XTasks: How to Make Efficient Synchronization and Prefetching
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ABSTRACT

The hardware environment has changed rapidly in recent years:
Many cores, multiple sockets, and large amounts of main memory
have become a commodity. To benefit from these highly parallel
systems, the software has to be adapted. Sophisticated latch-free
data structures and algorithms are often meant to address the situa-
tion. But they are cumbersome to develop and may still not provide
the desired scalability.

As a remedy, we present XTasking, a task-based framework that
assists the design of latch-free and parallel data structures. XTask-
ing also eases the information exchange between applications and
the operating system, resulting in novel opportunities to manage
resources in a truly hardware- and application-conscious way. As
such, XTasking also lays the foundation for our vision of a truly
co-designed system of operating system and database management
system.
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1 INTRODUCTION

The basic architectures of both Operating Systems (OSs) and Data-
base Management Systems (DBMSs) in use today were designed
decades ago. Since their inception, the hardware landscape has
changed significantly: Today’s servers have many cores distributed
across multiple sockets, big caches, and large amounts of main
memory, structured in a Non-Uniform Memory Access (NUMA)
fashion. While the hardware keeps changing, the software has to
adapt to benefit from the newly available resources.

Massive parallelism and heterogeneity offer immense opportu-
nities to improve performance but also pose complex challenges.
Synchronization of concurrency, utilization of available CPU re-
sources, and integration of co-processors represent critical exam-
ples. Latches —as synchronization primitives—, for instance, reduce
parallelism by sequencing accesses and cause overhead by con-
tention.

In this light, during the past years, researchers have invested
great efforts to increase parallelism, e.g., through very fine-grained
latching mechanisms or by avoiding latches altogether [21, 28, 30,
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31]. But despite the progress made, it remains difficult to design
latch-free algorithms and data structures. Most of them are tailor-
made—generalizing these specific approaches is ambitious and at
significant expense. Transactional Memory, e.g., in the form of Hard-
ware Transactional Memory (HTM), promises to assist developers
in the transformation of serial algorithms into parallel code. Again,
progress has been made; but it was also shown how hard it is to
outperform well-engineered “classical” code with HTM alterna-
tives [29, 32].

For utilizing the entire parallelism, present work needs to be care-
fully allocated to available (CPU) resources. This requires a solid
understanding of the particular physical system and application
behavior. Dividing the work into small, closed units, called tasks,
assists the developer in designing parallel software without having
to worry about the underlying many-core hardware. Frameworks
such as Intel® Threading Building Blocks (TBB) [39] and native
support within OSs like fibers in Windows [4] as well as Apple
Grand Central Dispatch in macOS [41] make use of this concept.
They offer sophisticated implementations for synchronization and
automatic load balancing primitives. Yet, it remains the program-
mer’s responsibility to apply them carefully; and experience shows
that it is hard to exploit the full potential of parallel computing
units [13] this way. Not least because of those frameworks have
just sparse knowledge regarding the application and its intention.

In this paper, we present XTasking, a task-based environment for
today’s and future many-core hardware. The elemental abstraction
in XTasking is the XTask. An XTask is a short program sequence
that performs a single, small unit of work, with the guarantee to
run uninterruptedly to completion.

The true power of XTasking lies in the possibility to attach
annotations to every XTask. With annotations, applications may
convey characteristics of a task to XTasking, for instance, runtime
characteristics (such as expected resource needs); information about
related data objects (including access information such as read or
write access); or desired scheduling priorities. XTasking will then
use such knowledge to optimize resource allocation, scheduling,
and placement.

In this work, we will also report on a particularly powerful class
of annotations: synchronization annotations. Rather than manually
implementing and tuning intricate and error-prone synchroniza-
tion mechanisms (spinlocks, reader/writer locks, version locks, ...),
developers may simply express their desired type of isolation as a
task annotation. XTasking will take care of the rest and inject the
synchronization primitive that works best for the current system
and application state. This may significantly ease the development
of massively parallel applications.

The design of our tasking-approach enables us to take the frame-
work one step further: XTasking can be extended into a bare-metal
runtime environment. The use of specific knowledge about appli-
cation behavior for scheduling or resource allocation has been
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explored previously in the context of database/operating system
co-design (albeit highly targeted at database applications only) [18].
With immediate control over underlying resources, such designs
can better address application specifics than commodity operating
systems could with their narrow application/OS interfaces. And in-
deed, as we also show in this work, XTasking provides the base for
pushing the concept of task-based execution further and seamlessly
leveraging, e.g., heterogeneous hardware such as CPUs, GPUs, or
FPGAs.

The rest of this paper is organized as follows: Section 2 intro-
duces task-based parallelism in general. Afterward, Sections 3 and
4 present details of the XTasking runtime and annotation princi-
ples for memory-prefetching and synchronization. In Section 5,
we provide practical insights into our tasking library. Our vision
of the bare-metal runtime will be discussed in Section 6. The first
results of a key-value store, built with XTasks, are demonstrated
and discussed in Section 7. We conclude in Section 8.

2 TASK-BASED PARALLELISM

With the shift of the hardware landscape toward massively parallel,
heterogeneous architectures, the expectations toward software have
become immense: software is supposed to leverage parallelism
for scalability; exploit heterogeneous hardware for efficiency; use
fine-grained synchronization for correctness; and tune cache and
memory accesses for performance. And to make matters worse,
most of these challenges are still each developer’s responsibility,
with only little assistance from the system software underneath.

We argue that this is also due to the prevalent control flow ab-
straction that essentially dates back to the 1960s: threads. Threads
are essentially opaque about their runtime characteristics; sched-
ulers — e.g., in operating systems — have to guess each program’s
intentions. Conversely, runtime systems tend to hide (“abstract”)
most hardware details away from application programs.

2.1 Background and Related Work

The idea of asynchronous, fine-grained control flows has been
discussed several times in the recent past. Many programming lan-
guages and environments implement this approach, for example,
NodeJS, C++, and Rust. In general, lightweight threads (we refer
to them as tasks; others may name them fibers) are scheduled and
executed at the user-level. Some OSs provide native support for
such lightweight threads (e.g., cooperative scheduled fibers in Win-
dows [4] and tasks in macOS [41]).

With Cilk, Blumofe et al. published one of the first runtime
systems for parallel programming that schedules tasks onto OS
threads [10]. Targeting to simplify the engineers’ work, Cilk fo-
cuses on the automatic load balancing of parallel applications and
comfortable integration into existing software programs. For the
synchronization of competing tasks, Cilk supports lock/unlock calls
on a latch variable.

Inspired by Cilk, Intel® designed the TBB framework focusing
on portability and robust performance [25, 39]. The latter one is
primarily done by using a work-stealing mechanism within the
scheduler, balancing the load over the worker threads. TBB provides
several synchronization primitives such as scalable (reader/writer-)
latches, partially based on HTM. It is up to the developer to use

them accordingly. For higher-level (and typically stream-based)
data flow processing, TBB provides a graph-based programming
interface. The Wool framework purses similar objectives through a
comparable work-stealing strategy [15].

StarPU intends to provide fine-granular tasks for heterogeneous
multicore platforms [5]. The authors argue that the modern hard-
ware landscape features not only much parallelism based on CPU
cores but also uses special co-processors. StarPU offers a frame-
work that supports both CPU parallelism and co-processors such
as GPUs. Like TBB, StarPU leaves the synchronization to the user.

Tasks —or task-like fashions— have also been exploited in the
context of DBMSs. Gasiunas et al. use fibers for realizing a DBMS
underlying virtual network functions in a shared-nothing environ-
ment [17]. T6zin and Kotthaus provide a concept for scheduling
database tasks to heterogeneous hardware and discuss the chal-
lenges of granularity and scheduling [44]. TAMEX translates logical
query plans into task-graphs to gain more control and benefit from
the load-balancing of fine-grained work packages in parallel set-
tings [48].

Specifically, in the HyPer engine, morsels are kinds of tasks that
execute segments of a query [27]. The scheduler of the query ex-
ecution framework takes care of NUMA-local execution. Morsels
can be load-balanced at runtime. For example, when the workload
changes.

In terms of transactional processing, DORA avoids disorganized
data access across parallel transactions by transferring executing
threads to the data instead of vice versa [36]. Comparable to tasks,
DORA divides transactions into multiple (task-like) actions while
the present data is partitioned logically to threads. Based on that,
DORA distributes actions among threads for execution.

Bang et al. utilized tasks for various index structures like B-
trees and hash-tables, as well as transactional workloads [6]. The
main idea is to divide a given multi-socket machine into several
domains. By allocating data structures within a concrete domain,
the accessing tasks are implicit processed NUMA-aware.

Based on coroutines, Psaropoulos et al. invented fine-granular
tasks for index joins to hide memory latencies [37]. Every time
a coroutine attempts to access not cached memory, it executes a
prefetch instruction and yields the coroutine. By that, the CPU
executes other coroutines while the memory subsystem loads the
requested data into the cache instead of wasting cycles to wait for
the load fulfilled.

2.2 XTask Abstraction

A key proposition of XTasking is to replace the application-facing
control flow abstraction by what we call XTasks. An XTask corre-
sponds to a small, closed unit of work, rather than to the sequence
of straight-line code that a thread would correspond to. With tasks
as an abstraction, it becomes surprisingly natural to convey pre-
cisely the information about application characteristics that the
runtime system needs in order to optimize resource utilization. In
XTasking, such information can be attached to every XTask in the
form of annotations.

A task will typically process a single (or few) data objects. Anno-
tating data objects with application-based knowledge as well offers
the runtime a detailed understanding of the interaction of code
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Figure 1: XTasks provide annotations for accessed data ob-
jects, core, NUMA region, and priority. Data objects, in turn,
maintain metadata for access requirements and predicted
usage.

and data. A complete, higher-level algorithm will be composed of
a (possibly large) number of XTasks that jointly solve the given
application problem.

To illustrate the tasking concept in this paper, we will use tree
navigation as a running example. XTasking can be applied here by
spawning a new task for every node visited during tree traversal.
That is, each task will visit a single tree node and spawn a new
task (to process the next node) just before it finishes. Observe how
execution strategies like morsel-based parallelism [27] naturally fit
into this model.

Spawning a task is an extremely lightweight operation, imple-
mented using efficient assembly atomic instructions. Spawned tasks
will asynchronously be moved to a task pool, from where the X-
Tasking runtime will select tasks for execution (possibly based on
annotated information).

Figure 1 illustrates annotations for both tasks and data objects.
For the moment, our annotation engine provides task-metadata
for the priority to run with, the accessed data object, and the type
of that access, whether reading or modifying. Alternatively, to
accessed data objects, a task may be annotated with a specific core
to run on or a particular NUMA region. Data objects, on the other
hand, support annotations for synchronization requirements (e.g.,
parallel reads or sequential access), a NUMA region to be placed in,
and the predicted usage frequency. The scheduler uses the latter
for static load balancing. On-demand, annotations can be extended
easily.

3 ANNOTATION-BASED MEMORY
PREFETCHING

The optimization of memory access patterns is a good example to
illustrate how annotated XTasks can significantly ease the develop-
ment effort for modern hardware, while at the same time improving
runtime efficiency.

Particularly for data processing systems, memory access has be-
come the key factor when it comes to efficiency and performance.
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Prefetching memory contents into CPU caches can be an excellent
means to hide memory access latency and improve performance.
However, effective prefetching is intricate to achieve: if the prefetch
request is issued too late, hardware will not have enough time to
actually bring the data into the cache; if the prefetch distance is too
wide, data might already get evicted from the cache again before it
is used.

Prefetch requests may be issued either by hard- or software. But
while efforts have been made to teach caching hardware the access
patterns of database code [19, 24, 45, 47], hardware prefetching
remains unfeasible beyond stream-based look-aheads. Software-
based prefetching was shown to be more effective (e.g., [12, 23, 34,
38]), but depends on substantial algorithm restructuring to work
out.

In a task-based execution environment, efficient prefetching is
surprisingly simple. When making scheduling decisions, the XTask-
ing scheduler will consult the task pool to gain an understanding
of the upcoming tasks for the near future. Whenever tasks are
annotated with the data object that they access—we assume this
annotation because it is trivial to make—, XTasking will automati-
cally inject software prefetching instructions on the application’s
behalf.

Thereby, we catch two birds with one stone. Prefetching becomes
simple on the application end. In fact, the prefetching mechanism
in XTasking is completely transparent to the application developer.
All she needs to do is provide proper data object annotations to X-
Tasks. At the same time, the prefetching mechanism is significantly
more powerful than existing approaches. In contrast to hand-crafted
solutions, XTasking will automatically schedule prefetch instruc-
tions even across task executions from different applications. Plus,
there is now only a single point in the system where details, such
as the prefetch distance, can be configured. Though not realized in
our current implementation, it is also conceivable to dynamically
adapt prefetching, e.g., to data locality in NUMA environments.

XTasking is a layer between task-based applications and the
operating system.! From the application’s perspective, spawning
a task adds it to the task pool of a logical core. This is a lock-free
operation, making task spawns a very lightweight operation.

From the operating system’s perspective, each of the XTasking
logical cores corresponds to a worker thread that will pick tasks
from the pool and execute them. In this sense, XTasking mediates
between the task-based execution model and the thread model
of the underlying operating system. In our implementation, we
further pin all worker threads to a dedicated CPU core, which gives
XTasking control over NUMA and locality effects.

Whenever the worker thread picks an XTask, that task will be
executed uninterruptedly to completion. Often, tasks will spawn
further tasks. Such spawning will happen asynchronously and light-
weight.

The resulting task pool enables the XTasking runtime to already
“see” upcoming tasks as well as their associated memory objects.
With this information, the scheduler can inject prefetch instruc-
tions in-between task executions, such that tasks will see their data
already cached in the CPU when they start. To this end, the sched-
uler has to invoke two prefetches: first, the task descriptor has to

!We currently support Linux or XKernel as the underlying operating system.
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Figure 2: Execution and prefetching of XTasks. The worker
knows tasks that will be executed soon and prefetches both
tasks and data objects early enough to hide memory laten-
cies.

be brought into the CPU cache, since it includes the information
about associated data objects; with the task descriptor in the cache,
the scheduler read out that information and prefetch data objects
as the second step.

Figure 2 illustrates this mechanism (assuming a prefetch distance
of 1). Before executing task, the worker will issue a prefetch request
for the descriptor of tasky. This prepares the scheduler to prefetch
data for tasks in the next iteration. Already in the current iteration,
the scheduler will prefetch the data object associated with taskq,
so that task; will find its data cached when it gets executed in the
next iteration.

4 ANNOTATION-BASED SYNCHRONIZATION

So far, building massive parallel applications with concurrent con-
trol flows has become a challenge—efficient solutions often are
tailored. Using latches for synchronization is a common and well-
supported technique, but latches regularly suffer from overhead
(and thus performance-decrease) and/or too coarse-grained uti-
lization. Finding the perfect granularity for the scope of synchro-
nization is not always trivial. Tasks, however, present an excellent
base for this. They are fine-granular by design, accessing just one
or a few data objects during execution. The use of XTasks almost
endorses the developer to design the software fine-grained.

At the same time, this fine granularity assists the developer in
transmitting execution and data dependencies to the runtime much
better. By communicating those application characteristics transpar-
ently as annotations to XTasking, the execution engine is capable
of synchronizing concurrent tasks—not only by latches. And even
more, without the explicit usage of synchronization primitives by
the developer’s hand.

4.1 Integrated Synchronization Mechanisms

Instead, XTasking will select and inject an appropriate synchroniza-
tion technique, based on the desired (and annotated) parallelism
of the data object. Concurrency no longer becomes an enemy to
be fought, but parallelism feels natural. As a result, the developer

will drop synchronization at the application level—focussing on
application logic only.

Latches. Spinlocks are known for their easy realization and sim-
ple usage. As in thread-based implementations, we can also ap-
ply spinlocks to synchronize concurrent tasks. XTasking provides
different spinlock variants. To supply mutual exclusion, a simple
spinlock is used, which sequences all accesses, whether tasks are
read-only or not. Given an application that enables parallel reads on
a shared object, XTasking chooses a reader/writer-lock instead. Ac-
quiring and releasing the latch is done by the worker thread. Once
the annotations of both the task next in line and the corresponding
data object have been evaluated, the related latch is acquired to
guarantee safe access. After task execution, it will be released.

Sequencing by scheduling. XTasks are governed by a run-to-
completion semantic—all tasks scheduled to the same task pool are
implicitly sequenced. Moreover, and this distinguishes XTasking
from other known libraries, once dispatched, tasks are not stolen
from other task pools.? Following this, we can avoid synchroniza-
tion of concurrent accesses by scheduling all tasks accessing the
same data object to the same task pool.

This approach evades latch-contention and time spinning on
the latch until it is consumable. At the same time, we need to deal
with an association between data objects and task pools to balance
the load throughout available computing resources. To this end,
data objects with foreseeable frequent access can be annotated
accordingly. These are taken into account when associating data
object and task pool, ensuring the load to distribute evenly.

To give an example, consider a tree-like structure. Inner nodes,
particularly the root node, will be accessed far more often than leaf
nodes. Hence, the mapping algorithm has to take care of access
frequencies to provide load balancing over available computing re-
sources. Task pools that are (by annotation) associated with heavily
used data objects obtain a reduced total number of them. The task
pool associated with the root node of a tree, for instance, is linked
to only a few other nodes.

However, like basic spinlocks, sequencing the accesses to a
data object by scheduling represents a pessimistic synchronization
method, where XTasking does not distinguish between reading
and modifying tasks.

This combination of scheduling and synchronization to avoid
latches is unique and not known to us in any other task-based
library. Instead, dependency graphs may be used to obtain a similar
synchronization [9]. Although this is indeed possible on top of
XTasking, using such a data structure implies additional runtime
costs.

While load balancing across all resources becomes a challenge, it
allows us to make more efficient use out of the data cache. Replica-
tion of data across multiple caches will be reduced since each data
object is accessed by a distinct core.

Optimistic versioning. Avoiding latches might be a good idea, in
particular for write-heavy workloads. However, read-operations
dominate many database-related workloads. For instance, the root
node of a tree-structure modifies over time, but most accesses will

2Rather, XTasking can steal entire task pools in order to improve load balancing while
keeping synchronization lightweight.
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SCHEDULER
Input: task to schedule
if task has data object d annotated
if d is synchronized by scheduling or task is writing:
L schedule task to task pool assigned to d

w o

else:
L schedule task to local worker

-

@

6 elseif task has specific core ¢ annotated:
7 L schedule task to task pool of ¢

s else:

9 L schedule task to local task pool

producer

producer —JB——— scheduler

producer

M worker
: 12
B worker 1
: 15 reset ¢
B worker 16 reschedule ¢

SIGMOD ’21, June 20-25, 2021, Xi’an, Shaanxi, China

WORKER
1 foreach task t in task pool:
2 if t has data object d annotated and d needs
synchronization:
if d is synchronized by scheduling:

L execute ¢
elseif d is latched:

3
4 no more synchronization needed
5

6 get latch of d

7

8

B

wrap latch around

execute t
release latch of d
elseif d is optimistic versioned:
10 if t is reading:
11 vy «— version of d

annotated as reader
check version before..
execute ¢
vy «— version of d ..and after read

14 if 01 # vy: detect concurrent write

17 else: writer are synchronized by scheduling

18 execute t

19 increase version of d

20 else: no data object annotated or d not synchronized
21 L execute t

Figure 3: Interaction of scheduler and worker thread. The scheduler ensures the sequencing of writing tasks by scheduling
them to the identical task pool. The worker, however, ibbjects synchronization of tasks in the execution of those.

be read-only to locate the next node on traversing the tree. Opti-
mistic approaches have proven their worth to benefit from parallel
hardware [11, 28, 30]. Read accesses are executed in parallel while
concurrent write accesses are protected from each other by latches.
To detect overlapping read and write operations, the resource is
versioned by a counter which increments after each modification.
Read-only procedures will check the counter before and after read-
ing. When the version has changed during the access, it must be
repeated. XTasking generalizes this concept as follows.

“Writing” annotated XTasks modifying the same resource are
scheduled to the same task pool, avoiding latches due to sequencing.
Reading tasks, however, are free to be executed by any worker
thread. Before and after the execution of a read-only task, XTask-
ing checks the version counter of the data object. If it increased
during the read operation, the XTask is reset, rescheduled, and
executed again at a later time. Hence, write accesses continue to
be sequenced on a specific worker thread, while read accesses act
in parallel. The additional effort for the developer remains modest:
She only has to annotate tasks as read-only or modifying, while
XTasking takes care of version management.

Comparable to other optimistic procedures, operations (or tasks
in our context) that delte a shared object must be treated with spe-
cial care. Hazard pointers [35] and memory reclamation [20] are
general approaches to protect read accesses while another thread
frees the data at the same time. Even if currently not realized in X-
Tasking, it would be straightforward to keep track of which worker
thread is reading which (to a task annotated) data object. With this
knowledge, competing read and delete operations can be coordi-
nated to avoid faults.

4.2 Inject Synchronization

As illustrated in Figure 3, the synchronization of tasks bases on
the interaction of scheduler and worker thread. The scheduler en-
sures to place XTasks in the pool of the appropriate worker thread,
depending on the synchronization mechanism and access type.

The worker, in turn, applies synchronization primitives whenever
needed.

The scheduler side. To sequence a set of tasks, the scheduler
places them in the same task pool. That is necessary when (a) op-
timistic versioning is applied, and the task will write to the anno-
tated object or (b) all accesses to a data object are synchronized
by sequencing. For both cases, the scheduler selects the task pool
associated with the annotated data object as a destination (lines
1-3). Otherwise, the scheduler prefers the local task pool to reduce
scheduling overhead in the form of cache-coherence. Local, in this
context, means the task pool of the worker thread that produced
the task, potentially while executing another task.

Exceptions to this rule are annotations that explicitly affect the
placement of XTasks, for example, a specific core (lines 6-7). It is
also conceivable to annotate particular NUMA regions to support
applications building NUMA aware software.

The worker side. The synchronization itself, whenever necessary,
is performed by the worker, wrapped around the execution of the
tasks. First, the worker evaluates the annotated data object of the
next task (line 2). Supposing no synchronization is needed or sched-
uling already guarantees sequential access, the worker executes
it directly (lines 21 and 3-4). Otherwise, we distinguish between
the two additional mechanisms we discussed before. In case the
accessed data object is synchronized using a latch, whether it is a
pure spinlock or reader/writer-lock, the worker will acquire the
latch related to the data object before executing the task release it
after execution (lines 5-8). Whenever possible, we will acquire the
latch in shared mode.

For data objects that are synchronized by optimistic versioning,
the worker thread separates between reading and writing tasks. To
verify a data object was not modified while performing a read oper-
ation, the worker checks the version before and after the execution
(lines 10-16). Whenever the counter differs, the read access has to
be retried at a later time. Therefore, the worker schedules the task
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LOOKUP TASK
task input: node the task accesses, key to lookup, callback to notify
on finish
1 if highkey of node < key:

/ key is out of range of this node

2 next « right sibling of node
3 follow_up « create a new task
4 annotate follow_up with next as reader

5 | schedule follow_up

6 elseif node is of type inner:
// continue traversal to the leaf

7 next « child for key in node
8 follow_up « create a new task
9 annotate follow_up with next as reader

10 schedule follow_up

11 else:
// found correct leaf, read value

12 v « get value of key in node

13 | notify caller with v

Figure 4: Lookup operation in a task-based Blink-tree. Since X-
Tasking conducts synchronization, the application logic has
not to deal with concurrent access.

again (lines 14-16). To ensure that the version changes at all, it is
incremented after the execution of a writing task (line 19).

5 XTASKING IN ACTION

Utilizing tasks to design data structures and algorithms differs in
general from well-understood thread-based programming. Morsel-
driven parallelism [27] and DORA [36] have already demonstrated
the advantages for query- and transactional processing in a task-
like fashion. XTasking advances the task-paradigm beyond the
current standard by offering annotations for prefetching and im-
plicit synchronization. This section reviews some practical aspects
of using XTasks for building parallel software.

We illustrate the simplicity of designing a latch-free, task-based
data structure, using a Bli"k-tree as an example. Accordingly, we
will examine the relevance of memory management regarding task-
allocation and show that XTasks are very robust concerning the
granularity of a task.

5.1 Building a Task-based Blik-tree

Since latching has become a bottleneck for in-memory data struc-
tures on modern hardware, research investigated optimistic or fully
latch-free procedures (e.g., [11, 28, 30, 31, 33, 46]). The Blink-tree [26],
as a variant of the B-tree, focuses on reducing the number of simul-
taneously hold latches at a time. To this end, newly inserted nodes
are not connected to the parent instantly, which eliminates the need
for holding the parent’s latch. Instead, a node split will create a link
between the old and the new node. With that help, the recently
inserted node will also be accessible for other traverse operations,
even when there is no link from the parent to the new node. As a
consequence, every operation is a concatenation of multiple tiny
steps related to a single node.

Whereas thread-based implementations result in synchronous
calls most of the time, XTasks (and comparable task-based solutions)
get executed asynchronously. For instance, instead of calling a
lookup method on a data structure that returns after the record is
found, scheduling a lookup task that notifies the caller with the
result is the way to go.

Tasks only have a limited view of the system. Every XTask solely
performs on a single tree node, taking the appropriate node and
the requested key as input parameters. The pseudocode in Figure
4 illustrates an example of implementing a lookup task. On every
step, it examines whether the node it is working on is an inner or a
leaf node. If the node is of type inner, the task has to determine the
next node to traverse by applying a binary search (line 7). However,
parallel insert operations may have modified the content of the
node since the lookup task was scheduled. Sometimes, one of these
insertions splits the node. At that point, a traversing task may have
missed the direct pointer to the node containing the searched key
for now. For that reason, every task checks the key-range of the
given node and traverses to the right sibling when necessary (lines
2-5). That can also occur in traditional (thread) implementations
and is—in general—part of the Blink-tree algorithm. Nevertheless,
it is slightly more likely to happen using asynchronous models
since the time between node accesses during a traversal may be
increased.

For continuing the traversal, the task instantiates and schedules a
follow-up task, annotated with the next node (lines 8-10). Labeling
the follow-up task as a reader (line 9) enables XTasking to execute
it in parallel with other reading operations. In contrast, a thread-
based implementation will call the child method in a loop until
reaching a leaf node. Given a task executed on a leaf, it reads the
value and notifies the caller (lines 11-13). A callback function, for
instance, responds to a client’s request in an end-to-end setting.
Alternatively, we can schedule a follow-up task that handles the
response.

Figure 4 demonstrates that an XTask focusses on the application
logic but contains no explicit mechanism for concurrency control,
except annotations. The latter are used by XTasking to realize the
synchronization of competing tasks, as discussed in Section 4.

Implementing the corresponding insert task is straightforward.
Instead of reading the value from the leaf node (line 12), the task
performs the insert operation. If this causes a node-split, the insert
task schedules a follow-up task that places the pointer to the newly
created node in the parent node or produces a new tree root when
the split node was the root. Until the pointer is seated to the parent
node, the new node can be reached by following the sibling pointer,
as explained before. Even insert operations require no explicit syn-
chronization since the engineer annotates the task as a writer when
it arrives at the node to be modified. That hints XTasking to initiate
the corresponding synchronization step, such as taking the writer
latch or incrementing the version counter.

Annotating the modifying task as a writer at the appropriate
time, however, becomes a minor challenge: When it comes too soon,
parallelism may decrease because of sequencing writing accesses.
Too late, contrarily, requires re-annotating and re-scheduling the
task, which causes overhead. To inhibit, we need to know during
traversal whether the following node is an inner or leaf node as
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Figure 5: Aggregated CPU cycles for a single lookup on a
task-based tree, using GNU libc’s malloc and our Multi-level
allocator for task allocation.

modifications are related to leaf nodes. Since just loading the meta-
data of the next node causes cache-misses, we introduce a new kind
of node type: branch nodes represent inner nodes whose children
are leaf nodes. With that help, we annotate a modifying task as a
writer, whenever the current node is a branch.

5.2 Task Allocation

As indicated in the previous Section, XTasks will be created and
deleted frequently. Each operation on a tree structure, for example,
corresponds to a separate task, which spawns several subsequent
tasks. Hence, the allocation of those is a central component. Using
the global heap may turn into a bottleneck because many cores will
create new tasks at the same time.

Figure 5 shows the CPU cycles spent during a single lookup
on a task-based tree, including the traversal from the root to the
leaf node. Allocating tasks using the system’s malloc interface
consumes 559 cycles per operation on a 48 core machine (~ 20 % of
total CPU cycles)>.

To overcome this costly aspect, we have designed a multi-level
allocator, fitting seamlessly into the tasking-runtime. The archi-
tecture is mainly inspired by Hoard [8]. Hoard focusses on fast,
cache-aware, and scalable allocation. Dedicated memory heaps
for every processor enable scalability. Threads allocate memory
from their local processor heap instead of calling the system-wide
malloc interface to request memory from the OS. Each processor
heap holds a buffer of free memory and delegates it to threads that
want to allocate memory. The processor heaps, in turn, demand
memory from the OS when the local buffer becomes empty. That
reduces synchronization costs between processors.

We extend this concept by supplying a third layer to the allo-
cation stack: A separated heap per logical core that will be the
point of contact for task allocation. Figure 6 outlines this approach.
Whenever a task needs to create a new one, it requests the local
per-core heap for memory. Allocations on the per-core heap do
not need any synchronization because XTasks are guaranteed to
run-to-completion. Free memory blocks on this heap are stored
within a LIFO list. Implicitly, the allocator places freed blocks at

3Intel VTune™ was used to analyze the Microarchitecture Exploration.
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Figure 6: Reducing synchronization and enhance cache-
awareness by using multiple levels for task-allocation.

the top of the list (). Thus, an allocation will use recently freed
memory blocks, which increases the chance that the allocated task
is still available in the CPU cache.

Reducing inter-processor communication and providing NUMA
aware allocation is a trade-off. Figure 6 shows a task () that
is allocated on one core but deleted on a different one. The free
block will be pushed to the core-heap where the task is deleted. In
the worst case, where a task is allocated and deleted among cores
located in different NUMA regions, this shuffles memory blocks
across them. However, we minimize synchronization and implicit
communication costs between them.

At the time a core heap runs out of memory, it will request a
new memory block from the processor heap. In turn, it will allocate
memory from the global heap in a NUMA aware manner, when the
processor heap has no memory in stock. As a result, memory man-
agement for XTasks requires only a single latch in case of allocating
memory from processor heap, reinforcing scalability. However, by
reusing deleted tasks, this issue occurs rarely. Compared to using
malloc, Figure 5 demonstrates that our multi-level allocator has
almost no overhead. Only 50 cycles are spent for task-allocation
during a single tree-lookup.

5.3 Granularity of Tasks

While designing task-based applications or data structures, however,
the granularity of a task may be an adjustable parameter. For some
workloads, the task-granularity becomes implicit, given by the
access-characteristics of the application. Tasks accessing the Blink-
tree described before, for instance, operate on a single node per
XTask. For different applications, the granularity is arbitrary.

To give an example, think of accessing and processing tuples
of an in-memory DBMS for query execution. Scheduling XTasks
causes additional overhead that could become a bottleneck when
tasks are too short-living. In particular, the exact costs for dispatch-
ing an XTask depend on the targeted task pool: Transferring a task
to any core located in a remote NUMA region is at more expense
than attributing a consumer placed on the same socket.
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Figure 7: Execution of a simple aggregation query using dif-
ferent task sizes.

As shown in Figure 7, XTasks are very robust against perfor-
mance penalties affected by granularities. For demonstration, we
chose a workload with easy to change task-sizes and definable
scheduling traits* (MIN-aggregation). The results verify a broad
range of suitable task-granularities: Processing 1 000 up to 1 000 000
records per task behaves mostly equivalent. Aggregating only 100
tuples or less at a working unit causes scheduling-overhead to dom-
inate the workload. Vice versa, too heavyweight (and consequently
few) tasks cause imbalanced distribution.

6 THE VISION OF XKERNEL

So far, we have considered XTasking primarily as an additional
layer on top of the OS. We argue that XTasks can also be used
as the elemental abstraction for control flows—replacing tradi-
tional threads altogether. In this Section, we present our vision
of a DBMS/OS Co-Design.

To achieve optimal performance, high scalability, and robust-
ness, the interaction of OS and DBMS is essential. General-purpose
OSs try to provide a platform for a wide range of hardware, in-
cluding various CPU architectures and different co-processors such
as GPUs and FPGAs. To abstract these diversities, the OS unifies
interfaces to the underlying system. As a side effect, it hides special
features of individual devices and computing units for the user. Fig-
ure 8 illustrates how the database community posed this problem
of interaction between DBMS and OS: OSs have all possibilities
provided by the underlying hardware but do not know about the
requirements of the applications running on top. Meanwhile, the
DBMS knows all about the internal process and requirements. For
example, the data distribution across the NUMA regions, which task
accesses which data and the priority of those. Due to abstraction-
related unified interfaces, the DBMS can not share this information
with the OS. Using external libraries like 1ibnuma [22] or extended
interfaces for GPUs like OpenCL [43] allows applications to gain a
closer view and more control over the underlying hardware com-
ponents. The library 1ibnuma, for example, enables NUMA aware
memory allocation and thread scheduling. Nevertheless, the usage
feels more like a crutch and does not solve the problem in general.

4For local region and remote region runs, we configured the micro-benchmark to
schedule every second task to a external task pool.
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Figure 9: The architecture of XKernel: Both OS and DBMS
run on top of the bare-metal runtime and use XTasks for
control-flow abstraction.

With our bare-metal platform XKernel, we address the issue of
insufficient interfaces between DBMS and OS. XKernel acts as a
lightweight layer between the hardware and performance-critical
applications, such as DBMSs. As shown in Figure 9, both OS and
DBMS run as equal peers on top of XKernel. As a result, the DBMS
can interact much more with the hardware and does not have to
implement services based on OS components. In contrast to “tradi-
tional” environments, where the DBMS runs on top of the OS, both
can share data structures and algorithms. That applies, for example,
to index structures such as B-Trees, which are used not only for
indexing data in DBMSs but also for file systems, e.g., Btrfs [40].
Moreover, the DBMS can implement critical services on its respon-
sibility, for example, memory and I/O management. Commercial
systems such as DB2 [1] and Oracle [2] often re-implement services
provided by the OS on top of them. That is not necessary anymore
by using such a Co-Design offered by XKernel.

In addition to exploring the hardware components present in the
system, XKernel primarily offers a lightweight abstraction of con-
trol flows. For this, the XTasking introduced in Section 2 is utilized
with one worker instantiated on each logical CPU core. Applica-
tions running on top of XKernel employ XTasks to accomplish their
jobs. Due to the guaranteed ability to distribute tasks to a specific
hardware resource like a particular CPU core, the applications have
high control capabilities. Besides the already introduced advantages
of XTasks, these offer an elegant way to abstract heterogeneity.

Modern servers are often equipped with co-processors such as
GPUs and FPGAs. Those processing units are used in the context
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of DBMS to solve specialized problems, e.g., query compilation
on GPUs [16]. However, the software must be explicitly adapted
to the use of these devices. Designing software in a way that all
available computing resources can be used as efficiently as possible
is complex and requires external libraries and frameworks. XTasks
exploit a way to use that heterogeneous hardware. Developers can
provide implementations for various devices such as GPU and CPU
for an XTask. Based on execution times, which can be annotated
by the developer, and the load factors of possible processing units,
XKernel will schedule the tasks to devices. For example, when an
XTask has implementations for both CPU and GPU, where the GPU
variant promises more performance. XKernel could execute the
CPU variant of the task when other tasks use the GPU with high
frequency.

Other works have already discussed and focused on closer co-
operation between OS and DBMS. COD [18] is a well-known and
proven example, providing a richer interface between OS and DBMS
through a central infrastructure. Based on the System Knowledge
Base (SKB), applications and OS are enabled to exchange their
knowledge about application requirements and OS state. The OS,
on the one hand, can make use of this to schedule existing hardware
resources—memory and computing resource for instance—more
efficiently and with respect to the DBMS. Vice versa, the DBMS
is enabled to to discover hardware-specifications of the underly-
ing system through a service provided by the OS. The concept
of the SKB was already introduced by the Barrelfish OS [7, 42], a
multikernel that challenges problems associated with the growing
number of cores and heterogeneity.

The equivalent in XKernel may the usage of annotated tasks.
Those annotations hint the kernel with the application require-
ments that XKernel also uses for resource allocation. As both, the
application and the OS, run as equal peers on top of the runtime,
they can benefit from each other’s services and data structures.
Since the application is close to the “bare iron”, it has a detailed
view of the hardware right from the very beginning. In contrast to
COD, not the OS provides information about the system. Rather, it
is XKernel that offers equal privileges to all.

7 EXPERIMENTAL EVALUATION

To study the behavior and potential of XTasking in real-world
scenarios, we use an in-memory Blink-tree that is indicative of the
behavior of modern in-memory database engines. Our implementa-
tion of the data structure follows state-of-the-art principles.

7.1 Environment

All benchmarks are evaluated on a two-socket Intel Xeon Gold
6226 machine, clocked at 2.7 GHz. Each of the two processors holds
12 cores, 24 hardware threads, and 12 x 32 kB L1, 12 x 1 MB L2,
and 1 X 19.25 MB L3 data caches. The cores are ordered by NUMA
regions, whereas the first 24 logical cores are located in the first
region, the next 24 in the second. To be precise, the first 12 cores of
each region are physical cores. From then, hyperthreading cores
are added step by step.

Following former work [46], we rely on the Yahoo! Cloud Serving
Benchmark (YCSB) [14]. We use workloads A (read/update, 50/50)
and C (read-only), both with Zipfian distribution and 100 million
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Figure 10: Impact of software-based prefetching for the X-
Task-based Blink-tree.

operations. Before running each workload, the tree is initialized
with 100 million records. Insert results are taken from the initializa-
tion phase of workload A. The tree stores pairs of 64 b keys and 64
b payloads within 1 kB sized nodes.

Ubuntu 20.04 was used as OS, clang 10.0.0 as the compiler, con-
figured to apply the highest optimization level. Because all threads
are pinned to corresponding cores, we disabled the system’s NUMA
balancing option for all experiments. This way, the kernel will not
migrate memory or threads between the regions.

7.2 Annotation-based Prefetching

As discussed in Section 3, the fine granularity of tasks allows an
exact prediction on which data an XTask will access. Figure 10 com-
pares the Blik-tree build on XTasking with and without annotation-
based prefetching. Experiments regarding the prefetch distance
indicated that the results behave as expected: If the interval is too
small (e.g., 1 for prefetching the next task ready), the workload will
not benefit from prefetching. Similarly, if the prefetch comes too
late (more than four tasks apart), the advantage becomes smaller
but still noticeable. For the measurements shown, we specified a
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distance of 3, which performed best on our experimental analysis
of the prefetch distance.

Since the benchmark is memory bound for the most times, anno-
tation-based prefetching of tree-nodes results in 20 % higher insert,
30 % higher read/update, and 44 % higher read-only throughput rates
on average. We demonstrate the outcome in Figure 10a. Especially
the tree-traversal, which bases on binary search, benefits from this
mechanism. Because binary search creates a hard-to-predict access
pattern for the CPU, hardware prefetching has less effect.

The impact of software-based prefetching becomes particularly
visible when observing memory stalls, shown in Figure 10b. Mem-
ory stalls are cycles in which the CPU actively waits for memory
until it is available in the cache before continuing execution. The
prefetching mechanism of XTasking reduces the number of those
stalled cycles, resulting in increased throughput. This effect is, in
particular, observable in read-only benchmarks. Here, the number
of memory stalls is reduced up to more than a half. The insert and
read/update workloads also benefit with 32 % and 44 % fewer stalls.

Preloading, however, requires prefetch instructions to be exe-
cuted. Figure 10c demonstrates the number of performed instruc-
tions per operation. Prefetching results in ordinary about 239 addi-
tional instructions per lookup and 294 per insert, as well as 270 ad-
ditive instructions per operation during the read/update workload—
compared to the non-prefetching run. Nevertheless, these addi-
tional efforts reduce the memory stalled cycles to such an extent
that prefetching still pays off.

7.3 Comparison of Tasks and Threads

We argue that XTasks offer a superior abstraction level to build
scalable software for modern and future many-core hardware. To
study this hypothesis, we will compare different programming mod-
els, libraries, and synchronization mechanisms using the Blink-tree
for a real-world scenario. In addition to XTasking, we also imple-
mented the Blink-tree on top of p_threads and the tasking library
Intel TBB, which pursues similar goals as XTasking. Besides, we
evaluate three different techniques for synchronizing parallel con-
trol flows: Sequencing of all accesses to a node, latches for parallel
reads and exclusive writes, and an optimistic approach. Figure 11
shows the results for all programming models and synchronization
procedures. We will first examine the various programming models
individually.

XTasking. Figure 11a presents the results for filling and reading
an XTask-based Blink-tree. We evaluated three different synchro-
nization procedures, described in Section 4. The approach called
Scheduling (left) maps each data resource, e.g., a tree node, to a
specific task pool. The scheduler dispatches all tasks accessing a
node to the assigned one. Hence, tasks reading or writing the same
tree node are implicitly sequenced, because XTasks will not be
interrupted during execution. That enables a parallelization level
similar to spinlocks, where each node is accessed exclusively by one
thread. However, in contrast to spinlocks, scheduling eliminates
active waiting by avoiding latches due to implicit synchronization
of concurrent control-flows. Furthermore, this mechanism exploits
the CPU cache more efficiently, since a data object is not replicated
in different caches, but is only ever occupied by the very same core.

The results show that this synchronization method scales up
to 12 cores with 7.5 million insert- and read/write operations as
well as 8.3 million lookups per second. As soon as the second
NUMA region comes into play (26 cores and more), the throughput
decreases stronger. That is due to the high effort caused by the task-
scheduling, which is realized by an atomic exchange instruction
to push tasks to task-pools. In particular, the core owning the task
pool associated with the root node gets highly frequented by all
other. That causes overhead due to cache-coherence since the root
is the starting point for all operations.

A similar factor is observable when using reader/writer-locks,
shown in Figure 11a (center). This way, tasks are primarily dis-
patched to the core they are produced by to minimizes overhead
by scheduling. Balancing the load in this fashion turned out to
be straightforward as well as an effective strategy for the given
workload.

However, when using the second NUMA region, the throughput
decreases again. In this case, the additional effort for keeping the
latch variable coherent has a negative effect and causes communica-
tion costs across the sockets. The maximum throughput is reached
at 10.5 million inserts, 11.4 million read/write operations, and 14
million lookups per second, utilizing 24 logical cores (in the same
NUMA region).

Other works have already pointed out the advantages of op-
timistic synchronization [11, 30]. XTasking implements this ap-
proach by allowing any data objects to be versioned. Scheduling
reading tasks to the local pool avoids additional overhead. To pre-
vent concurrent write operations to the same data object, these are
still synchronized by scheduling. Many tasks in the Blink-tree bench-
mark, even for insert operations, are read-only until they reach
a leaf node to insert a value or an inner node to place a pointer
to another node. With this synchronization strategy, we achieve
36.9 million inserts, 50 million mixed (read/update) operations, and
more than 77 million lookups per second. The tasks benefit, espe-
cially, from prefetching of data objects—they are already found in a
local cache when accessed.

p_threads. We present the results for the Blink-tree-benchmark
built on top of traditional threads in Figure 11b. Utilizing spinlocks
for sequencing all accesses to one node ends up with a through-
put of 3.5 — 3.9 million operations per second at four cores. After
that, the throughput decreases steadily using more than four cores
because of cache-coherence overhead. Using reader/writer-locks
to enable parallel read operations to a node achieves 9.5 million
inserts, as well as 10 million read/update and lookup operations per
second with 24 cores and decreases afterward. We borrowed the
reader/writer-lock implementation from Facebook’s folly library>.

According to expectation, optimistic synchronization accom-
plishes to the highest (thread related) throughput, where reading
operations read the version of a node before and after read while
writing procedures take a latch to be mutually exclusive. Here, we
measure 43 million inserts and 60.5 million lookups per second,
using all available 48 logical cores. The highest throughput for the
read/update workload is at 50.4 million operations per second at 44
cores. This result is comparable to the BtreeOLC [28], which ends

Shttps://github.com/facebook/folly
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Figure 11: Comparing the throughput of different programming models and libraries for a Blink-tree-benchmark.

up with 41.2 million inserts, 50.4 million reads/updates, and 54.9
million lookups per second on our hardware.

Intel TBB. As a second task-based approach, we evaluated a Blink-
tree based on Intel TBB using version 2020 Update 3. The tasks
implementations of lookup-, update-, and insert- operations are
built similar to XTasking, except synchronization, which is part
of the application layer since TBB does not include automatic syn-
chronization. Figure 11c presents the results. For synchronization,
we use on-board synchronization: speculative_spin_mutex for full
mutual exclusion on node-level and speculative_spin_rw_mutex for
enabling parallel read operations. Both primitives provide specula-
tive latching based on HTM, which is supported by our hardware.
We found that the speculative mutexes delivered by TBB produced
the best performance, compared to OS mutexes and standard spin-
or reader/writer locks.

Using the speculative_spin_mutex, which is described as scal-
able by TBB documentation, the tree-benchmark gains the highest
throughput with 4.6 — 5.2 million operations per second at ten cores.

However, when applying more computing resources, especially
those from the second NUMA region, the throughput decreases.

In contrast, the speculative_spin_rw_mutex enables parallel reads.
With this, the benchmark scales up to 26.2 million insert-, 32.7
read/update-, and 35.1 million read-only operations per second
using all available 48 logical cores.

Utilizing the optimistic approach as we did before, using threads
as abstraction level, the throughput increases to 32.9 million in-
serts, 39.6 million reads/updates, and 45 million lookups per second.
Again, we were required to build an optimistic synchronization on
top of TBB tasks within the application layer.

Comparison. Putting it all together, Figure 11 illustrates the dif-
ferences between the programming models and synchronization
strategies. When enabling only sequential access to each node, both
reading and writing do not scale on any of the evaluated platforms.
That is not surprising since many other works already investigated
into latches and approaches to read and write data structures in
parallel. Although XTasks avoids latching by scheduling, we can
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straction.

observe two bottlenecks preventing this approach to scale. First of
all, every operation starts by reading the root node of the tree. Even
when all subsequent steps run in parallel, by distributing tasks to
the other nodes and implicit more CPU cores, the inherently se-
quential access to the root bounds the throughput. That also applies
to (speculative) spinlocks. Secondly, pushing tasks to task pools of
other cores involves overhead due to cache-coherence, even if the
operation itself is atomic. Especially the task pool associated with
the root node is affected since many producers try to (atomically)
insert tasks simultaneously. The effect is similar to latches, where
many threads (or TBB tasks) want to modify the same cache line
to acquire the latch of the root.

Using RW-locks as an alternative latching approach, the oper-
ations are, most notably, bound by latching overhead, which is
due to cache-coherence. On the XTasking side, we can observe a
benefit of up to 39 % more lookups per second compared to threads.
Nevertheless, both programming models do not scale properly syn-
chronizing by latches. Using HTM-based reader/writer-locks as
done by TBB, we notice less overhead due to latching and thus
better performance: more than 2.5X compared to XTasking and
3.5% to threads.

All three compared libraries and models perform best when using
optimistic methods for synchronization. However, some differences
are observable. While p_thread-based implementation provides the
best results for insert operations with 43.1 million inserts per sec-
ond, XTasking outperforms threads and TBB providing 77.5 million
lookups per second. Under the mixed read/update workload, XTask-
ing and the thread-based implementation supply similar results.

To discover the reasons for the differences, Figure 12 shows a
cycle-accurate comparison between the task- and thread-based im-
plementations. We distinguish between effort for traversing the
tree, inserting/updating/searching, cycles spent in kernel mode (e.g.,
syscalls), and additional costs for the libraries XTasking and Intel
TBB. For XTasking, we further differentiate between complexity
for prefetching and other XTasking related work, most notably
scheduling. We recorded those details using the Intel VTune™ Pro-
filer [3].

The results prove the effectiveness of the prefetching mechanism
used by XTasking: Traversing the tree requires significantly fewer
cycles when applying XTasks, compared to threads and TBB tasks.
However, we even observe a noticeable amount of time spent on

prefetch instructions, which, strictly speaking, should be added
to the time of traversal. During the insert phase, we notice sev-

eral cycles expended to XTasking. That is primarily the effort for
scheduling tasks that are moved from one core to another to se-
quence write operations. Contrarily, during the read-only workload,
XTasks are dispatched solely to the local core. Also, the TBB sched-
uler involves some additional work, which we are not able to break
down more precisely using VTune™. We assume that this is an
expense for load balancing, task-stealing, and scheduling.

To summarize, we believe that the software-controlled prefetch-
ing of data objects, which is unique to the XTask concept, offers
considerable increases in throughput. Manually integrated prefetch-
ing into other approaches such as threads and TBB requires con-
siderably more effort on the part of the application engineer and
possibly restructuring of the data structures.

8 CONCLUSIONS

In this paper, we presented XTasking, a task-based framework with
run-to-completion semantic. The unique selling point of XTasks is
given by annotations, which offers the algorithm engineer to easily
transfer knowledge from the application level to the control-flow
abstraction. Hence, the tasking runtime hides memory latencies
by loading soon-to-be-accessed data into CPU caches, without the
intervention of the engineer. Furthermore, appropriately using fine-
grained tasks in combination with task- and resource annotations
opens up the possibility to design parallel data structures and al-
gorithms, without exposed synchronization. Requirements of data
object synchronization, e.g., exclusive read/write, as well as the
task’s access intention, enable XTasking to choose and inject the
most efficient synchronization technique. As a result, XTasking
eases the development of latch-free data structures.

Also, we presented our vision of XKernel, a bare-metal runtime
for DBMS/OS Co-Design. XKernel provides a thin layer for both
DBMS and OS running on top. This way, mutually needed data
structures can be shared without any need for the DBMS to bypass
the OS. Instead of traditional threads, XTasks form the abstraction
for work items.

The first results of an XTask-based key-value store promise great
potential on modern and future many-core hardware. Using a Blink-
tree as the foundation, XTasks outperform classical threads by 28 %
more lookups per second, while the implementation effort gets
reduced with the help of annotations.
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