
VLDB Journal manuscript No.
(will be inserted by the editor)

Low-Latency Query Compilation

Henning Funke · Jan Mühlig · Jens Teubner

the date of receipt and acceptance should be inserted later

Abstract Query compilation is a processing technique
that achieves very high processing speeds but has the
disadvantage of introducing additional compilation la-
tencies. These latencies cause an overhead that is rela-
tively high for queries that finish quickly or that have
a high complexity.

In this work, we present Flounder IR and ReSQL
that represent our new approach to JIT-based query
processing with low compilation latencies. Instead of us-
ing a general purpose library (e.g. LLVM) for machine
code translation, Flounder IR and ReSQL integrate
machine-level code generation with the query compiler.
This approach enables a much simpler translation pro-
cess from IR to machine code that can still benefit from
the increased processing speeds of the query compila-
tion technique.

The ReSQL database system employs a full transla-
tion stack from SQL to machine code. This allows us to
illustrate the full translation process and to apply our
approach to a variety of queries. We analyze the benefit
of low-latency query compilation in real world scenar-
ios and show performance improvements up to 5.5× for
TPC-H queries over state-of-the-art systems.

Henning Funke
TU Dortmund University
E-mail: henning.funke@cs.tu-dortmund.de
Jan Mühlig
TU Dortmund University
E-mail: jan.muehlig@cs.tu-dortmund.de
Jens Teubner
TU Dortmund University
E-mail: jens.teubner@cs.tu-dortmund.de

R S

T⋊⋉
⋊⋉

JIT Compilation

T
im

e C
ud

a

C
/C

+
+

L
LV

M

?

48 89 e5
53
48 83 ec 08
80 3d 80 0b 20
75 4b
bb 30 0e 60 00
4c 89 fa
4c 89 f6
44 89 ef
41 ff 14 dc
41 5f
c3

Query Plan

Machine Code

Fig. 1 Effect of different intermediate representation levels on
JIT query processing performance.

1 Introduction

Query compilation is a technique for query execution
with extremely high efficiency. It uses just-in-time (JIT)
compilation to generate custom machine code for the
execution of every query. The approach leverages a
compiler stack that first translates the query from a
relational query plan to an intermediate representation
(IR), and then from the IR to native machine code for
the target machine. The execution-efficiency of the com-
piled code is very high compared to standard interpre-
tation-based backends. However, by using compilation
the technique adds a step to query execution, which in-
troduces translation cost. Especially short-running que-
ries and queries with high complexity experience a rel-
atively high translation cost, which ultimately extends
query response times.

When using query compilation for queries on smaller
datasets, the relative cost of compilation increases. The
query engine spends most of its time on compilation be-
fore entering execution only for a very short time. Fur-

2 Henning Funke et al.

ther, complex queries can have particularly long compi-
lation times due to complexity of algorithms used in JIT
machine code translation [32]. Approaches to mitigate
the impact of compilation time on response time have
been proposed previously [22]. However, these typically
rely on providing both an interpretation-based and a
compilation-based backend at a high implementation
cost.

1.1 Intermediate Representation Levels

The intermediate representation is an important design
choice for query compilers. Figure 1 illustrates the effect
of the IR choice on JIT compile times. Query compil-
ers with high-level IRs, such as C/C++ [19,35,12] or
OpenCL and Cuda [10,15,13,31] generally have longer
compilation times than query compilers that generate
lower-level IRs such as LLVM IR [29,30]. Existing work
on JIT compilers, however, shows the feasibility of much
shorter compile times [4,9] than those of LLVM. In fact
non-database JIT compilers reach break-even points for
dynamic compilation versus static compilation already
for thousands of records [4]. By contrast, LLVM-based
query compilers have compilation times of tens of mil-
liseconds [29], which is sufficient time to process queries
on millions of tuples [8].

LLVM IR is general purpose and was designed to
serve as backend for the translation of high-level lan-
guage features [23]. Being general purpose, LLVM is
relatively heavyweight and devises a translation stack
that is “overkill” for relational workloads. The code for
relational queries typically consists of tight loops with
conditional code mainly to drop non-qualifying tuples.
This plain structure offers potential for much simpler
translation than performed by general purpose transla-
tors, which leverage complex code analysis and register
allocation algorithms.

1.2 Contributions

This work presents the intermediate representation Floun-
der IR and the database system ReSQL1, which repre-
sent a new approach to query compilation that targets
low compilation latencies. This is an extended version
of a previously published workshop paper [14]. The ex-
tended version adds the ReSQL database system as a
real world showcase. The added content includes Sec-
tion 2.3, which details ReSQL’s translation process, Sec-
tion 5, which investigates applications of Flounder IR,

1 The source code of ReSQL and the Flounder library will be
available at publication time http://github.com/todo

details on function call translation (in Section 4.2), and
an extended experimental evaluation.

Flounder IR. We propose Flounder IR as a lightweight
intermediate representation for query compilation to
reduce compilation times. Flounder IR is close to ma-
chine assembly and adds just that set of features that
is necessary for efficient query compilation: virtual reg-
isters and function calls ease the construction of the
compiler front-end; database-specific extensions enable
efficient pipelining in query plans; more elaborate IR
features are intentionally left out to maximize compi-
lation speed.

ReSQL. The ReSQL database system was developed
as a showcase for low latency query compilation with
Flounder IR. ReSQL provides a full translation stack
from SQL to machine code and supports a variety of
queries. In the paper we discuss the design of several of
ReSQL’s translation components and we use the sys-
tem to perform an experimental evaluation on TPC-
H benchmark workloads. The analysis shows that our
query compilation approach reduces compilation times
while preserving improved processing speeds. We show
that our approach achieves better tradeoffs between
compile time and execution time than previous query
compilers.

1.3 Outline

The paper is structured as described in the following. In
the next Section 2, we illustrate how ReSQL uses Floun-
der IR for query translation. Section 3 then details the
design of Flounder IR. Section 4 shows the algorithm for
translating the IR to machine code. Section 5 discusses
further improvements and applications of our transla-
tion technique. Then Section 6 evaluates the approach
experimentally and finally Section 7 wraps-up the pa-
per with a summary.

2 Query Translation

Query compilation typically involves a step that trans-
lates relational queries to an intermediate representa-
tion (IR) and another step that translates the IR to
machine code. In the following, we give an overview of
how both steps are realized for query compilation with
Flounder IR.

Low-Latency Query Compilation 3

Translate Hash Join Operator to IR
Function ⋊⋉.consume(attributes, caller):

1 if caller is ⋊⋉.left: /* build-side */
2 ht ← createHashtable(...)
3 emit entry ← ht_ins (ht, ⋊⋉.buildKey) /* get bucket */
4 emit materialize (entry, attributes) /* write to ht */
5 al ← attributes

6 if caller is ⋊⋉.right: /* probe-side */
7 emit entry ← null /* initialize */
8 emit while (true): /* loop over join matches */

/* probe hash table to get next matching entry */
9 emit entry ← ht_get (ht, ⋊⋉.probeKey, entry)

10 emit if entry is null: /* check result */
11 emit break /* no more match */

12 emit dematerialize (entry, al) /* read to regs */
13 ⋊⋉.parent.consume (al ∪ attributes, ⋊⋉) /* next ops */

Fig. 3 Operator emitter of the hash join operator. We under-
lined the functionality that is placed in the JIT query.

2.1 Query Plan to IR

The first translation step traverses the query plan and
builds an intermediate representation of the query func-
tionality. A common way to do this is the

R

..
. σ

⋊⋉

π

grp

produce(...)

consume(...)

consume(...)

Fig. 2 Query Plan.

produce/consume model [29],
which emits code for operator
functionality either in produce
or consume methods. We call
these methods operator emit-
ters. Figure 2 illustrates the
operator emitters that are exe-
cuted during translation of the
probe-side pipeline of a sam-
ple query. The operators of the
pipeline are surrounded by a

dotted line. In the example, the code to scan R was
already emitted by produce(...) and for selection (σ)
by consume(...). The consume call for hash join (▷◁)
follows next. The code of the hash join operator emitter
is shown in Figure 3. The code lines following an emit
statement are underlined to emphasize that this code
is not executed immediately but instead placed in the
JIT query.

In the example, the consume method is called from
its right child and therefore the probe-side code is pro-
duced (lines 7–13). The code first initializes the vari-
able entry , which holds hash probe results (line 7) and
then loops over the hash join matches (lines 8–13). In
the loop, we first call ht_get(...) to retrieve the next
match (line 9) and then perform a check to exit when
no more matches exist (lines 10–11). To process join
matches, we read the attributes of the match to regis-

[...] ;child code
vreg {entry}
mov {entry}, 0
;while head
loop_headN:
;ht_get(..) call
mcall {entry},{ht_get},

{ht},{r_a},{entry}
;break when entry=NULL
cmp {entry}, 0
je loop_footN
;dematerialize ht entry
vreg {s_a}
vreg {s_b}
mov {s_a}, [{entry}]
mov {s_b}, [{entry}+8]
[...] ;parent.consume(..)
clear {s_a}
clear {s_b}
;loop foot
jmp loop_headN
loop_footN:
clear {entry}
[...] ;child code

Flounder IR
(in-memory)

(a)

[...] ;child code
mov r11, 0; init entry
loop_headN: ;while head
mov [rsp-8], r8 ;caller-
mov [rsp-16], r9 ;save
mov [rsp-24], r10
mov rdi, 0x25cac0 ;call
mov rsi, r9 ;params
mov rdx, r11
sub rsp, 24 ;adjust stack
mov rax, 0x42fa10
call rax ;ht_get call
add rsp, 24 ;restore stack
mov r8, [rsp-8] ;restore
mov r9, [rsp-16] ;caller-
mov r10, [rsp-24] ;save
mov r11, rax ;return value
cmp r11, 0 ;break condition
je loop_footN
mov r12, [r11] ;demate-
mov r13, [r11+8] ;rialize
[...] ;parent.consume(..)
jmp loop_headN ;next probe
loop_footN:
[...] ;child code

x86_64 assembly
(in-memory)

(b)

Fig. 4 Intermediate representation of hash join probe function-
ality (a) and corresponding machine assembly (b).

ters (line 12) and then the join’s parent operators place
their code by calling consume(...) (line 13).

The resulting intermediate representation is shown
in Figure 4 (a)2. It performs the described probe func-
tionality. We briefly describe the resulting IR here and
provide a detailed description of the used Flounder IR
features in Section 3.

The attribute values are held in {r_a}, {s_a}, and
{s_b} and the locations of hash table entries in {entry}.
The hash_get(...) call is realized with mcall and the
loop over the probe matches with a combination of com-
pare (cmp) and two jumps (jmp, je). To read attributes
from a hash table entry (dematerialize), we use mov
from a memory location in brackets [] to e.g. {s_a}.

2.2 IR to Machine Code

The next step translates the query’s intermediate rep-
resentation to machine code. The machine code needs
to follow the application binary interface (ABI) of the

2 We use an nasm-style assembler notation with the destina-
tion operand on the left and the source operand on the right.

4 Henning Funke et al.

execution platform. In this work, we use the target ar-
chitecture x86_64 [25].

The Flounder IR emitted by the hash join is trans-
lated to the machine assembly shown in Figure 4 (b).
Several abstractions that were used during IR genera-
tion are now replaced by machine-level concepts. E.g.
the machine assembly uses processor registers such as
r12 instead of {s_a}. Further, the machine assembly
uses additional mov instructions to transfer values be-
tween registers and the stack, e.g. mov r8,[rsp-8].
The translation process from Flounder IR to machine
code needs to manage machine resources such as reg-
isters and stack memory and find an efficient way for
their use during JIT query execution.

This section provided an overview of query com-
pilation with Flounder IR. The following sections will
describe the mechanisms in detail. The next Section 3
shows the abstractions used by Flounder IR during
code generation. The subsequent Section 4 will show
the translation process from Flounder IR to machine
code.

2.3 ReSQL Translation Mechanisms

We just discussed the translation of relational opera-
tors. This is one of several translation components used
by ReSQL. For a comprehensive picture of the JIT-
compiling DBMS, we now describe additional transla-
tion mechanisms that are used in the translation from
SQL to machine code. We start with the translation
of expressions in detail and then continue more briefly
with handling of tuples, SQL parsing, relational alge-
bra, and hash-based evaluation of join conditions.

Expression Translation. To illustrate expression evalu-
ation in ReSQL, we use the expression 10.0+0.23, an
addition of two decimal constants, as example. An ef-
ficient way of executing decimal arithmetic is integer
arithmetic along with mechanisms that handle the dec-
imal point, i.e. we encode the constants as integer val-
ues 100 and 23 along with the number of decimal digits
(base). For the addition, we obtain the same base for
both summands by multiplying 100 with 10. The inte-
ger addition 1000+34=1034 then evaluates to 10.34 by
applying the same base.

For JIT-based evaluation, the expression translator
of ReSQL performs two steps. The first step is type res-
olution, which derives the result type for each expres-
sion node. Leaf types are given by each constant’s num-
ber of digits that precede and follow the decimal point.

const "10.0"
decimal(3,1)

typecast
decimal(4,2)

const "0.34"
decimal(3,2)

add
decimal(5,2)

The left constant 10.0 has
type decimal(3,1), which
means that it has three dig-
its in total and one that fol-
lows the decimal point. The
right constant 0.34 has type
decimal(3,2) respectively.
To derive node types the
translator applies type rules that are defined for each
node class along with its child types. In the process
of applying these rules, typecasts are inserted to make
operands compatible where necessary. In the example a
typecast to decimal(4,2) is added to the left constant
for the addition. The resulting expression tree is shown
in the margin.

In the second step, the expression translator emits
Flounder IR. Starting with the leaf expressions, code for
the evaluation of each node is emitted. The resulting
Flounder IR below evaluates the full expression from
the example. The code uses, e.g. vreg {x}, which has
a similar meaning as variable declarations.

;const "0.34"
vreg {dec_const0}
mov {dec_const0}, 34
;const "10.0"
vreg {dec_const1}
mov {dec_const1}, 100
;typecast [decimal(3,1) to decimal(4.2)]
vreg {cast_res0}
mov {cast_res0}, {dec_const1}
clear {dec_const1}
imul {cast_res0}, 10
;add
vreg {add_res0}
mov {add_res0}, {dec_const0}
clear {dec_const0}
add {add_res0}, {cast_res0}
clear {cast_res0}
;[...] work with add_res0
clear {add_res0}

First the integer representations of both constants are
loaded into {dec_const0} and {dec_const1}. Then to
evaluate the typecast, {dec_const1} is multiplied with
10 and the result is stored in {cast_res0}. Finally
the addition of {dec_const0} and {cast_res0} is per-
formed and the expression result is stored in {add_res0}.
Intermediate values are cleared (clear) when they are
no longer needed. The IR-code is inserted into the code
frame of the query and translated to machine code
along with the query.

Handling of Tuples. In JIT-based execution, the indi-
vidual values of a tuple are distributed across regis-
ters. For the implementation of operator emitters, how-
ever, it is still useful to handle tuples as a single en-

Low-Latency Query Compilation 5

usage: tup = Values::evaluate(expr);
code: Evaluate the list of expressions expr.
usage: tup = Values::dematerialize(loc, schm);
code: Scan a tuple with schema schm from location loc.
usage: hash = Values::hash (tup);
code: Hash the tuple tup.
usage: flag = Values::checkEquality(tup1, tup2);
code: Check tuples tup1 and tup2 for equality.
usage: Values::materialize(tup, loc);
code: Write tuple tup to location loc.

Fig. 5 Tuple-based code generation methods. The top line of
each pair is a usage example. The bottom line describes the
functionality of the resulting generated code.

tity [18]. ReSQL provides several code generation func-
tions in the Values namespace for this purpose. These
are shown in Figure 5. To evaluate the projection ex-
pressions from a select-clause, for example, we use
tup=Values::evaluate(projs). The result tup is a
list of virtual registers that hold the expression results,
ultimately a tuple. Similarly, lists of virtual registers
are used to hold tuples after scanning them or when
applying a hash function.

SQL Parser. The SQL parser uses a lemon grammar
that is translated to C++ code by the lemon parser
generator [17]. The grammar uses standard rules, e.g.

groupby := GROUP_BY_TK exprList.
groupby := .

to define that the group by-clause can be either non-
existent or a consist of a group by-token with succeed-
ing grouping expressions. The grammer is used to trans-
late SQL queries to the different query entities.

Relational Algebra. After parsing, a set of rules is ap-
plied that converts the parsed query into a relational
query plan. This plan is lightly optimized by convert-
ing to a right-deep tree that uses hash joins for equality
conditions (otherwise nested loops) and by pushing se-
lection predicates towards the leaves.

Join Conditions. To implement hash joins, ReSQL uses
the pre-compiled hash table operations ht_get(..) and
ht_put(..). These check only the hash values for equal-
ity. For matching hashes, we check the full join condi-
tions via generated code from expression translation.

3 Lightweight Abstractions

Flounder IR is similar to x86_64 assembly, but it adds
several lightweight abstractions. The abstractions are

designed with the interface to the query compiler and
with the resulting machine code in mind. In this way,
we could design Flounder IR to pass just the right set of
information into the compilation process. For operator
emitters, the IR provides independence of machine-level
concepts, which allows similar code generation as is typ-
ically performed with LLVM. For translation to ma-
chine code, the abstractions are sufficiently lightweight
to avoid the use of compute-intensive algorithms. Ad-
ditionally, the IR contains information about the re-
lational workload that enables efficient tuning of the
machine code.

In the following, we present the lightweight abstrac-
tions. They add several pseudo-instructions, i.e. vreg,
clear, and mcall to x86_64 assembly and use addi-
tional tokens, which are shown in braces, e.g. {param1}.

3.1 Virtual Registers

An unbounded number of virtual registers is a common
abstraction in compilers [5]. Query compilers use them
to handle attributes without the restrictions of machine
registers. When replacing virtual registers with machine
registers for execution, general purpose compilers per-
form live-range analysis [2]. This is rather expensive be-
cause compilers consider all execution-paths that lead
to a register usage.

Query workloads use virtual registers in a much
simpler way than general purpose code. They hold at-
tribute data within a pipeline and the pipeline’s ex-
ecution path only consists of tight loops. This allows
query compilers to use a simpler approach that skips
live-range analysis. In Flounder IR, operator emitters
mark the validity range of virtual registers. The vreg
pseudo-instruction marks the start of a virtual register
usage, e.g. using

;start virtual register use is
vreg {vreg_nameN}

and the clear pseudo-instruction marks the end of the
usage, e.g.

;finish virtual register use
clear {vreg_nameN} .

We use these markers in a way similar to scopes in
higher-level languages. For instance the Flounder IR in
Figure 4 (a) marks the range of the probe attributes
{s_a} and {s_b} to reach around the operators in the
probe loop.

3.2 Function Calls

Being able to access pre-compiled functionality is im-
portant for query compilers. It reduces compile times

6 Henning Funke et al.

and avoids the implementation cost of code generation
for every SQL feature. To this end Flounder IR pro-
vides the mcall pseudo-instructions to specify function
calls in a simple way. For instance

;function call to ht_ins
mcall {res} {ht_ins} {param1} ... {paramN}

represents a function call to ht_ins(...) with parame-
ters param1 to paramN and the return value is stored in
{res}. A pointer to the function code is provided as an
address constant via {ht_ins}. This pseudo-instruction
is later replaced with an instruction sequence that re-
alizes the calling convention.

3.3 Constant Loads

Large constants, e.g. 64 bit, can not be used as imme-
diate operands (imm) on current architectures. To use
large constants, they have to be placed in machine reg-
isters. The constant load abstraction in Flounder IR,
allows using such constants without restrictions. E.g.

;load from 64 bit address with offset
mov {attr} [{0x7fff5a8e39d8} + {offs}]

loads data from the address {0x7fff5a8e39d8}+{offs}
to the virtual register {attr}. During translation to
machine assembly, the address constant will be placed
in a machine register.

3.4 Transparent High-Level Constructs

We use transparent high-level constructs that mimic
high-level language features such as loops and condi-
tional clauses. They are used to generate Flounder IR
in operator emitters. For example operator emitters can
generate a while loop with the condition {tid} < {len}
by using the methods While(...), close(...), and
isSmaller(...) as shown below.

// Produce code for while loop (C++)
wl = While(isSmaller(tid,len)); {

[...]
} wl.close();

This generates the Flounder IR code shown in the mar-
gin, that realizes the loop functionality. The start of
the loop is marked with the label loop_headN. The cmp
loop_headN:
cmp {tid},{len}
jge loop_footN
;loop body
[...]
jmp loop_headN;
loop_footN:
;after loop
[...]

instruction then evaluates the loop
condition and jge jumps to the
loop_footN-label at the loop end,
if the condition evaluates to false.
Otherwise, the loop body is exe-
cuted and after it, the loop starts
over by executing the jump in-
struction jmp loop_headN, which

redirects control flow to the loop head.

Temporary Registers
tmpReg1, tmpReg2, tmpReg3

Attribute Registers
attReg1, …, attReg12

rax rbx
rcx rsp

rdx rbp rsi rdi r8 r9

r10 r11 r12 r13 r14 r15

attribute data
tuple ids

stack pointerspill loads
constant loads
return values

Fig. 6 Usage of machine registers by the translator.

4 Machine Code Translation

This section shows the translation of Flounder IR re-
sulting from plan translation to x86_64 machine code.
The abstractions that were used to facilitate code gen-
eration in the previous step are now replaced with ma-
chine concepts.

A key challenge here is to replace virtual registers
with machine registers and to manage spill memory lo-
cations for cases of insufficient registers. Finding opti-
mal register allocations is an NP-hard problem and even
the computation of approximations is expensive [11]. In
the context of JIT compilers, linear scan has been pro-
posed as a faster algorithm [32] and was adopted by
LLVM. However, linear scan register allocation is still
relatively expensive due to live range computations and
increasing numbers of registers.

In this section, we present a much simpler technique
that benefits from the explicit usage ranges marked in
Flounder IR. In the following, we first show the ma-
chine register configuration used by the translator and
then we show the algorithm to translate the lightweight
abstractions.

4.1 Register Layout

We use a specific register layout for the machine code
generated from Flounder IR. The layout is shown in
Figure 6. We split the 16 integer registers of the x86_64
architecture into three categories.

We use twelve attribute registers attReg1, …, attReg12

to carry attribute data and tuple ids. We use three tem-
porary registers tmpReg1, tmpReg2 and tmpReg3, which
are-multi purpose for accessing spill registers and con-
stant loads. Lastly, we use the stack pointer rsp to
store the stack offset. The stack base pointer rbp is re-
purposed for attribute data and not used for the stack.

Low-Latency Query Compilation 7

Translate Flounder IR to machine assembly
1 a← 0 /* attribute registers in use */
2 foreach instruction i in input:
3 t← 0 /* temporary registers in use */
4 if i is vreg {v}: /* allocate pseudo-instruction */
5 if a < number attribute registers:
6 allocate free attRegk /* machine register */
7 a← a + 1

8 else allocate spill location /* spill */

9 elseif i is clear {v}: /* deallocate pseudo-instruction */
10 if any attRegk holds v:
11 release attRegk /* free machine reg */
12 a← a− 1

13 elseif i is mcall (...): /* function call pseudo-instr. */
14 emit call-convention code

15 else: /* other instructions */
16 foreach virtual register operand v in i:
17 if v is spilled:
18 emit spill code for v to tmpRegt /* spilled */
19 replace v with tmpRegt
20 t← t + 1

21 else replace v with attRegk /* machine register */

22 foreach constant load operand c in i:
23 emit load c to tmpRegt /* place c in temp reg */
24 replace c with tmpRegt in i

25 t← t + 1

26 emit i /* output native instruction */

Fig. 7 Pseudocode for the translation of Flounder IR to ma-
chine assembly. The code is translated in one pass.

4.2 Translation Algorithm

The translation algorithm translates Flounder IR to
x86_64 assembly in one sequential pass over the code.
It replaces the Flounder abstractions with machine in-
structions, machine registers, and stack access. The al-
gorithm is shown in Figure 7.

When iterating over the IR elements, the algorithm
keeps track of a, the number of in-use attribute regis-
ters (line 1), and t, the number of temporary registers
per instruction (line 3). We describe the translation in
three parts. The first part is register allocation, then the
replacement of virtual operands with machine operands
in instructions, and finally function calls.

Register Allocation. Register allocation is used to de-
cide which virtual registers are stored in machine regis-
ters and which virtual registers are stored on the stack.
Register allocation does not produce code directly, but
it sets the allocation state for spill code and operand
replacement. The procedure is illustrated below.

vreg {vnew}clear {vold}

alloc A B spillfree C
vnew

vnew

spill slot
spill slot

spill slot

Stack

vold

Attribute Registers

When a vreg {vnew} pseudo-instruction is encountered
(line 4), there are two options. In case A there are
sufficient machine registers available and we assign one
of them to vnew (lines 5-7). In case B all machine
registers are occupied and we assign a spill slot on the
stack (line 8). For vreg {vold}, illustrated by C , any
machine registers assigned to vold are freed (line 11).

This assignment procedure has the effect that spilled
virtual registers remain spilled. However, this happens
only when the pipeline requires to hold more than 12
attributes simultaneously. As query compilers typically
choose pipeline boundaries such that the data volume
per tuple fits into the processor registers, this technique
is a perfect match for query compilation.

Spill Code and Operand Replacement. For each instruc-
tion, operands that use constant loads or virtual regis-
ters have to be replaced with machine-compatible ope-
rands. Virtual registers that were assigned with ma-
chine registers are simply swapped (line 21). For the
other cases, the algorithm uses tmpReg1 to tmpReg3 to
hold values temporarily per instruction. Three registers
are sufficient for this purpose as this is the highest num-
ner of non-immediate operands per instruction. As an
example, we look at the following instruction.

mov {r_a}, [{0x7fff5a8e39d8}+{tid_os}]

It reads an 8 byte value with the offset {tid_os} from
the memory address 0x7f... and stores it in {r_a}.
The address is too large for an immediate operand and
we assume for illustration purposes that both virtual
registers {r_a} and {tid_os} are spilled.

The translator assigns temporary registers to each
operand and emits spill code that exchanges values be-
tween spill slots and temporary registers. This is per-
formed in pseudocode lines 16 to 26 and illustrated in
the following.

spill slot

spill slot

Stack

r_a

tid_os

rax
tmpReg1

rbx
tmpReg2

rcx
tmpReg3

0x7fff5a8e39d8
Constant

spill
store

1

2
spill load

3
constand load

The algorithm enumerates the virtual register ac-
cesses (lines 16-21) and the constant loads (lines 22-25)
from the instruction. It assigns one of the temporary

8 Henning Funke et al.

Translate mcall ret, func, p0, ..., pn
1 foreach p in {ret, p0,...,pn}: /* replace virtual registers */
2 if p is virtual register: /* and use machine operands */
3 replace p with attribute register or stack location

4 Rcaller-save = {rsi, rdi, r8, r9, r10, r11} /* A caller-save */
5 foreach register r in Rcaller-save
6 if r is allocated: /* check use */
7 emit save r to stack

8 Rparam = {rdi, rsi, rdx, rcx, r8, r9} /* B set parameters */
9 foreach parameter pi in p0, ..., pn:

10 src ← pi
11 if pi was overwritten: /* handle overwrites */
12 src ← stack backup of pi
13 emit mov Rparami

, src

14 stackOffset ← total stack usage /* C boilerplate call */
15 emit sub rsp, stackOffset
16 emit mov rax, func
17 emit call rax
18 emit add rsp, stackOffset
19 foreach register r in Rcaller-save /* D restore caller-save */:
20 if r is allocated
21 emit restore r from stack

22 emit mov ret, rax /* get return value (C) */

Fig. 8 Translate mcall IR-instruction to call-convention code.

registers tmpReg1 to tmpReg3 to each. In step 1 the
translator assigns tmpReg1 (rax) to the operand {r_a}.
This is the only output operand of the instruction and
the operator emits a store to {r_a}’s spill slot on the
stack. Step 2 assigns tmpReg2 (rbx) to the operand
{tid_os}. The translator emits a load to retrieve the
value from its spill slot. Step 3 assigns tmpReg3 (rcx)
to the constant load of address 0x7f... . The translator
emits a load for the constant. This results in the follow-
ing machine code sequence, which includes the original
mov instruction with replaced operands.

mov rbx, [rsp-24] ;load spill tid_os
mov rcx, 0x7fff5a8e39d8 ;load constant
mov rax, [rcx+rbx] ;instruction
mov [rsp-8], rax ;store spill r_a

Calling Conventions. During translation the mcall IR-
instruction is replaced with a machine code sequence
that performs the function call. To this end, a calling
convention is applied, which specifies rules for the exe-
cution of function calls on a given hardware platform. It
specifies the way registers are preserved across the call,
how parameters are passed, and how the stack frame is
adjusted. For the x86_64 calling convention, the calling
function preserves up to 7 integer registers (caller-save
registers) and sets up to 6 parameters in integer regis-
ters [25].

The call translation is initiated in line 14 of the
Flounder IR translation algorithm (Figure 7). The ma-
chine register allocation to the point of the call is known.

This allows us to generate a call sequence that is tai-
lored to the current register usage.

The mcall translation algorithm is specified in Fig-
ure 8 and illustrated in the following. We use the call
to ht_get(..) from a previous example (Figure 4).

mcall {entry}, {ht_get}, {ht}, {r_a}, {entry}

It has the return value {entry}, the function address
{ht_get}, and the parameters {ht}, {r_a} and {entry}.
To derive the call-convention instruction sequence, the
translator first replaces these operands with the already
allocated machine operands (lines 1-3).

mcall r11, 0x42fa10, 0x25cac0, r9, r11

Then the translator generates code that performs the
following four steps:

A Save caller-save registers that are in-use on the stack.
These are r8, r9, r10 in the example (lines 4-6).

B Assign parameter registers in the order specified by
the ABI (lines 7-12). We assign 0x25cac0 to rdi,
r9 to rsi, and r11 to rdx.

C Place boiler-plate code to modify the stack frame,
jump into the function, and to retrieve the return
value (lines 13-17,21).

D Restore caller-save registers (lines 18-20).

This results in the following instruction sequence that
realizes the call in machine assembly. The instructions
are annotated with steps A to D that generated them.

mov [rsp-8], r8 ;A save caller-save
mov [rsp-16], r9
mov [rsp-24], r10
mov rdi, 0x25cac0 ;B assign parameters
mov rsi, r9
mov rdx, r11
sub rsp, 24 ;C boilerplate call
mov rax, 0x42fa10
call rax
add rsp, 24
mov r8, [rsp-8] ;D caller-save restore
mov r9, [rsp-16]
mov r10, [rsp-24]
mov r11, rax ;(C)

5 Getting More Out of Flounder

Flounder IR provides a near-hardware representation
of data processing functionality that enables very fast
translation to machine code. These properties enable
more uses of Flounder IR than a query compiler target
language only. In this section, we first discuss the use
of Flounder IR as compilation vehicle for higher-level
IRs. Then we discuss opportunities to inject prefetching
instructions during translation of Flounder IR to get
the most out of the hardware’s memory resources.

Low-Latency Query Compilation 9

5.1 Higher-Level IRs

Higher-level IRs are frequently used for data process-
ing workloads. They are used as translation steps to
prepare workloads for a specific execution paradigm [6,
36] or as an abstraction layer. As an abstraction layer
they enable database systems to target diverse hard-
ware for execution [10,31] or to handle multiple pro-
cessing paradigms [16].

For instance Voila [16] has a scatter operation spec-
ified as scatter(c,b,x) that is used by hash-based op-
erators to write values to a hash table. For example

// Voila scatter operation: Write key to HT
scatter (ht.k1, new_pos |can_scatter, t[0])

scatters the value t[0] to the hash table key location k1
of the bucket new_pos. The scatter is executed condi-
tionally depending on the flag can_scatter. In Floun-
der IR this Voila operation translates to a short se-
quence of instructions:

;Scatter op in Flounder IR
cmp {can_scatter}, 0
je afterScatter
mov [{new_pos}+4], {t0}
afterScatter:

The cmp and je instructions evaluate {can_scatter}
to skip processing if necessary. Then mov performs the
actual write of {t0} to the hash bucket with base ad-
dress {new_pos} and an exemplary offset +4.

Higher-level IRs such as Voila can be translated to
Flounder IR in a straightforward way by implementing
a translator. The translator emits the corresponding
Flounder IR for each operation of the high-level IR as
was illustrated for the Voila scatter operation. By im-
plementing such translators it becomes possible to JIT-
compile higher-level IRs for data processing to machine
code with very low compilation times.

5.2 Memory Optimizations via Prefetching

Memory bandwidth and latency are the most limiting
resources for in-memory data processing systems [7].
While current hardware handles local and predictable
memory access patterns effectively, more unpredictable
patterns typically lead to memory stalls, which leave
the CPU idle and slow down processing.

As a solution, current hardware provides prefetch
instructions, that can be used by developers to place
hints about data that is worthwhile to pre-load. Algo-
rithms that leverage this feature [21,26,33], however,
are intricate to design and require careful understand-
ing of the hard- and software. Compilers on the other
hand, which insert prefetch instructions automatically

(LLVM [27], GCC [24]), need to perform extensive anal-
ysis of the program’s memory access patterns

To simplify prefetching, Mühlig et al. show Mx-
Tasks [28], which annotate tasks (small program pieces)
with domain knowledge about the required data. Sim-
ilarly Flounder can leverage such information coming
from the query compiler to benefit from prefetching
without interfering with its low compile-times goals. As
a poster case, we built a scan prefetcher that inserts
prefetches for tuples that are read from memory. It is
applied before machine code translation with a small
overhead in compilation time.

Scan Prefetcher. To illustrate how the scan prefetcher
works, we look at the code in the margin. The code ini-
tializes {scanLoc} with the relation address {rel} and
iterates over the relation’s 16 byte tuples. When dealing
with tuples (in row-based systems) or column-widths

mov {scanLoc}, {rel}
scan_loop_head:
[...] ;check condition
[...] ;loop body
add {scanLoc}, 16
jmp scan_loop_head
scan_loop_foot:
[...]

(in column-based systems) that
are smaller than a cache line,
adding a single prefetch at the
start of the loop is insuffi-
cient. This results in unneces-
sary costs for the execution of
prefetch instructions because
each prefetch handles a full cacheline. To address this,
the scan prefetcher unrolls the scan loop. In our case a
cache line (64 bytes) contains four tuples (4×16 bytes)
and the loop is unrolled four times. This results in the
following code including prefetching:

mov {scanBase}, {rel}
scan_loop_head:
[...] ;check condition
;prefetch tuples {i+4,i+5,i+6,i+7}
prefetch [{scanBase}+64]
[...] ;loop body iteration i
[...] ;loop body iteration i+1
[...] ;loop body iteration i+2
[...] ;loop body iteration i+3
add {scanBase}, 64
jmp scan_loop_head
scan_loop_foot:
[...] ;handle <4 remaining iterations

The unrolled loop uses {scanBase} to iterate over the
relation in steps of four tuples (64 bytes). After checking
the loop condition, a prefetch for the succeeding itera-
tion is issued. Then four iterations of the loop body are
executed, which collectively read one cache line of tu-
ples. By matching the loop granularity with the prefetch-
ing granularity, efficient prefetching for scanned tuples
is added.

10 Henning Funke et al.

6 Evaluation

This section evaluates our approach of using a simple
IR for query compilation that is specialized to relational
workloads over using a general purpose IR. We use the
micro prototype of a query compiler to evaluate the
characteristics of different IR’s along with their trans-
lation libraries. Then we use the ReSQL database sys-
tem that was built on top of Flounder IR to evaluate
the real world performance against other state-of-the-
art systems.

Micro Prototype. We use a smaller query compiler pro-
totype that supports translation of query plans to both
Flounder IR and LLVM IR. This allows us to evalu-
ate the performance of both IRs on the same system.
The prototype is used to execute the workloads from
Figure 9. Flounder emits the binary representation of
compiled queries with the AsmJit library [20] to avoid
the overhead of running external assemblers, e.g. nasm.
For LLVM IR, the machine code is generated by the
LLVM library’s JIT functionality. We use O0 and O3
optimization levels for tradeoffs between compilation
time and code quality.

Database Systems. We built the JIT-compiling database
system ReSQL, which uses Flounder IR during compi-
lation and has the ability to run various SQL queries.
This allows us to evaluate the real world performance by
executing TPC-H benchmark queries. For comparison,
we use one compilation-based system Hyper [29] and
one interpretation-based system DuckDB [34]. We use
Hyper version v0.5-222, which executes queries by JIT
compiling via LLVM. We use DuckDB version v0.2.5,
which executes queries with vector-at-a-time process-
ing [8] for cache-efficiency. In its current development
state, ReSQL only supports single-threaded execution.
We configured all systems to run single-threaded for a
fair comparison. Furthermore, ReSQL’s query planner
does not yet support sub-queries. Therefore we only use
benchmark queries that do not contain sub-queries.

Design of Characteristic Workloads. We use four query
templates that allow us to evaluate different query char-
acteristics. The templates are specified in Figure 9 in
an SQL-form that uses additional integer parameters.
The parameter l varies the data size in Q . Parameters
p, j, and s vary query complexity in Qπ, Q⋊⋉, and Qσ

respectively. The attribute data is generated from uni-
form random distributions with the following relation
sizes: Q has l tuples for r an s, Qπ has 1 M tuples,
Q⋊⋉ has 10 K tuples per join relation, and Qσ has 1 M
tuples.

SELECT AVG(r.e)
FROM r,s --len(r)=len(s)=l
WHERE r.b = s.d
AND r.c BETWEEN 40 AND 50

Q : Vary relation lengths (l).

SELECT r.a1, r.a2, ..., r.ap
FROM r
WHERE r.a1 < c

Qπ : Vary projection complexity (p).

SELECT r1.a, r2.a, ..., rj.a
FROM r1, r2, ..., rj
WHERE r1.a = r2.a

...
AND rj−1.a = rj.a

Q⋊⋉: Vary join complexity (j).

SELECT r.a
FROM r
WHERE r.a != c1
AND r.a != c2
...

AND r.a != cs
Qσ : Vary selection complexity (s).

Fig. 9 Query templates used to vary query characteristics.

0

200

400

600

Query complexity

C
om

pi
le

ti
m

e
m

s

llvm-O0 llvm-O3 Flounder
Qπ (projection)
Q⋊⋉ (join)

Fig. 10 Effect of query complexity on compilation times for
different query compilation techniques.

Execution Platform. We use a system with Intel(R)
Xeon E5-1607 v2 CPU with 3.00 GHz and 32 GB main
memory. The experiments run in one thread. We use
operating system Ubuntu 18.04.4 and clang++ 6.0.0
to compile the query compiler and the library for JIT
queries. The LLVM backend uses LLVM 6.0.0.

6.1 Compilation Times

We compare the machine code compilation times for
LLVM and Flounder for Qπ and Q⋊⋉. We use Qπ with
values of p to project 50 to an extreme case 500 at-
tributes (filter with selectivity 1%). We use Q⋊⋉ with
values of j to join 2 to 100 relations. We show the results
for Flounder, llvm-O0, and llvm-O3 in Figure 10.

Observations. For all techniques, the compilation times
increase with the query complexity. The compilation
times for Q⋊⋉ are higher (up to 657 ms) than for Qπ(up
to 560 ms) and we look in detail at Q⋊⋉. With O0 op-
timization LLVM has compilation times between 10 ms
up to 265 ms. With O3 compilation times range from
28 ms up to 657 ms. For both levels, the graphs show
super-linear growth of compilation times with query
complexity. Flounder shows lower compilation times
that scale linearly between 0.3 ms to 10.8 ms. The high-
est factor of improvement is 24.6x over llvm-O0. and
60.9x over llvm-O3 (both for 100 join relations). For

Low-Latency Query Compilation 11

Qπ Flounder has very low compilations times ranging
from 0.1 ms (50 attributes) to 0.6 ms (500 attributes).
This leads to factors of improvement up to 933x over
llvm-O3. We attribute this to the time LLVM spends
on register allocation. This is due to the large num-
ber of virtual registers used to carry attributes for this
workload.

6.2 Machine Code Quality

To evaluate machine code quality, we execute two con-
figurations of each query template and measure the ex-
ecution time and the number of executed instructions.
The results are shown in Figure 11. The bars show the
execution time in milliseconds and the number on top
shows the executed instructions in millions.

Register Allocation. We analyze the effect of our regis-
ter allocation strategy on machine code quality. To this
end, we look at the techniques Flounder (spill) and
Flounder. The former uses spill access for every vir-
tual register use. The latter allocates machine registers
with the translation algorithm. We observe that register
allocation reduces the number of executed instruction
by factors between 1.2× and 1.8× (with one exception).
This shows that our register allocation strategy effec-
tively reduces the amount of executed spill code. We
explain the lack of improvement for Q⋊⋉ j = 25 with a
large number of hash table operations, which execute
invariant library code. The results show that the regis-
ter allocation technique reduces execution times for all
queries by factors between 1.02× to 1.35×. The factors
are not as high as the factors between L1 access and
register access. This is because the memory access for
reading relation data limits throughput (as is typical
for database workloads). The improvements shown by
the experiment are due to faster machine register access
and execution of less spill code.

Comparison with LLVM. Next we compare the machine
code quality of Flounder and LLVM (cf. Figure 11). On
average llvm-O0 executes 1.4× fewer instructions than
Flounder. The execution times, however, are similar
and are longer for Flounder only by an average factor
of 1.01×. With regard to execution times, the machine
code quality resulting from Flounder is similar to llvm-
O0. We attribute the small time difference despite the
higher instruction count to memory bound execution.

The technique llvm-O3 executes 2.2× fewer instruc-
tions than Flounder on average. The average factor
between the execution times of 1.05× is still low. How-
ever, especially queries on larger datasets benefit from
the optimizations applied by llvm-O3. E.g. the larger

Q
l = 0.1M

Q
l = 1M

Qπ

p = 10
Qπ

p = 100
Q⋊⋉
j = 1

Q⋊⋉
j = 25

Qσ

s = 10
Qσ

s = 100

0

20

40

60

80

7
.3

7
3

.4

9
.7

1
6

.9

1
.6

3
7

.9

4
9

.7

2
2

0
.6

E
xe

cu
ti

on
ti

m
e

m
s

6
.4

6
3

.9

5
.6 1

2
.0

1
.5

3
6

.6

2
5

.9

4
4

.7

9
.8

9
8

.1

1
9

.1

2
8

.0

2
.2

4
6

.0

7
1

.7

4
2

9
.6

8
.4

8
3

.8

1
0

.6 1
5

.4

1
.8

4
7

.4

3
9

.2

3
1

4
.3

Executed
instructions M

llvm-O0 llvm-O3 Flounder (spill) Flounder

Fig. 11 Time and instruction count for execution of machine
code from different query compilation techniques.

10 50 100
0

20

40

60

80

100

Projection attributes (p in Qπ)

T
im

e
m

s

10 50 100
0

20

40

60

80

100 llvm
-O0

llvm
-O3

Flounder
(naive)

Flounder
(p.proj)

Compile <0.7 ms <0.2 ms
Execute

Fig. 12 Processing the projection workload varying compila-
tion and projection techniques.

variant Q 1 M executes 1.3× faster. We conclude that
despite the much shorter translation times, our compi-
lation strategy produces code with competitive perfor-
mance to the machine code generated by LLVM.

6.3 Post-Projection Optimizations

The workload Qπbenefits from post-projection optimiza-
tions. For increasing numbers of projection attributes p,
it is preferable to read attributes a2 to ap only for tuples
that pass the filter (1% of the relation) instead of per-
forming a full scan. We analyze how the code generation
strategies handle post-projection optimization by exe-
cuting Qπwith p = {10, 50, 100}. We use the llvm-based
techniques, Flounder (naive), and Flounder (p.proj).
The technique Flounder (p.proj) produces IR with ex-
plicit post-projection; the other techniques produce IR
with full scans.

Observations. The experiment results are shown in Fig-
ure 12. We observe that Flounder (naive) has exe-
cution times between 8.2 ms and 79.7 ms, and Floun-
der (p.proj) has lower execution times between 6.6 ms
and 15.0 ms. Adding post-projection reduces execution
times by factors up to 5.3x. The LLVM-based tech-
niques have execution times between 6.4 ms and 14.8 ms.
Despite not using post-projection explicitly, LLVM has

12 Henning Funke et al.

llvm-O0 llvm-O3 Flounder
cmpl exec total cmpl exec total cmpl exec total

Q l = 0.1M 4.9 3.5 8.5 9.9 3.3 13.2 0.1 3.6 3.8
Q l = 1M 4.7 43.6 48.4 9.7 38.9 48.7 0.1 50.1 50.2
Qπ p = 10 4.0 6.5 10.6 9.2 6.4 15.7 0.1 6.4 6.4
Qπ p = 100 15.9 14.0 29.9 56.7 13.9 70.7 0.1 14.0 14.1
Q⋊⋉ j = 1 4.9 0.3 5.3 10.9 0.5 11.4 0.1 0.3 0.4
Q⋊⋉ j = 25 36.8 38.1 74.9 105.2 36.7 141.9 2.8 39.1 42.0
Qσ s = 10 3.8 9.7 13.5 7.8 13.9 21.7 0.1 9.5 9.6
Qσ s = 100 10.3 40.0 50.3 18.5 25.6 44.2 0.2 39.0 39.2

Fig. 13 Overall performance for two configurations of each characteristic workloads (values shown are in milliseconds).

Q
l = 0.5M

Q
l = 1M

Qσ

s = 10
Qσ

s = 20

0

50

100

5
4

.0

1
1

6
.6

3
8

.8

3
8

.5

T
im

e
m

s

Q
l = 0.5M

Q
l = 1M

Qσ

s = 10
Qσ

s = 20

0

50

100

5
1

.2

1
0

9
.4

3
2

.8 3
3

.8

Memory
stalls M

Flounder + Prefetching
Compile
Execute

Fig. 14 Effect of using loop unrolling and prefetching for dif-
ferent workloads.

similar execution performance as the post-projection
strategy. We explain this by LLVM adding a similar
optimization during machine code generation.

However, these optimization capabilities of LLVM
come at the cost of high compilation times (up to 56.7 ms
compared to 0.2 ms for Flounder). Although Floun-
der does not apply post-projection optimizations auto-
matically, explicit control over post-projections is prefer-
able for DBMSs, which typically use decision mecha-
nisms for projection strategies.

6.4 Prefetching Optimization

We use Q and Qσ to evaluate the effect of applying
software-based prefetching. To get an impression for dif-
ferent workload characteristics, we vary the parameters
l of Q and s of Qσ. For both experiments with Qσ,
we use a relation length of 5M tuples, which does not
fit into the last-level cache. The experiment uses a dif-
ferent system with Intel (R) Core (TM) i7-9800X CPU
with 3.80 GHz. This is because this CPU supports mea-
surement of CPU cycles that were stalled.

Figure 14 shows the execution times and the number
of stalled cycles during execution. Stalling arises when
the CPU waits for data to be loaded from main memory
into registers. Ideally, this can be prevented by timely
instructing the memory subsystem to prefetch data.

Observations. The results show that the prefetch op-
timization reduces the number of stalled cycles by up
to 15% for Qσ and up to 6% for Q . At the same time,

execution times reduce up to 11% (Q) and 14% (Qσ

with s = 20). In particular, for Q , calls of external
functions (e.g. building the hash table) interfere with
the prefetching. As a result, the stalls are reduced less,
compared to Qσ. This may be improved in the future
by adapting the prefetching distance. The results also
show an increase in compilation time for applying the
optimization. However, even with prefetching optimiza-
tions, compilation times remain below 0.4ms, which is
sufficiently low to get an overall benefit.

6.5 Overall Performance for Characteristic Workloads

We show a table with the overall performance for each
technique in Figure 13. The workloads are the same
as in Section 6.2 with two configurations for each tem-
plate. The relation sizes range from 10 K to 1 M tuples
with total attribute numbers between 2 and 100.

Observations. The technique Flounder has overall ex-
ecution times between 0.4 ms and 50.2 ms and llvm-O0
between 5.3 ms and 74.9 ms. For llvm-O0, compilation
makes up 46% of the execution on average. For Floun-
der the average is 5%. This leads to better performance
of Flounder for 7 of 8 queries. For Q l = 1M compi-
lation times are generally low; thus llvm-O0 achieves
a slightly shorter overall time due to 1.15× faster ex-
ecution. The technique llvm-O3 has execution times
between 11.4 ms and 141.9 ms, which is longer than the
other techniques for 7 of 8 queries. The compilation
times make up a high percentage of 62% of the over-
all on average. The highest factor of improvement of
Flounder over llvm-O0 is 10.7x. The highest factor
of improvement over llvm-O3 is 23.2x.

6.6 Real World Performance

To evaluate the real world performance of our approach,
we execute TPC-H benchmark queries with ReSQL,
Hyper, and DuckDB. The relative benefit of lowering
compilation latencies depends on the size of the pro-
cessed data. To this end, we evaluate a smaller database
with scale factor 100 MB and another database with

Low-Latency Query Compilation 13

scale factor 1 GB. We execute those TPC-H queries
that are compatible with ReSQL and report compila-
tion and execution times. We do not show compilation
times for DuckDB as it is an interpretation-based en-
gine. The results of the experiment are shown in Fig-
ure 15 (a) (100 MB database) and in Figure 15 (b)
(1 GB database).

Observations 100 MB Database. Excluding compilation
times, the JIT-based engines have shorter execution
times than the interpretation-based engine DuckDB.
DuckDB’s execution times range from 7 ms to 82 ms.
Hyper’s execution times are shorter by 8.3× on average
(1 ms to 12 ms). ReSQL’s execution times are shorter by
2.3× on average (7 ms to 32 ms). Including compilation
times, however, Hyper is slower than DuckDB for 6 out
of 8 queries. This is because Hyper’s compilation with
LLVM takes up to 117 ms. ReSQL has much lower com-
pilation times than Hyper by up to 106.3× (Q5). The
highest compilation time of ReSQL is only 3 ms. This
makes ReSQL’s faster than DuckDB (up to 3.8×) for
all but one query (near even for Q6) and faster than
Hyper for all queries (up to 5.5×).

Observations 1 GB Database. For the larger database,
the execution times (excluding compilation) increase
compared to the 100 MB database by 8.9× on average
for DuckDB, 13.7× for Hyper, and 10.2× for ReSQL.
The compilation times, however, remain unchanged and
thus now make up a smaller portion of the overall time
for the JIT-based systems. This makes Hyper’s over-
all execution faster than ReSQL for 6 out of 8 queries
(1.5× faster on average). Compared to DuckDB, how-
ever, ReSQL remains faster by the average factor 1.9x
(The factor was 2.0× for the 100 MB database). This is
because ReSQL’s compilation times have such a small
contribution to the overall processing time.

The results show that the simple yet fast compila-
tion approach of ReSQL and Flounder leads to a dras-
tic reduction of compilation times. This leads to faster
overall execution times for smaller database sizes (e.g.
100 MB) than state-of-the-art systems. The execution
times after compilation of both JIT-based systems are
lower than those of the vector-at-a-time engine. This
shows that Flounder and ReSQL, despite using simpler
translation, can leverage the fast processing speeds of
the query compilation approach.

7 Summary

We showed a query compilation technique that includes
all machine code generation steps in the query com-

Q1 Q3 Q5 Q6 Q10 Q12 Q14 Q19
0

50

100

150

E
xe

cu
ti

on
ti

m
e

m
s DuckDB Hyper ReSQL

Compile – <3.5 ms
Execute

(a) 100 MB database

Q1 Q3 Q5 Q6 Q10 Q12 Q14 Q19
0

200

400

600

800

E
xe

cu
ti

on
ti

m
e

m
s

(b) 1 GB database

Fig. 15 Executing TPC-H queries with DuckDB (vector-at-a-
time), Hyper and ReSQL (JIT compiler) for two database sizes.

piler. The technique uses the intermediate represen-
tation Flounder IR that enables simple translation of
query plans to IR and fast translation from IR to ma-
chine code. While the translation of query plans to IR
is similar to existing approaches, the next step, trans-
lation to machine code, is much simpler than in exist-
ing techniques. Compared to established low-level query
compilers, our approach achieves much shorter compi-
lation times with competitive machine code quality.

Flounder IR has several applications, which include
the query compiler of the database system ReSQL, com-
pilation of other higher-level IRs to machine code, and
tuning of machine code for specific hardware architec-
tures. The explicit control over the machine code se-
quence also makes the approach a good candidate for
targeting database-specific architectures [1,3].

The ReSQL database system was built on top of
Flounder IR and uses several translation mechanisms
that enable translation from SQL to machine code. We
use ReSQL to showcase the advantages of Flounder’s
simple yet fast compilation approach and show that the
advantages carry over to real world workloads.

Acknowledgements

We would like to thank Maximilian Berens and the
anonymous reviewers for their helpful comments and
suggestions.

This work was supported by the DFG, Collabora-
tive Research Center SFB 876, A2, and DFG Priority

14 Henning Funke et al.

Program “Scalable Data Management for Future Hard-
ware” (TE1117/2-1).

References

1. Agrawal, S.R., Idicula, S., Raghavan, A., Vlachos, E.,
Govindaraju, V., Varadarajan, V., Balkesen, C., Giannikis,
G., Roth, C., Agarwal, N., et al.: A many-core architecture
for in-memory data processing. In: Proceedings of the 50th
Annual IEEE/ACM International Symposium on Microar-
chitecture, pp. 245–258 (2017)

2. Aho, A.V., Sethi, R., Ullman, J.D.: Compilers, principles,
techniques. Addison wesley 7(8), 9 (1986)

3. Arnold, O., Haas, S., Fettweis, G.P., Schlegel, B., Kissinger,
T., Karnagel, T., Lehner, W.: Hashi: An application specific
instruction set extension for hashing. In: ADMS@ VLDB,
pp. 25–33 (2014)

4. Auslander, J., Philipose, M., Chambers, C., Eggers, S.J.,
Bershad, B.N.: Fast, effective dynamic compilation. ACM
SIGPLAN Notices 31(5), 149–159 (1996)

5. Bharadwaj, J., Chen, W.Y., Chuang, W., Hoflehner, G.,
Menezes, K., Muthukumar, K., Pierce, J.: The Intel IA-64
compiler code generator. IEEE Micro 20(5), 44–53 (2000)

6. Boncz, P.A., Kersten, M.L.: MIL primitives for querying a
fragmented world. The VLDB Journal 8(2), 101–119 (1999)

7. Boncz, P.A., Manegold, S., Kersten, M.L., et al.: Database
architecture optimized for the new bottleneck: Memory ac-
cess. In: PVLDB, vol. 99, pp. 54–65 (1999)

8. Boncz, P.A., Zukowski, M., Nes, N.: MonetDB/X100:
Hyper-Pipelining Query Execution. In: Cidr, vol. 5, pp.
225–237 (2005)

9. Bonzini, P.: GNU lightning (2013)
10. Breß, S., Köcher, B., Funke, H., Zeuch, S., Rabl, T., Markl,

V.: Generating custom code for efficient query execution on
heterogeneous processors. The VLDB Journal 27(6), 797–
822 (2018)

11. Chaitin, G.J., Auslander, M.A., Chandra, A.K., Cocke, J.,
Hopkins, M.E., Markstein, P.W.: Register allocation via
coloring. Computer languages 6(1), 47–57 (1981)

12. Diaconu, C., Freedman, C., Ismert, E., Larson, P.A., Mit-
tal, P., Stonecipher, R., Verma, N., Zwilling, M.: Hekaton:
SQL server’s memory-optimized OLTP engine. In: SIG-
MOD International Conference on Management of Data,
pp. 1243–1254. ACM (2013)

13. Funke, H., Breß, S., Noll, S., Markl, V., Teubner, J.:
Pipelined Query Processing in Coprocessor Environments.
In: SIGMOD International Conference on Management of
Data, pp. 1603–1618. ACM (2018)

14. Funke, H., Mühlig, J., Teubner, J.: Efficient generation of
machine code for query compilers. In: Proceedings of the
16th International Workshop on Data Management on New
Hardware, pp. 1–7 (2020)

15. Funke, H., Teubner, J.: Data-parallel query processing on
non-uniform data. PVLDB 13(6) (2020)

16. Gubner, T., Boncz, P.: Charting the design space of query
execution using voila. System 1(Q3), Q6 (2021)

17. Hipp, Richard: The lemon parser generator.
https://sqlite.org/src/doc/trunk/doc/lemon.html
(1992). URL https://www.sqlite.org/

18. Kersten, T., Leis, V., Neumann, T.: Tidy Tuples and Flying
Start: Fast Compilation and Fast Execution of Relational
Queries in Umbra. VLDB J 30 (2021)

19. Klonatos, Y., Koch, C., Rompf, T., Chafi, H.: Building effi-
cient query engines in a high-level language. PVLDB 7(10),
853–864 (2014)

20. Kobalicek, P.: Asmjit Library Library (2018). URL
https://asmjit.com

21. Koçberber, Y.O., Falsafi, B., Grot, B.: Asynchronous Mem-
ory Access Chaining. Proc. VLDB Endow. 9(4), 252–263
(2015). DOI 10.14778/2856318.2856321

22. Kohn, A., Leis, V., Neumann, T.: Adaptive execution of
compiled queries. In: 2018 IEEE 34th International Con-
ference on Data Engineering (ICDE), pp. 197–208. IEEE
(2018)

23. Lattner, C., Adve, V.: LLVM: A compilation framework
for lifelong program analysis & transformation. In: CGO
International Symposium on Code Generation and Opti-
mization, pp. 75–86. IEEE (2004)

24. Luk, C., Mowry, T.C.: Compiler-Based Prefetching for Re-
cursive Data Structures. In: ASPLOS-VII Proceedings -
Seventh International Conference on Architectural Support
for Programming Languages and Operating Systems, pp.
222–233. ACM Press (1996). DOI 10.1145/237090.237190

25. Matz, M., Hubicka, J., Jaeger, A., Mitchell, M.: System V
application binary interface. AMD64 Architecture Proces-
sor Supplement, Draft v0 99 (2013)

26. Menon, P., Pavlo, A., Mowry, T.C.: Relaxed Opera-
tor Fusion for In-Memory Databases: Making Compila-
tion, Vectorization, and Prefetching Work Together At
Last. Proc. VLDB Endow. 11(1), 1–13 (2017). DOI
10.14778/3151113.3151114

27. Mowry, T.C., Lam, M.S., Gupta, A.: Design and Evalua-
tion of a Compiler Algorithm for Prefetching. In: ASPLOS-
V Proceedings - Fifth International Conference on Ar-
chitectural Support for Programming Languages and Op-
erating Systems, pp. 62–73. ACM Press (1992). DOI
10.1145/143365.143488

28. Mühlig, J., Teubner, J.: MxTasks: How to Make Efficient
Synchronization and Prefetching Easy (to appear). In: Ac-
cepted to SIGMOD 2021. ACM

29. Neumann, T.: Efficiently compiling efficient query plans for
modern hardware. PVLDB 4(9), 539–550 (2011)

30. OmniSci Incorporated: OmniSciDB.
https://www.omnisci.com/ (2019). URL
https://www.omnisci.com/platform/omniscidb

31. Pirk, H., Moll, O., Zaharia, M., Madden, S.: Voodoo-a vec-
tor algebra for portable database performance on modern
hardware. PVLDB 9(14), 1707–1718 (2016)

32. Poletto, M., Sarkar, V.: Linear scan register allocation.
ACM Transactions on Programming Languages and Sys-
tems (TOPLAS) 21(5), 895–913 (1999)

33. Psaropoulos, G., Legler, T., May, N., Ailamaki, A.: In-
terleaving with coroutines: a systematic and practical ap-
proach to hide memory latency in index joins. VLDB J.
28(4), 451–471 (2019). DOI 10.1007/s00778-018-0533-6

34. Raasveldt, M., Mühleisen, H.: DuckDB: an embeddable an-
alytical database. In: Proceedings of the 2019 International
Conference on Management of Data, pp. 1981–1984 (2019)

35. Shaikhha, A., Klonatos, Y., Parreaux, L., Brown, L.,
Dashti, M., Koch, C.: How to architect a query compiler.
In: SIGMOD International Conference on Management of
Data, pp. 1907–1922. ACM (2016)

36. SQLite3: Sqlite3. https://www.sqlite.org/ (2021). URL
https://www.sqlite.org/

