
Revision Letter

We revised the article according to your suggestions and believe that, thanks to
your feedback, we were able to significantly improve it. Sections 2 and 5 were
substantially rewritten. We added Section 5.1 and Section 7 and rewrote the
Abstract. Several other passages were revised and improved. All changes are
highlighted in blue.

The key contribution of the article is a domain-specific IR that is designed for
fast compilation of database workloads. We believe that the changes in the
Abstract and in Section 1.2 help emphasize this key contribution.

In the added Section 7, we consider the tradeoff between generality and spe-
cialization for the design of IRs. Flounder IR chooses the specialization-side
of this tradeoff and therefore has limited generality (e.g. limited portability to
other hardware platforms). The added section discusses ways of increasing the
generality of Flounder IR that may be able to retain its benefits.

Please find the detailed answers to the review comments in the following.

Reviewer 1

The paper argues that one of the reasons why they are faster than generic
compilers is that the repetitive nature of query operators and their narrow
scope allow for optimizations and focus on a few constructs rather than having
to compile arbitrary code. To what extent is the mapping of, e.g., a join, a
true compilation step as opposed to just instantiating a machine code template
for the join? What applies to interpreted query execution, where the operators
are generic and just invoked on different inputs, would seem to apply as well to
operators in machine code. In 3.2 function calls are mentioned but the paper
never explains how often they are used and the mechanism behind them (is there
a catalog somewhere of available functions? If yes, how much actual compilation
is happening as opposed to scripting a series of function calls?)

Response Patching machine code templates may be an interesting direction for
achieving low compile times. However, such a technique is different
from ours. Our approach achieves memory efficiency by sharing
values in processor registers across multiple operators.

In a patch-based approach, the templates contain pre-defined uses
of their values and different patches have to share values with each
other. If the templates contain actual machine code, this means
that they contain hard-coded registers. Every template has to clear
its registers to allow them to be used by the next template. This re-
quires materialization, which we are able to avoid with our approach.
Alternatively if we use machine code with placeholder-registers, we

1



would return to a similar register allocation problem as addressed
by our approach.

Regarding function calls, we use a similar approach as Hyper. We
use IR code generation for data movement (e.g. reading a tuple from
a hash table), and we use function calls for some laborious methods
that are error-prone to implement via code generation (e.g. like).

It would be interesting to see some comment/analysis on the end-to-end steps
of query compilation. The paper claims to be end-to-end but it only deals with
the mapping plan → IR → machine code. The input is a query tree that,
presumably, has already been optimized. Any chance to provide a rough idea
of the relative cost of the complete sequence? SQL text string → query plan →
optimized plan → IR → machine code? That would be a good way to frame
the results. I see the point that query compilation is too long for short queries
but, for complex queries (unlike what the paper claims), it is likely that the
optimization step and running time make the compilation time irrelevant. The
results of Figure 15 go along these lines but should be commented in more detail.

Response Query optimization is indeed an important step in the compilation
process that comes at a cost. In fact, as shown by the Hyper-team,
the optimization of query plans has a more dominant effect on query
execution performance than the execution model itself.

However, a further analysis of the time spent during query optimiza-
tion would have a limited contribution in this work and focus on an
orthogonal aspect. On the one hand query optimization is a well-
understood problem and commercial systems show strong optimiza-
tion performance (e.g. answering full queries in few milliseconds).
On the other hand ReSQL’s query optimizer is not representative of
such state-of-the-art query optimizers. The comparison in end-to-
end performance with breakup in compilation and execution is the
best estimate we can currently give. The results already show the
importance of IR compilation times for several workloads.

There is quite a bit of work on hardware optimized operators (see, for instance,
the papers by Balkesen et al. on radix hash join and sort merge joins in ICDE
13 and VLDB 13). These operators make heavy use of low level machine in-
structions (AVX, prefetching, etc.). It would seem that the approach in this
paper would be a great way to implement such sophisticated algorithms. It
would be good to comment on that, extending the discussion in 5.2. Along
these lines, it would seem that the use of a prefetcher is something that could
be indicated by the query optimizer rather than just generated in the compila-
tion step. Are there opportunities to pass such hints (AVX, prefetching, data
sizes, selectivities, etc.) down the pipeline to be used in the compilation step?

Response Thanks for these valuable ideas. In fact we are actively working
on finding good ways to pass hints for more extensive hardware

2



optimizations to the IR. We improved Section 5.2 and now discuss
different hardware architecture targets in Section 7.2.

It would be useful to see a discussion of any potential shortcomings of the
proposed approach. The paper repeatedly claims that it is simpler and faster,
which it proves in the experiments. But the paper does not prove or even
discuss the generality of the approach and whether there are possibilities using
LLVM that are not available using Flounder. For instance, LLVM is used to
deal with heterogeneous hardware while Flounder is very much tied to x86
processors. Similarly, the paper only discusses a handful of operators and query
types while the systems it compares to are capable of supporting a wider range
of SQL constructs and queries. Some of it is just because Flounder has not been
developed further but it would be good to show arguments that it can actually
be extended and where its limits are.

Response With the goal to reduce compilation cost we designed our approach
to be specialized. It is specifically made for database workloads
and for one hardware architecture. This certainly is a limitation,
but the approach allowed us to provide insight on the feasibility of
query compilation with low compilation times. The degree to which
it is possible to increase aspects of generality while retaining similar
performance is a particularly interesting open question. We now
discuss this aspect in Section 7.

I was puzzled by the ”?” in Figure 1. It is not clear what it means or what it
represents and the text does not explain it. I suggest to either clarify, give it a
name, or remove it.

Response We added an explanation for the bar with the question mark in
Section 1.1.

I would add in the introduction a line or two quantifying the results (5.5
speedup). It is in the abstract but the intro only has a generic description
of the results. It would also be useful to list there already what systems are
used as baseline for comparison.

Response We added a statement about the speedups in Section 1.2.

In Section 1.2, I would remove the explanation of the added contents over the
DAMON paper. It is useful for reviewing but nor needed for the final version.

Response We removed the comments on the additions for better readability.

I am not a great fan of having an outline for the next sections every few para-
graphs. It is not needed and it looks like the text is there to make the paper
longer. There is already an outline in the introduction, I would suggest to

3



remove the repetitive outlines added in several sections (e.g., at the end of 2.2).

Response We removed the outline at the end of Section 2.2 and revised the
introduction of Section 4 in this regard.

For the final version, it would be nice to correct paragraphs that end with one
or two words in the last line. There are quite a few.

Response We fixed several paragraphs that ended with one or two words.

Some of the code is labeled as a figure, other is inlined in the text and without
label. I suggest to be consistent and label all of them as Figures. Also, in 2.3,
I would suggest to make the example a figure rather than having it floating on
the side of the text. It does not look nice and it is not needed as there is space
for it.

Response In the revised version of the article, we changed several previously
inlined pieces into Figures. The changes are for Figure 2, Figure 5,
and Figure 7 To avoid an over-crowding with figures we kept several
shorter code pieces in line.

Reviewer 2

Regarding Fig. 3: I am not familiar with the produce/consume model of [29]. I
guess that because of that, I missed the outer-loop of the Build-Side where all
tuples of the build-side are inserted into the hash table. I also could not follow
the meaning of a1 vs. Attributes in this figure. I propose to expand a bit more
on explaining the Figure.

Response We carefully revised Figure 3 (now Figure 2) and its description
to not rely as much on previous knowledge of produce/consume.
The first paragraph now differentiates more clearly between the
build and probe pipelines. In the description of the probe pipeline
we clarified that the scan operator emitter is responsible for the
outer loop. In the explanation of the pseudocode, we now use
createHashtable(..) as example for functionality that is executed
once during translation and ht ins(..) as example for functional-
ity that is placed in the compiled code and may be executed executed
repetitively (e.g. via preceding scan operators that emit a surround-
ing scan loop). We added a comment in the pseudocode to clarify
the role of al.

Section 2.3 contains well-known compilation techniques. In my opinion it does
not add to the depth of the paper, and therefore can be omitted. By contrast,

4



Section 3.1 does contain a new technique of scoping the use of virtual register
in SQL processing loops. Typo in Section 2.3: The constant 0.23 is replaced
later by the constant 0.34.

Response We shortened this part to contain only two aspects with direct rele-
vance to Flounder IR. We also condensed the descriptions and fixed
the typos regarding the decimal constant.

Figure 10: You need to solve the editorial/visual problem of how to annotate
the X-axis. There are 2 different scales: 1 for projection and 1 for join. But the
figure names none.

Response We revised the plot and now name both scales. We also changed the
order of the referenced graphs in the legend to improve readability.

From my perspective, the key contribution of the paper is the demonstration
of a domain-specific JIT compiler (for the specific domain of SQL), as opposed
to the general-purpose LLVM. For example, the special and simple register
allocation scheme benefits from the domain specificity. I would recommend
emphaizing this point. Section 1.1 indeed introduces this contribution, but it
deserves further elaboration (maybe ast future work, for other domains such as
AI/ML...).

Response Thanks for these valuable suggestions. We revised the abstract and
the introduction to improve the presentation of Flounder IR as a
domain-specific compilation technique. In the revised paper, we
also include Section 5.1 and Section 7.1, which relate to the topic.
Section 5.1 discusses additional database-specific knowledge, which
can potentially improve our approach. Section 7.1 discusses the
combination of database processing with other domains.

Reviewer 3

As a general comment, given the focus on latency it was a little surprising to see
the evaluation with OLAP workloads in a tiny database in Section 6.6. These
workloads have long-running queries that can tolerate a few seconds of delay due
to compilation. It may have been more interesting to evaluate Flounder IR and
ReSQL with OLTP workloads, where compilation would add an unacceptable
latency to every transaction to the point where compilation performance alone
determines the peak throughput of the system.

Response The suggestion to apply our approach to transactional workloads
makes sense. Currently, however, ReSQL only has a very basic ap-
proach to concurrency. Thefore such workloads would be dominated

5



by synchronization, leading to an uninteresting comparison. A fu-
ture improved concurrency protocol would make this a meaningful
analysis.

How are NULLs handled in ReSQL and Flounder IR? The instruction path
length grows considerably when NULLs are involved due to the use of binary
logic in the ISA. Flounder IR has an opportunity to encode ternary logic directly
in the IR. Some discussion on this would strengthen the paper.

Response This is an interesting comment. Currently expression translators
have to implement handling of NULL values. For the revised pa-
per, the added Section 5.1 discusses opportunities for improving the
handling of NULL values.

Please clarify the relationship of the decimal type used in the example in Section
2.3 to the SQL exact numeric types (numeric, decimal) and the approximate
numeric types (float, real). In particular, clarify if ReSQL supports both exact
and approximate numeric types, or if approximate numeric types are converted
to exact types? Also, clarify how are exact decimals wider than the register size
handled.

Response We clarified in Section 2.3 that ReSQL uses 64 bit integers to repre-
sent decimals. Currently ReSQL only supports exact numeric types.

The prefetching optimization in 5.2 aims to match the granularity of prefetching
with the granularity of access by tracking cacheline accesses and using loop un-
rolling. This realization comes later in the section and is a little underwhelming—
I was reading eagerly for an interesting way to optimize the prefetching distance
which is a very brittle optimization in practice. Please state the nature of the
optimization upfront, instead of at the end of the section. Some discussion on
if/how a database-specific IR can help with tuning the prefetch distance would
also be welcome.

Response Thanks for this comment. After re-reading we realize the issue.
We revised the Section to be more up-front about the nature of
the optimization. We also added a discussion on optimizing the
prefetching distance.

The 100MB database used in Section 6.6 appears to be outside the specs of
TPC-H, where a scale factor of 1 produces a 1GB database. How was the
100MB database generated exactly?

Response We used the 100MB database to challenge Flounder with shorter
processing times. We generated the data with dbgen -vf -s0.1.
While this is not a standard size for the TPC-H benchmark, the
generated data appeared sound under visual inspection.

6


