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Abstract Query compilation is a processing technique

that achieves very high processing speeds but has the

disadvantage of introducing additional compilation la-

tencies. These latencies cause an overhead that is rela-

tively high for short-running and high-complexity que-

ries. In this work, we present Flounder IR and ReSQL,

our new approach to query compilation. Instead of us-

ing a general purpose intermediate representation (e.g.

LLVM IR) during compilation, ReSQL uses Flounder IR,

which is specifically designed for database processing.

Flounder IR is lightweight and close to machine assem-

bly. This simplifies the translation from IR to machine

code, which otherwise is a costly translation step. De-

spite simple translation, compiled queries still benefit

from the high processing speeds of the query compila-

tion technique. We analyze the performance of our ap-

proach with micro-benchmarks and with ReSQL, which

employs a full translation stack from SQL to machine

code. We show reductions in compilation times up to

two orders of magnitude over LLVM and show improve-

ments in overall execution time for TPC-H queries up

to 5.5× over state-of-the-art systems.
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Fig. 1 Effect of different intermediate representation levels
on JIT query processing performance.

1 Introduction

Query compilation is a technique for query execution

with extremely high efficiency. It uses just-in-time (JIT)

compilation to generate custom machine code for the

execution of every query. The approach leverages a com-

piler stack that first translates the query from a re-

lational query plan to an intermediate representation

(IR), and then from the IR to native machine code for

the target machine. The execution-efficiency of the com-

piled code is very high compared to standard interpre-

tation-based backends. However, by using compilation

the technique adds a step to query execution, which in-

troduces translation cost. Especially short-running que-

ries and queries with high complexity experience a rel-

atively high translation cost, which ultimately extends

query response times.

When using query compilation for queries on smaller

datasets, the relative cost of compilation increases. The

query engine spends most of its time on compilation be-

fore entering execution only for a very short time. Fur-
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ther, complex queries can have particularly long compi-

lation times due to complexity of algorithms used in JIT

machine code translation [30]. Approaches to mitigate

the impact of compilation time on response time have

been proposed previously [19]. However, these typically

rely on both an interpretation-based and a compilation-

based backend at a high implementation cost.

1.1 Intermediate Representation Levels

The intermediate representation is an important design

choice for query compilers. Figure 1 illustrates the effect

of the IR choice on JIT compile times. Query compil-

ers with high-level IRs, such as C/C++ [16,33,11] or

OpenCL and Cuda [9,13,12,29] generally have longer

compilation times than query compilers that generate

lower-level IRs such as LLVM IR [27,28]. Existing work

on JIT compilers, however, shows the feasibility of much

shorter compile times [2,8] than those of LLVM. In fact

non-database JIT compilers reach break-even points

for dynamic compilation versus static compilation al-

ready for thousands of records [2]. By contrast, state-

of-the-art LLVM-based query compilers have compila-

tion times of tens of milliseconds [27], which is sufficient

time to process queries on millions of tuples [7]. This

raises the question illustrated by the bar ‘?’ in Figure 1:

How can such short compilation times be adopted for

database systems that perform query compilation?

LLVM IR is general purpose and was designed to

serve as backend for the translation of high-level lan-

guage features [20]. Being general purpose, LLVM is

relatively heavyweight and devises a translation stack

that is “overkill” for relational workloads. The code for

relational queries typically consists of tight loops with

conditional code mainly to drop non-qualifying tuples.

This plain structure offers potential for much simpler

translation techniques than those used by general pur-

pose translators, which leverage complex code analysis

and register allocation algorithms.

1.2 Contributions

In this work, we present the intermediate representation

Flounder IR and the ReSQL database system, which

represent a new approach to query compilation that

targets low compilation latencies.

Flounder IR. We propose Flounder IR as a lightweight

domain-specific IR that is designed for fast compila-

tion of database workloads. Flounder IR is close to ma-

chine assembly and adds just that set of features that

is necessary for efficient query compilation: virtual reg-

isters and function calls ease the construction of the

compiler front-end; database-specific extensions enable

efficient pipelining in query plans; more elaborate IR

features are intentionally left out to maximize compila-

tion speed. Along with the IR, we show the techniques

that are used by the Flounder library for translation of

Flounder IR to machine code.

ReSQL. The ReSQL database system was developed

as a showcase for low-latency query compilation with

Flounder IR1. ReSQL provides a full translation stack

from SQL to machine code and supports a variety of

queries. We discuss the interaction of ReSQL’s trans-

lation components with Flounder IR and use the sys-

tem to perform an experimental evaluation on TPC-H

benchmark workloads. The analysis shows that our ap-

proach to query compilation reduces compilation times

while preserving high processing speeds. We show with

speedups up to 5.5× over a state-of-the-art LLVM-based

query compiler Hyper, that our approach achieves bet-

ter tradeoffs between compilation and execution time.

1.3 Outline

This work is structured as follows: The next Section 2,

illustrates how query compilers use Flounder IR for

query translation. Section 3 then details the design of

Flounder IR. Section 4 shows the translation of Floun-

der IR to machine code. Section 5 discusses further im-

provements and applications of our approach. Section 6

evaluates the approach experimentally and Section 7

discusses future work. Finally, Section 8 wraps-up the

article with a summary.

2 Query Translation

Query compilation typically involves one step that trans-

lates relational queries to an intermediate representa-

tion (IR) and another step that translates the IR to

machine code. In the following, we give an overview of

how both steps are realized for query compilation with

our intermediate representation Flounder IR.

2.1 Query Plan to IR

The first translation step traverses the query plan and

builds an intermediate representation of the query func-

1 The source code of ReSQL and the Flounder library will
be available at publication time.
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Fig. 2 Translation of the probe-side pipeline of a query plan.

tionality. A common way to do this is the produce/con-

sume model [27], which emits code for operator func-

tionality either in produce or consumemethods. We call

these methods operator emitters. Figure 2 illustrates

the operator emitters that are executed during trans-

lation of a sample query. The build pipeline on the left

of the join populates the join hash table. It was trans-

lated previously. The probe pipeline, surrounded by the

dotted line, accesses the join hash table. We look at its

translation in detail.

The code to scan R was already emitted by the op-

erator emitter scan.produce(...). It contains a loop

that iterates over the table R and reads its tuples. The

code for selection was emitted by σ.consume(...) and

now the hash join follows with ⋊⋉.consume(...). The
implementation of the method is shown in Figure 3,

which uses a notation similar to Kersten et al. [15].

Code lines following an emit statement are underlined

to emphasize that this code is not executed immedi-

ately but instead placed in the JIT query. For instance

createHashtable(..) is not underlined (line 2) and

is therefore executed during translation. By contrast

ht ins(..) is underlined (line 3) and is therefore placed

in the compiled code. This leads to repeated execution

of the line for every tuple of the scanned table.

In the example ⋊⋉.consume(...) is called from its

right child and therefore the probe-side code is pro-

duced (lines 7–13). The code first initializes the vari-

able entry , which holds hash probe results (line 7) and

then loops over the hash join matches (lines 8–13). In

the loop, we first call ht get(...) to retrieve the next

match (line 9) and then perform a check to exit when

no more matches exist (lines 10–11). To process join

matches, we read the attributes of the match to regis-

ters (line 12) and then the join’s parent operators place

their code by calling consume(...) (line 13).

Translate Hash Join Operator to IR

Function ⋊⋉.consume(attributes, caller):

1 if caller is ⋊⋉.left: /* build-side */

2 ht ← createHashtable(...)

3 emit entry ← ht ins (ht, ⋊⋉.buildKey) /* get bucket */

4 emit materialize (entry, attributes) /* write to ht */

5 al ← attributes /* save build schema */

6 if caller is ⋊⋉.right: /* probe-side */

7 emit entry ← null /* initialize */

8 emit while (true): /* loop over join matches */

/* probe hash table to get next matching entry */

9 emit entry ← ht get (ht, ⋊⋉.probeKey, entry)

10 emit if entry is null: /* check result */

11 emit break /* no more match */

12 emit dematerialize (entry, al) /* read to regs */

13 ⋊⋉.parent.consume (al ∪ attributes, ⋊⋉) /* next ops */

Fig. 3 Operator emitter of the hash join operator. We un-
derlined the functionality that is placed in the JIT query.

[...] ;child code

vreg {entry}

mov {entry}, 0

;loop over matches

loop_headN:

;ht_get(..) call

mcall {entry},{ht_get},

{ht},{r_a},{entry}

;break when entry=NULL

cmp {entry}, 0

je loop_footN

;dematerialize ht entry

vreg {s_a}

vreg {s_b}

mov {s_a}, [{entry}]

mov {s_b}, [{entry}+8]

[...] ;parent.consume(..)

clear {s_a}

clear {s_b}

;loop foot

jmp loop_headN

loop_footN:

clear {entry}

[...] ;child code

Flounder IR

(in-memory)

(a)

[...] ;child code

mov r11, 0; init entry

loop_headN: ;while head

mov [rsp-8], r8 ;caller-

mov [rsp-16], r9 ;save

mov [rsp-24], r10

mov rdi, 0x25cac0 ;call

mov rsi, r9 ;params

mov rdx, r11

sub rsp, 24 ;adjust stack

mov rax, 0x42fa10

call rax ;ht_get call

add rsp, 24 ;restore stack

mov r8, [rsp-8] ;restore

mov r9, [rsp-16] ;caller-

mov r10, [rsp-24] ;save

mov r11, rax ;return value

cmp r11, 0 ;break condition

je loop_footN

mov r12, [r11] ;demate-

mov r13, [r11+8] ;rialize

[...] ;parent.consume(..)

jmp loop_headN ;next probe

loop_footN:

[...] ;child code

x86 64 assembly

(in-memory)

(b)

Fig. 4 Intermediate representation of hash join probe func-
tionality (a) and corresponding machine assembly (b).

The resulting intermediate representation is shown

in Figure 4 (a)2. It performs the described probe func-

tionality. We briefly describe the resulting IR here and

2 We use an nasm-style assembler notation with destination
operand on the left and source operand on the right.
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provide a detailed description of the used Flounder IR

features in Section 3.

The attribute values are held in {r a}, {s a}, and
{s b} and the locations of hash table entries in {entry}.
The hash get(...) call is realized with mcall and the

loop over the probe matches with a combination of com-

pare (cmp) and two jumps (jmp, je). To read attributes

from a hash table entry (dematerialize), we use mov

from a memory location in brackets [] to e.g. {s a}.

2.2 IR to Machine Code

The next step translates the query’s intermediate rep-

resentation to machine code. The machine code needs

to follow the application binary interface (ABI) of the

execution platform. In this work, we use the target ar-

chitecture x86 64 [22].

The Flounder IR emitted by the hash join is trans-

lated to the machine assembly shown in Figure 4 (b).

Several abstractions that were used during IR genera-

tion are now replaced by machine-level concepts. E.g.

the machine assembly uses processor registers such as

r12 instead of {s a}. Further, the machine assembly

uses additional mov instructions to transfer values be-

tween registers and the stack, e.g. mov r8,[rsp-8].

The translation process from Flounder IR to machine

code needs to manage machine resources such as reg-

isters and stack memory and find an efficient way for

their use during JIT query execution.

2.3 ReSQL Translation Mechanisms

For a more comprehensive picture, we now describe two

more essential translation mechanisms used by ReSQL.

First we discuss translation of typed SQL expressions,

which are used by operators, e.g. in selection or join

criteria. Then we discuss handling of tuples in the im-

plementation of operator emitters.

Expression Translation. To illustrate expression trans-

lation, we use the expression 10.0 + 0.34, a sum of two

decimal constants, as example. ReSQL uses 64 bit in-

tegers for decimal arithmetics and thus represents the

values as 100 and 34 along with the base and precision.

The precision is the number of digits in total and base

is the number of digits following the decimal point.

For JIT-based evaluation, the expression translator

performs two steps. The first step is type resolution,

a standard procedure that derives the result type of

each expression node. The leaf types decimal(3,1) and

decimal(3,2) are given by the constants. The expres-

sion translator applies type rules to derive the typed

const "10.0"

decimal(3,1)

typecast
decimal(4,2)

const "0.34"

decimal(3,2)

add
decimal(5,2)

Fig. 5 Typed expression tree for the expression 10.0 + 0.34.

;const "0.34"

vreg {dec_const0}

mov {dec_const0}, 34

;const "10.0"

vreg {dec_const1}

mov {dec_const1}, 100

;typecast [decimal(3,1) to decimal(4.2)]

vreg {cast_res0}

mov {cast_res0}, {dec_const1}

clear {dec_const1}

imul {cast_res0}, 10

;add

vreg {add_res0}

mov {add_res0}, {dec_const0}

clear {dec_const0}

add {add_res0}, {cast_res0}

clear {cast_res0}

;[...] work with add_res0

clear {add_res0}

Fig. 6 Flounder IR produced for the expression 10.0 + 0.34.

expression tree shown in Figure 5. One typecast was in-

serted to maintain the same base for the add. Then the

second step emits Flounder IR for the expression tree.

Starting with the leaf expressions, code for the evalu-

ation of each node is emitted. The resulting Flounder

IR to evaluate the expression is shown in Figure 6. The

code uses, e.g. vreg {x} and clear {x} to indicate the

validity range of {x}. First both constants are loaded.

Then the typecast for {dec const1} is evaluated by

multiplying with 10. Finally the add is evaluated and

the result is stored in {add res0}. The IR-code is in-

serted into the code frame of the query and translated

to machine code along with the query.

Handling of Tuples. In JIT-based execution, the indi-

vidual values of a tuple are distributed across regis-

ters. For the implementation of operator emitters, how-

ever, it is still useful to handle tuples as a single en-

tity [15]. ReSQL provides several code generation func-

tions in the Values namespace for this purpose. These

are shown in Figure 7. To evaluate the projection ex-

pressions from a select-clause, for example, we use

tup=Values::evaluate(projs). The result tup is a
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tup = Values::evaluate(expr);
Evaluate the list of expressions expr.

tup = Values::dematerialize(loc, schm);
Scan a tuple with schema schm from location loc.

hash = Values::hash (tup);
Hash the tuple tup.

flag = Values::checkEquality(tup1, tup2);
Check tuples tup1 and tup2 for equality.

Values::materialize(tup, loc);
Write tuple tup to location loc.

Fig. 7 Tuple-based code generation methods allow us to han-
dle lists of attribute registers as if they were coherent tuples.

list of virtual registers that hold the expression results,

ultimately a tuple. Similarly, lists of virtual registers

are used to hold tuples after scanning them or when

applying a hash function.

3 Lightweight Abstractions

Flounder IR is similar to x86 64 assembly, but it adds

several lightweight abstractions. The abstractions are

designed with the interface to the query compiler and

with the resulting machine code in mind. In this way,

Flounder IR passes just the right set of information into

the compilation process. For operator emitters, the IR

provides independence of machine-level concepts, which

allows similar code generation as is typically performed

with LLVM. For translation to machine code, the ab-

stractions are sufficiently lightweight to avoid the use

of compute-intensive algorithms. Additionally, the IR

contains information about the relational workload that

enables efficient tuning of the machine code.

In the following, we present the lightweight abstrac-

tions. They add several pseudo-instructions, i.e. vreg,

clear, and mcall to x86 64 assembly and use addi-

tional tokens, which are shown in braces, e.g. {param1}.

3.1 Virtual Registers

An unbounded number of virtual registers is a common

abstraction in compilers [4]. Query compilers use them

to handle attributes without the restrictions of machine

registers. When replacing virtual registers with machine

registers for execution, general purpose compilers per-

form live-range analysis [1]. This is rather expensive be-

cause compilers consider all execution-paths that lead

to a register usage.

Query workloads use virtual registers in a much

simpler way than general purpose code. They hold at-

tribute data within a pipeline and the pipeline’s ex-

ecution path only consists of tight loops. This allows

query compilers to use a simpler approach that skips

live-range analysis. In Flounder IR, operator emitters

mark the validity range of virtual registers. The vreg

pseudo-instruction marks the start of a virtual register

usage, e.g. by using

;start virtual register use is

vreg {vreg_nameN}

and the clear pseudo-instruction marks the end of the

usage, e.g. with

;finish virtual register use

clear {vreg_nameN} .

We use these markers in a way similar to scopes in

higher-level languages. For instance the Flounder IR in

Figure 4 (a) marks the range of the probe attributes

{s a} and {s b} to reach around the operators that are

contained in the probe loop.

3.2 Function Calls

Being able to access pre-compiled functionality is im-

portant for query compilers. It reduces compile times

and avoids the implementation cost of code generation

for every SQL feature. To this end Flounder IR pro-

vides the mcall pseudo-instructions to specify function

calls in a simple way. For instance

;function call to ht_ins

mcall {res} {ht_ins} {param1} ... {paramN}

represents a function call to ht ins(...) with parame-

ters param1 to paramN and the return value is stored in

{res}. A pointer to the function code is provided as an

address constant via {ht ins}. This pseudo-instruction
is later replaced with an instruction sequence that re-

alizes the calling convention.

3.3 Constant Loads

Large constants, e.g. 64 bit, can not be used as imme-

diate operands (imm) on current architectures. To use

large constants, they have to be placed in machine reg-

isters. The constant load abstraction in Flounder IR,

allows using such constants without restrictions. E.g.

;load from 64 bit address with offset

mov {attr} [{0x7fff5a8e39d8} + {offs}]

loads data from the address {0x7fff5a8e39d8}+{offs}
to the virtual register {attr}. During translation to

machine assembly, the address constant will be placed

in a machine register.
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3.4 Transparent High-Level Constructs

We use transparent high-level constructs that mimic

high-level language features such as loops and condi-

tional clauses. They are used to generate Flounder IR

in operator emitters. For example operator emitters can

generate a while loop with the condition {tid} < {len}
by using the methods While(...), close(...), and

isSmaller(...) as shown below.

// Produce code for while loop (C++)

wl = While(isSmaller(tid,len)); {

[...]

} wl.close();

This generates the Flounder IR code shown in the mar-

gin, that realizes the loop functionality. The start of

loop_headN:

cmp {tid},{len}

jge loop_footN

;loop body

[...]

jmp loop_headN;

loop_footN:

;after loop

[...]

the loop is marked with the label

loop headN. The cmp instruction

then evaluates the loop condition

and jge jumps to the loop footN-

label at the loop end, if the condi-

tion evaluates to false. Otherwise,

the loop body is executed and after

it, the loop starts over by executing

the jump instruction jmp loop headN, which redirects

control flow to the loop head.

4 Machine Code Translation

In the translation from Flounder IR to x86 64 machine

code, the abstractions that facilitated code generation

in the previous step are now replaced with machine con-

cepts. A key challenge here is to replace virtual registers
with machine registers and to manage spill memory lo-

cations for cases of insufficient registers. Finding opti-

mal register allocations is an NP-hard problem and even

the computation of approximations is expensive [10]. In

the context of JIT compilers, linear scan has been pro-

posed as a faster algorithm [30] and was adopted by

LLVM. However, linear scan register allocation is still

relatively expensive due to live range computations and

increasing numbers of registers.

The following presents a much simpler technique

that benefits from the explicit usage ranges marked in

Flounder IR. We first show the machine register con-

figuration used by the translator and then show the al-

gorithm for translation of the lightweight abstractions.

4.1 Register Layout

We use a specific register layout for the machine code

generated from Flounder IR. The layout is shown in

Temporary Registers
tmpReg1, tmpReg2, tmpReg3

Attribute Registers
attReg1, . . . , attReg12

rax rbx

rcx rsp

rdx rbp rsi rdi r8 r9

r10 r11 r12 r13 r14 r15

attribute data
tuple ids

stack pointerspill loads
constant loads
return values

Fig. 8 Usage of machine registers by the translator.

Translate Flounder IR to machine assembly

1 a← 0 /* attribute registers in use */

2 foreach instruction i in input:

3 t← 0 /* temporary registers in use */

4 if i is vreg {v}: /* allocate pseudo-instruction */

5 if a < number attribute registers:

6 allocate free attRegk /* machine register */

7 a← a + 1

8 else allocate spill location /* spill */

9 elseif i is clear {v}: /* deallocate pseudo-instruction */

10 if any attRegk holds v:

11 release attRegk /* free machine reg */

12 a← a− 1

13 elseif i is mcall (...): /* function call pseudo-instr. */

14 emit call-convention code

15 else: /* other instructions */

16 foreach virtual register operand v in i:

17 if v is spilled:

18 emit spill code for v to tmpRegt /* spilled */

19 replace v with tmpRegt
20 t← t + 1

21 else replace v with attRegk /* machine register */

22 foreach constant load operand c in i:

23 emit load c to tmpRegt /* place c in temp reg */

24 replace c with tmpRegt in i

25 t← t + 1

26 emit i /* output native instruction */

Fig. 9 Pseudocode for the translation of Flounder IR to ma-
chine assembly. The code is translated in one pass.

Figure 8. We split the 16 integer registers of the x86 64

architecture into three categories.

We use twelve attribute registers attReg1, . . . , attReg12
to carry attribute data and tuple ids. We use three tem-

porary registers tmpReg1, tmpReg2 and tmpReg3, which

are-multi purpose for accessing spill registers and con-

stant loads. Lastly, we use the stack pointer rsp to store

the stack offset. The stack base pointer rbp is repur-

posed for attribute data and not used for the stack.

4.2 Translation Algorithm

The translation algorithm translates Flounder IR to

x86 64 assembly in one sequential pass over the code.
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It replaces the Flounder abstractions with machine in-

structions, machine registers, and stack access. The al-

gorithm is shown in Figure 9.

When iterating over the IR elements, the algorithm

keeps track of a, the number of in-use attribute regis-

ters (line 1), and t, the number of temporary registers

per instruction (line 3). We describe the translation in

three parts. The first part is register allocation, then the

replacement of virtual operands with machine operands

in instructions, and finally function calls.

Register Allocation. Register allocation is used to de-

cide which virtual registers are stored in machine regis-

ters and which virtual registers are stored on the stack.

Register allocation does not produce code directly, but

it sets the allocation state for spill code and operand

replacement. The procedure is illustrated below.

vreg {vnew}clear {vold}

alloc A B spillfree C

vnew

vnew

spill slot

spill slot

spill slot

Stack

vold

Attribute Registers

When a vreg {vnew} pseudo-instruction is encountered

(line 4), there are two options. In case A there are

sufficient machine registers available and we assign one

of them to vnew (lines 5-7). In case B all machine

registers are occupied and we assign a spill slot on the

stack (line 8). For vreg {vold}, illustrated by C , any

machine registers assigned to vold are freed (line 11).

This assignment procedure has the effect that spilled

virtual registers remain spilled. However, this happens

only when the pipeline requires to hold more than 12

attributes simultaneously. As query compilers typically

choose pipeline boundaries such that the data volume

per tuple fits into the processor registers, this technique

is a perfect match for query compilation.

Spill Code and Operand Replacement. For each instruc-

tion, operands that use constant loads or virtual regis-

ters have to be replaced with machine-compatible ope-

rands. Virtual registers that were assigned with ma-

chine registers are simply swapped (line 21). For the

other cases, the algorithm uses tmpReg1 to tmpReg3 to

hold values temporarily per instruction. Three registers

are sufficient for this purpose as this is the highest num-

ner of non-immediate operands per instruction. As an

example, we look at the following instruction.

mov {r_a}, [{0x7fff5a8e39d8}+{tid_os}]

It reads an 8 byte value with the offset {tid os} from

the memory address 0x7f... and stores it in {r a}. The
address is too large for an immediate operand and we

assume for illustration purposes that both virtual reg-

isters {r a} and {tid os} are spilled.

The translator assigns temporary registers to each

operand and emits spill code that exchanges values be-

tween spill slots and temporary registers. This is per-

formed in pseudocode lines 16–26 and illustrated below.

spill slot

spill slot

Stack

r a

tid os

rax

tmpReg1

rbx
tmpReg2

rcx

tmpReg3

0x7fff5a8e39d8

Constant

spill
store
1

2
spill load

3
constand load

The algorithm enumerates the virtual register ac-

cesses (lines 16-21) and the constant loads (lines 22-25)

from the instruction. It assigns one of the temporary

registers tmpReg1 to tmpReg3 to each. In step 1 the

translator assigns tmpReg1 (rax) to the operand {r a}.
This is the only output operand of the instruction and

the operator emits a store to {r a}’s spill slot on the

stack. Step 2 assigns tmpReg2 (rbx) to the operand

{tid os}. The translator emits a load to retrieve the

value from its spill slot. Step 3 assigns tmpReg3 (rcx)

to the constant load of address 0x7f... . The translator

emits a load for the constant. This results in the follow-

ing machine code sequence, which includes the original

mov instruction with replaced operands.

mov rbx, [rsp-24] ;load spill tid_os

mov rcx, 0x7fff5a8e39d8 ;load constant

mov rax, [rcx+rbx] ;instruction

mov [rsp-8], rax ;store spill r_a

Calling Conventions. During translation the mcall IR-
instruction is replaced with a machine code sequence

that performs the function call. To this end, a calling

convention is applied, which specifies rules for the exe-

cution of function calls on a given hardware platform. It

specifies the way registers are preserved across the call,

how parameters are passed, and how the stack frame is

adjusted. For the x86 64 calling convention, the calling

function preserves up to 7 integer registers (caller-save

registers) and passes up to 6 parameters in integer reg-

isters before using the stack for parameter passing [22].

The call translation is initiated in line 14 of the

Flounder IR translation algorithm (Figure 9). The ma-

chine register allocation to the point of the call is known.

This allows us to generate a call sequence that is tai-

lored to the current register usage.

The mcall translation algorithm is specified in Fig-

ure 10 and explained in the following. We use the call

to ht get(..) from a previous example (Figure 4).

mcall {entry}, {ht_get}, {ht}, {r_a}, {entry}
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Translate mcall ret, func, p0, ..., pn

1 foreach p in {ret, p0,...,pn}: /* replace virtual registers */

2 if p is virtual register: /* and use machine operands */

3 replace p with attribute register or stack location

4 Rcaller-save = {rsi, rdi, r8, r9, r10, r11} /* A caller-save */

5 foreach register r in Rcaller-save

6 if r is allocated: /* check use */

7 emit save r to stack

8 Rparam = {rdi, rsi, rdx, rcx, r8, r9} /* B set parameters */

9 foreach parameter pi in p0, ..., pn:

10 src ← pi
11 if pi was overwritten: /* handle overwrites */

12 src ← stack backup of pi

13 emit mov Rparami
, src

14 stackOffset ← total stack usage /* C boilerplate call */

15 emit sub rsp, stackOffset

16 emit mov rax, func

17 emit call rax

18 emit add rsp, stackOffset

19 foreach register r in Rcaller-save /* D restore caller-save */:

20 if r is allocated

21 emit restore r from stack

22 emit mov ret, rax /* get return value (C) */

Fig. 10 Translate mcall IR-instruction to machine code that
realizes the x86 64 call-convention.

It has the return value {entry}, the function address

{ht get}, and the parameters {ht}, {r a} and {entry}.
To derive the call-convention instruction sequence, the

translator first replaces these operands with the already

allocated machine operands (lines 1–3).

mcall r11, 0x42fa10, 0x25cac0, r9, r11

Then the translator generates code that performs the

following four steps:

A Save caller-save registers that are in-use on the stack.

These are r8, r9, r10 in the example (lines 4-6).

B Assign parameter registers in the order specified by

the ABI (lines 7-12). We assign 0x25cac0 to rdi,

r9 to rsi, and r11 to rdx.

C Place boiler-plate code to modify the stack frame,

jump into the function, and to retrieve the return

value (lines 13-17,21).

D Restore caller-save registers (lines 18-20).

This results in the instruction sequence shown in Fig-

ure 11 that realizes the call in machine assembly. The

instructions are annotated with A to D to indicate the

step that generated them.

5 Getting More Out of Flounder

Flounder IR is a near-hardware representation for data-

base processing functionality. This property enables ad-

ditional uses and benefits for the IR. We present ideas

mov [rsp-8], r8 ;A save caller-save

mov [rsp-16], r9

mov [rsp-24], r10

mov rdi, 0x25cac0 ;B assign parameters

mov rsi, r9

mov rdx, r11

sub rsp, 24 ;C boilerplate call

mov rax, 0x42fa10

call rax

add rsp, 24

mov r8, [rsp-8] ;D caller-save restore

mov r9, [rsp-16]

mov r10, [rsp-24]

mov r11, rax ;(C get return value)

Fig. 11 Instruction sequence for the example function call.

on taking the IR’s database specialization further by

adding additional domain knowledge to the language.

Then we show prefetching as an example of utilizing

such domain knowledge. Finally, we discuss the use of

Flounder IR as compilation vehicle for higher-level IRs.

5.1 Utilizing Additional Database Knowledge

The domain specialization makes Flounder IR receptive

to utilizing particular database knowledge. This idea can

be extended in the way Flounder IR uses types. Cur-

rently it only uses machine datatypes. Alternatively, we

can add SQL types to the IR. This simplifies the trans-

lation from SQL to Flounder because operator trans-

lators can directly emit instructions on SQL types. At

the same time the responsibility of implementing SQL

types and their special type characteristics moves down

one level to the IR translation. This may open up inter-

esting new ways for handling NULL-logic or types with

multi-register representations (e.g. 128 bit decimals).

The translator has the opportunity to apply simpler or

unified logic to handle such characteristics.

Many database operators have optimized implemen-

tations that leverage hardware features, e.g. sort and

hash-based operators [3]. Specifically applying vector-

ization techniques (e.g. AVX) has proven to be bene-

ficial [36]. Flounder IR is a good match for such tech-

niques because it gives explicit control over the instruc-

tions that are used. This helps to clearly express the

way hardware optimizations are applied, which can be

difficult with high-level languages that abstract hard-

ware details. Similar to passing specific implementation

aspects, additional hints about the database or about

database statistics may be used. For instance informa-

tion about relation and tuple sizes can be leveraged by

the compiler for loop unrolling and prefetching. Hints
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about predicate selectivities are beneficial in estimating

which branches are likely to be taken.

5.2 Memory Optimizations via Prefetching

Memory bandwidth and latency are the most limiting

resources for in-memory data processing systems [6].

While current hardware handles local and predictable

memory access patterns effectively, more unpredictable

patterns typically lead to memory stalls, which leave

the CPU idle and slow down processing.

As a solution, current hardware provides prefetch

instructions, that can be used by developers to place

hints about data that is worthwhile to pre-load. Algo-

rithms that leverage this feature [18,23,31], however,

are intricate to design and require careful understand-

ing of the hard- and software. Compilers on the other

hand, which insert prefetch instructions automatically

(LLVM [24], GCC [21]), need to perform extensive anal-

ysis of the program’s memory access patterns

To simplify prefetching, Mühlig et al. show Mx-

Tasks [26], which annotate tasks (small program pieces)

with domain knowledge about the required data. Sim-

ilarly Flounder can leverage such information coming

from the query compiler to benefit from prefetching

without interfering with its compile time goal. As a

poster case, we built a scan prefetcher that inserts pre-

fetches for tuples that are read from memory. Since only

complete cache lines can be addressed by the prefetch

instructions, the scan prefetcher unrolls the loop to pro-

cess a full cache line per iteration. The optimization is

applied before machine code translation with a small

overhead in compilation time.

Scan Prefetcher. To illustrate how the scan prefetcher

works, we look at the following code. The code initial-

izes {scanLoc} with the relation address {rel} and it-

erates over the relation’s 16 byte tuples.

mov {scanLoc}, {rel}

scan_loop_head:

[...] ;check condition

[...] ;loop body

add {scanLoc}, 16

jmp scan_loop_head

scan_loop_foot:

[...]

When dealing with tuples (in row-based systems) or

column-widths (in column-based systems) smaller than

a cache line, adding a single prefetch at the start of the

loop is insufficient. This results in unnecessary costs

for the execution of prefetch instructions because each

prefetch handles a full cacheline. To address this, the

scan prefetcher unrolls the scan loop. In our case a cache

line (64 bytes) contains four tuples (4×16 bytes) and the

loop is unrolled four times. The following code includes

the unrolled loop and prefetching:

mov {scanBase}, {rel}

scan_loop_head:

[...] ;check condition

;prefetch tuples {i+4,i+5,i+6,i+7}

prefetch [{scanBase}+64]

[...] ;loop body iteration i

[...] ;loop body iteration i+1

[...] ;loop body iteration i+2

[...] ;loop body iteration i+3

add {scanBase}, 64

jmp scan_loop_head

scan_loop_foot:

[...] ;handle <4 remaining iterations

The unrolled loop uses {scanBase} to iterate over the

relation in steps of four tuples. After checking the loop

condition, a prefetch for the succeeding iteration is is-

sued. The unrolled loop body executes four iterations,

which collectively read one cache line. By matching the

loop granularity with the prefetching granularity, effi-

cient prefetching of the scanned tuples is added.

The prefetch distance, however, constitutes a signif-

icant factor for preloading the data from memory into

the cache at the right time. If the data is accessed too

early or too late, the prefetch will be inefficient. While

we used a distance of 1 in this example to initiate the

prefetch of cache line k + 1 before processing the tu-

ples located in cache line k, the IR might help to op-

timize the timing of the prefetch instruction in the fu-

ture. The appropriate distance depends on the time, re-

spectively the executed instructions, between initiating

the prefetch and accessing the data. By exactly know-

ing which (CPU) instructions are executed within the

scan loop, the time between prefetch and actual access

becomes predictable to optimize the prefetch distance

accordingly. The ideal amount of instructions between

prefetch and access, however, depends on the under-

lying hardware and needs to be ascertained carefully.

5.3 Higher-Level IRs

Other IRs that describe data processing on a higher

level than Flounder IR are frequently used. They are

used as translation step for a specific query process-

ing paradigm. For instance MonetDB uses MAL [5]

for its column-style processing approach and SQLite

uses a (high-level) bytecode representation for its byte-

code interpreter [34]. Alternatively higher-level IRs can

be used as an abstraction layer. As such they enable

database systems to target different parallel hardware

architectures [9,29] or to handle multiple processing
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paradigms. The IR Voila [14], for instance, provides a

representation that is suitable for compiled and inter-

preted execution. We take Voila’s scatter operation as

example to illustrate how Flounder can be leveraged

for compiled execution of this IR. The scatter opera-

tion is used by hash-based operators to write values to

the hash table. For example

// Voila scatter operation: Write key to HT

scatter ( ht.k1, new_pos |can_scatter, t[0] )

scatters the value t[0] to the hash table key location

k1 of the bucket new pos. The scatter is executed con-

ditionally depending on the flag can scatter. Trans-

lation to Flounder IR can implemented as a opera-

tor emitter, similar to Section 2.1. The Voila operation

translates a short sequence of Flounder instructions:

;Scatter op in Flounder IR

cmp {can_scatter}, 0

je afterScatter

mov [{new_pos}+4], {t0}

afterScatter:

The cmp and je instructions evaluate {can scatter} to
skip processing if necessary. Then mov performs the ac-

tual write of {t0} to the hash bucket with base address

{new pos} and an exemplary offset +4.

6 Evaluation

This section evaluates our approach of using a simple

IR for query compilation that is specialized to relational

workloads over using a general purpose IR. We use the

micro prototype of a query compiler to evaluate the

characteristics of different IR’s along with their transla-

tion libraries. Then we use the ReSQL database system

that was built on top of Flounder IR to evaluate the

real world performance of our approach against other

state-of-the-art systems.

Micro Prototype. We use a smaller query compiler pro-

totype that supports translation of query plans to both

Flounder IR and LLVM IR. This allows us to evalu-

ate the performance of both IRs on the same system.

The prototype is used to execute the workloads from

Figure 12. Flounder emits the binary representation of

compiled queries with the AsmJit library [17] to avoid

the overhead of running external assemblers, e.g. nasm.

For LLVM IR, the machine code is generated by the

LLVM library’s JIT functionality. We use O0 and O3

optimization levels for tradeoffs between compilation

time and code quality.

SELECT AVG(r.e)

FROM r,s --len(r)=len(s)=l
WHERE r.b = s.d

AND r.c BETWEEN 40 AND 50

Q : Vary relation lengths (l).

SELECT r.a1, r.a2, ..., r.ap
FROM r

WHERE r.a1 < c

Qπ : Vary projection complexity (p).

SELECT r1.a, r2.a, ..., rj.a

FROM r1, r2, ..., rj
WHERE r1.a = r2.a

...

AND rj−1.a = rj.a

Q⋊⋉: Vary join complexity (j).

SELECT r.a

FROM r

WHERE r.a != c1
AND r.a != c2
...

AND r.a != cs
Qσ: Vary selection complexity (s).

Fig. 12 Query templates used to vary query characteristics.

Database Systems. We built the JIT-compiling database

system ReSQL, which uses Flounder IR during compi-

lation and has the ability to run various SQL queries.

This allows us to evaluate the real world performance by

executing TPC-H benchmark queries. For comparison,

we use one compilation-based system Hyper [27] and

one interpretation-based system DuckDB [32]. We use

Hyper version v0.5-222, which executes queries by JIT

compiling via LLVM. We use DuckDB version v0.2.5,

which executes queries with vector-at-a-time process-

ing [7] for cache-efficiency. In its current development

state, ReSQL only supports single-threaded execution.

We configured all systems to run single-threaded for a

fair comparison. Furthermore, ReSQL’s query planner

does not yet support sub-queries. Therefore we only use

benchmark queries that do not contain sub-queries.

Design of Characteristic Workloads. We use four query

templates that allow us to evaluate different query char-

acteristics. The templates are specified in Figure 12 in

an SQL-form that uses additional integer parameters

for configuration. The parameter l varies the data size

in Q . Parameters p, j, and s vary query complexity

in Qπ, Q⋊⋉, and Qσ respectively. The attribute data is

generated from uniform random distributions and the

raltions have the following sizes: Q has l tuples for r

an s, Qπ has 1M tuples, Q⋊⋉ has 10K tuples per join

relation, and Qσ has 1M tuples.

Execution Platform. We use a system with Intel(R) Xeon

E5-1607 v2 CPU with 3.00GHz and 32GB main mem-

ory. The experiments run in one thread. We use operat-

ing system Ubuntu 18.04.4 and clang++ 6.0.0 to com-

pile the query compiler and the library for JIT queries.

The LLVM backend uses LLVM 6.0.0.
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Fig. 13 Effect of query complexity on compilation times for
different query compilation techniques.

6.1 Compilation Times

We compare the machine code compilation times for

LLVM and Flounder for Qπ and Q⋊⋉. We use Qπ with

values of p to project 50 to an extreme case 500 at-

tributes (filter with selectivity 1%). We use Q⋊⋉ with

values of j to join 2 to 100 relations. We show the results

for Flounder, llvm-O0, and llvm-O3 in Figure 13.

Observations. For all techniques, the compilation times

increase with the query complexity. The compilation

times for Q⋊⋉ are higher (up to 657ms) than for Qπ(up

to 560ms) and we look in detail at Q⋊⋉. With O0 op-

timization LLVM has compilation times between 10ms

up to 265ms. With O3 compilation times range from

28ms up to 657ms. For both levels, the graphs show

super-linear growth of compilation times with query

complexity. Flounder shows lower compilation times

that scale linearly between 0.3ms to 10.8ms. The high-

est factor of improvement is 24.6x over llvm-O0. and

60.9× over llvm-O3 (both for 100 join relations). For

Qπ Flounder has very low compilations times ranging

from 0.1ms (50 attributes) to 0.6ms (500 attributes).

This leads to factors of improvement up to 933× over

llvm-O3. We attribute this to the time LLVM spends

on register allocation. This is due to the large number

of virtual registers used for carrying attributes.

6.2 Machine Code Quality

To evaluate machine code quality, we execute two con-

figurations of each query template and measure the ex-

ecution time and the number of executed instructions.

The results are shown in Figure 14. The bars show the

execution time in milliseconds and the number on top

shows the executed instructions in millions.

Register Allocation. We analyze the effect of our regis-

ter allocation strategy on machine code quality. To this

end, we look at the techniques Flounder (spill) and

Q
l = 0.1M

Q
l = 1M

Qπ

p = 10
Qπ

p = 100
Q⋊⋉
j = 1

Q⋊⋉
j = 25

Qσ

s = 10
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s = 100
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Fig. 14 Time and instruction count for execution of machine
code from different query compilation techniques.

Flounder. The former uses spill access for every vir-

tual register use. The latter allocates machine registers

with the translation algorithm. We observe that register

allocation reduces the number of executed instruction

by factors between 1.2× and 1.8× (with one exception).

This shows that our register allocation strategy effec-

tively reduces the amount of executed spill code. We

explain the lack of improvement for Q⋊⋉ j = 25 with a

large number of hash table operations, which execute

invariant library code. The results show that the regis-

ter allocation technique reduces execution times for all

queries by factors between 1.02× to 1.35×. The factors

are not as high as the factors between L1 access and

register access. This is because the memory access for

reading relation data limits throughput (as is typical

for database workloads). The improvements shown by

the experiment are due to faster machine register access

and execution of less spill code.

Comparison with LLVM. Next we compare the machine

code quality of Flounder and LLVM (cf. Figure 14). On

average llvm-O0 executes 1.4× fewer instructions than

Flounder. The execution times, however, are similar

and are longer for Flounder only by an average factor

of 1.01×. With regard to execution times, the machine

code quality resulting from Flounder is similar to llvm-

O0. We attribute the small time difference despite the

higher instruction count to memory bound execution.

The technique llvm-O3 executes 2.2× fewer instruc-

tions than Flounder on average. The average factor

between the execution times of 1.05× is still low. How-

ever, especially queries on larger datasets benefit from

the optimizations applied by llvm-O3. E.g. the larger

variant Q 1M executes 1.3× faster. We conclude that

despite the much shorter translation times, our compi-

lation strategy produces code with competitive perfor-

mance to the machine code generated by LLVM.
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Fig. 15 Processing the projection workload with different
compilation and projection techniques.

6.3 Post-Projection Optimizations

The workloadQπbenefits from post-projection optimiza-

tions. For increasing numbers of projection attributes p,

it is preferable to read attributes a2 to ap only for tuples

that pass the filter (1% of the relation) instead of per-

forming a full scan. We analyze how the code generation

strategies handle post-projection optimization by exe-

cuting Qπwith p = {10, 50, 100}. We use the llvm-based

techniques, Flounder (naive), and Flounder (p.proj).

The technique Flounder (p.proj) produces IR with ex-

plicit post-projection; the other techniques produce IR

with full scans.

Observations. The experiment results are shown in Fig-

ure 15. We observe that Flounder (naive) has exe-

cution times between 8.2ms and 79.7ms, and Floun-

der (p.proj) has lower execution times between 6.6ms

and 15.0ms. Adding post-projection reduces execution

times by factors up to 5.3×. The LLVM-based tech-

niques have execution times between 6.4ms and 14.8ms.

Despite not using post-projection explicitly, LLVM has

similar execution performance as the post-projection

strategy. We explain this by LLVM adding a similar

optimization during machine code generation.

However, these optimization capabilities of LLVM

come at the cost of high compilation times (up to 56.7ms

compared to 0.2ms for Flounder). Although Floun-

der does not apply post-projection optimizations auto-

matically, explicit control over post-projections is prefer-

able for DBMSs, which typically use decision mecha-

nisms for projection strategies.

6.4 Prefetching Optimization

We use Q and Qσ to evaluate the effect of applying

software-based prefetching. To get an impression for dif-

ferent workload characteristics, we vary the parameters

l of Q and s of Qσ. For both experiments with Qσ, we

use a relation length of 5M tuples, which does not fit

into the last-level cache. The experiment uses a different

system with Intel (R) Core (TM) i7-9800X CPU with

3.80 GHz. This is because this CPU supports measure-

ment of CPU cycles that were stalled.

Figure 17 shows the execution times and the number

of stalled cycles during execution. Stalling arises when

the CPU waits for data to be loaded from main memory

into registers. Ideally, this can be prevented by timely

instructing the memory subsystem to prefetch data.

Observations. The results show that the prefetch op-

timization reduces the number of stalled cycles by up

to 15% for Qσ and up to 6% for Q . At the same time,

execution times reduce up to 11% (Q ) and 14% (Qσ

with s = 20). In particular, for Q , calls of external

functions (e.g. building the hash table) interfere with

the prefetching. As a result, the stalls are reduced less,

compared to Qσ. This may be improved in the future

by adapting the prefetching distance. The results also

show an increase in compilation time for applying the

optimization. However, even with prefetching optimiza-

tions, compilation times remain below 0.4ms, which is

sufficiently low to get an overall benefit.

6.5 Overall Performance for Characteristic Workloads

We show a table with the overall performance for each

technique in Figure 16. The workloads are the same

as in Section 6.2 with two configurations for each tem-

plate. The relation sizes range from 10K to 1M tuples

with total attribute numbers between 2 and 100.

Observations. The technique Flounder has overall ex-

ecution times between 0.4ms and 50.2ms and llvm-O0

between 5.3ms and 74.9ms. For llvm-O0, compilation

makes up 46% of the execution on average. For Floun-

der the average is 5%. This leads to better performance

of Flounder for 7 of 8 queries. For Q l = 1M compi-

lation times are generally low; thus llvm-O0 achieves

a slightly shorter overall time due to 1.15× faster ex-

ecution. The technique llvm-O3 has execution times

between 11.4ms and 141.9ms, which is longer than the

other techniques for 7 of 8 queries. The compilation

times make up a high percentage of 62% of the over-

all on average. The highest factor of improvement of

Flounder over llvm-O0 is 10.7×. The highest factor

of improvement over llvm-O3 is 23.2×.

6.6 Real World Performance

To evaluate the real world performance of our approach,

we execute TPC-H benchmark queries with ReSQL,
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llvm-O0 llvm-O3 Flounder
cmpl exec total cmpl exec total cmpl exec total

Q l = 0.1M 4.9 3.5 8.5 9.9 3.3 13.2 0.1 3.6 3.8
Q l = 1M 4.7 43.6 48.4 9.7 38.9 48.7 0.1 50.1 50.2
Qπ p = 10 4.0 6.5 10.6 9.2 6.4 15.7 0.1 6.4 6.4
Qπ p = 100 15.9 14.0 29.9 56.7 13.9 70.7 0.1 14.0 14.1
Q⋊⋉ j = 1 4.9 0.3 5.3 10.9 0.5 11.4 0.1 0.3 0.4
Q⋊⋉ j = 25 36.8 38.1 74.9 105.2 36.7 141.9 2.8 39.1 42.0
Qσ s = 10 3.8 9.7 13.5 7.8 13.9 21.7 0.1 9.5 9.6
Qσ s = 100 10.3 40.0 50.3 18.5 25.6 44.2 0.2 39.0 39.2

Fig. 16 Overall performance for two configurations of each characteristic workloads (values shown are in milliseconds).
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Fig. 17 Effect of using loop unrolling and prefetching for
different workloads.

Hyper, and DuckDB. The relative benefit of lowering

compilation latencies depends on the size of the pro-

cessed data. To this end, we evaluate a smaller database

with scale factor 100MB and another database with

scale factor 1GB. We execute those TPC-H queries

that are compatible with ReSQL and report compila-

tion times and execution times. We do not show com-

pilation times for DuckDB as it is an interpretation-

based engine. The experiment results are shown in Fig-

ure 18 (a) for the 100MB database and in Figure 18 (b)

for the 1GB database.

Observations 100MB Database. Excluding compilation

times, the JIT-based engines have shorter execution

times than the interpretation-based engine DuckDB.

DuckDB’s execution times range from 7ms to 82ms.

Hyper’s execution times are shorter by 8.3× on average

(1ms to 12ms). ReSQL’s execution times are shorter

by 2.3× on average (7ms to 32ms). Including compila-

tion times, however, Hyper is slower than DuckDB for

6 out of 8 queries. This is because Hyper’s compilation

with LLVM takes up to 117ms. ReSQL has much lower

compilation times than Hyper by up to 106.3× (Q5).

The highest compilation time of ReSQL is only 3ms.

This makes ReSQL’s faster than DuckDB (up to 3.8×)

for all but one query (near even for Q6) and faster than

Hyper for all queries (up to 5.5×).

Observations 1GB Database. For the larger database,

the execution times (excluding compilation) increase

compared to the 100MB database by 8.9× on average

for DuckDB, 13.7× for Hyper, and 10.2× for ReSQL.
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Fig. 18 Executing TPC-H queries with DuckDB (interpre-
tation), Hyper and ReSQL (compilation) for two database
sizes.

The compilation times, however, remain unchanged and

thus now make up a smaller portion of the overall time

for the JIT-based systems. This makes Hyper’s over-

all execution faster than ReSQL for 6 out of 8 queries

(1.5× faster on average). Compared to DuckDB, how-

ever, ReSQL remains faster by the average factor 1.9×
(The factor was 2.0× for the 100MB database). This is

because ReSQL’s compilation times have such a small

contribution to the overall processing time.

The results show that the simple yet fast compila-

tion approach of ReSQL and Flounder leads to a dras-

tic reduction of compilation times. This leads to faster

overall execution times for smaller database sizes (e.g.

100MB) than state-of-the-art systems. The execution

times after compilation of both JIT-based systems are

lower than those of the vector-at-a-time engine. This

shows that Flounder and ReSQL, despite using simpler

translation, can leverage the fast processing speeds of

the query compilation approach.
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7 Future Work

Flounder IR is highly specialized. It is designed specif-

ically for database workloads and for one hardware ar-

chitecture only. This was a no-compromise decision for

simplicity and translation performance. In the future,

it will be interesting to see which generalizations can be

applied, e.g. targeting multiple hardware architectures,

without adding substantial translation cost. In the fol-

lowing, we discuss several aspects of generalization.

7.1 Domain-Specific Processing

Previous work has shown the benefits of combining data-

base processing with other domains, such as data sci-

ence [35,25]. For Flounder IR, the addition of such

other domains would make the IR suitable for use in

a wider range of applications. One way to tackle this

idea would be to split IR code into database specific

parts and domain specific parts. This would allow it

to apply Flounder’s capabilities (e.g. scope-based reg-

ister allocation) to the database specific code and use

other compiler techniques (e.g. LLVM’s register alloca-

tor) to the domain specific parts. A challenging aspect

of this direction is defining a good interface between

both parts, which should allow efficient interaction (e.g.

sharing registers) and specialized compilation (e.g. sep-

arate basic blocks).

7.2 Hardware Architectures

A straightforward way of supporting other hardware

architecture targets is to take Flounder’s approach and

apply it to a new target. While some aspects may differ,

it seems reasonable that the key technique of scope-

based register allocation is applicable for most forms of

target machine code. By rewriting the IR, however, the

emitter functions from the query compiler have to be

rewritten aswell. A more sustainable IR design should

therefore include the abstraction of most machine-spe-

cific concepts and then offer translation for multiple

targets from the same IR. It remains an open question

how much translation cost such capabilities would add.

An early prototype for Intel and ARM architectures

showed promising results so far with compilation times

similar to Flounder’s for basic IR programs.

8 Summary

We showed a query compilation technique that includes

all machine code generation steps in the query com-

piler. The technique uses the intermediate represen-

tation Flounder IR that enables simple translation of

query plans to IR and fast translation from IR to ma-

chine code. While the translation of query plans to IR

is similar to existing approaches, the next step, trans-

lation to machine code, is much simpler than in exist-

ing techniques. Compared to established low-level query

compilers, our approach achieves much shorter compi-

lation times with competitive machine code quality.

The ReSQL database system was built on top of

Flounder IR and uses the IR in the translation from

SQL to machine code. We use ReSQL to showcase the

advantages of Flounder’s compilation approach and show

that the advantages carry over to real world workloads.
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