
Towards Data-Based Cache Optimization of B+-Trees
Roland Kühn

Databases and Information Systems
Group (DBIS)

TU Dortmund University
roland.kuehn@cs.tu-dortmund.de

Daniel Biebert
Design Automation for Embedded

Systems Group (DAES)
TU Dortmund University

daniel.biebert@tu-dortmund.de

Christian Hakert
Design Automation for Embedded

Systems Group (DAES)
TU Dortmund University

christian.hakert@tu-dortmund.de

Jian-Jia Chen
Design Automation for Embedded

Systems Group (DAES)
TU Dortmund University

jian-jia.chen@cs.tu-dortmund.de

Jens Teubner
Databases and Information Systems

Group (DBIS)
TU Dortmund University

jens.teubner@cs.tu-dortmund.de

ABSTRACT
The rise of in-memory databases and systems with considerably
largememories and cache sizes requires the rethinking of the proper
implementation of index structures like B+-trees in such systems.
While disk block-sized nodes and binary search were considered
as good in the past, smaller node sizes and cache-friendly linear
search within nodes can be noticeably more performant nowadays.
Considering the probabilistic distribution of lookup values to the
B+-tree as part of a memory-friendly and cache-aware layout is
a consequent next step, which is studied in this paper. Favoring
frequently visited nodes and paths in the regard of cache hits can
improve the overall performance of the tree and, thus, of the entire
database system. We provide such an optimized B+-tree layout,
which takes the probabilistic distribution of the lookup values as a
basis. Experimental evaluation shows that choosing rather small
node sizes in combination with our optimization algorithm can
improve the performance by up to 26% in comparison to a default
baseline.

CCS CONCEPTS
• Information systems→ DBMS engine architectures.

KEYWORDS
in-memory index, B+ tree, cache-aware layout

ACM Reference Format:
Roland Kühn, Daniel Biebert, Christian Hakert, Jian-Jia Chen, and Jens
Teubner. 2023. Towards Data-Based Cache Optimization of B+-Trees. In
Proceedings of Make sure to enter the correct conference title from your rights
confirmation email (Conference acronym ’XX). ACM, New York, NY, USA,
7 pages. https://doi.org/XXXXXXX.XXXXXXX

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Conference acronym ’XX, June 19, 2023, Seattle, WA
© 2023 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

Logical View

n0

n1 n2... ...

n3 n4... ... n5 n6......

Physical View

n5

n0

n4

n3

...

n2

n6

n1

Figure 1: The logical view of a tree is shown on the left side.
The colors reflect different paths in the tree. The right side
depicts a possible physical layout of the tree in memory.

1 INTRODUCTION
Index data structures in modern database systems are a highly
performance-engineered field since the availability of efficient index
structures is a crucial aspect to the overall performance of the entire
database management system (DBMS). Historically motivated by
the blockwisemanagement of hard disks or SSDs, B+-tree structures
with node sizes similar to the block size are a well-established and
well-studied topic [4].

When it comes to in-memory databases or in-memory indices
potentially on modern memory technologies, however, several ob-
servations can be made that no longer follow the historical design
principle of B+-trees. For example, the nodes of in-memory B+-trees
are no longer bound to a fixed block size of a secondary storage
medium. The question, how to design memory and especially cache-
friendly in-memory B+-trees remains an active research topic and
allows an extended design space of the index data structures.

One specific problem that arises with tree-based in-memory
index structures is the structure and natural growth of the trees. For
example, a tree-based index does grow logically in depth, as shown
on the left in Figure 1. However, the arrangement of individual
nodes in memory does not necessarily reflect this arrangement.
For example, a split of a leaf node can cause further splits in the
parent nodes and possibly even create a new root node, which
might then be placed at a —from the application’s perspective—
random memory location. As illustrated in Figure 1 (on the right
side), this results in arbitrary jumps through the address space when

1

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

navigating from the root to a leaf node. Modern hardware, however,
is endowed with features, e.g., hardware prefetching or out-of-order
execution, that exploit predictable memory access patterns. Hence,
as many nodes as possible of a tree path should be placed at a
contiguous memory region.

Despite general cache-aware optimization of the tree implemen-
tation itself, data-based cache optimization provides promising
optimization potential, which, to the best of our knowledge, has not
been explored for B+-trees so far. In the field of machine learning,
especially for decision trees within random forests, optimizing the
tree structure of the binary decision tree based on an empirical
probabilistic model of the training data towards the cache hierar-
chy is shown to provide massive performance improvement [1].
Although database systems do not provide a comparable static data
distribution as the training data of a machine learning problem,
repeating sequences of requests can be often found in database ap-
plications, which provides a similar potential for data-based cache
optimization.

Consequently, in this paper, we study the adaption of a state-
of-the-art in-memory B+-tree to a proper memory layout, which
favors frequently accessed nodes and paths in the tree in the regard
of cache hits. The information of frequently used nodes and paths
is gathered by maintaining an empirical probabilistic model of past
requests to the B+-tree, which reflects the probabilistic distribution
of future requests. For the identified frequently used nodes and
paths, prefetching and eviction of the cache is controlled by a corre-
sponding memory layout to minimize the number of cache misses
for these nodes and paths. We realize that by counting the number
of requests following a certain key in the B+-tree, forming a his-
togram for every node. This histogram gives relative probabilities,
which can be used to extract highly probable paths, so-called hot
paths, through the tree. We consequently place these hot paths in
linear ascending memory locations, such that hardware prefetching
of the cache loads the most probable next node already before it is
needed. Assuming data age-based eviction, like Least recently used
(LRU), hot paths are also protected from eviction since they are
frequently accessed. The question of a proper runtime collection of
the empirical probabilities in the tree nodes and the re-layouting of
the tree upon changes in the probabilities during runtime is out of
the scope of this paper.
In short, we provide the following contributions:

• A probabilistic data-based model for the frequency of usage of
nodes and paths in B+-trees.

• An algorithm that optimizes the layout of hot paths in B+-trees
for modern hardware.

• An experimental evaluation of the effectiveness of the optimiza-
tion algorithm on a static setup.

2 BACKGROUND
B+-tree variants and many other tree- and trie-based index struc-
tures have been subject to extensive research in the past decades
(e.g., [2–5, 10, 12, 14, 16, 17, 19, 23]). Originally optimized for storage
devices like hard disks, B+-trees and variants are also widely used in
in-memory database management systems. Over the years, several
specialized tree-based structures were proposed that are especially

designed for the use on modern hardware with huge main memo-
ries and deep cache hierarchies. For example, the optimization of
B+-tree layouts towards caches has been examined in [20], where
child nodes of a node are stored contiguously in memory and only
one pointer to that memory region is stored in the parent node. The
individual child nodes can then be accessed by adding an offset to
that pointer. In [22], cache optimization schemes for memory-based
key-value stores are presented. The effect of different node sizes of
a cache-sensitive B+-tree (CSB+-tree) to main memory with respect
to cache and TLB misses has been modelled and analyzed in [6].
In contrast to previous assumptions, the authors show that node
sizes larger than the size of cache lines can improve the perfor-
mance. [8, 18] shows how memory accesses in index structures can
be improved by exploiting software-based prefetching. Hardware-
sensitive searching methods have been examined and analyzed in
[21].

The usage of the empirical distribution in the processed data
for cache-based performance optimization is studied extensively
on decision trees within random forest machine learning methods
[1]. The authors enable different tree implementations to feature a
large degree of freedom for the memory placement of single nodes.
Empirical probability distributions from the training dataset are
used to identify often taken paths in the tree, which are layout
in a consecutive, cache-friendly manner. This improves the cache
locality and the memory latency of individual decision trees during
the execution of the test dataset. Although the application of this
paper is no machine learning application with training and test
datasets, we focus similarly on the cache optimization of often
taken paths in a B+-tree model.

3 CACHE ARCHITECTURES
In this paper, we exploit non-uniform distributions of the frequency
of accesses to different parts of an index in a DBMS in order to
optimize system performance due to the exploitation of locality
and prefetching in the system’s cache architecture. Since cache
strategies are not always well known for existing systems, we lay
out the basic abstract properties of the management of the CPU
cache and translation lookaside buffer (TLB) in this section.

We generally target our method to modern CPUs with advanced
memory architectures, including a cache hierarchy with various
levels, a TLB, eventually also across various levels and advanced
eviction and speculative prefetching strategies in the caches and
TLBs. Although the details about the exact realization of these
strategies are usually not documented for available CPUs, a basic
behavior can be assumed, which then at least is approximately
realized by the CPU. Microbenchmarking, in general, could help to
gain a deeper understanding of the internal management of caches
and TLBs. However, it still only derives an approximated model.

Regarding the hierarchical organization of caches and TLBs,
lower levels are only queried when a miss on a higher level hap-
pens. Hence, small working sets usually are served by higher level
caches and TLBs, while lower levels are usually beneficial for larger
working sets. Due to a usually similar management of eviction
and prefetching across the levels, an optimization of the memory
behavior of software with regard to this eviction and prefetching

2

strategies targets different levels of the hierarchy in a unified way,
depending on the targeted working set size.

Focusing on the eviction strategy, caches are managed on the
granularity of cache lines, which usually span multiple CPU words.
An eviction happens when other content has to be loaded into
the cache, but no space is available for this content. Although
the strategy of choosing the victim for eviction is complex and
usually unknown in modern CPUs, an age-based strategy, which
protects frequently accessed data from eviction, is usually realized.
Consequently, ensuring frequent accesses to certain cache lines
from the software can protect them from eviction.

Focusing on prefetching, modern CPUs are able to speculatively
load contents to the cache or to the TLB, which are expected to be
accessed in the future in order to reduce the cache miss penalty
for these accesses. The prefetched contents are decided based on
patterns of past memory accesses. One easily exploited pattern is
linear increasing access in thememory address space. Consequently,
software can exploit eviction by placing contents in linear ascending
memory ranges, such that these contents are hit by prefetching.

Despite caches, TLBs are similarly managed, such that often-used
addresses are less likely to be evicted than seldom used addresses.
From the perspective of optimization, exploiting locality in the TLB
can be done similarly as for caches when the assumed line size
is the size of a memory page. In consequence, TLBs can also be
interpreted as a last layer of very coarse managed caches for the
optimization.

4 PROBABILISTIC MODELING
The allover aim of this paper is to show how data-based probability
distributions can be used to optimize the cache and TLB behavior
of tree-based index structures. Hence, we detail the basic proba-
bilistic model, the relation to the memory layout, and the possible
collection of an approximation of the probability distribution of the
B+-tree in this section. Although the overall aim is to optimize the
performance of a database system, the B+-tree in insolation can be
considered as a simple key-value store, which stores the associated
values with a certain key. Hence, a data set which is used with
a B+-tree can be also expressed as a set of such key-value pairs
I = {(k1,v1), (k2,v2), ..., (kn ,vn)} if it is used to populate the tree
or just as a set of lookup keys L = {k1,k2, ...,km } if it is used to per-
form lookups in the tree. The B+-tree then forms a structure where
incoming keys are compared to the keys that are currently stored
in a node. This comparison determines which child node should be
further used for the lookup. New keys are eventually inserted in
leaf nodes, which may lead to split and rebalance operations of the
entire tree.

4.1 Probabilistic Model Description
During lookup, every node nx has a certain amount of comparison
keysCnx = {ck1, ck2, ..., ckn }, where the incoming lookup key lk is
compared to. The corresponding child node ny then is determined
by the evaluation of the criterion cka−1 ≤ lk < cka , where ny is
the associated child node to the comparison key cka . Consequently,
a given set of lookup keys LK forms a discrete probability distribu-
tion within every tree node nx : Pnx = {pck1 ,pck2 , ...,pckn }. This
distribution is collected by simply counting how often the child of

Logical View

n0

n1 n2

9000×

... ...

6000×

n3 n4

8000× 1000×
... ... n5 n6

4000× 2000×
......

Physical View

n0

n1

n3

n2

n5

n6

n4

...

Figure 2: Schematic illustration of the node ordering accord-
ing to our model. The numbers at the edges indicate how
often this part of the path has been taken.

key cky is used for further lookup in the tree and normalizing all
counted values in each node.

The point in time where a memory layout for a B+-tree is de-
cided, lies between the creation of the majority of the tree and the
execution of many lookup operations to the tree. Consequently,
the probabilistic distribution P

f uture
nx of the future lookup keys

LKf uture is crucial to the cache-aware layout. In the rest of this
paper, we take the idealized assumption that the distribution of fu-
ture lookups is exactly the same as the distribution of past lookups
and hence the probability distribution in every node is precisely
well-known. For database systems which are used in the backend
of deterministic software, such idealized assumptions can even be
considered.

4.2 Tree Layouting
Interpreting the probabilistic distribution in every node globally
for the tree, the model allows forming a global probabilistic model
for paths and sequences through the tree, which are likely taken by
lookup keys. Generally, B+-trees grow at a certain moment beyond
the size of caches and probably also span more memory pages than
the TLB can hold. Even in modern CPUs, the size of the TLB is
limited to a few hundred or a little more than 1000 entries, which
are not sufficient to hold all the pages that are needed to keep the
addresses of all nodes. Once this situation is present, accesses to
the B+-tree, which include more nodes being present in the cache
or more pages being present in the TLB are significantly faster than
accesses which include fewer nodes in the cache or pages in the
TLB. Consequently, the ultimate optimization objective is to layout
the tree in such a way that frequently used paths, i.e., a subset of
nodes, are more likely to be present in the cache than less frequently
used nodes. Ideally, one would wish to greedily populate the cache
with the most frequently used nodes. Since most modern systems,
however, are not equipped with manual manageable caches, the
memory layout of the tree has to be formed in away that prefetching
and eviction of the cache forms an approximation towards that ideal
target.

In order to accommodate for the principle of prefetching, we
first extract highly probable paths through the B+-tree from the
collected probabilistic model. These paths are greedily extracted
from the tree nodes. In detail, the root node, the highest probable
child, the highest probable child of this child, and so on form the

3

first highest probable path. Subsequently, the next highest probable
child from the root node forms the beginning of the next highest
probable path. It should be noted that these so-called hot paths
are disjoint, and every node of the tree belongs to at most one hot
path. After forming the hot paths on a logic level, we layout the B+-
tree in memory due to placing the nodes of the hot paths in linear
ascending memory locations. An example of such a placement is
illustrated in Figure 2. Across hot paths, also, the order of the prob-
ability is maintained. During inference of the tree, the prefetcher
likely loads linear ascending memory addresses to the cache. This
exactly covers the highest probable tree nodes to be accessed in
future in our layout. Consequently, future accesses following the
probabilistic distribution benefit from the layout since the number
of cache hits is optimized.

The proposed mapping strategy for the B+-tree further also ac-
commodates for the principle of eviction. We form the hot paths
while starting with early levels of the tree, i.e., preferably the root
node or the direct children. In consequence, these nodes are ac-
cessed more often than deeper nodes of the tree. Consequently, the
cache lines are more often touched and protected from eviction. As
we place the hot path in linear ascending memory addresses, they
are also partially covered by these frequently accessed cache lines
and protected from eviction.

4.3 Probabilistic Model Approximation
Although it is not the focus of this paper to explore means to es-
timate P f uturenx precisely, simple mechanisms can be considered.
Forming a proper set of lookup keys LK , which reflects a realistic
and usable probability distribution, can be approached in multiple
ways. Ideally, assuming that future requests to the tree would form
a set of lookup keys LKf uture and hence a probability distribu-
tion P

f uture
nx for all nodes, a set of lookup keys LKpast should be

collected from past requests in such a way that the correspond-
ing distribution P

past
nx is highly similar to P

f uture
nx . One simple

approach towards a collection of the probability distribution would
be to track lookup keys during the entire lifetime of the B+-tree
and incrementally update the stored local probability distribution
per node. Normalization of the stored counters could also be only
performed when the distribution is actually queried, such that the
overhead for this form of data collection can be minimized. In a
productive system, however, the distribution of future lookup keys
must not always be the same and can change over time. Consid-
ering the simple example of an online shop where products are
looked up based on user requests. The distribution of looked-up
products may even change multiple times over the day, depending
on the group of users which are currently online. Consequently, it
could be considered to update the probability distribution on the
nodes in a certain sliding window manner, such that drifts in the
distribution can be discovered with a relatively low latency and
properly reflected.

5 EVALUATION
In this section, we present an experimental evaluation of our ap-
proach a state-of-the-art in-memory index. We use an implemen-
tation of a B+-tree with optimistic lock coupling [11, 13] that was
also used by Wang et al. [23].

5.1 Evaluation Setup
For our experiments, we use a B+-tree with 100 Mio. random keys
with a size of 8 bytes per key and per payload each. Since the
keys within the nodes are typically ordered, a search algorithm
like binary search is normally used to locate the position of the
pointer to the next child node or the payload. For our benchmarks,
we additionally implement a linear search as an alternative to the
binary search, since it offers a sequential access pattern and may
be better suitable for the hardware prefetcher. To reflect a realistic
scenario, where just a smaller fraction of the keys in the B+-tree is
accessed and some of these keys are accessed very often, we use a
Zipfian distribution with a skew of 0.99 on 10 Mio. random keys of
our tree to generate our workload. The complete workload consists
of 200 Mio. read operations.

To investigate the effectiveness of our approach, we study the
impact of considering hot paths by first extracting a few hot paths
(10) and then gradually increasing the number of hot paths up to
10 000. Since we know which keys are accessed very often, we
log the nodes of these keys during a tree traversal once before
the remapping takes place. The hottest nodes are then placed in
contiguous memory locations, starting with the path that is most
likely to be taken.

Apart from the Native (N) implementation, where the B+-tree
is evaluated as it is, without any optimization, we consequently
evaluate five different strategies.

1 Hot path (H): In this setting, we only use the access infor-
mation of the hot paths to generate a new mapping that
tries to put as many nodes of a single hot path at contiguous
memory locations. Nodes that are not part of a hot path will
be stored at a random position.

2 Native + Linear Search (NL): This strategy does not change
the mapping of the nodes but uses a linear search instead of a
binary search within the nodes to locate the correct position
of a pointer/value.

3 Hot path + Linear Search (HL): This approach combines
the remapping of nodes from 1 with the linear search as
used in 2 .

4 Hot path + Sort (HS): The nodes will be remapped like in
1 , but this time we also sort the remaining nodes that are
not part of any hot path in descending order by the number
of total read accesses and remap them as well.

5 Hot path + Linear Search + Sort (HLS): This configura-
tion combines the approaches 3 and 4 by using linear
search within the nodes, remapping the nodes of the hot
paths and sorting the remaining nodes.

Besides different remapping schemes and amount of hot paths,
we also evaluate the impact of different node sizes, since we expect
that in combination with our strategies e.g. several nodes of a hot
path can end up on a single page and therefore the TLB usage can be
improved. For the experiments, we use five different node sizes (256
bytes, 512 bytes, 1024 bytes, 2048 bytes and 4096 bytes). Depending
on the node size, the size of the tree also ranges from ≈ 2.1 GB
(with a node size of 4096 bytes) and ≈ 2.7 GB (with a node size of
256 bytes).

The experiments are run on a machine with Ubuntu 20.04 and
two Intel Xeon Gold 6230 clocked at 2.1 GHz with 20 physical cores

4

5 10 15 20 25 30 35 40

Threads

0

20

40

60

80

100

M
O
ps

/s

10 Hot Paths, 256 Bytes

N
H
HS
NL
HL
HLS

(a) Node size of 256 Bytes

5 10 15 20 25 30 35 40

Threads

0

20

40

60

80

100

M
O
ps

/s

10 Hot Paths, 4096 Bytes

N
H
HS
NL
HL
HLS

(b) Node size of 4096 Bytes

Figure 3: Throughput of all evaluated strategies for a node size of 256 bytes and 4096 bytes with only 10 hot paths used.

and 40 threads each. Each processor has 20 × 32 KB of L1D Cache,
20 × 1 MB of L2 Cache, 27.5 MB of L3 Cache, a total memory of 192
GB DDR4 RAM. The first level TLB has a size of 64 entries and the
second level TLB has a size of 1536 entries. We use perf [15] and
Intel VTune [7] to collect information about hardware events.

5.2 Result Discussion
As described in Section 5.1 we examine our approaches with dif-
ferent numbers of hot paths (10, 100, 1000, 10000). Even with a
low number of 10 hot paths, we can see promising results with our
remapping strategies for our workload.

Figure 3 shows the resulting throughput of the five strategies
and the native variant in Million operations per second (MOps/s)
for up to 40 threads and a node size of 256 bytes and 4096 bytes. We
observe that for small node sizes (256 bytes, Figure 3a), the HLS-
method performs best. With 40 threads, HLS performs ≈ 15% better
than the second-placed HL-method, which also exploits hot paths
and linear search but does not sort the nodes, that do not belong
to any hot path. Compared to the strategies without remapping,
an improvement from HLS of ≈ 21% compared to NL and ≈ 50%
compared to N can be observed.

In all of our scenarios, we also notice that the linear search
works very well for node sizes smaller than 1024 bytes. This could
be due to the fact that all keys in a node fit just in a few cache
lines and only a few very simple comparisons must be executed
with linear search. Since a node size of 256 bytes worked very well
with our approaches, we also tested node sizes of 128 bytes, but
the overall performance decreased noticeably. For node sizes larger
than 1024 bytes the linear search becomes much more expensive, as
can be seen in Figure 3b, since on average there are nowmuch more
comparisons that must be executed compared to a binary search.
For node sizes larger than 1024 the native variant also performs
best, however, the best HLS variant with a node size of 256 bytes
has an improvement of ≈ 21% compared to the best performing
native variant with a node size of 4096 bytes.

With small node sizes, however, the native (N) implementation
does not perform as good as with larger node sizes, as illustrated in
Figure 3a. The fact that the native method performs so poorly with
small node sizes can be explained by the structure of the tree: A tree
with small node sizes has a greater depth than a tree whose nodes
have a high fanout. Because of the greater depth, more nodes must
be accessed during a tree traversal and, unless rearranged, many
of these nodes may be located on different pages. This becomes
especially a problem when the amount of TLB entries is no longer
sufficient and the page table must be accessed. In our experiments,
we found that native methods with smaller node-sizes result in
more second-level TLB misses, compared to our strategies that use
remapping. Figure 4a depicts the the amount of second level TLB
misses forHS andHLS, where hot paths and sorted nodes are used is
much lower compared to the strategies where no sorting is applied.
This indicates that our remapping strategies indeed improve the
TLB usage.

Another interesting aspect is that with a larger number of hot
paths (e.g. 10000 hot paths) just minor improvements in throughput
(≈ 2%) for the best method HLS compared to 10 hot paths are
visible. The HL strategy, in contrast, shows significant performance
improvements and is now nearly as fast as the HLS strategy. We
also observe that the performance of H improves and converges
with throughput of HS. We attribute this to the large amount of
frequently touched nodes that are already remapped because of
the hot paths, and therefore the amount of remaining nodes that
must be sorted is small. This is also supported by the amount of
STLB misses for H and HL which is drastically reduced for 10000
hot paths in contrast to 10 hot paths. Sorting the remaining nodes
in HLS and HS therefore just leads to a small improvement of about
2% over HL and H respectively.

For a node size of 256 bytes we can also see an improved miss
rate of the L1D cache (fig. 4b) especially for the strategies that uses
remapping. It can also be observed that the miss rate of H and HL
converges to HS and HLS respectively.

5

N H HS NL HL HLS
0

1

2

3

4

5

6

7

8

ST
LB

M
is
s
(L
oa
ds
)

1e8

Node Size: 256 Bytes
10 Hot Paths

100 Hot Paths

1000 Hot Paths

10000 Hot Paths

(a) Second Level TLB Misses

N H HS NL HL HLS
0.0

0.1

0.2

0.3

0.4

L1
C
ac
he

M
is
s
R
at
io

Node Size: 256 Bytes
10 Hot Paths

100 Hot Paths

1000 Hot Paths

10000 Hot Paths

(b) L1D Cache Miss Ratio

Figure 4: Second Level TLB Misses and L1 Miss ratio of the different strategies with a node size of 256 bytes on 40 threads. If
more hot paths are considered, like the throughput, the amount of STLB misses and the L1 miss ratio for H and HL converges
to HS and HLS

With more than 40 threads, a further improvement in perfor-
mance can be observed. With 80 threads the HLS method can also
achieve the highest throughput here with a node size of 256 bytes,
the lead over the best native variant (with a node size of 4096 bytes)
is 26%. We also notice that some of the strategies that make use of
remapping have a relatively high variance. We relate this, at least
partially, to the allocation of memory for our remapping algorithm.
Our remapping algorithm is executed single-threaded and due to
the first-touch policy of Linux on NUMA-Systems [9] the memory
will be very likely allocated on the NUMA node, where the thread
is executed. Therefore, with more than 40 threads, the memory
access can become costly. Since building the tree is done in parallel,
for more than 40 threads the nodes are allocated on both NUMA
regions and therefore a drop in performance is not really noticeable
for the non-remapping strategies.

The experimental evaluation of our proposed model shows that
data-based cache optimization can contribute to a significant per-
formance gain for read operations in B+-trees. Especially for small
node sizes all remapping strategies show an improvement in per-
formance regarding L1 misses and STLB misses compared to the
native strategy. Our best performing approach HLS with a node
size of 256 bytes shows an improvement of ≈ 21% with 40 threads
and ≈ 26% with 80 threads compared to best performing native
strategy with a node size of 4096 bytes.

6 SUMMARY
In this paper, we study the problem of data-based cache-aware B+-
tree layouting. Given a B+-tree, exceeding the size of the available
cache and consequently provoking cache misses during execution,
the performance can be optimized by layouting the tree in memory
in such a way, that highly probable nodes and paths are favored in
the cache and face fewer cache misses. Towards this, we propose

a method to collect an adequate probabilistic distribution of the
frequency of the usage of nodes and provide an algorithm which
identifies so-called hot paths. These paths are consequently placed
in linear ascending memory locations to make use of the benefits of
sequential data access, like cache prefetching and protection from
cache eviction.

We implement a static evaluation setup of our proposed layout-
ing scheme and compare the performance of different optimized
implementations on a dedicated test system. Comparing to the
native implementation each, the optimizations can achieve an im-
provement of up to ≈ 50% in performance. This improvement is
gained when the node size of the tree is chosen rather small, i.e.,
256 bytes, and the tree is formed deeper with longer paths. For
the native layout, decreasing the node size degrades the perfor-
mance, hence the best decision for the native layout turns out to
rely on large nodes. Comparing the best data-based layout on small
nodes with the best native layout on big nodes, we can improve
the performance by ≈ 26%.

7 FUTUREWORK
Since this paper focuses on investigating if data-based cache-aware
layouting of a B+-tree can improve its performance, the question
of a proper collection of access frequencies and the application
at runtime still needs to be answered. Hence, we plan to explore
different methods for approximate and precise collection of the
empirical probability distributions in future work, which provides
a trade-off between overhead and quality of the data collection.
Consequently, we will explore different approaches to detect a
change in this distribution at runtime and trigger a re-layouting
of the tree. Lastly, we plan to investigate a wide variety of target
applications and workloads to identify under which scenario the
data-based layouting can be more beneficial.

6

REFERENCES
[1] Kuan-Hsun Chen, Chiahui Su, Christian Hakert, Sebastian Buschjäger, Chao-Lin

Lee, Jenq-Kuen Lee, Katharina Morik, and Jian-Jia Chen. Efficient realization of
decision trees for real-time inference. ACM transactions on embedded computing
systems, 21(6):1–26, 2022.

[2] Shimin Chen, Phillip B Gibbons, Todd C Mowry, and Gary Valentin. Fractal
prefetching b+-trees: Optimizing both cache and disk performance. In Proceedings
of the 2002 ACM SIGMOD international conference on Management of data, pages
157–168, 2002.

[3] Goetz Graefe. Sorting and indexing with partitioned b-trees. In CIDR, volume 3,
pages 5–8. Citeseer, 2003.

[4] Goetz Graefe et al. Modern b-tree techniques. Foundations and Trends® in
Databases, 3(4):203–402, 2011.

[5] Goetz Graefe and P-A Larson. B-tree indexes and cpu caches. In Proceedings 17th
International Conference on Data Engineering, pages 349–358. IEEE, 2001.

[6] Richard A Hankins and Jignesh M Patel. Effect of node size on the performance
of cache-conscious b+-trees. In Proceedings of the 2003 ACM SIGMETRICS in-
ternational conference on Measurement and modeling of computer systems, pages
283–294, 2003.

[7] Intel. Vtune profiler. https://software.intel.com/vtune/, 2023. [Online; accessed
23-March-2023].

[8] Onur Kocberber, Babak Falsafi, and Boris Grot. Asynchronous memory access
chaining. Proceedings of the VLDB Endowment, 9(4):252–263, 2015.

[9] Christoph Lameter. Numa (non-uniform memory access): An overview: Numa
becomes more common because memory controllers get close to execution units
on microprocessors. Queue, 11(7):40–51, 2013.

[10] Tobin J Lehman and Michael J Carey. A study of index structures for main mem-
ory database management systems. Technical report, University of Wisconsin-
Madison Department of Computer Sciences, 1985.

[11] Viktor Leis, Michael Haubenschild, and Thomas Neumann. Optimistic lock
coupling: A scalable and efficient general-purpose synchronization method. IEEE
Data Eng. Bull., 42(1):73–84, 2019.

[12] Viktor Leis, Alfons Kemper, and Thomas Neumann. The adaptive radix tree:
Artful indexing for main-memory databases. In 2013 IEEE 29th International

Conference on Data Engineering (ICDE), pages 38–49. IEEE, 2013.
[13] Viktor Leis, Florian Scheibner, Alfons Kemper, and Thomas Neumann. The art

of practical synchronization. In Proceedings of the 12th International Workshop on
Data Management on New Hardware, pages 1–8, 2016.

[14] Justin J Levandoski, David B Lomet, and Sudipta Sengupta. The bw-tree: A b-tree
for new hardware platforms. In 2013 IEEE 29th International Conference on Data
Engineering (ICDE), pages 302–313. IEEE, 2013.

[15] Linux. perf. https://perf.wiki.kernel.org/, 2023. [Online; accessed 23-March-2023].
[16] Yandong Mao, Eddie Kohler, and Robert Tappan Morris. Cache craftiness for fast

multicore key-value storage. In Proceedings of the 7th ACM european conference
on Computer Systems, pages 183–196, 2012.

[17] Patrick O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth O’Neil. The log-
structured merge-tree (lsm-tree). Acta Informatica, 33:351–385, 1996.

[18] Georgios Psaropoulos, Thomas Legler, Norman May, and Anastasia Ailamaki.
Interleaving with coroutines: a practical approach for robust index joins. Pro-
ceedings of the VLDB Endowment, 11(CONF):230–242, 2017.

[19] Jun Rao and Kenneth A. Ross. Cache conscious indexing for decision-support in
main memory. In Malcolm P. Atkinson, Maria E. Orlowska, Patrick Valduriez,
Stanley B. Zdonik, and Michael L. Brodie, editors, VLDB’99, Proceedings of 25th
International Conference on Very Large Data Bases, September 7-10, 1999, Edinburgh,
Scotland, UK, pages 78–89. Morgan Kaufmann, 1999.

[20] Jun Rao and Kenneth A Ross. Making b+-trees cache conscious in main memory.
In Proceedings of the 2000 ACM SIGMOD international conference on Management
of data, pages 475–486, 2000.

[21] Lars-Christian Schulz, David Broneske, and Gunter Saake. An eight-dimensional
systematic evaluation of optimized search algorithms on modern processors.
Proceedings of the VLDB Endowment, 11(11):1550–1562, 2018.

[22] Kefei Wang, Jian Liu, and Feng Chen. Put an elephant into a fridge: optimiz-
ing cache efficiency for in-memory key-value stores. Proceedings of the VLDB
Endowment, 13(9), 2020.

[23] ZiqiWang, Andrew Pavlo, Hyeontaek Lim, Viktor Leis, Huanchen Zhang,Michael
Kaminsky, and David G Andersen. Building a bw-tree takes more than just buzz
words. In Proceedings of the 2018 International Conference on Management of Data,
pages 473–488, 2018.

7

https://software.intel.com/vtune/
https://perf.wiki.kernel.org/

	Abstract
	1 Introduction
	2 Background
	3 Cache Architectures
	4 Probabilistic Modeling
	4.1 Probabilistic Model Description
	4.2 Tree Layouting
	4.3 Probabilistic Model Approximation

	5 Evaluation
	5.1 Evaluation Setup
	5.2 Result Discussion

	6 Summary
	7 Future Work
	References

