuzzy”
searches, with the ability to skip irrelevant attributes using
the instruction’s mask argument. Furthermore, quantization,
where a single value represents a subset or range of the actual
attribute domain, allows the use of logical AND-based instruc-
tions for rudimentary range-query support in key-matching.

Approximate Nearest-Neighbor Search: Another potentially
interesting data structure are binary sketches [33], [34]. They
are used to represent high-dimensional, non-relational objects,

5https://github.com/facebook/mysql-5.6/wiki/MyRocks-record-format

https://github.com/facebook/mysql-5.6/wiki/MyRocks-record-format


7

such as images or documents, with the goal to (approximately)
preserve the relative distances between different objects of a
database. Binary sketches therefore support workloads where
the task is to find objects that are most similar to a query
object. Usually, approximate Nearest-Neighbor strategies pur-
sue an “inverted” approach by partitioning a large database
of sketches, which allows to skip parts of the search space.
But at their core, they still rely on an exhaustive search step,
which is potentially executable with PiN. We discuss binary
sketches more in §VI-B.

C. Transparent Interfaces & Device Communication

When integrating PiN, a key consideration is how its
functionality can be made available to applications. A major
cost factor in modern device communication is the (block-
based) NVMe interface. Unlike DRAM, where requests are
transparently handled by the memory controller, I/O operations
require software to explicitly manage them, either through a
kernel module or a kernel-bypass library [35]. However, since
both approaches involve the CPU, they can introduce signif-
icant overhead. A more efficient alternative would be for the
device to manage follow-up requests internally. For example,
in the index applications discussed in §IV-B, shortening the
communication path could yield significant performance gains
compared to host-based communication.
CXL & Database Kernels: Approaches like Compute Ex-
press Link (CXL) 6 can offer a more efficient interface by
moving data transfer obligations to a dedicated controller. CXL
enables the exchange of memory between devices, the host,
and other platforms in a unified, (optionally) coherent way.
Beyond simply exchanging memory, it is possible to back
up memory ranges exposed via CXL not with actual physical
memory. Instead, accessing such a range would transparently
trigger a computation and dynamically generate the necessary
data. This concept, dubbed Database Kernels [30], allows ap-
plications to offer, for example, the same, physical data in both
a columnar or row-based representation. For more dynamic
operations, the host can, before access, expose operands of
the computation by using a different memory region, which is
coherently available to the device.

Such an interface may also be used to expose data in
PiN-capable memory to the host and/or an accelerator. For
example, one memory range may present a page containing a
set of search keys in their raw form for maintenance, i.e.,
writing the data into storage. Another (potentially smaller)
range contains the result of a PiN operation executed on the
very same page.

D. Open Challenges

The integration of PiN and CS presents numerous chal-
lenges. Here, we outline potential topics for further research.
Data Formats and Exchange Protocols: (PiN-backed) CS
represents a primary data source, which raises the question
on how results and meta-data will be exchanged. Or more
specifically, how are (intermediate) result sizes communicated

6https://computeexpresslink.org/

and which representation should results have? Do we apply
compression before transfer? When should tuple materializa-
tion happen, do the established wisdoms still apply? Can we
make use of existing works on accelerators?
Capability, how much is too much? Given its heterogeneity,
a system using PiN would require careful balance to properly
utilize all available resources. While filters are an obvious
candidate to push down, it may be tempting to augment storage
for increasingly more complex tasks, such as aggregations.
This is not just a matter of identifying proper operators.
E.g., a declarative interface would also require the ability to
optimize internally. For instance, at which granularity should
data be offered and how are requests scheduled internally?
Should a device keep (or even track) meta-data (e.g., attribute
distribution or usage patterns) to make informed decisions?

Answers to these questions (and others) will eventually
come down to power efficiency and affordability, i.e., $/TB.
Databases will have to find ways to disaggregate database
workloads to appropriately utilize increasingly more hetero-
geneous hardware architectures.

V. ERROR-ADAPTIVE DATA STRUCTURES

In §III-B, we discuss the limitations of relying on hardware
ECC and emphasize the importance of making applications
resilient to bit-flips. In this section, we argue that resilience
alone is not enough; data structures must also be error-
adaptive. Designing data structures to be both error-resilient
and adaptive not only enables efficient PiN processing, but
also provides benefits when they are queried on the CPU.
Varying Impact: Depending on the application, a single bit-
flip may have varying impact. For example, a flip in the less
significant bits of a floating-point representation usually has
much less severe consequences than a flip in the exponent.
Similarly, flips in pointers are more detrimental than in a
table integer and sometimes a crash is preferable over silent
data corruption. Further, the impact of a single bit-flip is
particularly severe in compact or highly compressed data
structures [28], where every bit carries a high amount of
information. In contrast, approximate or probabilistic data
structures are more suitable for coping with bit-flips, because
they can be designed and configured to account for “additional
sources of inaccuracy”.
Adaptive vs. Worst-Case: As discussed in §II-B, error rates
in different memory regions can vary significantly. Given
the error differences across layers of 3D-memory (see §II,
[3]), the common approach is to apply the strongest ECC
across the entire memory, targeting the least reliable regions.
However, this “worst-case approach” is costly and unscal-
able, as reliability discrepancies between layers are likely to
increase with continued scaling. On the other hand, since
current and historical error rates are often already available
to devices for wear-leveling and data scrubbing [36] and can
also be predicted [3], adaptive data structures can unlock many
potential optimization opportunities.
Benefits of Error-Adaptivity: With knowledge of error rates
across memory regions, software can make informed decisions
about data placement and data structure configuration [21]. For



8

0.0
01 0.0

1 0.10.0
02

0.0
03

0.0
04

0.0
05

0.0
06
0.0

07
0.0

08
0.0

09 0.0
2

0.0
3

0.0
4

0.0
5

0.0
6
0.0

7
0.0

8
0.0

9 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Bit-Flip Probability (p0 1)

10

5
6
78
9

20

Bi
ts

/E
le

m
en

t 1000 P/E 4000 P/E 8000 P/EtFP = 0.1, p1 0 = 0.0
tFP = 0.1, p1 0 = 0.1
tFP = 0.01, p1 0 = 0.0
tFP = 0.01, p1 0 = 0.1

Fig. 4. FPR-restricted (tFP) bits-per-element for a Bloom filter, given bit-flip probabilities p0→1 and p1→0. For reference, the vertical bars indicate the RBER
of an older flash chip from Micron for different P/E cycles, after retaining data for 64 days (reproduced from [3]).

example, Tian et al. [3] propose partitioning NAND blocks by
error levels, enabling SSD controllers to place “hot” pages
in regions requiring less error correction, thereby improving
latency for frequently accessed data. Similarly, applications
can exploit this knowledge to tailor the protection levels of
memory regions to specific reliability requirements, reduc-
ing the overhead of overprotection and improving efficiency
[37]. Aligning an application’s error tolerance levels with
the device’s varying error rates unlocks further optimization
potential:

• Tailored Maintenance: Error-tolerance levels specified by
applications can flow back to the controller to optimize
maintenance and data scrubbing, potentially increasing
the longevity of NAND memory. For example, scrubbing
a page may be delayed if its current error level is still
acceptable for a specific application, or the controller may
decide to skip scrubbing altogether, allowing the applica-
tion to recreate the data later. Similarly, applications may
continue using blocks that would otherwise have been
decommissioned based on general worst-case criteria.

• Domain-Specific Error-Correction: Applications may
employ their own domain-specific error-correction mech-
anisms, which can be more efficient than general-purpose
approaches [29]. This approach gives applications more
control over performance and storage overhead trade-offs,
allowing these decisions to be made before writing data,
rather than being fixed at design time by the manufacturer.

• Embracing Bit-Flips: Many probabilistic data structures,
as we will discuss in §VI-A and §VI-B, are inherently
error-resilient and can be queried directly without re-
quiring error correction (and its associated overhead). In
fact, the NVMe 1.4 standard introduces “Read Recovery
Levels,” an optimization that aligns with this approach.
This feature allows software to control the recovery effort
during reads to avoid long decoding latencies for aged
data pages and lets software RAID take over the recovery.
This feature can also be used to bypass recovery for data
that is known to be resilient.

VI. PIN-NATIVE DATA STRUCTURES

Bloom filters and binary sketches are probabilistic data
structures that can be queried without requiring complex in-

structions and, as we will demonstrate, are inherently tolerant
to bit-flips. Unlike many database indices, where bit-flips can
render the structure completely unusable, these data structures
degrade gracefully: query efficiency decreases proportionally
to the bit error rate rather than failing entirely. Furthermore,
both data structures contain a roughly uniform distribution
of zero and one bits, which coincides with the goal of data
scrambling, a measure employed by NAND-flash SSDs to
avoid data-dependent disturbance errors (see §II-B).

In this section, we first analyze the impact of bit-flips on
the efficiency and correctness of these data structures. We then
demonstrate how to optimize their parameters to adapt to the
changing error rates of the underlying memory, enabling the
realization of the optimization opportunities discussed in §V.

We use the following notation: Let p↑↓ denote the overall
error probability, p0→1 the probability of a flip from 0 to 1,
and p1→0 the probability of a flip from 1 to 0. We assume that
any bit within a page may flip independently of its physical
position and the state of other bits.

A. Bloom Filters

A Bloom filter is used to probabilistically answer set-
membership queries. It consists of a fixed-length bit-vector and
a set of independent, uniform hash-functions that each map to
positions in this vector. Elements are inserted by setting bits,
determined by applying the hash functions, to 1. To test for
membership, we first have to hash the query element and then
test if the corresponding subset of bits were set before. A
result may be “false-positive”, indicating membership despite
the element not actually being inserted before. See [38] for
an overview on Bloom filters. In terms of PiN operations, a
Bloom filter can be evaluated with a bit-wise-AND operation,
available by OTS-PiN approaches like SiM [4].

Due to the relatively small number of relevant bits, the
probability of encountering any bit-flip is relatively low. If
the query object is not part of the represented set, flips may
even be beneficial by turning a false-positive (where all bits
are set to 1 by chance) into a true-negative. On the flip-
side, if the query object actually is part of the set, flips may
introduce false-negative decisions, i.e., where one or more of
all considered bits flip from 1 to a 0, which causes the filter
to “miss” items.



9

Impact on Storage Cost: Usually, Bloom filters are designed
to not surpass a specified false-positive rate (FPR). Given a
fixed number of bits for the filter, this leads to a maximum
number of elements that can be inserted (“capacity”), before
this rate would be surpassed. For target FPR tFP, size of the
filter m and a number of hash-functions k, the maximum
capacity of a Bloom filter is n = − (m−1)

k ln
(
1− tFP

1/k
)
−0.5

[39]7. To account for bit-flip probabilities p1→0 and p0→1, the
number of hash-functions has to be set to (at least):

kopt =

⌈
ln(tFP)

ln(0.5) + ln(1− p1→0 + p0→1)

⌉
(1)

We refer to the appendix §A for a proof.
Plugging kopt into the capacity formula above yields the

“FPR-limited” capacity8. Observe that 0 → 1 flips increase the
FPR and 1 → 0 flips decrease it. As a result, both types cancel
each other out: If p1→0 = p0→1, Eq. (1) coincides with the
usual formula without errors and bit-flips have no impact at all
on the FPR of the filter. Or in other words, for every decision
that becomes false-positive due to bit-flips, a false-positive also
becomes true-negative. Without bit-flips, the optimal capacity
is usually associated with a uniform distribution of ones and
zeros in the filter, so a bias in either direction impacts capacity
(as determined by kopt) positively or negatively.

Quantifying Bit-Flip Impact: The upper limit to kopt and the
capacity formula gives us the tools to assess the robustness
of Bloom filters. We illustrate the impact of bit-flips on the
bits per element under false-positive restrictions in Fig. 4. For
growing 0 → 1 errors, the storage cost per element increases
eventually, or equivalently, the capacity decreases. But using
a larger k is not necessary until p0→1 is well above 0.01, a
value significantly higher than JEDEC’s 10−15. For example,
for tFP = 0.1 and p1→0 = 0, the very first jump (from k = 3
to k = 4) occurs at p0→1 ≈ 0.125, raising storage cost from
4.86 bits to 5.03 bits per element. Before, 0 → 1 errors do not
have any impact on the choice of k and therefore the (FPR-
limited) capacity, offering the same performance as a Bloom
filter in regular “error-less” memory. Further, 1 → 0 flips delay
the increase in bits per element. As indicated by the vertical
bars, these error ranges can be reached even by older memory
chips.

False-Negatives Guarantees: While 1 → 0 flips are beneficial
for the capacity of the filter, a newly-introduced, non-zero
false-negative rate impacts the quality of the actual result,
because actual members of the set can now be “overlooked”.
The false-negative rate is given by FNR = 1 − (1 − p1→0)

k,
which is the complement of the probability that none of the
1 bits flip. For applications that can tolerate a certain false-
negative rate of tFN, we can rearrange for k and identify an
upper limit to the number of hash-functions:

7This slightly modified version sacrifices “1 element and 0.5 bits” for a
more accurate estimate of the FPR (or, after rearranging, capacity) [39].

8Note that, due to hash collisions, the actual number of relevant bits may
be smaller than k, especially for very small k and m.

tFN = 1− (1− p1→0)
k

⇒ kmax =

⌊
ln(1− tFN)

ln(1− p1→0)

⌋
If kmax < kopt, the filter can not be build optimally. This

is because the optimal capacity can only be achieved with an
even chance of encountering a 0 or 1. To compensate, we may
add fewer elements in order to require fewer hash-functions
for the same FPR. We therefore speak of an “FNR-limited”
capacity.
Impact of False-Negatives: Although the introduction of
false-negatives is not acceptable for some applications, others
can tolerate it. In fact, across a wide range of applications
in distributed systems surveyed in [40], various Bloom filter
variants allow for false negatives. While introducing false
negatives may seem undesirable, it is often a necessary trade-
off in applications that require item deletion [41] or an
improved false-positive ratio [42].
Exploiting Error-Asymmetry: When p1→0 = p0→1, the
capacity is not FPR-limited, but may be FNR-limited. But with
a “one-sided” error we are able to exploit that 1 → 0 flips
increase both capacity and FNR. This allows, for example,
to strengthen correctness over capacity by inverting the bit-
interpretation of the bitmap of a Bloom-filter, if p1→0 ≥ p0→1.

SLC NAND allows to ensure a high asymmetry, i.e., to
make the error one-sided. This is possible because the largest
source of bit-flips today is electron leakage [14]. If there are
only two states to differentiate, cells can only drop once, from
the higher to the lower. In contrast, any substantial increase
of the cell charge is significantly less likely [14]. While being
more expensive, SLC is also overall less error prone, allows
faster read and write and offers more durability than, for
example, TLC NAND.
PiN Implementation: For applications, we envision a page
storing a whole set of Bloom filters, or parts thereof. Assuming
the example configuration for Chen et al.’s SiM [4], a 4KiB
page may consist of 512 many 64 bit words. A page may
then contain, for instance, the first 64 bits of a (potentially
longer) Bloom filter. For evaluation, a SEARCH instruction is
issued with a query element representing the (partial) result
of the hash-function evaluation. Matching the query with each
filter prefix results in a positive response, if all relevant bits
are set in both query and filter. Compared to a regular page
access, which requires transmitting the whole 4KiB page, only
the 512 bit result must be transmitted over the channel bus.
Results from multiple pages are combined with a logical AND,
potentially using an accelerator within the storage device.
Each bit in the final result then indicates if the input set
corresponding to the bit’s position did contain the query, or
not. Such a setup may find applications in large-scale analytics
file formats (e.g., Apache Parquet) or in Key-Value stores,
such as RocksDB, where separate indices are used for many
independent sets of elements.
Error-Adaptive Parametrization: As outlined above, the
optimal capacity depends on the bit-flip rate and essentially
dictates the number of hash functions and subsequently the



10

filter capacity. To illustrate, even the pages within the same
3D NAND block and written at approximately the same time
can have vastly different error levels that differ by up to one
order of magnitude [43]. Crucially, error rates are usually not
uniformly distributed and pages with extreme rates potentially
being outliers [43]. A page with an error above a certain
threshold will eventually drop in capacity (see Fig. 4). An
application may therefore under-utilize Bloom filters stored
across this block, if it calculates the maximum capacity based
on worst-case error rates. While this is less of an issue for
highly asymmetric error environments, overestimating 1 → 0
errors can lead to severe restrictions.

To illustrate, assuming p0→1 > p1→0 and tFP = tFN = 0.01,
classifying all pages in a block to have, say, a worst-case ratio
of p1→0 = 0.0034, restricts k to at most

⌊
ln(1−0.01)

ln(1−0.0034)

⌋
= 2.

With k = 2, the bits per element ratio in the worst case would
be m−1

n+0.5 = 18.98. If the actual probability is p1→0 = 0.002
or lower instead, k may be as large as 5, costing only 9.85
bits per element, a difference of factor 2. We therefore caution
against using worst-case assumptions to characterize NAND
flash errors.

Overall, we observe that Bloom filters are inherently tolerant
to one-sided bit-flip errors. Large errors can be compensated
for by sacrificing some some bits per element at extreme error
rates, i.e., adding fewer elements than usually possible. Lastly,
we point out that the dynamic nature of errors and deviation of
theoretical assumptions in real-world hardware require further
investigation.

B. Binary Sketches

Binary sketches are compact, fixed length bit vectors used
for similarity search and allow for efficient comparison of two
instances of a more complex, usually high-dimensional object,
such as images or documents. These sketches can be evaluated
by performing a bit-wise xor operation between a query bit
vector and the bit vector of an instance from the database,
followed by a popcnt to get their Hamming distance. This
is a basic building block for nearest neighbor search, which
relies on first identifying all elements that have a Hamming
distance below a certain threshold.

There are various methods for forming binary sketches, for
instance HIOB [33]. See [34] for a survey. Besides relying
on the Hamming distance, these methods usually share the
objective of achieving independence between bits, as well as
“balanced” bits, i.e., a uniform distribution of 0 and 1 bits.
The inherently approximate character of the search, as well
as a potential of the two types of bit-flips to negate each
other’s impact on the distance calculation, makes binary sketch
evaluation interesting for PiN.
Impact of Bit-Flips: We will now consider how bit-flip proba-
bilities affect the effectiveness and result quality of finding the
set {s | d(s, q) ≤ r}, or, in other words, the set of all neighbors
s that have Hamming-distance d of at most r to query-sketch q.
When any of the bits in a sketch flips, the resulting distance
to a query is either decreased or increased by 1, depending
on if the flipped bit now matches the corresponding bit or
not. Thus, for the distance to suddenly become smaller than

a given threshold r, decreases in distance must be more
numerous than increases. This implies that sketches with high,
actual distance are less likely to become neighbors due to
bit-flips. Still, with increasing (overall) bit-flip probability p↑↓
(the type of flip is irrelevant), more and more neighbors will
be “swapped-out” for (mostly not-too-distant) non-neighbors
(false-positives), while some actual neighbors may not be
found (false-negatives).

To illustrate this effect, Fig. 5 shows how p↑↓ affects
the distribution of actual distances in the result set, if we
filter according to the observed distances. We’ve shaded the
sufficiently-small-distances, i.e., true-positive neighbors, as
well as the 95%-percentile of the distances, to indicate the
actual distance most candidates will have in the result set.
With p↑↓ = 0, all distances are within the required threshold,
because observed and actual distance coincide. At a low rate
of bit-flips, candidates with actual distance larger than the
threshold may be selected, albeit with low chance and most
probably being only slightly more far away than r. Ultimately,
the distribution approaches the initial binomial distribution
with increasing error, indicating that the process eventually
degrades to a random sampling of candidates. We derive the
shown distribution in §B.

Error-Adaptive Parametrization: A single distance alter-
ation has less relative impact in a larger sketch. However,
considering more bits also increases the probability of encoun-
tering an error. To compensate for larger error, false-positives
can be filtered out in a later step, when the actual objects are
accessed and refined further. This allows to choose a less strict
threshold at the cost of additional post processing and larger
result size.

PiN Implementation: Following a similar processing schema
as for Bloom filters, a page may contain a sequence of
fixed-length sketches. But in contrast to Bloom filters, binary
sketches are more challenging to realize via PiN. One issue is
the need of a popcnt aggregation, which is harder to implement
than an equality test (see III-A). Further, transmitting the
result of one popcnt per word is also less power efficient,
because each result requires multiple bits. Instead, it would
be preferable to also incorporate the thresholding operation
into the circuit, which results in only one bit. Another issue
is the word size, which ideally coincides with the sketch
size. Smaller words would require adding up multiple popcnts
before thresholding can occur. Splitting the operation as well
is possible but introduces another source of errors. Moreover,
these modifications specialize the circuit further towards a
single application, potentially making it less universally ap-
plicable.

Overall, binary sketches can also tolerate significant error
rates before overlooking too many neighbors. A more detailed
evaluation of their suitability for implementation in PiN is left
for future research.

VII. CONCLUSION

Multi-core parallelism cannot offer a free lunch due to
inherently sequential portions in an algorithm (Amdahl’s law).
Nevertheless, it has provided a way forward when processor



11

Fig. 5. Distribution Pr(H0 | H ≤ r) for sketch size S = 128, selectivity 0.001 (i.e., threshold r = 51) and different bit-flip probabilities p↑↓.

frequency scaling stopped. Similarly, there is a need to find
an alternative to NAND flash bandwidth doubling, which, we
argue, should be Processing-in-NAND. However, its successful
integration requires identifying database functions that can
both be efficiently realized in hardware and are worthwhile
to “push down”. Further, the illusion of error-free memory
comes at substantial costs, such as pessimistic hardware ECC,
and may soon no longer be affordable. Databases will even-
tually need to promote error tolerance and the ever-increasing
hardware heterogeneity as first-class concerns in their design.
Beyond methods to detect and correct errors, embracing bit-
flips with resilient data structures may offer a way forward. We
find that bulk index evaluation using Bloom filters and binary
sketches presents a promising starting point for enabling PiN
and achieving better efficiency with error-conscious and error-
adaptive application design.

APPENDIX A
ERROR-DEPENDENT BLOOM FILTER CAPACITY

Let p1→1 := 1−p1→0 be the probability that a 1 is retained
and p[0] := 1 − p[1] the probability of an initial 0. Then, the
probability of observing a 1 after bits may have flipped is
p[1]

final = p[0]p0→1 + p[1]p1→1. The chance of a false-positive
is then equal to p[1]

finalk. For fixed bit-flip probabilities and a
target FPR tFP, this limits the number of hash-functions k that
we are allowed to employ from below. Note that the lowest,
inherent FPR (and thus maximum capacity) of a Bloom filter
is assumed if p[1] = p[0] = 0.5, which we will substitute in
the following. Rearranging for k yields:

p[1]
finalk ≤ tFP

k≥ ln(tFP)

ln((1− p1→0)p[1] + p0→1(1− p[1]))

k≥ ln(tFP)

ln(0.5 · ((1− p1→0) + p0→1))

⇒ kopt :=

⌈
ln(tFP)

ln(0.5) + ln(1− p1→0 + p0→1)

⌉
APPENDIX B

HAMMING DISTANCE DISTRIBUTION

Let S be the length of the binary sketch and H0, H ∈
[0, 1, . . . , S] denote the random variables for the actual (before
bit-flips) and the observed Hamming distance (after bit-flips),

respectively. Under the assumption of independent, uniformly
distributed bits of a random sketch from the database, H0 ∼
binom(0.5, S). Let N,M ∼ binom(p↑↓, S) be independent
random variables for the bit-flips that decrease or increase the
distance, respectively. We can then express the observed dis-
tance H as the sum of these variables, i.e., H = h0−N +M .
The probability of observing a specific distance of h, given an
actual distance of h0, is then:

Pr(H = h | H0 = h0) =

h0∑
n=0

Pr(N = n) · Pr(M = m)

·I(0 ≤ m ≤ S − h0)

where m = n+ h− h0 and the indicator function I drops
invalid sum terms for given n. The probability distribution of
H0 after filtering is then:

Pr(H0 = h0 | H ≤ r)

=

∑r
h=0 Pr(H0 = h0, H = h)

Pr(H ≤ r)

=

∑r
h=0 Pr(H = h | H0 = h0) · Pr(H0 = h0)∑r

h=0 Pr(H = h)

with Pr(H = h) =
∑S

ĥ0=0 Pr(H = h | H0 = ĥ0) ·
Pr(H0 = ĥ0).

REFERENCES

[1] T. Neumann and M. J. Freitag, “Umbra: A disk-based system with in-
memory performance,” in 10th Conference on Innovative Data Systems
Research, CIDR, Amsterdam, Netherlands, January 12-15, 2020.

[2] Z. Jiao, X. Zhang, H. Shin, J. Choi, and B. S. Kim, “The design and
implementation of a capacity-variant storage system,” in 22nd USENIX
Conference on File and Storage Technologies, FAST, Santa Clara, CA,
USA, February 27-29, 2024, pp. 159–176.

[3] H. Tian, J. Tang, J. Li, Z. Sha, F. Yang, Z. Cai, and J. Liao, “Modeling
retention errors of 3D nand flash for optimizing data placement,” ACM
Trans. Des. Autom. Electron. Syst., vol. 29, no. 4, Jun. 2024.

[4] Y.-C. Chen, Y.-H. Chang, and T.-W. Kuo, “Search-in-Memory: Reliable,
versatile, and efficient data matching in SSD’s NAND flash memory chip
for data indexing acceleration,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 43, no. 11, pp. 3864–
3875, 2024.

[5] A. Lerner and P. Bonnet, “Not your grandpa’s SSD: The era of co-
designed storage devices,” in International Conference on Management
of Data (ICDE), 2021, p. 2852–2858.



12

[6] J. Park, R. Azizi, G. F. Oliveira, M. Sadrosadati, R. Nadig, D. Novo,
J. Gómez-Luna, M. Kim, and O. Mutlu, “Flash-Cosmos: In-flash bulk
bitwise operations using inherent computation capability of NAND
flash memory,” in 55th International Symposium on Microarchitecture
(MICRO), 2022, pp. 937–955.

[7] M. Chun, J. Lee, S. Lee, M. Kim, and J. Kim, “PiF: in-flash acceleration
for data-intensive applications,” Proceedings of the 14th ACM Workshop
on Hot Topics in Storage and File Systems, 2022.

[8] H.-W. Hu, W.-C. Wang, C. K. Chen, Y.-C. Lee et al., “A 512Gb in-
memory-computing 3D-NAND flash supporting similar-vector-matching
operations on edge-ai devices,” 2022 IEEE International Solid- State
Circuits Conference (ISSCC), vol. 65, pp. 138–140, 2022.

[9] H.-W. Hu, W.-C. Wang, Y.-H. Chang, Y.-C. Lee, B.-R. Lin, H.-M. Wang,
Y.-P. Lin, Y.-M. Huang, C.-Y. Lee, T.-H. Su, C.-C. Hsieh, C.-M. Hu, Y.-
T. Lai, C.-K. Chen, H.-S. Chen, H.-P. Li, T.-W. Kuo, M.-F. Chang, K.-C.
Wang, C.-H. Hung, and C.-Y. Lu, “ICE: An intelligent cognition engine
with 3D nand-based in-memory computing for vector similarity search
acceleration,” in 55th International Symposium on Microarchitecture
(MICRO), 2022, pp. 763–783.

[10] C. Liu, J. B. Kotra, M. Jung, M. T. Kandemir, and C. R. Das,
“SOML read: Rethinking the read operation granularity of 3D NAND
SSDs,” in 24th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS) , April 13-
17, 2019, pp. 955–969.

[11] S. S. Kim, S. K. Yong, W. Kim, S. Kang, H. W. Park, K. J. Yoon,
D. S. Sheen, S. Lee, and C. S. Hwang, “Review of semiconductor flash
memory devices for material and process issues,” Advanced Materials,
vol. 35, no. 43, p. 2200659, 2023.

[12] “Nand flash density race,” https://www.trendforce.com/news/2024/06/27/news-
outpacing-samsung-or-the-end-of-race-kioxia-eyes-1000-layer-nand-by-
2027/, 2024, accessed: 2024-07-22.

[13] T. O. Page, “The impact of SLC cache in performance of an NVMe SSD:
Benchmarks and results,” August 2024, accessed: 2024-11-25. [Online].
Available: https://theoverclockingpage.com/2024/08/23/the-impact-of-
slc-cache-in-performance-of-an-nvme-ssd-benchmarks-and-results

[14] Y. Cai, S. Ghose, E. F. Haratsch, Y. Luo, and O. Mutlu, “Error
characterization, mitigation, and recovery in flash-memory-based Solid-
State Drives,” Proc. IEEE, vol. 105, no. 9, pp. 1666–1704, 2017.

[15] M. Ye, Q. Li, Y. Lv, J. Zhang, T. Ren, D. Wen, T. Kuo, and C. J. Xue,
“Achieving near-zero read retry for 3D NAND flash memory,” in 29th
International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 2 (ASPLOS), La Jolla, CA,
USA, 27 April - 1 May 2024, pp. 55–70.

[16] JEDEC Solid State Technology Association, “Failure Mechanisms and
Models for Semiconductor Devices,” Tech. Rep. JEP122H, Sept 2016.

[17] H. Esmaeilzadeh, E. R. Blem, R. S. Amant, K. Sankaralingam, and
D. Burger, “Dark silicon and the end of multicore scaling,” IEEE Micro,
vol. 32, no. 3, pp. 122–134, 2012.

[18] T. Shiozawa, H. Kajihara, T. Endo, and K. Hiwada, “Emerging usage
and evaluation of low latency flash,” in International Memory Workshop
(IMW), 2020, pp. 1–4.

[19] N. Choi and J. Kim, “Modeling and simulation of nand flash memory
sensing systems with cell-to-cell vth variations,” in International Con-
ference On Computer Aided Design (ICCAD), 2020.

[20] Z. Yue, H. Wang, J. Fang, J. Deng, G. Lu, F. Tu, R. Guo, Y. Li,
Y. Qin, Y. Wang, C. Li, H. Han, S. Wei, Y. Hu, and S. Yin, “Exploiting
similarity opportunities of emerging vision ai models on hybrid bonding
architecture,” in 2024 ACM/IEEE 51st Annual International Symposium
on Computer Architecture (ISCA), 2024, pp. 396–409.

[21] M. Patel, T. Shahroodi, A. Manglik, A. G. Yaglikçi, A. Olgun, H. Luo,
and O. Mutlu, “Rethinking the producer-consumer relationship in mod-
ern dram-based systems,” CoRR, vol. abs/2401.16279, 2024.

[22] D. Kim, J. Lee, W. Jung, M. B. Sullivan, and J. Kim, “Unity ECC:
unified memory protection against bit and chip errors,” in International
Conference for High Performance Computing, Networking, Storage and
Analysis (SC), Denver, CO, USA, November 12-17, 2023, pp. 48:1–
48:16.

[23] R. Wu, S. Zhou, J. Lu, Z. Shen, Z. Xu, J. Shu, K. Yang, F. Lin, and
Y. Zhang, “Removing obstacles before breaking through the memory
wall: A close look at HBM errors in the field,” in USENIX Annual
Technical Conference (ATC), Santa Clara, CA, USA, July 10-12, 2024,
pp. 851–867.

[24] J. Gómez-Luna, I. E. Hajj, I. Fernandez, C. Giannoula, G. F. Oliveira,
and O. Mutlu, “Benchmarking a new paradigm: An experimental anal-
ysis of a real processing-in-memory architecture,” 2022.

[25] H. Cilasun, S. Resch, Z. I. Chowdhury, M. Zabihi, Y. Lv, B. Zink,
J. Wang, S. S. Sapatnekar, and U. R. Karpuzcu, “On error correction

for nonvolatile Processing-In-Memory,” in 51st Annual International
Symposium on Computer Architecture (ISCA), Buenos Aires, Argentina,
June 29 - July 3, 2024, pp. 678–692.

[26] S. Jaffer, S. Maneas, A. A. Hwang, and B. Schroeder, “The reliability
of modern file systems in the face of SSD errors,” ACM Trans. Storage,
vol. 16, no. 1, pp. 2:1–2:28, 2020.

[27] M. Böhm, W. Lehner, and C. Fetzer, “Resiliency-aware data manage-
ment,” Proc. VLDB Endow., vol. 4, no. 12, pp. 1462–1465, 2011.

[28] T. Kolditz, D. Habich, W. Lehner, M. Werner, and S. T. de Bruijn,
“AHEAD: Adaptable data hardening for on-the-fly hardware error
detection during database query processing,” in International Conference
on Management of Data, New York, NY, USA, 2018, p. 1619–1634.

[29] T. Kolditz, T. Kissinger, B. Schlegel, D. Habich, and W. Lehner, “Online
bit flip detection for in-memory b-trees on unreliable hardware,” in
10th International Workshop on Data Management on New Hardware
(DaMoN), New York, NY, USA, 2014.

[30] S. Lee, A. Lerner, P. Bonnet, and P. Cudré-Mauroux, “Database kernels:
Seamless integration of database systems and fast storage via CXL,”
in 14th Conference on Innovative Data Systems Research (CIDR),
Chaminade, HI, USA, January 14-17, 2024.

[31] A. Lerner and G. Alonso, “Data flow architectures for data processing
on modern hardware,” in 40th International Conference on Data Engi-
neering (ICDE), 2024, pp. 5511–5522.

[32] F. Yang, A. Kale, Y. Bubnov, L. Stein, Q. Wang, M. H. Kiapour, and
R. Piramuthu, “Visual search at eBay,” in 23rd SIGKDD International
Conference on Knowledge Discovery and Data Mining, Halifax, NS,
Canada, August 13 - 17, 2017, pp. 2101–2110.

[33] E. Thordsen and E. Schubert, “An alternating optimization scheme for
binary sketches for cosine similarity search,” in Similarity Search and
Applications - 16th International Conference, SISAP 2023, A Coruña,
Spain, October 9-11, ser. Lecture Notes in Computer Science, vol.
14289. Springer, 2023, pp. 41–55.

[34] D. Rachkovskij, “Index structures for fast similarity search for binary
vectors,” Cybernetics and Systems Analysis, vol. 53, pp. 799–820, 2017.

[35] G. Haas and V. Leis, “What modern nvme storage can do, and how to
exploit it: High-performance I/O for high-performance storage engines,”
Proc. VLDB Endow., vol. 16, no. 9, pp. 2090–2102, 2023.

[36] Q. Li, M. Ye, Y. Cui, L. Shi, X. Li, T.-W. Kuo, and C. J. Xue, “Shaving
retries with sentinels for fast read over high-density 3D flash,” in 53rd
Annual International Symposium on Microarchitecture (MICRO), 2020,
pp. 483–495.

[37] Y.-C. Chen, C.-F. Wu, Y.-H. Chang, and T.-W. Kuo, “Zonelife: How
to utilize data lifetime semantics to make SSDs smarter,” IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems,
vol. 42, no. 8, pp. 2488–2499, 2023.

[38] L. Luo, D. Guo, R. T. B. Ma, O. Rottenstreich, and X. Luo, “Optimizing
bloom filter: Challenges, solutions, and comparisons,” IEEE Commun.
Surv. Tutorials, vol. 21, no. 2, pp. 1912–1949, 2019.

[39] A. Goel and P. Gupta, “Small subset queries and bloom filters using
ternary associative memories, with applications,” in SIGMETRICS In-
ternational Conference on Measurement and Modeling of Computer
Systems, New York, New York, USA, 14-18 June, 2010, pp. 143–154.

[40] S. Tarkoma, C. E. Rothenberg, and E. Lagerspetz, “Theory and practice
of bloom filters for distributed systems,” IEEE Communications Surveys
& Tutorials, vol. 14, no. 1, pp. 131–155, 2012.

[41] D. Guo, Y. Liu, X. Li, and P. Yang, “False negative problem of counting
bloom filter,” IEEE Transactions on Knowledge and Data Engineering,
vol. 22, no. 5, pp. 651–664, 2010.

[42] B. Donnet, B. Baynat, and T. Friedman, “Retouched bloom filters:
allowing networked applications to trade off selected false positives
against false negatives,” in Conference on Emerging Network Experiment
and Technology, CoNEXT, Lisboa, Portugal, Dec. 4-7, 2006, p. 13.

[43] Q. Li, L. Shi, Y. Cui, and C. J. Xue, “Exploiting asymmetric errors for
LDPC decoding optimization on 3D NAND flash memory,” IEEE Trans.
Computers, vol. 69, no. 4, pp. 475–488, 2020.

https://theoverclockingpage.com/2024/08/23/the-impact-of-slc-cache-in-performance-of-an-nvme-ssd-benchmarks-and-results
https://theoverclockingpage.com/2024/08/23/the-impact-of-slc-cache-in-performance-of-an-nvme-ssd-benchmarks-and-results

	Introduction
	The End of NAND Performance Scaling
	Understanding Performance
	Errors in NAND Flash
	Scaling Bandwidth & Dark NAND

	Near-Data Processing is Not Enough
	Processing-in-NAND
	Processing in Unreliable Memory

	Processing-in-NAND for Database Processing
	No Singular Solution
	PiN for Secondary Indexing
	Transparent Interfaces & Device Communication
	Open Challenges

	Error-Adaptive Data Structures
	PiN-native Data Structures
	Bloom Filters
	Binary Sketches

	Conclusion
	Appendix A: Error-Dependent Bloom Filter Capacity
	Appendix B: Hamming Distance Distribution
	References

