
Software-Based Prefetching: How Much Can It Buy?
Roland Kühn

roland.kuehn@cs.tu-dortmund.de
TU Dortmund University

Jan Mühlig
jan.muehlig@tu-dortmund.de

TU Dortmund University

Jens Teubner
jens.teubner@cs.tu-dortmund.de

TU Dortmund University

ABSTRACT
Software-based prefetching is an effective method for tolerating
one of the most formidable barriers encountered by data processing
systems: memory latency. Although the idea appears simple—just
inform the CPU about upcoming data accesses—the intricacies of its
implementation remain insufficiently understood. Existing works
demonstrate how algorithms need to be prepared for prefetching,
yet they often overlook the limitations and hardware implications of
bringing data into the cache hierarchy. In this paper, we thoroughly
examine software-based prefetching by delving into its implementa-
tion and identifying pitfalls across various platforms. Furthermore,
we provide actionable insights and recommendations for developers
seeking to boost their applications through this technique.

1 INTRODUCTION
Memory bandwidth and latencies present one of the highest barri-
ers on the way to system performance optimization. While many
steps have been made to increase the DRAM bandwidth, latency im-
provements have hit a plateau, leaving a chasm between potential
and realized system speed. And new memory technologies, such as
high-bandwidth and non-volatile memory, bring along heightened
access penalties, up to hundreds of nanoseconds. Trying at least
to tolerate these latencies, hardware manufacturers deploy huge
caches and implement sophisticated hardware prefetching mecha-
nisms. However, the reliance on hardware alone quickly reaches
its limit when non-trivial access patterns cannot be detected by
hardware. Navigation through tree and hash data structures are
prime examples of this limitation.

Software-based prefetching promises to overcome this situation:
Applications can proactively hint to the CPU about upcoming data
accesses, which are hard to predict by only monitoring the access
stream. Typically, these hints are communicated via specific in-
structions embedded within modern ISAs such as x86 and ARMv8.
Particularly in the context of trees and hash tables, many studies
have underscored the significant potential that software prefetch-
ing holds (e.g. [5, 9, 12, 18, 21, 22]). However, the discourse often
overlooks the incurred costs, specific limitations, and hardware
implications across different platforms. We argue that in the future
it will be even more important to understand and assess software
prefetching in order to optimize data-intensive systems. The trend
in Figure 1 backs up our reasoning, demonstrating that the potential
of software-based prefetching over random access has increased
dramatically over the past few years—and with an eye on the often
cited memory wall, we expect the trend to continue.

Hence, this survey conducts an in-depth examination of software-
based prefetching. We study how the technique is implemented in
various systems and turn our insights into guidance for developers
seeking to optimize their applications using software prefetching.
To that end, Section 2 recaps software prefetching from what we
found in the literature. In Section 3 we utilize a micro-benchmark to

2012 2014 2016 2018 2020 2022 2024
Year

1x

2x

3x

4x

5x

Im
pr

ov
em

en
tb

y
SW

-P
re

fe
tc

hi
ng

(o
ve

rR
an

do
m

Ac
ce

ss
)

Sandy Bridge

Haswell Skylake

Cascade Lake

Sapphire Rapids

Cortex-A53

Cortex-A72
Cortex-A73

Cortex-A76

Zen 1
Zen 2

Zen 4

Intel ARM AMD

Figure 1: Benchmark accessing individual cache lines—
software-prefetched vs. randomly. We see an emerging trend
developing across different CPU manufacturers and gener-
ations: an accelerated performance is achieved by software
prefetching.

reveal the true costs and limitations of executing prefetch instruc-
tions and show how prefetchers from hard and software can work
collaboratively. Section 4 demonstrates that our insights are truly
valuable for widely-used data structures. Finally, we summarize in
Section 5.

2 UNDERSTANDING SOFTWARE
PREFETCHING

At first glance, the concept of software-based prefetching is seem-
ingly straightforward: data accesses, which are challenging or un-
feasible for the hardware to predict, can be communicated to the
CPU via specific instructions. Accesses within data structures that
suffer from indirect accesses are good examples, such as linked lists,
queues, hash tables, and trees. Based on these hints, the underlying
hardware substrate can move data asynchronously into a cache
close to the CPU to minimize the access latency—hiding the actual
latency behind computational work.

2.1 Utilize Software Prefetching
However, formulating such predictions is often cumbersome. Con-
sider the traversal through a tree-like data structure: The immediate
succession of identifying and accessing a node leaves negligible
time for the hardware to load the data; even if the software pro-
vides a hint about the soon-to-be-accessed tree node. In order to
create a (sufficient) temporal gap between pinpointing the next
node and accessing it, the literature explores various methods. One
approach uses asynchronous control flow abstractions, such as
coroutines [9, 12, 22, 27] and fine-grained tasks [21], which facilitate
prefetching and computation in parallel. An earlier concept pro-
poses processing operations in groups of multiple items to overlay

1



Roland Kühn, Jan Mühlig, and Jens Teubner

the prefetch of one item with the compute of others [5]. In addition,
the discussion over the strategic implementation of optimization
passes to automatically inject prefetch instructions into compiler-
generated code has been ongoing for decades (e.g., [3, 11, 16, 20]).

Not only redesigning algorithms and data structures plays a
decisive role in the efficient use of software prefetching, but the
instruction must also be issued at the appropriate moment [11].
When software executes the prefetching instruction too early before
the actual access, the data may have been already evicted from
the cache when needed. Conversely, if prefetched too late, the
data might not be transferred to the cache completely, potentially
causing the CPU to wait. Accurate prefetch timing necessitates
careful understanding of both the execution time of the instructions
preceding the actual load and the system’s memory latencies [3, 20].
However, the presence of intricate memory systems like NUMA and
high-bandwidth memory, as well as the increasing sophistication of
CPUs, which now feature out-of-order execution and superscalar
architectures, exacerbate the complexity of achieving precise timing.
A promising method to address these challenges is the adoption of
profile-guided strategies [11].

2.2 Lifecycle of a Prefetch
Almost all modern server and desktop platforms offer several prefetch
instructions to target different levels of the cache hierarchy. Notably,
each instruction will initiate the transfer for one cache line. The
implementation on various hardware systems has only slight varia-
tions, even across different vendors. When the software executes a
prefetch, the logical address to be prefetched is firstly translated
into a physical one. This procedure happens synchronously, i.e.,
if the translation is not cached within the Translation Lookaside
Buffer (TLB), the CPU will contact a Page Miss Handler (PMH)
before continuing the execution of the prefetch instruction. We
visualize the lifecycle of prefetch requests through the memory
subsystem in Figure 2.

Once the physical address is known and the request misses the
L1 data cache (L1d), the CPU will initiate the transfer from mem-
ory to caches asynchronously. To that end, the L1d cache requests
the cache line through the Line Fill Buffer (LFB) (or Miss Address
Buffer (MAB) on AMD platforms1). As the name implies, the LFB is
a buffer-like structure that interfaces between the L1d and L2 cache
to communicate requests on a cache-line granularity [4, 24, 25]. For
every cache line that misses the L1d, the CPU allocates a slot in the
LFB. The L2 cache, on the opposite end, retrieves and delivers the
requested lines. This nature makes it straightforward to implement
asynchronous prefetches: The desired cache line will not cause the
instruction to wait until the data is transferred into the cache but
only until the miss is communicated to the LFB. Furthermore, the
LFB enables the CPU to handle several pending requests simultane-
ously without blocking a single one, hence supporting out-of-order
execution and performing micro-optimizations like merging mul-
tiple requests to the same cache line [25]. When the request also
misses the L2 cache, it seeks the data from even lower cache levels
or main memory. On Intel platforms, the superqueue [13]—a buffer
positioned between the L2 and off-core last-level caches (LLCs)—
tracks pending requests.

1For the sake of simplicity, we only ever refer to the LFB, but also intend the MAB.

prefetchXX [0xA]

dTLB L1d LFB L2 off-core

NTA
T0

T1/T2

synchronous
asynchronous

Figure 2: Lifecycle of various prefetch instructions through
the memory subsystem.

Upon the completion of a memory request, the specific software
prefetch instruction used dictates how close the data is brought
to the CPU. In the x86 and ARM ISAs, most prefetch instructions
clearly specify the cache level target for the fetched data: Cache
lines fetched by prefetcht1 (and its counterpart pldl2keep on
ARM) are stored in the L2 cache; prefetcht0 (pldl1keep on ARM)
moves data further into the L1d, thereby passing through the LFB.
The prefetcht2 instruction is generally aimed to fetch data into
the LLC. However, recent Intel platforms (since Skylake) implement
the LLC as a non-inclusive victim cache—here, the data is placed
into the L2 instead. Conversely, for the non-temporal prefetchnta
instruction, the x86 ISA does not specify a particular cache target
but only the objective: reducing cache pollution for data that will
be accessed nonrecurring.

AMD’s documentation for earlier processor generations (e.g.,
Bulldozer [7]) specifies that the prefetchnta pulls data into the
L1d and ensures it is not evicted to the L2 cache unless it originated
from there. For later generations (i.e., for Zen), the documentation
no longer mentions the exact cache destination but merely states
that the L2 is bypassed when evicting non-temporal data. Intel, in
contrast, specifies also for modern plattforms that non-temporal
prefetches move data into the L1d and into the LLC, if the LLC is
inclusive [10]. Importantly, both Intel and AMD note that these
non-temporally prefetched cache lines are prioritized for quicker
eviction [8, 10].

2.3 Limitations
Modern platforms exhibit two notable limitations in the imple-
mentation of software prefetches. First, the execution of a single
prefetch instruction stalls until the virtual address is translated
into a physical address. Although the TLB might accelerate this
process, it must be assumed that most prefetched addresses are not
present in the TLB as software prefetching is primarily used when
the application accesses scattered data objects. Consequently, the
latency of the prefetch instruction is dominated by the latency of
the PMH performing a page-table walk to translate the address.
However, this restriction only applies to the initial prefetch op-
eration within a memory page, whenever several prefetches are
performed consecutively to load a block larger than a single cache
line. While hardware indeed implements also prefetchers for ad-
dress translations [26], the software is only capable of preloading
data.

Drawing from that obersavtion, it seems advantageous to apply
prefetching to larger data regions by executing multiple instruc-
tions. However, this might trigger a secondary limitation: Due to
the limited number of LFB entries (typically between 3 and 24), the
hardware can accommodate only a small number of outstanding
memory requests. If an excessive volume of prefetch requests is

2



Software-Based Prefetching: How Much Can It Buy?

sent out rapidly, the LFB becomes filled and cannot accept further
requests. Under this circumstance, the CPU will either stall until
an LFB slot becomes ready or—according to Intel’s documenta-
tion [10]—drop new prefetch requests.

3 SOFTWARE PREFETCHES UNDER THE
MAGNIFYING GLASS

To our surprise, these limits have only been studied in depth to
a limited extent, although the technique is put to use by several
applications in both research (e.g., [5, 9, 12, 18, 19, 22]) and “the
real world” (e.g., TCMalloc). More than a decade ago, Lee et al.
investigated both hardware and software prefetching in the con-
text of widely used applications [14]. In this chapter, we aim to
expand upon their foundational research, delving deeper into the
nuances of software prefetching. We carefully analyze the costs and
implications involved on modern platforms and further examine
the synergies between software prefetching and modern hardware
prefetchers.

3.1 Micro-Benchmark
To that end, we utilize a micro-benchmark that aligns with conven-
tional latency and throughput benchmarks: We employ two arrays,
one array dictating the order in which the second data array is
accessed. The data within this second array is organized as blocks;
for different experiments we vary the size of the blocks from one to
several cache lines. Each block’s data is accessed sequentially. To
introduce work behind which we can hide memory latencies with
prefetching, we split each cache line into an array of 32-bit integers
and compute hash values (a total of 568 instructions per cache line).
While we will evaluate a number of different hardware platforms to
ensure a broad understanding, we will primarily focus on an Intel
Xeon Gold 6226 CPU (Cascade Lake) for illustrative purposes. On
this specific platform, the micro-benchmark’s raw processing time
for a single cache line is approximately 193 cycles. All the following
experiments are single-threaded.

3.2 Quantifying the Costs
So far, the precise costs associated with injecting additional prefetch
instructions remain undetermined. Our examination identifies three
principal cost factors incurred during execution: the CPU’s re-
tirement of the instruction, the translation of the address to be
prefetched into a physical one, and the allocation of a slot in LFB.
Pinpointing the exact source of costs caused by the prefetch instruc-
tion remains an intricate challenge. To gain a deeper understanding,
we assess the difference in compute cycles between a sequential
execution and one that accesses data randomly but uses software
prefetching. Thanks to the efficiency of the hardware’s data and
TLB prefetchers, the sequential execution encounters almost no
stalls, thereby revealing the pure computational cycles of our work-
load.

Execution and Address Translation. For our first experiment, we con-
figure our micro-benchmark to use blocks of only one cache line,
accessing all cache lines in random order. By utilizing performance
counters, we can categorize the consumed cycles into compute-
related and stalled cycles. Furthermore, we can dissect the stalled

4K 2M 1G
memory page size

0

10

20

30

40

50

60

ov
er

he
ad

(c
yc

le
s/

ca
ch

e
lin

e)

PRF NTA
PRF T1
PRF T0

non-stalling cycles
memory stalled cycles
other stalled cycles

Figure 3: Breakdown of CPU cycles associated with a single
prefetch for different memory page sizes and instructions.

cycles into two subsets: those occurring due to memory waiting
times (using the CYCLE_ACTIVITY.STALLS_MEM_ANY counter) and
“other” stalls (tracked via CYCLE_ACTIVITY.STALLS_TOTAL2). Fig-
ure 3 presents the results, showing the cycle overhead (beyond the
sequential execution) while prefetching single cache lines by soft-
ware using different memory page sizes. With “common” 4 kB-sized
pages, we can observe that a single prefetch induces an additional
approx. 60 CPU cycles, most of them related to stalls of unidentifi-
able sources.

Remarkably, the major amount of these additional cycles di-
minishes when utilizing Hugepages, simultaneously reducing the
number of TLB misses. This observation leads us to deduce that
these cycles are primarily caused by stalls while translating the
address to prefetch, which is in line with further TLB-focused stud-
ies [17]. Only the prefetcht1 instruction, which directs data into
the L2 cache, incurs minimal overhead of up to 9 cycles, even when
Hugepages are used. However, the translation (and its related costs)
is somewhat inevitable and occurs throughout workloads with ran-
dom and scattered access patterns; it is only moved forward in time
by the execution of the prefetch instruction (and thus associated
with the prefetch instead of the actual data access). The reason
for stalling lies in the handling of TLB misses during the prefetch
execution, which is always processed synchronous—compelling the
CPU to wait while the PMH takes action. Conversely, the actual
data cache misses are processed asynchronously with the assistance
of the LFB. Note that also memory stalls experience a slight de-
crease using Hugepages since the PMH can also cause data cache
misses.

While the precise categorization of cycles is only possible on a
few CPU architectures, we see similar patterns on different CPUs
across different hardware manufactures, like Intel, AMD, and ARM,
and architectures (in fact, across all CPUs listed in Figure 1). For
instance, on an Intel platform from the Sandy Bridge series, we
note a comparable overhead using 4 kB memory pages and only 3
cycles of overhead with the adoption of Hugepages. Conversely, on
contemporary AMD platforms (Zen 4), the observed overhead is
around 40 cycles for 4 kB pages and ranges from 7 (for prefetchnta
and prefetcht0 instructions) to 14 cycles (for prefetcht1) when
utilizing Hugepages.

2Note that the STALLS_TOTAL number already includes memory stalls; thus, it is
necessary to subtract the latter.

3



Roland Kühn, Jan Mühlig, and Jens Teubner

4K 2M 1G
memory page size

0
5

10
15
20
25
30
35
40

ov
er

he
ad

(c
yc

le
s/

ca
ch

e
lin

e)

PRF NTA
PRF T1
PRF T0

non-stalling cycles
memory stalled cycles
other stalled cycles

(a) Overhead in cycles

1 6 11 16
cache line

0

100

200

300

400

la
te

nc
y

(c
yc

le
s)

single samples
average latency

(b) Sampled prefetch-latencies for
1 GB Hugepages

Figure 4: Results of the micro-benchmark using 16 cache
lines per block.

Line Fill Buffer. Prefetches—and loads in general—missing the L1d
are forwarded via the LFB to the lower memory subsystem. The
capacity of these buffers is quite limited: Intel’s architectures pro-
vide 10 (e.g., Sandy Bridge and Haswell [10]) to 16 (e.g., Golden
Cove [10]) LFB slots, while modern AMD CPUs (like Zen 4) offer
up to 24 MAB entries. When the LFB is at full capacity, no new
prefetch or load requests can be accepted, causing the CPU to stall
until slots become available as previous requests are completed by
the L2 cache. Since the software-prefetch instruction allocates a slot
synchronously, prefetching large data blocks at once (e.g., an entire
tree node) can exceed the buffer’s capacity, leading to increased
latency when issuing the instruction.

However, precisely breaking down the overhead for LFB-related
stalls is not as straightforward as for address translation-related
costs since these stalls only occur for requests that flood the buffer—
thus, not all prefetches are impacted equally. To still get an im-
pression, Figure 4 shows the results of a scenario where our micro-
benchmark prefetches blocks of 16 cache lines at once. More pre-
cisely, Figure 4a shows the average additional cycles per cache line
in such an execution over a sequential one (analogously to the com-
parison for single-line blocks in Figure 3). With 4 kB memory pages,
the illustrated overhead includes both TLB miss penalties and LFB-
related stalls, ranging around 35 additional cycles per prefetch. How-
ever, utilizing 1 GB Hugepages eliminates almost all translation-
related stalls, leaving approx. 20 stalled cycles per cache line, which
we associate with the waiting times for an available LFB slot. To
back this further, we also evaluated the number of requests find-
ing an already full LFB (via the counter L1D_PEND_MISS.FB_FULL),
which increases from almost zero (when prefetching a single cache
line) to 1.2 per cache line when prefetching a block of 16 cache
lines.

Again, the stalled cycles demonstrated in Figure 4a are an aver-
age over all cache lines of an entire block; but not all prefetches
experience identical costs. Delving deeper, Figure 4b dissects the
mean latency in cycles for each prefetched cache line within a
block when utilizing 1 GB Hugepases. We recorded these results
using address sampling via the perf interface [1]. Notably, there
is a marked latency escalation starting from the eleventh cache
line, where the average latency values leap from 7 to a range of
200 – 340 cycles. This pattern suggests that the underlying Cascade
Lake architecture has exactly 10 LFB slots, which is in line with
(unofficially published [2]) numbers for the very similar Skylake

architecture. Furthermore, we verified these observations on Intel
Sandy Bridge and Haswell systems, which officially have 10 LFB
slots, showcasing similar latency patterns as depicted in Figure 4b.
Similarly to the previous benchmarks, we can confirm results com-
parable to Figure 4a on AMD’s Zen 4, which does not enable cycle
breakdowns, by utilizing the “common” cycle counter. However,
evaluating the latter hardware necessitates prefetching 32 cache
lines to notice a similar latency pattern, reflecting the MAB’s larger
capacity of 24 slots.

Discussion. Based on our findings, we conclude that the execution of
prefetch instructions causes only negligible pressure on the CPU’s
instruction bandwidth. Most of the costs associated with a single
prefetch instruction are attributable to the (unavoidable) penalties
of TLB misses. Mitigating these costs demands hardware-level sup-
port, such as adopting larger memory page sizes. Looking ahead, an
ideal advancement would be the implementation of asynchronous
translation mechanisms, allowing prefetch operations to proceed
without stalling. Additionally, the introduction of a specialized in-
struction to prefetch address translations could significantly stream-
line the process. To circumvent expensive LFB stalls (see Figure 4),
prefetching algorithms have to be implemented very carefully (see
details in Section 4 below). It is essential to consider the LFB’s ca-
pacity, which not only varies across hardware manufacturers but
also between different generations—requiring hardware conscious
implementations. For instance, AMD’s architectures use up to 24
slots, whereas the latest Intel architectures support up to 16.

3.3 Interplay with Hardware Prefetchers
We saw that software prefetching has its limits when it is necessary
to prefetch large data blocks. To circumvent this limitations and
associated costs, a collaboration between software and hardware
prefetching emerges as a promising solution, forming a symbiotic
relationship: Software prefetching takes the initial step by early
hinting about unpredictable data accesses; hardware prefetchers can
take over, incrementally fetching the remaining data line by line. In
this section, we delve into their cooperative dynamics, emphasizing
how strategic software prefetching trains hardware prefetchers
beyond the typical dependence on load misses. This could enhance
the efficiency of range scans in tree structures, for instance.

Hardware Prefetcher Patterns. In our in-depth analysis, we concen-
trate on Intel processors, which offer valuable insights into prefetch-
ing dynamics by facilitating the sampling of data addresses and ac-
cess latencies through the Linux perf interface [1]. Intel implements
multiple core-local prefetchers that serve the L1 and L2 caches
across both modern and legacy processor generations [10, 23]. The
L1d prefetchers monitor load streams within a single cache line,
subsequently requesting the next line. Meanwhile, L2 prefetchers
study the patterns of cache line requests traversing through the
L2 cache. Here, the stream prefetcher initiates prefetches based on
a sequence of consecutive cache line requests, while the adjacent
prefetcher consistently loads a pair of neighboring cache lines at
once. This architectural design prompts two critical lines of inquiry:
Do software and hardware prefetchers have any interaction? If yes,
what are the impacts of different prefetch instructions?

4



Software-Based Prefetching: How Much Can It Buy?

1 2 4 6 8 10 12 14 16
cache line

0

200

400

600
la

te
nc

y
(c

yc
le

s) random
sw-pref. 8 lines
sw-pref. 10 lines
sw-pref. 12 lines

Figure 5: Prefetching several cache lines by software to ex-
plore the hardware/software prefetching interaction.

Software Prefetches Train the Hardware. Let us revisit the scenario
presented in Section 3.2: When software-prefetching is used for
randomly accessed data blocks that are 16 cache lines in size, we
observed that the smaller-sized LFB becomes overwhelmed. Inter-
estingly, our experiments reveal a compelling interaction wherein
software-based prefetching actively trains hardware prefetchers
when injecting prefetch instructions only for the first subset of the
needed cache lines.

Figure 5 illustrates the access latency for each cache line within
a block when varying the quantity of prefetched cache lines: 8, 10,
and 12 lines are prefetched using software (with prefetchnta for
illustrative purposes), leaving the hardware prefetchers to manage
the remainder. To contextualize the results, we also present a sce-
nario without software prefetching (“random”), where we observe
the hardware prefetchers quickly adapt to the sequential access
pattern within a block. However, the hardware prefetchers are ini-
tially too late for every second cache line and cannot hide the entire
latency. This might be attributed to the small workload (around 193
CPU cycles per cache line) of our micro benchmark.

We can recognize a similar pattern when we software-prefetch
only the first 8 cache lines. While the software-prefetched cache
lines exhibit L1d-related latencies, we observe a noticeable latency
spike in the first cache line not prefetched by software. It takes more
accesses—up to the 12th cache line—for the hardware to prefetch
the remaining data timely. Remarkably, the configuration where
12 cache lines are prefetched by software emerges as the best per-
forming one. Given that this amount appears to be sufficient for the
hardware prefetchers to operate on time, it strikes the balance be-
tween minimizing LFB pressure and reducing access latency in our
benchmark. While the results indicate that with doing more com-
putational work, fewer software prefetches are sufficient, the pri-
mary conclusion remains: Software prefetches trigger the hardware
prefetchers. We notice a comparable trend for AMD’s Zen 4 plat-
form: The throughput reaches a plateau when software-prefetching
only 6 cache lines, indicating that the hardware prefetchers are
successfully taking over.
Different Instructions Train Differently. However, not all software
prefetch instructions train hardware prefetchers the same way. Our
analysis of different instructions reveals that prefetching into the
L2 cache (via prefetcht1) tends to minimize latency penalties,
especially when prefetching fewer than 12 cache lines. Figure 6 il-
lustrates an evaluation where the initial 10 cache lines of a block are

1 6 10 12 16
cache line

0

50

100

150

la
te

nc
y

(c
yc

le
s) PRF T0

PRF T1
PRF NTA

Figure 6: Access latencies when prefetching 10 of 16 cache
lines using different prefetch instructions.

prefetched using various instructions, highlighting the differential
impacts on latency.

Naturally, hardware prefetchers respond to the access patterns
they encounter; prefetching directly into the L1d cache (using
prefetchnta and prefetcht0) circumvents requests to the L2
cache—preventing it from learning from these access patterns. Con-
sequently, the L2 cache is only faced with misses when the first
non-software-prefetched cache lines are touched. This becomes
even more evident when the L1d hardware prefetchers are turned
off.

Furthermore, Figure 6 demonstrates a rapid convergence of la-
tencies for data prefetched into the L2 to those associated with
L1d accesses. This occurs as a result of the L1d prefetchers, which
detect cache misses and subsequently fetch the relevant cache lines
from the L2 to the L1d cache. While address sampling is not appli-
cable for AMD architectures, performance counters (in particular
LS_HW_PF_DC_FILLS.LOCAL_L2) indicate a very similar behavior.

4 ENHANCED APPROACHES TO SOFTWARE
PREFETCHING

Based on our findings, it becomes evident that the LFB’s limited ca-
pacity presents a new bottleneck when prefetching is the software-
side response to tolerate memory latency. Given that it is already
profitably implemented for tree-like data structures [12, 18, 21,
22], it is somewhat surprising that these LFB limitations have not
been extensively studied in such contexts. When baking software
prefetching into tree traversal algorithms, the size of the tree nodes
becomes a critical factor that directly influences effectiveness. His-
torically, the node sizes of index structures have often been aligned
with the block size of the underlying storage medium, such as HDDs
or SSDs. But even in in-memory databases, where the node size
does not have to be aligned with a certain storage medium, many
tree-based index structures still use relatively large node sizes. One
of the reasons is that trees with large nodes have a comparatively
smaller depth, which in turn is associated with less time spent on
random accesses, including the address translations during a tree
traversal. However, when software prefetching is applied without
considering the characteristics of the underlying hardware, these
large node sizes can quickly become a challenging problem, since
fully prefetching a tree node may exceed the capacity of the LFBs
within a CPU core as already highlighted in Section 3.1.

5



Roland Kühn, Jan Mühlig, and Jens Teubner

To illustrate the impact of node sizes on software prefetching we
examined a state-of-the-art B+-tree with Optimistic Lock Coupling
as proposed by Leis et al. [15]. We extended the tree to implement
prefetching with coroutines similar to the approaches proposed
in [12, 22]. The concept of coroutines allows a function to be sus-
pended at a specific point and resumed later, which allows for inter-
leaved execution; creating a time frame between the identification
and access of a node. We modified the tree so that during a traversal
a software prefetch that loads data in all caches (prefetcht0) is
issued for the succeding node and the traversal is suspended after-
ward. If a coroutine suspends, the coroutine scheduler can start the
execution of another coroutine.

For our experiments, we executed 50M lookups with different
node sizes in the original (hereinafter only referred to as B+-tree)
and the modified version of the B+-tree (Coro-tree) and measured
the execution in cycles per lookup. We used the YCSB benchmark
[6] to fill the tree with 50 M entries (8 bytes for key and value
each). As our primary test platform, we used a machine with Intel’s
Cascade Lake architecture (see section 3.1).

For single-threaded execution, our results showed that a node
size of 4 kB performs best for the B+-tree, compared to smaller node
sizes (1 kB, 256 B), which we also use as a baseline for the Coro-tree.
In the Coro-tree, however, we could observe the exact opposite.
Here, a node size of 256 bytes performed best and outperformed
the best-performing B+-tree by a factor of 2.25, while we saw less
performance with bigger node sizes. While a node size of 1 kB still
experiences a performance boost by factor 1.51, a node size of 4 kB
performs worse compared to the baseline (factor 0.8). This behavior
can be explained by the amount of cache lines that are needed for
every node. While a node with a size of 256 B consists of 4 cache
lines, a node size of 4 kB results in 64 cache lines, which exceeds
the amount of 10 LFB on our primary test platform. As depicted in
Figure 7, we could observe a very similar behavior on older Intel ar-
chitectures, on Intel’s latest Sapphire Rapids architecture however,
a node size of 1 kB has only a small performance loss compared to a
node size of 256 bytes. We attribute both observations to the LFB’s
capacity since the observed older architectures (Sandybridge and
Haswell) also have 10 LFB entries. On the latest Sapphire Rapids
platform, the LFB was increased to 16 slots. On recent AMD archi-
tectures, we could also see great performance improvements (up
to 2.32 on Zen 4). In contrast to the surveyed Intel platforms, it is
remarkable that the Coro-tree always outperforms the B+-tree, even
with a node size of 4 kB. We also relate this mainly to the number
of fill buffer entries on AMD architectures, which is larger than on
Intel platforms (e.g., 24 entries for Zen 4).

Simultaneous Multithreading. Nearly every modern x86 architecture
implements simultaneous multithreading (SMT) to better utilizing
the available resources of the CPU. While some CPU components
are duplicated (e.g., some registers), other components, like caches,
are shared between the threads. As already observed in the previous
sections, the LFB represents a critical resource when it comes to
utilize software prefetches beneficially; the use of SMT is expected
to bring this scarce resource even more into focus. Therefore, we
executed our experiments also with two logical threads that run
on the same physical core to measure the impact of this critical

Zen 1 Zen 2 Zen 4 Sandy Bridge Haswell Cascade Lake Sapphire Rapids
architecture

0.0

0.5

1.0

1.5

2.0

sp
ee

du
p

ba
se

lin
e

256 B node size
256 B node size (SMT)

1 kB node size
1 kB node size (SMT)

4 kB node size
4 kB node size (SMT)

Figure 7: Speedup of a single lookup with different node sizes
with and without SMT compared to the best unprefetched
baseline.

resource. On our primary test platform, we could still see a per-
formance improvement (factor 1.8) with a node size of 256 bytes,
even if the amount of cycles for executing one lookup operation
increased, but this accounts also for the B+-tree with SMT, that
was used as a baseline. Here, we attribute the increased number
of cycles primarily to the type of workload we execute, as we do
roughly the same kind of work in both threads and, therefore, might
use the same shared resources. With a node size of 1 kB, however,
we could see a noticeable degradation in performance (factor 0.98)
when using SMT on our primary test system. In this case, both
threads have to prefetch 16 cache lines, which massively exceeds
the number of the available 10 LFB entries. Similar to the execution
with a single thread, we could observe this effect as well on older
Intel architectures like Sandy Bridge or Haswell. On recent AMD
architectures we could also see an increase in cycles per lookup
when executing two threads on the same physical core, but in con-
trast to the Intel, even prefetching of 4 kB nodes performed better
than the baseline. Our findings indicate that contemporary AMD
architectures are less vulnerable to prefetching larger regions, even
when using SMT—in contrast to Intel designs.

The results from our study of the coroutine-based B+-tree demon-
strate that the LFB can indeed become a limitation of software
prefetching, also within real-world applications. Especially the use
of SMT, which results in sharing this already scarce resource be-
tween two (logical) cores, intensifies the competition and potential
for stalls when prefetching too large tree nodes. The evaluation
shows—once again—the importance of baking the hardware’s char-
acteristics into algorithms to achieve optimal performance.

5 SUMMARY
Software-based prefetching holds enormous potential when seeking
to hide memory latency behind valuable CPU cycles. In this survey,
we took a closer look at the benefits and limitations of software
prefetching on several hardware platforms. And we found that its
performance depends dramatically on the developer’s knowledge
of the underlying hardware substrate. Evaluations on synthetic and
real-world workloads identified the number of pending memory
requests a system can manage as the “next” bottleneck. To leverage
the hardware to full performance, engineers need to exercise great
caution while designing software-prefetched algorithms.

6



Software-Based Prefetching: How Much Can It Buy?

REFERENCES
[1] [n. d.]. perf_event_open(2) - Linux Manual Page. https://man7.org/linux/man-

pages/man2/perf_event_open.2.html. Online; last accessed March 20, 2024.
[2] [n. d.]. Skylake: Intel’s Longest Serving Architecture. https://chipsandcheese.

com/2022/10/14/skylake-intels-longest-serving-architecture/. Online; last ac-
cessed March 22, 2024.

[3] Sam Ainsworth and Timothy M. Jones. 2017. Software prefetching for indirect
memory accesses. In Proceedings of the 2017 International Symposium on Code
Generationand Optimization. ACM, 305–317. http://dl.acm.org/citation.cfm?id=
3049865

[4] Pietro Borrello, Andreas Kogler, Martin Schwarzl, Moritz Lipp, Daniel Gruss,
and Michael Schwarz. 2022. ÆPIC Leak: Architecturally Leaking Uninitialized
Data from the Microarchitecture. In 31st USENIX Security Symposium. USENIX
Association, 3917–3934. https://www.usenix.org/conference/usenixsecurity22/
presentation/borrello

[5] Shimin Chen, Anastassia Ailamaki, Phillip B. Gibbons, and Todd C. Mowry.
2004. Improving Hash Join Performance through Prefetching. In Proceedings of
the 20th International Conference on Data Engineering, ICDE. 116–127. https:
//doi.org/10.1109/ICDE.2004.1319989

[6] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell
Sears. 2010. Benchmarking cloud serving systems with YCSB. In Proceedings of
the 1st ACM symposium on Cloud computing. 143–154.

[7] Advanced Micro Devices. 2014. Software Optimization Guide for AMD Family
15h Processors. https://www.amd.com/content/dam/amd/en/documents/
archived-tech-docs/software-optimization-guides/47414_15h_sw_opt_guide.
pdf. Online; last accessed March 20, 2024.

[8] Advanced Micro Devices. 2020. Software Optimization Guide for AMD EPYC™
7003 Processors. https://www.amd.com/content/dam/amd/en/documents/
processor-tech-docs/software-optimization-guides/56665.zip. Online; last ac-
cessed March 20, 2024.

[9] Yongjun He, iacheng Lu, and Tianzheng Wang. 2020. CoroBase: Coroutine-
Oriented Main-Memory Database Engine. Proc. VLDB Endow. 14, 3 (2020), 431–
444. https://doi.org/10.5555/3430915.3442440

[10] Intel. 2024. Intel® 64 and IA-32 Architectures Optimization Reference Manual.
https://cdrdv2.intel.com/v1/dl/getContent/671488. Online; last accessed March
20, 2024.

[11] Saba Jamilan, Tanvir Ahmed Khan, Grant Ayers, Baris Kasikci, and Heiner Litz.
2022. APT-GET: profile-guided timely software prefetching. In EuroSys ’22:
Seventeenth European Conference on Computer Systems. ACM, 747–764. https:
//doi.org/10.1145/3492321.3519583

[12] Christopher Jonathan, Umar Farooq Minhas, James Hunter, Justin J. Levandoski,
and Gor V. Nishanov. 2018. Exploiting Coroutines to Attack the "Killer Nanosec-
onds". Proc. VLDB Endow. 11, 11 (2018), 1702–1714. https://doi.org/10.14778/
3236187.3236216

[13] Tsvika Kurts, Zelig Wayner, and Tommy Bojan. 2005. Apparatus and method for
bus signal termination compensation during detected quiet cycle. US Patent
6,842,035.

[14] Jaekyu Lee, Hyesoon Kim, and Richard W. Vuduc. 2012. When Prefetching
Works, When It Doesn’t, and Why. ACM Trans. Archit. Code Optim. 9 (2012),
2:1–2:29. https://doi.org/10.1145/2133382.2133384

[15] Viktor Leis, Michael Haubenschild, and Thomas Neumann. 2019. Optimistic Lock
Coupling: A Scalable and Efficient General-Purpose Synchronization Method.
IEEE Data Eng. Bull. 42, 1 (2019), 73–84.

[16] Chi-Keung Luk and Todd C. Mowry. 1996. Compiler-Based Prefetching for
Recursive Data Structures. In ASPLOS-VII Proceedings - Seventh International
Conference on Architectural Support for Programming Languages and Operating
Systems. ACM Press, 222–233. https://doi.org/10.1145/237090.237190

[17] Daniel Lustig, Abhishek Bhattacharjee, and Margaret Martonosi. 2013. TLB
Improvements for Chip Multiprocessors: Inter-Core Cooperative Prefetchers and
Shared Last-Level TLBs. ACM Trans. Archit. Code Optim. 10, 1 (2013), 2:1–2:38.
https://doi.org/10.1145/2445572.2445574

[18] Yandong Mao, Eddie Kohler, and Robert Tappan Morris. 2012. Cache craftiness
for fast multicore key-value storage. In European Conference on Computer Systems,
Proceedings of the Seventh EuroSys Conference 2012. ACM, 183–196. https://doi.
org/10.1145/2168836.2168855

[19] Prashanth Menon, Andrew Pavlo, and Todd C. Mowry. 2017. Relaxed Opera-
tor Fusion for In-Memory Databases: Making Compilation, Vectorization, and
Prefetching Work Together At Last. Proc. VLDB Endow. 11, 1 (2017), 1–13.
https://doi.org/10.14778/3151113.3151114

[20] Todd C. Mowry, Monica S. Lam, and Anoop Gupta. 1992. Design and Evaluation
of a Compiler Algorithm for Prefetching. In ASPLOS-V Proceedings - Fifth Inter-
national Conference on Architectural Support for Programming Languages and
Operating Systems. ACM Press, 62–73. https://doi.org/10.1145/143365.143488

[21] Jan Mühlig and Jens Teubner. 2021. MxTasks: How to Make Efficient Synchro-
nization and Prefetching Easy. In Proceedings of the 2021 International Conference
on Management of Data, SIGMOD. ACM, 1331–1344. https://doi.org/10.1145/
3448016.3457268

[22] Georgios Psaropoulos, Thomas Legler, Norman May, and Anastasia Ailamaki.
2017. Interleaving with Coroutines: A Practical Approach for Robust Index
Joins. Proc. VLDB Endow. 11, 2 (2017), 230–242. https://doi.org/10.14778/3149193.
3149202

[23] Till Schlüter, Lorenz Hetterich, Leon Trampert, Hamed Nemati, Ahmad Ibrahim,
Michael Schwarz, Christian Rossow, and Nils Ole Tippenhauer. 2023. FetchBench:
Systematic Identification and Characterization of Proprietary Prefetchers. In
Proceedings of the 2023 ACM SIGSAC. ACM, 975–989. https://doi.org/10.1145/
3576915.3623124

[24] Michael Schwarz, Moritz Lipp, Daniel Moghimi, Jo Van Bulck, Julian Steck-
lina, Thomas Prescher, and Daniel Gruss. 2019. ZombieLoad: Cross-Privilege-
Boundary Data Sampling. In Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security. ACM, 753–768. https://doi.org/10.1145/
3319535.3354252

[25] Stephan van Schaik, Alyssa Milburn, Sebastian Österlund, Pietro Frigo, Giorgi
Maisuradze, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. 2019. RIDL:
Rogue In-Flight Data Load. In IEEE Symposium on Security and Privacy. IEEE,
88–105. https://doi.org/10.1109/SP.2019.00087

[26] Georgios Vavouliotis, Lluc Alvarez, Vasileios Karakostas, Konstantinos Nikas,
Nectarios Koziris, Daniel A. Jiménez, and Marc Casas. 2021. Exploiting Page
Table Locality for Agile TLB Prefetching. In 48th ACM/IEEE Annual International
Symposium on Computer Architecture, ISCA. IEEE, 85–98. https://doi.org/10.
1109/ISCA52012.2021.00016

[27] Xiangyu Zhi, Xiao Yan, Bo Tang, Ziyao Yin, Yanchao Zhu, and Minqi Zhou. 2024.
CoroGraph: Bridging Cache Efficiency and Work Efficiency for Graph Algorithm
Execution. Proc. VLDB Endow. 17, 4 (2024). https://doi.org/10.14778/3636218.
3636240

7

https://man7.org/linux/man-pages/man2/perf_event_open.2.html
https://man7.org/linux/man-pages/man2/perf_event_open.2.html
https://chipsandcheese.com/2022/10/14/skylake-intels-longest-serving-architecture/
https://chipsandcheese.com/2022/10/14/skylake-intels-longest-serving-architecture/
http://dl.acm.org/citation.cfm?id=3049865
http://dl.acm.org/citation.cfm?id=3049865
https://www.usenix.org/conference/usenixsecurity22/presentation/borrello
https://www.usenix.org/conference/usenixsecurity22/presentation/borrello
https://doi.org/10.1109/ICDE.2004.1319989
https://doi.org/10.1109/ICDE.2004.1319989
https://www.amd.com/content/dam/amd/en/documents/archived-tech-docs/software-optimization-guides/47414_15h_sw_opt_guide.pdf
https://www.amd.com/content/dam/amd/en/documents/archived-tech-docs/software-optimization-guides/47414_15h_sw_opt_guide.pdf
https://www.amd.com/content/dam/amd/en/documents/archived-tech-docs/software-optimization-guides/47414_15h_sw_opt_guide.pdf
https://www.amd.com/content/dam/amd/en/documents/processor-tech-docs/software-optimization-guides/56665.zip
https://www.amd.com/content/dam/amd/en/documents/processor-tech-docs/software-optimization-guides/56665.zip
https://doi.org/10.5555/3430915.3442440
https://cdrdv2.intel.com/v1/dl/getContent/671488
https://doi.org/10.1145/3492321.3519583
https://doi.org/10.1145/3492321.3519583
https://doi.org/10.14778/3236187.3236216
https://doi.org/10.14778/3236187.3236216
https://doi.org/10.1145/2133382.2133384
https://doi.org/10.1145/237090.237190
https://doi.org/10.1145/2445572.2445574
https://doi.org/10.1145/2168836.2168855
https://doi.org/10.1145/2168836.2168855
https://doi.org/10.14778/3151113.3151114
https://doi.org/10.1145/143365.143488
https://doi.org/10.1145/3448016.3457268
https://doi.org/10.1145/3448016.3457268
https://doi.org/10.14778/3149193.3149202
https://doi.org/10.14778/3149193.3149202
https://doi.org/10.1145/3576915.3623124
https://doi.org/10.1145/3576915.3623124
https://doi.org/10.1145/3319535.3354252
https://doi.org/10.1145/3319535.3354252
https://doi.org/10.1109/SP.2019.00087
https://doi.org/10.1109/ISCA52012.2021.00016
https://doi.org/10.1109/ISCA52012.2021.00016
https://doi.org/10.14778/3636218.3636240
https://doi.org/10.14778/3636218.3636240

	Abstract
	1 Introduction
	2 Understanding Software Prefetching
	2.1 Utilize Software Prefetching
	2.2 Lifecycle of a Prefetch
	2.3 Limitations

	3 Software Prefetches Under the Magnifying Glass
	3.1 Micro-Benchmark
	3.2 Quantifying the Costs
	3.3 Interplay with Hardware Prefetchers

	4 Enhanced Approaches to Software Prefetching
	5 Summary
	References

