
Micro Partitioning: Friendly to the Hardware and the Developer
Jan Mühlig

jan.muehlig@tu-dortmund.de
DBIS Group, TU Dortmund University

Jens Teubner
jens.teubner@cs.tu-dortmund.de

DBIS Group, TU Dortmund University
Lamarr Institute for Machine Learning and Artificial

Intelligence

ABSTRACT
Modern hardware’s complexity has made studying hardware-con-
scious algorithms a relevant topic for many years. Partitioning
algorithms, for instance, break data into bits that fit into fast CPU
caches. Unfortunately, they are often challenging to design, develop,
and maintain. While hardware-oblivious algorithms are easier to
build, they may perform poorly when hardware or data deviate
from expectations.

In this paper, we introduce micro partitioning, which enhances
the partitioning problem in a way that outperforms state-of-the-art
solutions while being hardware-agnostic. By storing tuples in a
tight address space, micro partitioning creates an access pattern
that is friendly to both caches and translation lookaside buffers.
We also show how micro partitioning interacts with task-based
execution strategies in a symbiotic way, making micro partitioning
intuitive to express for developers.

ACM Reference Format:
Jan Mühlig and Jens Teubner. 2023. Micro Partitioning: Friendly to the
Hardware and the Developer. In 19th International Workshop on Data Man-
agement on New Hardware (DaMoN ’23), June 18–23, 2023, Seattle, WA, USA.
ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3592980.3595310

1 INTRODUCTION
The complexity of modern computing hardware has lead to the
design of hardware-conscious algorithms many years ago. A prime
example are partitioning strategies, which break up data into pieces
small enough so they can fit into fast CPU caches (e.g., to prepare
for a partitioned hash join). The downside of such algorithms is
that they are often intricate to design, develop, and maintain. This
has resulted in a literature debate as to whether hardware-oblivious
algorithms may be the better choice: They are easier to design, do
not depend on well-set parameters, and may be more robust when
data or hardware behave differently than expected [3, 5, 11].

In this work, we aim to eat the cake and have it, too. Following
up on existing work, we first devise micro partitioning to solve the
partitioning problem in a way that outperforms state-of-the-art
solutions such as radix partitioning [3, 9, 15, 21, 24, 27]. While those
existing solutions are limited either by the available number of
entries in the system’s Translation Lookaside Buffers (TLBs) or by

This work is licensed under a Creative Commons Attribution International
4.0 License.

DaMoN ’23, June 18–23, 2023, Seattle, WA, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0191-7/23/06.
https://doi.org/10.1145/3592980.3595310

Relation S

Partitions

#T
up

le
s

Relation S

1○ Scan for Histogram 2○ Scan to Partition

Figure 1: Data partitioning using a histogram.

redundant data copying, micro partitioning ensures a data access
pattern that is friendly to both caches and TLBs.

Micro partitioning is also developer-friendly and agnostic to the
hardware substrate. As a second contribution of this work, we show
how the strategy interacts with task-based execution strategies [8,
13, 16, 20, 26] in a symbiotic way. We illustrate this by the example
of our MxTasking framework [16]. Its annotation mechanism makes
micro partitioning intuitive (and hardware-oblivious) to express
for developers. At the same time, it enables the framework to run
the code in a hardware-conscious way. In fact, MxTasking is able
to even dynamically adapt to the system state and to resource
availability at execution time.

We present micro partitioning as follows. Section 2 recaps the
partitioning problem and introduces micro partitioning. Section 3
shows how micro partitioning works hand-in-hand with task-based
execution. We evaluate both aspects experimentally as we go in
Sections 2.3 and 4 before we summarize in Section 5.

2 DATA PARTITIONING
With memory accesses becoming the bottleneck of data-intensive
systems, applications must use cached data to provide optimal per-
formance. This is particularly challenging for hash tables because
of their random and hard-to-predict access patterns.

2.1 Hash-Based Partitioning
One way to make hash tables cache-aware is to divide the data into
smaller partitions such that each partition’s hash table fits into a
core’s private cache [3, 7, 9, 15, 25]. A common (and simple) way to
implement such hash-based partitioning is to scan the data twice:
Once to establish a histogram and set up a contiguous memory
region for each of the partitions and a second time to move data to
their proper partition. Figure 1 illustrates this approach.

However, the appropriate number of partitions must be chosen
carefully. On the one hand, the data must be divided into a sufficient
number of partitions such that each partition results in a cache-
sized hash table. On the other hand, too many partitions lead to
several logical memory addresses that exceed the TLB’s capacity—
which defines an upper limit on the number of partitions that can
be written simultaneously [3, 7].

27

https://doi.org/10.1145/3592980.3595310
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3592980.3595310
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3592980.3595310&domain=pdf&date_stamp=2023-06-18


DaMoN ’23, June 18–23, 2023, Seattle, WA, USA Jan Mühlig and Jens Teubner

Relation S

next allocatable
Fragment

Scan & Partition

micro
fragments

1 offsets = {0:0, 1:128, 2:256, . . . }

2 for each tup in S:
3 part = tup.key & mask
4 offset = offsets[part]

5 out[offset] = tup

6 if is_full(offset):
7 offsets[part]=

next_fragment_offset()

8 else:
9 offsets[part] + = 1

Figure 2: Materializing data into micro fragments of limited
capacity.

As a remedy, more complex partitioning strategies have been
developed in the literature. Radix partitioning performs the task in
multiple rounds, in each round keeping the partitioning fan-out
below the limits defined by TLBs. Software-managed buffers [4, 23,
24] buffer up several tuples (usually one cache line in size) for each
partition in the CPU cache; once a buffer is at capacity, its tuples
are copied to their in-memory location at a stretch. In effect, TLB
misses arise only once per buffer flush but no longer for every single
input tuple.

2.2 Micro Partitioning
Software-managed buffers are a two-edged sword. While they may
indeed reduce the number of incurred TLB misses by several fac-
tors, the overhead of the extra memory stores becomes prohibitive
when the partitioning fan-out stays small. We argue that additional
copying from the buffer to memory is unnecessary. We introduce
micro partitioning as an alternative to reduce TLB thrashing during
partitioning.

Micro partitioning follows the idea of buffers concerning mem-
ory density. Like software-managed buffers, which reserve one
cache line for each partition as a buffer, we reserve small chunks of
memory that we dub micro fragments (or simply fragments). Micro
fragments receive a limited number of tuples during the partition
phase. However, unlike software-managed buffers, micro fragments
go beyond the size of a cache line and are not temporary buffers.
Instead, they directly act as a (tiny) subset of the overall partitioned
data set. In this light, fragments resemble morsels [6, 8, 13] as used
in the engines of HyPer [17] and Umbra [18, 26].

For partitioning a relation into micro fragments, we first allocate
a contiguous memory block from the OS, large enough to accom-
modate all tuples. Like hash-based partitioning, we maintain a map
that associates each partition with its corresponding offset within
the partitioned data set for inserting the next tuple. However, in
contrast to hash-based partitioning, these slots do not need to be
calculated prior to partitioning. Instead, we “allocate” a micro frag-
ment from the partitioned data (which is not an allocation in the
sense of traditional memory allocation; instead, we reserve a fixed
number of offsets for each micro fragment). As soon as one frag-
ment is at capacity, we allocate the next from the tuple-receiving
data set, which relates to incrementing an overall micro fragment

data set partitioned into micro fragments

fragment directories

Figure 3: Bookkeeping of micro fragments and their parti-
tions. For each logical partition, a fragment directory con-
nects the fragments that form the partition.

counter multiplied by the fragment capacity to derive its offset. We
illustrate our approach in Figure 2 in combination with pseudocode.
In that sense, our approach levitates between “classical” hash-based
partitioning (with substantial and variable-sized partitions) and
software-managed buffers (which are limited to very few tuples).

The partitions’ physical layout becomes a fundamental difference
to hash-based partitioning: While hash-based partitioning stores a
partition’s tuples in a continuous line, micro partitioning splits the
data over several locations. Additional bookkeeping is needed to
combine the fragments into logical partitions processed at a stretch
in the subsequent phase (e.g., building the hash table). Figure 3
shows an example using queues of pointers as fragment directories
to represent logical partitions.

As a bonus, micro partitioning eliminates the need for a his-
togram: Since the tuples are consistently partitioned into fixed-
sized subsets, there is no need to determine boundaries in advance
(or realign partitioned tuples during partitioning when desisting
from histograms). Instead, the boundaries of the individual micro
fragments are statically determined by their capacity. Consequently,
additional space is allocated since not every partition is guaranteed
to be sized by exactly a multiple of the capacity. However, this
is negligible considering the large amounts of main memory in
today’s servers.

2.3 Micro Partitioning in Action
The true strength lies in the tightly spaced physical layout. Given
the small size of each micro fragment, multiple of them will fit into
a single memory page. This increases the chances that fewer virtual
page addresses must be translated into physical page addresses
even with various partitions—hence fewer requests miss the TLB.

Based on this, capacity is a determining factor in the design of
micro fragments. Two considerations are necessary: If the capacity
is too small, the phase that follows partitioning (such as join or
grouped aggregation) must reassemble many fragments. We will
discuss this fact later in Section 3. In contrast, when fragments
are too coarse-grained, the address space for the partitions written
simultaneously will span over multiple memory pages, which may
reduce the TLB-friendly advantage.

To understand the performance possibilities, we compare two
micro fragment capacities with state-of-the-art (“classical”) radix
partitioning in a micro-benchmark fashion. For that purpose, we
adopt the workload used by Balkesen et al. [3], which partitions
16 byte-sized tuples. So far, we will only focus on the partitioning
phase and use a 4 GB relation as a workload (the “full” radix join

28



Micro Partitioning: Friendly to the Hardware and the Developer DaMoN ’23, June 18–23, 2023, Seattle, WA, USA

5 6 7 8 9 10 11 12 13 14
radix bits

0.000

0.005

0.010

0.015

0.020

0.025
ST

LB
m

iss
es

/o
ut

pu
tt

up
le

DTLB STLB

be�er

classical micro part. (128)

(a) STLB misses

5 6 7 8 9 10 11 12 13 14
radix bits

0

10

20

30

na
no

se
co

nd
s/

ou
tp

ut
tu

pl
e

DTLB STLB

be�er

micro part. (256)

(b) Execution time

Figure 4: Micro benchmark comparing state-of-the-art (“classical”) and micro partitioning with capacities of 128 and 256 tuples.

will be addressed in Section 3). Accordingly, the influence of the
number of partitions is “only” limited to the TLB and does not affect
hash tables in the cache. However, we want to spot the potential
and the limits for different numbers of partitions. For capacity, we
choose 128 tuples and 256 tuples. With 16-byte wide tuples in this
benchmark, the resulting micro partitions are 2 kB (128 tuples per
micro fragment) and 4 kB in size, yielding two and one fragment on
a 4 kB memory page, respectively. We run the benchmark single-
threaded on a machine with 64 DTLB and 1 536 STLB entries (more
hardware details are given later in Section 4).

Figure 4 demonstrates the results. While classical partitioning
leads to a comparatively large number of STLB misses with only a
few partitions (Figure 4a), our approach with 128-tuple-wide micro
fragments benefits from the tight partition layout in memory. This
becomes notably evident when moving from 1 024 (10 radix bits)
to 2 048 partitions: As fragments with 128 tuples still fit into the
second-level TLB (one appropriate micro fragment only inhabits
half of a memory page), the number of simultaneously written
memory pages for classical partitioning and coarser fragments
exceeds the TLB’s capacity.

To our surprise, the benchmark shows that even 256-tuple-sized
micro fragments result in considerably fewer STLB misses at a high
fan-out (e.g., 14 radix bits), which also reflects in the execution time
(see Figure 4b). This effect is also observable with broader micro
fragments (e.g., 512 tuples). Experiments on additional hardware
(with considerably smaller caches and less TLB capacities) have led
to very similar results.

Effect of Software-managed Buffers. Micro partitioning is related to
software-managed buffers to a certain extent: Tuples are written in
condensed space to reduce TLB misses, while micro partitioning
avoids copies from a temporary buffer. As depicted in Figure 4,
however, a large number of partitions increases the number of si-
multaneously written memory pages to such an extent that also
micro partitioning drives the TLB to its limit and beyond. Software-
managed buffers can also extend micro partitions in such scenarios,
just like “classical” hash-based partitioning. Figure 5 compares

5 6 7 8 9 10 11 12 13 14
radix bits

0.000

0.005

0.010

0.015

0.020

0.025
ST

LB
m

iss
es

/o
ut

pu
tt

up
le

be�er

classical

5 6 7 8 9 10 11 12 13 14
radix bits

micro part. (128)

5 6 7 8 9 10 11 12 13 14
radix bits

micro part. (256)

Partitioning + So�ware-managed Bu�er

Figure 5: Comparing STLB misses during partitioning with
and without software-managed buffers.

partitioning with and without buffers for hash-based and micro
partitioning, using the STLB misses as a metric. The results indicate
that software-managed buffers have indeed a positive effect on
micro partitions. Besides reducing TLB misses at high partitioning
fan-outs, utilizing software-managed buffers on top of micro parti-
tions shows fewer TLB misses than on top of classical partitioning
(and implicitly better performance).

3 TASK-BASED PARTITIONING
We saw how micro partitioning can provide a practical benefit. Let
us now turn our attention to assembling micro fragments for the
subsequent step, such as building or probing a hash table. By their
design, classical partitioning algorithms facilitate linear scanning
of each partition. Our approach, contrarily, spreads a partition
over several dispersed locations, which must be glued together for
further processing.

3.1 MxTask Abstraction
In recent years, task-based processing models have gained atten-
tion in database research (e.g., [6, 8, 13, 19, 20, 26]) and beyond
(e.g., [1, 2, 12, 22]). In previous work [16], we presented MxTasks,
which extend the conventional task interface by the capability to
annotate tasks with application-specific knowledge. Annotations

29



DaMoN ’23, June 18–23, 2023, Seattle, WA, USA Jan Mühlig and Jens Teubner

Relation S
(tuples)

...

...

worker thread

task

task

task

task
read ...

⟲

Partitioned S
(micro fragments)

write

t t ...
t t ...
t t ...
t t ...

task squads

di
sp

at
ch

er

Partition Phase

worker thread

task

task

task

task

task

task

...
⟲

Build Phase

Figure 6: Illustration of the partition- and build phases. Dur-
ing the partition phase, tasks materialize tuples into micro
fragments and spawn tasks if a fragment is at capacity. An-
notating appropriate tasks with task squads helps the dis-
patcher to execute tasks partition-wise.

can include synchronization requirements for data objects or indi-
cations to the MxTasking framework about the in-memory data a
task will read during execution. This knowledge sharing enables
the runtime system to synchronize concurrently executed tasks and
automatically prefetch data from memory into higher-level caches
to hide latencies behind the execution of other tasks. Furthermore,
each task is guaranteed to execute without interruption. Using a
Blink-tree as a poster child, we demonstrated that MxTasks could
handle even fine-grained data structures.

3.2 Dispatching Micro Fragments
Section 2.2 mentioned that fragments of a logical partition must be
accounted for to be processed at a stretch. A straightforward way
would be to take Figure 3 literally and maintain an explicit fragment
directory that associates a partition with all its fragments. However,
this strategy has two drawbacks: Firstly, the resultant code grows
more complicated and must be tailor-made. Secondly, the scan of
a partition for the subsequent phase is scattered and thus nearly
unpredictable for the hardware prefetcher. Notably, hardware-based
prefetching is known to assist linear scans on adequate volumes of
data and implicitly simple-to-identify access patterns.

Annotation-driven Task Dispatching. To reduce the implementation
effort of micro partitioning-based algorithms, we take advantage
of the annotation mechanism of the MxTasking framework. We
augment each task with a label that we refer to as its task squad.
The task squad annotation logically connects (and makes this con-
nection explicit to the MxTasking framework) MxTasks that process
fragments from the same logical partition.

When multiple tasks should access the same data structure in suc-
cession, the application developer requests one or more task squads
from the MxTasking runtime. In the light of data partitioning, each
partition relates to a unique task squad. Internally, MxTasking pairs
each squad with an individual task queue that receives only suitably
annotated tasks. Whenever the dispatcher finds a task annotated

// Create 1024 hash tables and one task squad for each partition.
1 tables = new HashTable[1024]

2 partitions = mxtasking::new_squads(1024)

3 offsets = {0:0, 1:128, 2:256, . . . , 1023:130944}

// The following loop is executed by multiple PartitionTasks.
// Note, that data is a subset of the to-partitioned relation.

4 for each tup in data:
5 part = tup.key & mask
6 offset = offsets[part]
7 out[offset] = tup // Write the tuple to the partition

8 if is_full(offset):
9 start = offset − 127

// Create a task that probes the HT and annotate..
10 task = mxtasking::new_task<ProbeHT>(tables[part],

&out[start], 128)
11 task->annotate(partitions[part]) // ...the partition for

dispatching
12 task->annotate(&out[start], 1kB) // ...data to prefetch
13 mxtasking::spawn(task) // Commit the task

// Allocate the next micro fragment.
14 offsets[part] = next_fragment_offset()

15 else:
16 offsets[part] + = 1

// Push all tasks accessing the micro fragments to the task-engine.
17 mxtasking::spawn(partitions)

Figure 7: Pseudocode for partitioning the data using micro
partitioning.When amicro fragment is at capacity, we spawn
a new task to process the partitioned data and annotate it
with the partition. Note that we chose a capacity of 128 tuples
per fragment in this example.

with a squad, the task will be sent to the squad’s queue instead of a
worker’s1 default ready list.

After requesting a bunch of task squads, the application enters
a phase during which it spawns all (or at least a series of) tasks
required to access a data object (e.g., a hash table) in bulk. We
illustrate this procedure in Figure 6. In the partitioning phase, the
application spawns tasks that scan the input relation and materialize
tuples into micro fragments. To that end, we also segment the
relation into morsel-like relation fragments (statically in advance)
of the same size we use for micro fragments. Each task reads a
relation fragment in a one-to-one relationship.

When a micro fragment reaches its maximum capacity, we spawn
a new task to scan and process it during the subsequent phase.
Before sending the newly created task to the MxTasking runtime,
we annotate the partition the fragment belongs to as a task squad.
Figure 7 depicts the pseudocode for the task that partitions the
data. We request (line 2) and annotate the task with information
about the task’s logical partition (line 11). Further, we annotate
the task with the data that it will scan (line 12). The latter will
1Worker (threads) are responsible for executing tasks in MxTasking. To that end, each
worker is linked to their task queue, which is populated by the dispatcher. Each worker
is pinned to a dedicated logical CPU core.

30



Micro Partitioning: Friendly to the Hardware and the Developer DaMoN ’23, June 18–23, 2023, Seattle, WA, USA

empower MxTasking’s built-in prefetching mechanism [16].2 In
line with our earlier work [16], we observed how the software-
based prefetching mechanism built into MxTasking complements
hardware prefetching in a very effective way, giving the latter
sufficient time to recognize the access pattern.

The annotation mechanism of MxTasking allows us to kill two
birds with one stone: We delegate the bookkeeping and composi-
tion of micro fragments to the underlying task execution engine,
eliminating the need for the developer to manage it manually. Plus,
we take advantage of the built-in software-prefetching mechanism
to scan dispersed fragments while reducing memory latencies. Most
importantly, however, all hardware-specific aspects are handled
where they should be: in the MxTasking scheduler/dispatcher. All
developer-written code stays oblivious to the underlying hardware.

Finalizing the Partitioning Phase. After partitioning the input rela-
tions, the operator must move on to the next phase. Up to this point,
all tasks have found their way into squad-associated queues but
must still be published to the worker’s ready lists to get executed.
Generally, this challenge can be addressed in several ways, e.g., by
periodically transferring the tasks or by the developer “spawning”
the squads at the end of the partition phase, which hints at the
runtime to publish the tasks for execution. We found that the latter
is effective and straightforward to use (line 17 in Figure 7). However,
any improvement (to MxTasking in general) will further optimize
task-based partitioning.

Parallel Partitioning. We still have to address the implementation of
task-based micro partitioning in a parallelized setting. In fact, this
requires minimal effort. Since we have implemented the entire set of
operators around tasks, it does not matter (from the implementation
point of view) how many cores or worker threads execute tasks in
parallel. Solely the allocation of the fragments must be implemented
atomically. As this only involves incrementing an integer, atomic
compiler built-ins (or atomic C++ types like std::atomic) allow
for a lightweight solution.

We chose to allocate a distinct partition block to each logical CPU
core. This enables the tuple’s materialization respecting NUMA
domains while the partitioning remains unchanged from an imple-
mentation aspect. Nevertheless, this coin has two sides: Partitions
may be processed by one region even if another materializes them.
Due to the higher write latencies, we decided to write the partitions
NUMA-local instead of optimizing for local read accesses.

4 EXPERIMENTAL EVALUATION
For the experimental evaluation, we use a two-socket Intel Xeon
Gold 6226 machine clocked at 2.7 GHz. Each of the two processors
holds 12 cores, 24 hardware threads, and 12 × 32 kB L1D, 12 × 1
MB L2, and 1 × 19.25 MB L3 data caches. Each (physical) core has
a data TLB of 64 entries and a second-level TLB of 1536 entries for
4 kB pages.

We implemented a parallel task-based radix join to evaluate mi-
cro partitioning in a database-related context. For the benchmark,
we follow former work [3], joining two relations with 16 B-sized
tuples (8 B key and payload each). With 4 GB, we maintain the

2Stating a prefetch size in MxTasking is optional. To keep matters simple, we statically
set the prefetch size to 1 kB in this work.

5 6 7 8 9 10 11 12 13 14
radix bits

0

1

2

3

4

na
no

se
co

nd
s/

ou
tp

ut
tu

pl
e

DTLB STLB
be�er

HC radix join
micro part. (128)

micro part. (256)
join

Figure 8: Comparison of the hardware-conscious radix
join [3] using state-of-the-art partitioning and our task-based
implementation using micro partitioning.

probe relation steadily throughout the benchmark. The build rela-
tion, however, varies with the number of partitions so that every
partition allocates the entire L2 cache. This is equivalent to the
original Workload A of [3] at 10 radix bits, joining relations of 4 GB
and 256 MB. To classify our task-based join implementation, we
choose the hardware-conscious radix join of Balkesen et al. [3]
for comparison. Each of the following benchmarks utilizes all 48
available logical cores.

4.1 Comparison with State-of-the-Art
First, we compare the state-of-the-art radix-join implementation
with our micro partitioning- and task-driven join. We demonstrate
the results in Figure 8, analyzing partition granularities of 128 and
256 tuples. Similar to our previous analysis of the partitioning stage
(from Section 2.3), the storage layout of micro fragments is advan-
tageous for the partitioning phase: Partitioning improves by up to
25 %. On average, micro partitioning demonstrates a performance
boost for the partitioning phase of 21 % when using 128-sized frag-
ments. Coarser-grained fragments (256 tuples in this case) lose
some advantage due to the less compact representation. However,
the average performance benefit is still 17 %.

Even comparing end-to-end runtimes, micro partitioning sub-
stantially improves performance. Using 128-wide fragments leads
to an 11 % improvement, whereas 256 tuples per fragment result in a
10 % improvement. Both values are averaged over all configurations.

In contrast to partitioning, join times have increased significantly.
On average, the build and probe stages exhibit a performance degra-
dation of 66 % (128 tuples per fragment) and 44 % (256 tuples) com-
pared to the thread-based implementation. In the most extreme
scenario (with 14 radix bits), the join becomes twice as costly, while
this is still limited when having fewer partitions.

We found two reasons for this. Firstly, the micro partitioning-
based join had to be adapted: In the original implementation, only
indexes of the materialized tuples rather than the tuples data are
stored in the table. The partitioned arrays are accessed during the

31



DaMoN ’23, June 18–23, 2023, Seattle, WA, USA Jan Mühlig and Jens Teubner

0 50 100 150 200
time in ms

0.0 GB

1.0 GB

2.0 GB

3.0 GB

4.0 GB

ad
dr

es
se

s
thread #0
thread #1

thread #2
thread #3

(a) Partitiong phase of [3]

0 50 100 150 200
time in ms

3.2 GB

3.4 GB

3.6 GB

3.8 GB

4.0 GB

ad
dr

es
se

s

worker #0
worker #1

worker #2
worker #3

(b) Partitioning phase using micro partitioning

Figure 9: Comparing memory stores to the partitioned data array of the state-of-the-art implementation and micro partitioning.
For illustrative reasons, the plot shows only the partitioning phase of the probe relation on four randomly selected threads
(worker threads in the context of MxTasking).

probe phase to check the tuple’s keys for matches. The bucket-
chaining mechanism is also built around array indexes, storing
the (possible) chained bucket for each index of the build relation’s
tuples. However, micro fragments do not produce a comparable
(coherent) memory chunk. Thus, we immediately store the keys
and chained bucket references in the hash table, resulting in a more
extensive data structure.

Secondly, each executed task scans a small subset of tuples for
further processing (corresponding to the capacity of fragments).
Using profiling tools (Intel VTune [10] and perf [14]), we discovered
that the hardware prefetcher performs better on extended linear
scans, which are given for coherent partitions.

Analyzing additional comparative measures (e.g., performance
counters as in Section 2.3) is problematic. We found that individual
worker threads occasionally stay idle between the partitioning and
join stages until all partitions have been realized. This leads to single
workers frequently querying their task queues, executing many
instructions, and producing numerous TLB misses. Although this
has a minimal effect on the workload, it has a considerable impact
on the measures—because this occurs when there is temporarily
no work. However, by reading performance counters, we can not
discern this. Implicitly, this shows optimization potential: With a
tuned, e.g., more dynamic, allocation of partitions to worker threads
(such as task squad-level work stealing), idle times may be reduced
and the throughput can be increased.

We executed the benchmark on additional hardware to conduct
a more comprehensive evaluation of micro partitioning’s hardware
awareness:

• Intel Xeon E5-2690 with 16/32 logical/physical cores, 64/512
dTLB/STLB entries, and 256 kB L2 cache per physical core

• AMD EPYC 7501 with 64/128 logical/physical cores, 64/1, 024
dTLB/STLB entries, and 512 kB L2 cache per physical core.

We illustrate the outcomes obtained from that hardware in Figure 10.
The contrast between “classical” partitioning and micro partitioning

5 6 7 8 9 10 11 12 13 14
radix bits

0

2

4

6

8

10

12

na
no

se
co

nd
s/

ou
tp

ut
tu

pl
e

DTLB STLB
be�er

HC radix join
micro part. (128)

micro part. (256)
join

(a) Intel Xeon E5-2690

5 6 7 8 9 10 11 12 13 14
radix bits

0

1

2

3

4

na
no

se
co

nd
s/

ou
tp

ut
tu

pl
e

DTLB STLB
be�er

HC radix join
micro part. (128)

micro part. (256)
join

(b) AMD EPYC 7501

Figure 10: Radix Join Benchmark (same as in Figure 8) exe-
cuted on additional hardware.

is notably greater on both machines, in relative terms (compared
to the hardware mentioned above). Micro partitioning significantly
improves partitioning performance, particularly in cases where the
partition fan-out is low, indicating that our approach is not limited
to a specific hardware configuration.

4.2 Memory Access Patterns
We will now demonstrate how micro fragments affect memory
access patterns. To that end, we evaluate memory stores and loads
that hit the partitioned data during the partition phase (when the
data is written) and the join phases (which read the data).

We focus only on accesses to the partition of the probe relation.
Perf was used to collect samples of memory operations. As the
setup, we have chosen 10 radix bits for partitioning and 128-sized
fragments to join relations of 4 GB and 256 MB.

Stores. Figure 9 depicts the chronological order of memory addresses
written during the partitioning of the probe relation. We illustrate
only 4 of the 48 threads as examples for visual clarity. The results
support our argument that micro partitioning provides a more

32



Micro Partitioning: Friendly to the Hardware and the Developer DaMoN ’23, June 18–23, 2023, Seattle, WA, USA

0 10 19 30 40
time in ms

0.0 GB

1.0 GB

2.0 GB

3.0 GB

4.0 GB

ad
dr

es
se

s

thread #0
thread #1

thread #2
thread #3

(a) Partitiong phase of [3]

0 20 39 60
time in ms

0.0 GB

1.0 GB

2.0 GB

3.0 GB

4.0 GB

ad
dr

es
se

s

worker #0
worker #1

worker #2
worker #3

(b) Using micro partitioning

Figure 11: Comparing memory loads during the probe phase.

TLB-friendly write pattern. The “classical” technique of radix parti-
tioning materializes tuples by writing them extensively throughout
the partition array (Figure 9a)—accessing a broad range of different
memory addresses (and thus pages) simultaneously. Accordingly,
the figure demonstrates a complicated writing pattern.

In contrast, when employing micro fragments, the (worker-local)
partitions are written to ascending memory addresses (Figure 9b).
The write operations to memory regions near one another result in
fewer simultaneously accessed memory pages, making better use
of the TLB.

Loads. When utilizing micro partitioning, a partition comprises
many fragments that are spread across the memory and assem-
bled during the join phase. This results in a random read pattern,
as seen in Figure 11b, similar to the write pattern of radix parti-
tioning. However, annotated tasks make the random read pattern
predictable since the runtime knows upcoming tasks and accessed
partition fragments. Task-assisted prefetching becomes a natural
optimization that requires no effort for the developer.

In contrast, radix partitioning enables linear scanning of a con-
tiguous memory chunk per partition during the join phases (Figure
11a). Finally, it is necessary to pick a battle: Random accesses dur-
ing partitioning or random accesses at the join phase, with the
latter allowing for more optimization potential—specifically in the
dominating partition phase.

4.3 Task-driven Micro Partitioning in Detail
Utilizing micro partitioning with tiny fragments requires many
tasks to process. This raises the question of task-based runtime
overhead. We will address this question by breaking down the
task-based radix join’s CPU time into several individual parts.

Figure 12 shows the CPU cycles per output tuple.Kernel, partition,
and join refer to radix join charges, while runtime and tasking are
MxTasking-related. The number of cycles represents all logical core
cycles. We used Intel VTune to record these samples.

Kernel. The measurement reveals that the OS kernel consumes
several cycles. Most of these relate to mapping virtual to physical
memory pages during partitioning. The findings are not surprising
as we did not map the partitions ahead of the benchmark to provide
comparability with the thread-based implementation of [3].

Runtime. We can also observe a variable quantity of cycles spent in
the MxTasking runtime. These are associated with the “usual” han-
dling of tasks (e.g., when fetching tasks from the queue) and—more

5 6 7 8 9 10 11 12 13
radix bits

0

100

200

300

400

cy
cl

es
/o

ut
pu

tt
up

le

DTLB STLB

be�er

micro part. (128) micro part. (256)

kernel
partition

join
runtime

tasking

Figure 12: Cycle-based comparison of different micro
fragment-granularities.

frequently—worker idle times. When a worker thread finds no tasks
ready for execution, it aggressively pulls for new tasks. For instance,
before the partitions can be joined, it requires the partitioning to
complete by all worker threads, leaving some workers temporarily
without work.

Tasking. As Figure 13 shows, tasking includes costs for allocating
and spawning tasks. Plus, for each task, we instruct the MxTasking
runtime to prefetch the task’s processed data which consumes addi-
tional instruction bandwidth. The tasking costs are proportional
to the capacity of micro fragments: Given more fine-granular frag-
ments, more tasks must be processed (and more data has to be
prefetched). We observed this pattern also for coarser and finer frag-
ments.

9 10 11
radix bits

0

10

20

30

cy
cle

s/
ou

tp
ut

tu
pl

e

allocate
spawn

prefetch

Figure 13: Breaking down
tasking cycles in Figure 12.

During extended scans of
the partitioned data chunks,
fragments with a granular-
ity of 256 tuples benefit
more from the hardware
prefetcher (what we compen-
sate with task-assisted soft-
ware prefetching for shorter
scans).

Despite the minor over-
head of tasking, MxTasking
manages to keep it at a
low level. Future optimiza-
tions promise to improve
the join performance, as en-
hancements to the frame-
work will have a direct positive impact.

5 SUMMARY
In this paper, we presented micro partitioning as a unique technique
for partitioning that is TLB- and cache-friendly. Micro partitioning

33



DaMoN ’23, June 18–23, 2023, Seattle, WA, USA Jan Mühlig and Jens Teubner

tightens the simultaneously accessed address space during tuple
materialization by separating the entire partition into tiny fixed-
capacity fragments.

Combined with MxTasks, this approach also eases the imple-
mentation of partitioning: Spawning a new task for each fragment,
annotated with the proper partition, is all the developer has to do.
The task dispatcher takes over the assembling of fragments: With
the help of the annotation, all tasks that belong to the same partition
execute in bulk—aiming to reuse the CPU cache for partitioned data
structures. However, micro partitioning is not limited to MxTasks
and can also be adapted to, e.g., morsel-driven execution models
and traditional threads.

The findings demonstrate that micro partitioning outperforms
state-of-the-art radix partitioning by 21 % in our benchmarks while
boosting the end-to-end radix join by 11 %.

ACKNOWLEDGMENTS
This work was supported by DFG, Deutsche Forschungsgemein-
schaft, grant number TE 1117/2-1, and has partly been funded by
the Federal Ministry of Education and Research of Germany and the
state of North-Rhine Westphalia as a part of the Lamarr-Institute
for Machine Learning and Artificial Intelligence. We would like
to thank the anonymous reviewers, Maximilian Berens, Roland
Kühn, and Lea Schönberger for their helpful comments and sugges-
tions. We also would like to thank the ESS group from Osnabrück
University for providing their hardware for benchmarking.

REFERENCES
[1] Atul Adya, Jon Howell, Marvin Theimer, William J. Bolosky, and John R. Douceur.

2002. Cooperative Task Management Without Manual Stack Management. In
Proceedings of the General Track: 2002 USENIX Annual Technical Conference,
June 10-15, 2002, Monterey, California, USA, Carla Schlatter Ellis (Ed.). USENIX,
289–302. http://www.usenix.org/publications/library/proceedings/usenix02/
adyahowell.html

[2] Cédric Augonnet, Samuel Thibault, Raymond Namyst, and Pierre-André Wacre-
nier. 2009. StarPU: A unified platform for task scheduling on heterogeneous
multicore architectures. In European Conference on Parallel Processing. Springer,
863–874. https://doi.org/10.1007/978-3-642-03869-3_80

[3] Cagri Balkesen, Jens Teubner, Gustavo Alonso, and M. Tamer Özsu. 2013. Main-
memory hash joins on multi-core CPUs: Tuning to the underlying hardware.
In 29th IEEE International Conference on Data Engineering, ICDE 2013, Brisbane,
Australia, April 8-12, 2013, Christian S. Jensen, Christopher M. Jermaine, and
Xiaofang Zhou (Eds.). IEEE Computer Society, 362–373. https://doi.org/10.1109/
ICDE.2013.6544839

[4] Cagri Balkesen, Jens Teubner, Gustavo Alonso, and M. Tamer Özsu. 2015. Main-
Memory Hash Joins on Modern Processor Architectures. IEEE Trans. Knowl. Data
Eng. 27, 7 (2015), 1754–1766. https://doi.org/10.1109/TKDE.2014.2313874

[5] Maximilian Bandle, Jana Giceva, and Thomas Neumann. 2021. To Partition, or
Not to Partition, That is the Join Question in a Real System. In SIGMOD ’21:
International Conference on Management of Data, Virtual Event, China, June 20-25,
2021, Guoliang Li, Zhanhuai Li, Stratos Idreos, and Divesh Srivastava (Eds.). ACM,
168–180. https://doi.org/10.1145/3448016.3452831

[6] Alexander Baumstark, Philipp Götze, Muhammad Attahir Jibril, and Kai-Uwe
Sattler. 2021. Instant Graph Query Recovery on Persistent Memory. In Proceedings
of the 17th InternationalWorkshop on Data Management on New Hardware, DaMoN
2021, 21 June 2021, Virtual Event, China, Danica Porobic and Spyros Blanas (Eds.).
ACM, 10:1–10:4. https://doi.org/10.1145/3465998.3466011

[7] Peter A. Boncz, Stefan Manegold, and Martin L. Kersten. 1999. Database Architec-
ture Optimized for the New Bottleneck: Memory Access. In VLDB’99, Proceedings
of 25th International Conference on Very Large Data Bases, September 7-10, 1999,
Edinburgh, Scotland, UK, Malcolm P. Atkinson, Maria E. Orlowska, Patrick Val-
duriez, Stanley B. Zdonik, and Michael L. Brodie (Eds.). Morgan Kaufmann, 54–65.
http://www.vldb.org/conf/1999/P5.pdf

[8] Kayhan Dursun, Carsten Binnig, Ugur Çetintemel, Garret Swart, and Weiwei
Gong. 2019. A Morsel-Driven Query Execution Engine for Heterogeneous Multi-
Cores. Proc. VLDB Endow. 12, 12 (2019), 2218–2229. https://doi.org/10.14778/
3352063.3352137

[9] Dateng Hao and Li Sun. 2013. DPAgg: A Dynamic Partition Aggregation on Mul-
ticore Processor in Main-Memory Database. In 10th IEEE International Conference
on High Performance Computing and Communications & 2013 IEEE International
Conference on Embedded and Ubiquitous Computing, HPCC/EUC 2013, Zhangjiajie,
China, November 13-15, 2013. IEEE, 1769–1777. https://doi.org/10.1109/HPCC.
and.EUC.2013.253

[10] Intel. 2023. VTune Profiler. https://software.intel.com/vtune/. [Online; accessed
Februrary 2023].

[11] Saurabh Jha, Bingsheng He, Mian Lu, Xuntao Cheng, and Huynh Phung Huynh.
2015. Improving Main Memory Hash Joins on Intel Xeon Phi Processors: An
Experimental Approach. Proc. VLDB Endow. 8, 6 (2015), 642–653. https://doi.org/
10.14778/2735703.2735704

[12] Alexey Kukanov and Michael J. Voss. 2007. The Foundations for Scalable Multi-
core Software in Intel Threading Building Blocks. Intel Technology Journal 11, 4
(2007).

[13] Viktor Leis, Peter A. Boncz, Alfons Kemper, and Thomas Neumann. 2014. Morsel-
driven parallelism: a NUMA-aware query evaluation framework for the many-
core age. In International Conference on Management of Data, SIGMOD 2014,
Snowbird, UT, USA, June 22-27, 2014, Curtis E. Dyreson, Feifei Li, and M. Tamer
Özsu (Eds.). ACM, 743–754. https://doi.org/10.1145/2588555.2610507

[14] Linux. 2023. perf. https://perf.wiki.kernel.org/. [Online; accessed Februrary
2023].

[15] Stefan Manegold, Peter A. Boncz, and Martin L. Kersten. 2002. Optimizing Main-
Memory Join on Modern Hardware. IEEE Trans. Knowl. Data Eng. 14, 4 (2002),
709–730. https://doi.org/10.1109/TKDE.2002.1019210

[16] Jan Mühlig and Jens Teubner. 2021. MxTasks: How to Make Efficient Syn-
chronization and Prefetching Easy. In SIGMOD ’21: International Conference
on Management of Data, Virtual Event, China, June 20-25, 2021, Guoliang Li,
Zhanhuai Li, Stratos Idreos, and Divesh Srivastava (Eds.). ACM, 1331–1344.
https://doi.org/10.1145/3448016.3457268

[17] Thomas Neumann. 2011. Efficiently Compiling Efficient Query Plans for Modern
Hardware. Proc. VLDB Endow. 4, 9 (2011), 539–550. https://doi.org/10.14778/
2002938.2002940

[18] Thomas Neumann and Michael J. Freitag. 2020. Umbra: A Disk-Based System with
In-Memory Performance. In 10th Conference on Innovative Data Systems Research,
CIDR 2020, Amsterdam, The Netherlands, January 12-15, 2020, Online Proceedings.
www.cidrdb.org. http://cidrdb.org/cidr2020/papers/p29-neumann-cidr20.pdf

[19] Ippokratis Pandis, Ryan Johnson, Nikos Hardavellas, and Anastasia Ailamaki.
2010. Data-Oriented Transaction Execution. Proc. VLDB Endow. 3, 1 (2010),
928–939. https://doi.org/10.14778/1920841.1920959

[20] Ippokratis Pandis, Pinar Tözün, Miguel Branco, Dimitris Karampinas, Danica
Porobic, Ryan Johnson, and Anastasia Ailamaki. 2011. A data-oriented transaction
execution engine and supporting tools. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, SIGMOD 2011, Athens, Greece,
June 12-16, 2011, Timos K. Sellis, Renée J. Miller, Anastasios Kementsietsidis,
and Yannis Velegrakis (Eds.). ACM, 1237–1240. https://doi.org/10.1145/1989323.
1989463

[21] Orestis Polychroniou and Kenneth A. Ross. 2014. A comprehensive study of main-
memory partitioning and its application to large-scale comparison- and radix-sort.
In International Conference on Management of Data, SIGMOD 2014, Snowbird, UT,
USA, June 22-27, 2014. ACM, 755–766. https://doi.org/10.1145/2588555.2610522

[22] Kazuki Sakamoto and Tomohiko Furumoto. 2012. Grand central dispatch. In Pro
Multithreading and Memory Management for iOS and OS X. Springer, 139–145.

[23] Nadathur Satish, Changkyu Kim, Jatin Chhugani, Anthony D. Nguyen, Victor W.
Lee, Daehyun Kim, and Pradeep Dubey. 2010. Fast sort on CPUs and GPUs: a
case for bandwidth oblivious SIMD sort. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, SIGMOD 2010, Indianapolis,
Indiana, USA, June 6-10, 2010. ACM, 351–362. https://doi.org/10.1145/1807167.
1807207

[24] Felix Martin Schuhknecht, Pankaj Khanchandani, and Jens Dittrich. 2015. On
the Surprising Difficulty of Simple Things: the Case of Radix Partitioning. Proc.
VLDB Endow. 8, 9 (2015), 934–937. https://doi.org/10.14778/2777598.2777602

[25] Ambuj Shatdal, Chander Kant, and Jeffrey F. Naughton. 1994. Cache Conscious
Algorithms for Relational Query Processing. In VLDB’94, Proceedings of 20th
International Conference on Very Large Data Bases, September 12-15, 1994, Santiago
de Chile, Chile, Jorge B. Bocca, Matthias Jarke, and Carlo Zaniolo (Eds.). Morgan
Kaufmann, 510–521. http://www.vldb.org/conf/1994/P510.PDF

[26] Benjamin Wagner, André Kohn, and Thomas Neumann. 2021. Self-Tuning Query
Scheduling for Analytical Workloads. In SIGMOD ’21: International Conference
on Management of Data, Virtual Event, China, June 20-25, 2021, Guoliang Li,
Zhanhuai Li, Stratos Idreos, and Divesh Srivastava (Eds.). ACM, 1879–1891. https:
//doi.org/10.1145/3448016.3457260

[27] Jan Wassenberg and Peter Sanders. 2011. Engineering a Multi-core Radix Sort.
In Euro-Par 2011 Parallel Processing - 17th International Conference, Euro-Par 2011,
Bordeaux, France, August 29 - September 2, 2011, Proceedings, Part II (Lecture Notes
in Computer Science, Vol. 6853), Emmanuel Jeannot, Raymond Namyst, and Jean
Roman (Eds.). Springer, 160–169. https://doi.org/10.1007/978-3-642-23397-5_16

34

http://www.usenix.org/publications/library/proceedings/usenix02/adyahowell.html
http://www.usenix.org/publications/library/proceedings/usenix02/adyahowell.html
https://doi.org/10.1007/978-3-642-03869-3_80
https://doi.org/10.1109/ICDE.2013.6544839
https://doi.org/10.1109/ICDE.2013.6544839
https://doi.org/10.1109/TKDE.2014.2313874
https://doi.org/10.1145/3448016.3452831
https://doi.org/10.1145/3465998.3466011
http://www.vldb.org/conf/1999/P5.pdf
https://doi.org/10.14778/3352063.3352137
https://doi.org/10.14778/3352063.3352137
https://doi.org/10.1109/HPCC.and.EUC.2013.253
https://doi.org/10.1109/HPCC.and.EUC.2013.253
https://software.intel.com/vtune/
https://doi.org/10.14778/2735703.2735704
https://doi.org/10.14778/2735703.2735704
https://doi.org/10.1145/2588555.2610507
https://perf.wiki.kernel.org/
https://doi.org/10.1109/TKDE.2002.1019210
https://doi.org/10.1145/3448016.3457268
https://doi.org/10.14778/2002938.2002940
https://doi.org/10.14778/2002938.2002940
http://cidrdb.org/cidr2020/papers/p29-neumann-cidr20.pdf
https://doi.org/10.14778/1920841.1920959
https://doi.org/10.1145/1989323.1989463
https://doi.org/10.1145/1989323.1989463
https://doi.org/10.1145/2588555.2610522
https://doi.org/10.1145/1807167.1807207
https://doi.org/10.1145/1807167.1807207
https://doi.org/10.14778/2777598.2777602
http://www.vldb.org/conf/1994/P510.PDF
https://doi.org/10.1145/3448016.3457260
https://doi.org/10.1145/3448016.3457260
https://doi.org/10.1007/978-3-642-23397-5_16

	Abstract
	1 Introduction
	2 Data Partitioning
	2.1 Hash-Based Partitioning
	2.2 Micro Partitioning
	2.3 Micro Partitioning in Action

	3 Task-based Partitioning
	3.1 MxTask Abstraction
	3.2 Dispatching Micro Fragments

	4 Experimental Evaluation
	4.1 Comparison with State-of-the-Art
	4.2 Memory Access Patterns
	4.3 Task-driven Micro Partitioning in Detail

	5 Summary
	Acknowledgments
	References

