MxTasks: How to Make Efficient Concurrency Control and
Prefetching Easy

Jan Muhlig

TU Dortmund University, Germany
jan.muehlig@tu-dortmund.de

ABSTRACT

The hardware environment has changed rapidly in recent
years: Many cores, multiple sockets, and large amounts
of main memory have become a commodity. To benefit
from these highly parallel systems, the software has to be
adapted. Sophisticated latch-free data structures and algo-
rithms are often meant to address the situation. But they
are cumbersome to develop and may still not provide the
desired scalability.

As a remedy, we present MxTasking, a task-based frame-
work that assists the design of latch-free and parallel data
structures. MxTasking also eases the information exchange
between applications and the operating system, resulting in
novel opportunities to manage resources in a truly hardware-
and application-conscious way. As such, MxTasking also
forms the basis for our vision of a truly co-designed system
of operating system and database management system.

PVLDB Reference Format:
Jan Miihlig, Jens Teubner. A Sample Proceedings of the VLDB
Endowment Paper in LaTeX Format. PVLDB, 14(xxx): XXXX-

yyyy, 2021.
DOI: https://doi.org/10.14778 /XxxXxXXXXX.XXXXXXX

1. INTRODUCTION

The basic architectures of both Operating Systems (OSs)
and Database Management Systems (DBMSs) in use today
were designed decades ago. Since their inception, the hard-
ware landscape has changed significantly: Today’s servers
have many cores distributed across multiple sockets, big
caches, and large amounts of main memory, structured as
Non-Uniform Memory Access (NUMA). While the hard-
ware keeps changing, software has to adapt in order to ben-
efit from the newly available resources.

In this light, during the past years, researchers have in-
vested great efforts to increase parallelism, e.g. through very
fine-grained latching mechanisms or by avoiding latches al-
together [19, 29, 28, 26]. But in spite of the progress made,
it remains difficult to design latch-free algorithms and data

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 14, No. xxx

ISSN 2150-8097.

DOT: https://doi.org/10.14778/XXXXXXX.XXXXXXX

Jens Teubner
TU Dortmund University, Germany

jens.teubner@cs.tu-dortmund.de

structures. Transactional Memory, e.g. in the form of Hard-
ware Transactional Memory (HTM), promises to assist de-
velopers in the transformation of serial algorithms into par-
allel code. Again, progress has been made; but it also was
shown how hard it is to outperform well-engineered “classi-
cal” code with HTM alternatives [30, 27].

Another approach is to divide the work into small, closed
units of work, called tasks. Frameworks such as Intel®
Threading Building Blocks (TBB) [35], Apple Grand Cen-
tral Dispatch [37], or Wool [14] make usage of this concept.
The idea of those frameworks is to enable developers to de-
sign parallel software without having to worry about the
underlying many-core hardware. For this purpose, they of-
fer sophisticated implementations for synchronization and
automatic load balancing primitives. Yet, it remains the
programmer’s responsibility to apply them carefully; and
experience shows that it is hard to exploit the full potential
of parallel computing units [12] this way.

In this paper, we present MxTasking, a task-based envi-
ronment for today’s and future many-core hardware. The
basic abstraction in MxTasking is the MxTask. An MxTask is
a short program sequence that performs a single, small unit
of work. MxTasks are guaranteed to run uninterruptedly to
completion.

The true power of MxTasking lies in the possibility to
attach annotations to every MxTask. With annotations, ap-
plications may convey characteristics of a task to MxTask-
ing, for instance runtime characteristics (such as expected
resource needs); information about related data objects (in-
cluding access information such as read or write access); or
desired scheduling priorities. MxTasking will then use such
knowledge to optimize resource allocation, scheduling, and
placement.

In this work, we will also report on a particularly powerful
class of annotations: synchronization annotations. Rather
than manually implementing and tuning intricate and error-
prone synchronization mechanisms (spinlocks, reader /writer
locks, version locks, ...), developers may simply express
their desired type of isolation as a task annotation. MxTask-
ing will take care of the rest and inject the synchronization
primitive that works best for the current system and appli-
cation state. This may significantly ease the development of
massively parallel applications.

The use of specific knowledge about application behavior
for scheduling or resource allocation has been explored previ-
ously in the context of database/operating system co-design
(albeit highly targeted at database applications only) [16].
With immediate control over underlying resources, such de-

signs can better address application specifics than commod-
ity operating systems could with their narrow application/OS
interfaces. And indeed, as we also show in this work, Mx-
Tasking can be extended into a bare-metal runtime envi-
ronment, pushing the concept of task-based execution fur-
ther and seamlessly leveraging, e.g., heterogeneous hardware
such as CPUs, GPUs, or FPGAs.

The rest of this paper is organized as follows: Section
2 gives an overview of related work. Afterward, Section 3
presents details of the MxTasking runtime and annotation
principles, before we discuss task-based synchronization in
Section 4. In Section 5, we provide practical insights into our
tasking library. Our vision of the MxKernel will be discussed
in Section 6. First results of a key-value store built with
MxTasks are demonstrated and discussed in Section 7. We
conclude in Section 8.

2. BACKGROUND AND RELATED WORK

Our work directly relates to three areas of systems re-
search: task-based parallelism, DB/OS Co-Design, and scal-
able index data structures (the latter will be the poster child
to illustrate and evaluate the potential of MxTasking).

Task-based parallelism. The idea of asynchronous and
fine-grained control flows has been discussed several times
in the recent past. Many programming languages and en-
vironments implement this approach, for example, NodeJS,
C++, and Rust. With Cilk, Blumofe et al. published one
of the first runtime systems for parallel programming that
schedules lightweight tasks onto OS threads [9]. Targeting to
simplify the engineers’ work, Cilk focuses on the automatic
load balancing of parallel applications and comfortable in-
tegration into existing software programs.

Inspired by Cilk, Intel@® designed the TBB framework
focusing on portability and robust performance [35, 23].
The latter one is primarily done by using a work-stealing
mechanism within the scheduler, balancing the load over
the worker threads. TBB provides several synchronization
primitives such as scalable (reader/writer-) latches, partially
based on HTM. Similar objectives are pursued by the Wool
framework through a comparable work-stealing strategy [14].
However, according to the authors, Wool is easier to embed
into existing software.

StarPU intends to provide fine granular tasks for hetero-
geneous multicore platforms [4]. The authors argue that the
modern hardware landscape not only features much paral-
lelism based on CPU cores but also uses special co-processors.
StarPU offers a framework that supports both CPU paral-
lelism and co-processors such as GPUs.

Besides the already mentioned frameworks, morsels have
been exploited in the context of DBMS, specifically in the
HyPer engine—[25]. Morsels are kind of tasks, that execute
segments of a query. The scheduler of the query execution
framework takes care of NUMA-local execution and can be
load-balanced at runtime, for example at time the workload
changes.

Bang et al. utilized tasks for various index structures
like B-trees and hash-tables, as well as transactional work-
loads [5]. The main idea is to divide a given multi-socket
machine into several domains. By allocating data structures
within a concrete domain, the accessing tasks are implicit
processed NUMA-aware.

In the course of growing heterogeneity, T6ziin and Kot-
thaus provide a concept for scheduling database tasks het-
erogeneous hardware [40]. Their work discusses the chal-
lenges about the granularity of tasks how to decide on which
specific processing unit they should be scheduled.

Based on coroutines, Psaropoulos et al. invented fine
granular tasks for index joins to minimize memory laten-
cies [33]. Everytime a coroutine attempts to access not
cached memory, a prefetch instruction is executed and the
coroutine is yielded. By that, the CPU is enabled to exe-
cute another coroutine while the memory subsystem loads
the requested data into the cache instead of wasting cycles
to wait for the load fulfilled.

DBMS/0S Co-Design. Related to DBMS/OS Co-Design,
Giceva et al. designed COD, a system that provides a richer
interface between OS and DBMS [16]. With this, appli-
cations can transmit special requirements and knowledge
about internal processes to the OS. Based on the System
Knowledge Base (SKB), application and OS are enabled to
exchange their knowledge about application requirements
and OS state. The OS, on the one hand, can schedule the use
of existing hardware resources more efficiently. The DBMS,
on the other hand, has the possibility to discover the specific
hardware configuration of the underlying system through a
service provided by the OS. The concept of the SKB was al-
ready introduced by the Barrelfish OS [38, 6], a multikernel
that challenges problems associated with the growing num-
ber of cores and heterogeneity. We will relate this to our
approach later in Section 6.

Scalable index data structures.. Traditionally, B-trees are
synchronized by latch-coupling, where a node’s latch is re-
leased after the child’s one is successfully acquired [7]. While
latch-coupling enables holding at a max two latches at a
time, the Blink_tree reduces this to only one [24].

Since latching has become a bottleneck for in-memory
data structures on modern hardware, research investigated
optimistic or fully latch-free procedures. Leis et al. pre-
sented Optimistic Latch Coupling, an optimization for latch-
coupling which is simple to implement but offers scalabil-
ity on less conflicted data structures [28, 26]. This concept
permits parallel read and write operations, detects modifi-
cations by a version counter and repeats the operation if
necessary. The OLFIT algorithm earlyer described a very
similar approach for B+-trees and CSB+-trees [10].

The Bw-tree, introduced by Levandoski et al., represents a
complete latch-free B-tree, focussing on many-core scalabil-
ity and cache performance [29, 42]. This is mainly realized
by applying modifications as delta records in a latch-free
manner.

3. MXTASKING

With the shift of the hardware landscape toward mas-
sively parallel, heterogeneous architectures, the expectations
toward software have become immense: software is supposed
to leverage parallelism for scalability; exploit heterogeneous
hardware for efficiency; use fine-grained synchronization for
correctness; and tune cache and memory accesses for perfor-
mance. And to make matters worse, most of these challenges
are still each developer’s responsibility, with only little as-
sistance from the system software underneath.

We argue that this is also due to the prevalent control flow
abstraction that essentially dates back to the 1960s: threads.
Threads are essentially opaque about their runtime char-
acteristics; schedulers—e.g., in operating systems—have to
guess each program’s intentions. Conversely, runtime sys-
tems tend to hide (“abstract”) most hardware details away
from application programs.

3.1 wuxTask Abstraction

A key proposition of MxTasking, therefore, is to replace
the application-facing control flow abstraction by what we
call tasks. An MxTask corresponds to a small, closed unit of
work, rather than to the sequence of straight-line code that
a thread would correspond to. With tasks as an abstrac-
tion, it becomes surprisingly natural to convey precisely the
information about application characteristics that the run-
time system needs in order to optimize resource utilization.
In MxTasking, such information can be attached to every
MxTask in the form of annotations.

A task will typically process a single (or few) data objects.
A complete, higher-level algorithm will be composed of a
(possibly large) number of MxTasks that jointly solve the
given application problem.

To illustrate the tasking concept in this paper, we will use
tree navigation as a running example. MxTasking can be
applied here by spawning a new task for every node visited
during a tree traversal. That is, each task will visit a single
tree node and spawn a new task (to process the next node)
just before it finishes. Observe how execution strategies like
morsel-based parallelism [25] naturally fit into this model.

Spawning a task is an extremely lightweight operation,
implemented using efficient assembly atomic instructions.
Spawned tasks will asynchronously be moved to a task pool,
from where the MxTasking runtime will select tasks for exe-
cution (possibly based on annotated information).

3.2 Annotation-Based Memory Prefetching

The optimization of memory access patterns is a good ex-
ample to illustrate how annotated MxTasks can significantly
ease the development effort for modern hardware, while at
the same time improving runtime efficiency.

Particularly for data processing systems, memory access
has become the key factor when it comes to efficiency and
performance. Prefetching memory contents into CPU caches
can be an excellent means to hide memory access latency
and improve performance. However, effective prefetching
is intricate to achieve: if the prefetch request is issued too
late, hardware will not have enough time to actually bring
the data into memory; if the prefetch distance is too wide,
data might already get evicted from the cache again before
it is actually used.

Prefetch requests may be issued either by hard- or soft-
ware. But while efforts have been made to teach caching
hardware the access patterns of database code [22, 41, 43,
17], hardware prefetching remains unfeasible beyond stream-
based look-aheads. Software-based prefetching was shown
to be more effective (e.g., [11, 21, 31, 34]), but depends on
substantial algorithm restructuring to work out.

In a task-based execution environment, efficient prefetch-
ing is surprisingly simple. When making scheduling deci-
sions, the MxTasking scheduler will consult the task pool,
giving it an understanding of the upcoming tasks for the
near future. Whenever tasks are annotated with the data

data cache main memory

0xB OxA 0xB 0xC 0xD

ET3 - e e
worker | mm——
\-/ task pool

prefetch task

Figure 1: Execution and prefetching of MxTasks. The worker
knows tasks that will be executed soon and prefetches both
tasks and data objects early enough to hide memory laten-
cies.

object that they access—which we assume they are, because
this is a trivial annotation to make—, MxTasking will au-
tomatically inject software prefetching instructions on the
application’s behalf.

Thereby, we catch two birds with one stone. Prefetching
becomes simple on the application end. In fact, the prefetch-
ing mechanism in MxTasking is completely transparent to
the application developer. All she needs to do is provide
proper data object annotations to MxTasks. At the same
time, the prefetching mechanism is significantly more pow-
erful than existing approaches. In contrast to hand-crafted
solutions, MxTasking will automatically schedule prefetch in-
structions even across task executions from different appli-
cations. Plus, there is now only a single point in the system
where details, such as the prefetch distance, can be config-
ured. Though not realized in our current implementation,
it is also conceivable to dynamically adapt prefetching, e.g.,
to data locality in NUMA environments.

3.3 Implementation

MxTasking is a layer between task-based applications and
the operating system.! From the application’s perspective,
spawning a task adds it to the task pool of a logical core.
This is a lock-free operation, making task spawns a very
lightweight operation.

From the operating system’s perspective, each of the Mx-
Tasking logical cores corresponds to a worker thread that
will pick tasks from the pool and execute them. In this
sense, MxTasking mediates between the task-based execu-
tion model and the thread model of the underlying operating
system. In our implementation, we further pin all worker
threads to a dedicated CPU core, which gives MxTasking
control over NUMA and locality effects.

Whenever the worker thread picks an MxTask, that task
will be executed uninterruptedly to completion. Often, tasks
will spawn further tasks. Such spawning will happen asyn-
chronously and lightweight.

The resulting task pool enables the MxTasking runtime
to already “see” upcoming tasks as well as their associated
memory objects. With this information, the scheduler can
inject prefetch instructions in-between task executions, such
that tasks will see their data already cached in the CPU

"We currently support Linux or MxKernel as the underlying
operating system.

when they start. To this end, the scheduler has to invoke two
prefetches: first, the task descriptor has to be brought into
the CPU cache, since it includes the information about as-
sociated data objects; with the task descriptor in the cache,
the scheduler read out that information and prefetch data
objects as the second step.

Figure 1 illustrates this mechanism (assuming a prefetch
distance of 1). Before executing tasko, the worker will issue
prefetch request for the descriptor of tasks. This prepares
the scheduler to prefetch data for tasks in the next iteration.
Already in the current iteration, the scheduler will prefetch
data object associated with taski, so that task: will find its
data cached when it gets executed in the next iteration.

4. ANNOTATION-BASED SYNCHRONIZA-
TION

Building parallel software has become a challenge since
hardware offers massive numbers of cores. Finding the per-
fect granularity for the scope of latches is not always triv-
ial. Tasks present an excellent base for this. They are fine-
granular by design, accessing just one or a few data objects
during execution. The developer is almost endorsed by the
use of tasks to design the software fine-grained. At the same
time, this assists the execution layer in understanding the
developer’s requirements much better. With the help of a
handful of additional information, parallel tasks can be co-
ordinated very comfortably, without the developer having
to protect explicit accesses from each other (e.g., by using
latches). Concurrency no longer becomes an enemy to be
fought, but parallelism feels natural.

MxTasking uses annotations to pass information from the
application to the execution layer. Annotating tasks with
accessed data objects and type of access (reading or writ-
ing), as well as the synchronization requirements of data
objects enables MxTasking to provide synchronization with-
out further assistance of the developer.

4.1 Integrated synchronization mechanisms

MxTasking selects the appropriate one from various tech-
niques, depending on the required parallelism of a data ob-
ject, such as parallel read operations or complete mutual
exclusion.

Latches. Spinlocks are known for their easy realization and
simple usage. As in thread-based implementations, we can
also apply spinlocks to synchronize concurrent tasks. Mx-
Tasking provides different spinlock variants. To supply mu-
tual exclusion, a simple spinlock is used, which sequences
all accesses, whether tasks are read-only or not. Given an
application that enables parallel reads on a shared object,
MxTasking chooses a reader/writer-lock instead. Acquiring
and releasing the latch is done by the worker thread. Once
the annotations of both the task next in line and corre-
sponding data object have been evaluated, the related latch
is acquired to guarantee safe access. After task execution,
it will be released.

Sequencing by scheduling. MxTasks are governed by a
run-to-completion semantic whereby all tasks scheduled to
the same task pool are implicitly sequenced. Moreover, and
this distinguishes MxTasking from other known libraries,

once dispatched, tasks are not stolen from other task pools.?
Following this, we can avoid latches for concurrent accesses
by scheduling all tasks accessing the same data object to the
same task pool.

This approach eliminates latch contention and time spin-
ning on the latch until it is consumable. At the same time,
we need to deal with an association between data objects
and task pools to balance the load throughout available com-
puting resources. To balance the load, data objects with
foreseeable frequent access can be annotated accordingly.
These are taken into account when associating data object
and task pool, ensuring the load to distribute evenly.

To give an example, consider a tree-like structure. Inner
nodes, particularly the root node, will be accessed for more
often than leaf nodes. Hence, the mapping algorithm has
to take care of access frequencies to provide load balancing
over available computing resources. Task pools, which have
(by annotation) frequently requested data objects assigned
to them, obtain a reduced total number of objects. The task
pool associated with the root node of a tree, for instance, is
linked to only few other nodes.

However, like basic spinlocks, sequencing the accesses to
a data object by scheduling represents a pessimistic syn-
chronization method, where MxTasking does not distinguish
between reading and modifying tasks.

This combination of scheduling and synchronization to
avoid latches is unique and not known to us in any other
task-based library. While load balancing across all resources
becomes a challenge, it allows us to make more efficient use
out of the data cache. Replication of data across multiple
caches will be reduced since each data object is accessed by
a distinct core.

Optimistic versioning. Avoiding latches might be a good
idea, in particular for write-heavy workloads. However, read-
operations dominate many database-related workloads. For
instance, the root node of a tree-structure modifies over
time, but most accesses will be read-only to locate the next
node on traversing the tree. Optimistic approaches have
proven their worth to benefit from parallel hardware [10,
28]. Read accesses are executed in parallel while concurrent
write accesses are protected from each other by latches. To
detect overlapping read and write operations, the resource is
versioned by a counter which increments after each modifi-
cation. Read-only procedures will check the counter before
and after reading. When the version has changed during
the access, it must be repeated. MxTasking generalizes this
concept as follows.

“Writing” annotated MxTasks modifying the same resource
are scheduled to the same task pool, avoiding latches due to
sequencing. Reading tasks, however, are free to be executed
by any worker thread. Before and after the execution of
a read-only task, MxTasking checks the version counter of
the data object. If it increased during the read operation,
the task is reset, rescheduled, and executed again at a later
time. Hence, write accesses continue to be sequenced on a
specific worker thread, while read accesses act in parallel.
The additional effort for the developer remains modest: She
only has to annotate tasks as read-only or modifying, while
MxTasking takes care of version management.

2Rather, MxTasking can steal entire task pools in order
to improve load balancing while keeping synchronization
lightweight.

SCHEDULER
Input: task to schedule

1 if task has data object d annotated

2 if d is synchronized by scheduling or task is writing:
3 L schedule task to task pool assigned to d

4 else:

5 L schedule task to local worker

6 elseif task has task pool p annotated:
7 L schedule task to p

8 else:

9 L schedule task to local task pool

producer

producer

3 if d is synchronized by scheduling:
4 | execute t // no more synchronization needed
5 elseif d is latched: // wrap latch around
6 get latch of d
; WO].'kel' 7 execute t
] H 8 release latch of d
. 9 elseif d is optimistic versioned:
10 if ¢ is reading: // annotated as reader
d worker 11 vy 4 version of d // check version before
H 12 execute t
13 v 4— version of d // ..and after read

14 if v1 # va:
B worker 15 L reset ¢

WORKER
1 foreach task t in task pool:
2 if ¢ has data object d annotated and d needs
synchronization:

// detect concurrent write

reschedule ¢

17 else: // writer are synchronized by scheduling
18 execute ¢
19 increase version of d
. |20 else: // no data object annotated or d not synchronized
toR1 L execute t

Figure 2: Interaction of scheduler and worker thread. The scheduler ensures the sequencing of writing tasks by scheduling
them to the identical task pool. The worker, however, embeds synchronization of tasks in the execution of those.

Comparable to other optimistic procedures, operations
(or tasks in our context) deleting a shared object must be
treated with special care. Hazard pointers [32] and mem-
ory reclamation [18] are general approaches to protect read
accesses while another thread frees the data at the same
time. Even if currently not realized in MxTasking, it would
be straightforward to keep track of which worker thread is
reading which (to a task annotated) data object. With this
knowledge, competing read and delete operations can be co-
ordinated to avoid faults.

4.2 Embedded task synchronization

The fine granularity of tasks in combination with anno-
tated metadata about the accessed data object, access pat-
tern, and synchronization requirements provide adequate in-
formation for MxTasking to synchronize competing tasks. As
a result, the application engineer has not to deal with con-
currency and hands it over to MxTasking. Hence, the ap-
plication logic and concurrency control are separated, which
minimizes errors.

As illustrated in Figure 2, the synchronization of tasks
is based on an interaction between scheduler and worker
thread. The scheduler ensures to place tasks in the pool of
the appropriate worker thread, depending on the synchro-
nization mechanism and access type.

The scheduler side. To sequence a set of tasks, the sched-
uler places them in the same task pool. That is necessary
when (a) optimistic versioning is applied and the task will
write to the annotated object or (b) all accesses to a data
object are synchronized by sequencing. For both cases, the
scheduler selects the task pool associated with the anno-
tated data object as a destination (lines 1-3). Otherwise,
the scheduler prefers the local task pool to reduce schedul-
ing overhead in the form of cache-coherence. Local, in this
context, means the task pool of the worker thread that pro-
duced the task, potentially while executing another task.
Exceptions to this rule are annotations that affect the
placement of tasks explicitly, for example, a required task

pool (lines 6-7). It is also conceivable to annotate particu-
lar NUMA regions to support applications building NUMA
aware software.

The worker side. The synchronization, whenever neces-
sary, is performed by the worker, embedded in the execu-
tion of the tasks. First, the worker evaluates the annotated
data object of the next task (line 2). Supposing no synchro-
nization is needed or scheduling guarantees sequencing, the
worker executes it directly (lines 21 and 3-4). Otherwise,
we distinguish between the two additional mechanisms we
discussed before. In case the accessed data object is syn-
chronized using a latch, whether it is a pure spinlock or
reader/writer-lock, the worker will acquire the latch related
to the data object before executing the task and release it
after execution (lines 5-8). Whenever possible, we will ac-
quire the latch in shared mode.

For data objects that are synchronized by optimistic ver-
sioning, the worker thread separates between reading and
writing tasks. To ensure a read data object was not mod-
ified, he checks the version before and after the execution
(lines 10-16). If the counter differs, the read access has to
be retried at a later time by scheduling the task again (lines
14-16). To make sure that the version changes at all, it is
incremented after the execution of a writing task (line 19).

S. MXTASKING IN ACTION

Utilizing tasks to design data structures and algorithms
differs in general from well-known thread-based program-
ming. MxTasking advances this style beyond the current
standard by offering annotations for prefetching and paral-
lelism. This section reviews some practical aspects of using
MxTasks for building parallel software. First of all, we il-
lustrate the simplicity of designing a latch-free, task-based
index structure, using a Blitk-tree as an example. Accord-
ingly, we will examine the relevance of memory management
regarding task-allocation and show the benefits and limita-
tions of MxTasking.

Lookup TASK
Task input: node the task accesses, key to lookup,
callback to notify on finish
1 if highkey of node < key:

// key is out of range of this node
2 next < right sibling of node
3 follow_up <— create a new task
4 annotate follow_up with next as reader
5 schedule follow-up
6 elseif node is of type inner:
// continue traversal to the leaf
next < child for key in node
8 follow_up < create a new task
9 annotate follow_up with next as reader
10 schedule follow_up
11 else:
// found correct leaf, read value
12 v < get value of key in node
13 notify caller with v

Figure 3: Lookup operation in a task-based Blink-tree. Since
MxTasking conducts synchronization, the application logic
has not to deal with concurrent access.

5.1 Building a task-based B'i"k-tree

Whereas thread-based implementations result in synchro-

nous method calls most of the time, MxTasks are asynchronous.

For instance, instead of calling a lookup method on a data
structure that returns after the wanted key-value pair is
found, scheduling a Lookup Task that notifies the caller with
the result is the way to go.

Tasks only have a limited view of the system. Every Mx-
Task solely performs on a single tree node, taking the appro-
priate node and the requested key as input parameters. The
pseudocode in Figure 3 illustrates an example of implement-
ing a lookup task. On every step, it examines whether the
node it is working on is an inner or a leaf node. If the node
is of type inner, the task has to determine the next node to
traverse by applying a binary search (line 7). However, par-
allel insert operations may have modified the content of the
node since the lookup task was scheduled. Sometimes, one
of these insertions splits the node. At that point, a travers-
ing task may have missed the direct pointer to the node
containing the searched key for now. For that reason, every
task checks the key-range of the given node and traverses
to the right sibling when necessary (lines 2-5). That can
also occur in traditional (thread) implementations and is—
in general—part of the Blink-tree algorithm. Nevertheless, it
is slightly more likely to happen using asynchronous models
since the time between node accesses during a traversal may
be increased.

For continuing the traversal, the task instantiates and
schedules a follow-up task, annotated with the next node
(lines 8-10). Labeling the follow-up task as a reader (line 9)
enables MxTasking to execute it in parallel with other read-
ing operations. In contrast, a thread-based implementation
will call the child method in a loop until reaching a leaf
node. Given a task executed on a leaf, it reads the value
and notifies the caller (lines 11-13). A callback function,
for instance, responds to a client’s request in an end-to-end
setting.

Figure 3 shows that an MxTask focusses on the application
logic but contains no explicit mechanism for concurrency

Tree lookup

3 ‘/,, ‘ application
s 7 MxTasking =<9
E NN allocation
S 2 NN\ ‘ \ \‘
g
o
e 1r
N4

0

O,
”’aflowf,Ee U alloe, ‘o

Figure 4: Aggregated CPU cycles for a lookup on a task-
based tree, using malloc and our allocator for task alloca-
tion.

control, except annotations. The latter are used by MxTask-
ing to realize the synchronization of competing tasks, as
discussed in Section 4.

Implementing the corresponding InsertTask is straight-
forward. Instead of reading the value from the leaf node,
it performs the insertion. If the operation causes a node-
split, the InsertTask schedules a follow-up task that places
the pointer to the newly created node in the parent node
or produces a new tree root when the split node was the
root. Until the pointer is attached to the parent node, the
new node can be reached by following the sibling pointer, as
explained before. Even the insert operation requires no ex-
plicit synchronization since the engineer annotates the task
as a writer. That hints MxTasking to initiate the correspond-
ing synchronization step, such as taking the writer latch or
incrementing the version counter.

5.2 Task Allocation

As seen in the previous Section, MxTasks will be created
and deleted frequently. Each operation on a tree structure,
for example, corresponds to a separate task, which spawns
several subsequent tasks. Hence, the allocation of those is a
central component. Using the global heap may turn into a
bottleneck because many cores will create new tasks at the
same time.

Figure 4 demonstrates the CPU cycles spend during a sin-
gle lookup on a task-based tree, including the traversal from
the root to the leaf node. Allocating tasks using the system’s
malloc interface takes around 620 cycles per operation on a
48 core machine, which constitutes 21% of total consumed
CPU cycles.

To overcome this costly aspect, we have designed a multi-
level allocator, mainly inspired by Hoard [8]. Hoard fo-
cusses on fast, cache-aware, and scalable allocation. Ded-
icated memory heaps for every processor enable scalability.
Threads allocate memory from their local processor heap
instead of calling the system-wide malloc interface to re-
quest memory from the OS. Each processor heap holds a
buffer of free memory and delegates it to threads that want
to allocate memory. The processor heaps, in turn, demand
memory from the OS when the local buffer becomes empty.
That reduces synchronization costs between processors.

We extend this concept by supplying a third layer to the
allocation stack: A separated heap per logical core that will
be the point of contact for task allocation. Figure 5 outlines
this approach. Whenever a task wants to create a new one,

global heap

numaallocJ w J w
numa_free
_onnode

processor heap
I N .

processor heap
I N .

Figure 5: By using multiple levels for task allocation, syn-
chronization is reduced and tasks are allocated cache-aware.

it requests the local per-core heap for memory. Allocations
on the per-core heap do not need any synchronization be-
cause tasks will not be interrupted. Free memory blocks on
this heap are stored within a LIFO list. Implicitly, the allo-
cator places freed blocks at the top of the list (2)). Thus,
an allocation will use recently freed memory blocks, which
increases the chance that the allocated task is still available
in the CPU cache.

Reducing inter-processor communication and providing
NUMA aware allocation is a trade-off. Figure 5 shows a task
(M) that is allocated on one core but deleted on a different
one. The free block will be pushed to the core-heap where
the task is deleted. In the worst case, where a task is allo-
cated and deleted among cores located in different NUMA
regions, this shuffles memory blocks across them. However,
we minimize synchronization and implicit communication
costs between them.

At the time a core heap runs out of memory, it will request
a new memory block from the processor heap. In turn, it
will allocate memory from the global heap in a NUMA aware
manner, when the processor heap has no memory in stock.
As a result, memory management for tasks requires only
a single latch in case of allocating memory from processor
heap, reinforcing scalability. However, by reusing deleted
tasks, this issue occurs rarely. Compared to using malloc,
Figure 4 demonstrates that our multi-level allocator has al-
most no overhead. Only 45 cycles are spent in allocating
tasks for a single tree-lookup.

5.3 Discussion

MxTasks provide an elegant way to design and build highly
parallelized data structures and applications by offering im-
plicit synchronization. In widespread paradigms, like threads
or other task-based approaches, concurrency control is often
error-prone and results in complex source code. Associat-
ing data objects and tasks facilitates MxTasking to manage
concurrency control. That enables the developer to focus
on application logic instead of fighting concurrency—almost
getting parallelism as a bonus. With MxTasks, even the com-
plex task of hiding memory latencies with software-based
prefetching feels natural.

Still, the utilization of tasks-based programming is not as

DBMS

' requirements '

| | | | - E}(
L [4
§] J'] % -
L L =lae)
ot T eo
ol | LB
A | {45

' possibilities '

(O}
hardware

Figure 6: The interface between possibilities of the OS and
requirements of the DBMS is narrow and often artificially
supported by external libraries.

widespread as threads. The preferred (and most efficient)
granularity of a task is not discussed in general by this work.
However, the granularity has a notable impact on schedul-
ing costs. As tasks become more fine-grained, they can be
parallelized more accurately—but the scheduling costs also
increase. Even since these are kept low by using a latch-
free data structure for managing MxTasks, it is still an ad-
ditional expense. Especially, when dispatching tasks from
one NUMA region to another, costs in the form of cache-
coherence and atomic instructions arise. These arrises, in
particular, when we use the scheduling mechanism to syn-
chronize competing tasks—but the avoidance of latches is
an advantage (we will show in Section 7).

Nevertheless, the MxTask-based approach offers many pos-
sibilities that simplify the development of parallel data struc-
tures and applications. By clever use of annotations and
implicit synchronization, as well as automatic prefetching of
data objects, the mentioned disadvantages can be compen-
sated.

6. THE VISION OF MXKERNEL

So far, we have considered MxTasking primarily as an ad-
ditional layer on top of the OS. We argue that MxTasks can
also be used as the elemental abstraction for control flows—
replacing traditional threads altogether. In this Section, we
present our vision of a DBMS/OS Co-Design.

To achieve optimal performance, high scalability, and ro-
bustness, the interaction of OS and DBMS is essential. Gen-
eral-purpose OSs try to provide a platform for a wide range
of hardware, including various CPU architectures and dif-
ferent co-processors such as GPUs and FPGAs. To abstract
these diversities, the OS unifies interfaces to the underlying
system. As a side effect, it hides special features of indi-
vidual devices and computing units for the user. Figure 6
illustrates how the database community posed this problem
of interaction between DBMS and OS: OSs have all pos-
sibilities provided by the underlying hardware but do not
know about the requirements of the applications running on
top. Meanwhile, the DBMS knows all about the internal
process and requirements. For example, the data distribu-
tion across the NUMA regions, which task accesses which
data and the priority of those. Due to abstraction-related
unified interfaces, the DBMS can not to share this informa-
tion with the OS. Using external libraries like 1ibnuma [20]
or extended interfaces for GPUs like OpenCL [39] allows ap-

DBMS (O]

| |
= =
} |

CPU CPU co-
processor

memory memory

Figure 7: The architecture of MxKernel: Both OS and
DBMS run on top of the bare-metal runtime and use Mx-
Tasks for control-flow abstraction.

plications to gain a closer view and more control over the un-
derlying hardware components. The library 1ibnuma, for ex-
ample, enables NUMA aware memory allocation and thread
scheduling. Nevertheless, the usage feels more like a crutch
and does not solve the problem in general.

With our bare-metal platform MxKernel, we address the
issue of insufficient interfaces between DBMS and OS. Mx-
Kernel acts as a lightweight layer between the hardware
and performance-critical applications, such as DBMSs. As
shown in Figure 7, both OS and DBMS run as equal peers on
top of MxKernel. As a result, the DBMS can interact much
more with the hardware and does not have to implement
services based on OS components. In contrast to “tradi-
tional” environments, where the DBMS runs on top of the
OS, both can share data structures and algorithms. That
applies, for example, to index structures such as B-Trees,
which are used not only for indexing data in DBMSs but also
for file systems, e.g., Btrfs [36]. Moreover, the DBMS can
implement critical services on its own responsibility, for ex-
ample, memory and I/O management. Commercial systems
such as DB2 [1] and Oracle [2] often re-implement services
provided by the OS on top of them. That is not necessary
anymore by using such a Co-Design offered by MxKernel.

In addition to exploring the hardware components present
in the system, MxKernel primarily offers a lightweight ab-
straction of control flows. For this, the MxTasking intro-
duced in Section 3 is utilized with one worker instantiated
on each logical CPU core. Applications running on top of
MxKernel employ MxTasks to accomplish their jobs. Due to
the guaranteed ability to distribute tasks to a specific hard-
ware resource like a particular CPU core, the applications
have high control capabilities. Besides the already intro-
duced advantages of MxTasks, these offer an elegant way to
abstract heterogeneity.

Modern servers are often equipped with co-processors such
as GPUs and FPGAs. Those processing units are used in the
context of DBMS to solve specialized problems, e.g., query
compilation on GPUs [15]. However, the software must be
explicitly adapted to the use of these devices. Designing
software in a way that all available computing resources can
be used as efficiently as possible is complex and requires ex-
ternal libraries and frameworks. MxTasks exploit a way to
use that heterogeneous hardware. Developers can provide
implementations for various devices such as GPU and CPU
for an MxTask. Based on execution times, which can be an-

notated by the developer, and the load factors of possible
processing units, MxKernel will schedule the tasks to devices.
For example, when an MxTask has implementations for both
CPU and GPU, where the GPU variant promises more per-
formance. MxKernel could execute the CPU variant of the
task when other tasks use the GPU with high frequency.

Other works have already discussed and focused on closer
cooperation between OS and DBMS (see related work in
Section 2). COD [16] is a well-known and proven example.
To offer a broader interface, COD provides a central infras-
tructure with detailed information about the hardware and
the state of the OS. Applications running on top of the
OS can use this central component to share requirements of
the application-state and hints with the OS. This, in turn,
can use this knowledge for resource allocation, e.g., memory
and computing resources. The equivalent in MxKernel may
the usage of annotated tasks. Those annotations hints the
kernel with the application requirements that MxKernel also
uses for resource allocation. As both, the application and
the OS, run as equal peers on top of the runtime, they can
benefit from each other’s services and data structures. Since
the application is close to the “bare iron”, it has a detailed
view of the hardware right from the very beginning. In con-
trast to COD, not the OS provides information about the
system. Rather, it is MxKernel that offers equal privileges
to all.

7. EXPERIMENTAL EVALUATION

In this section, we evaluate different aspects of MxTasking
and examine the potential of tasks. To study the behavior
and potential of the tasking approach in real-world scenar-
ios, we use an in-memory Blink-tree implementation that is
indicative of the behavior of modern in-memory database
engines. Our implementation of the data structure follows
state-of-the-art principles.

7.1 Environment

All benchmarks are evaluated on a two-socket Intel Xeon
Gold 6226 machine, clocked at 2.7 GHz. Each of the two
processors holds 12 cores, 24 hardware threads, and 1 x 32
kB L1, 12 x 1 MB L2, and 1 x 19.25 MB L3 data caches.
The cores are ordered by NUMA regions, whereas the first
24 logical cores are located in the first region, the next 24 in
the second. To be precise, the first 12 cores of each region
are physical cores. Starting from then, hyperthreading cores
are added step by step.

As a workload, we rely on the Yahoo! Cloud Serving
Benchmark (YCSB) [13], using Workload a and two phases:
Filling the tree with 100 million insert operations and per-
forming 100 million lookups afterward. The tree stores pairs
of 64b keys and 64b values within 1kB sized nodes.

Ubuntu 20.04 was used as OS, clang 10.0.0 as compiler.
All benchmarks are compiled with the highest optimization
level. Because all threads are pinned to corresponding cores,
we disabled the system’s NUMA balancing option for all
experiments. This way, the kernel will not migrate memory
or threads between the regions.

7.2 Automatic prefetching

As discussed in Section 3.2, the fine granularity of tasks
allows an exact prediction on which data an MxTask will ac-
cess. The application engineer annotates tasks with accessed

Optimistic (No Prefetching)
80 80

Optimitistic + Prefetching

o
§ 70 i lookup —+— 70 -
2 60 - insert —%— 60 -
S 50+ 50
5 40 40 -
g 30 30 -
é_ 20 - 20 -
10 - 10
E 0 1 1 1 0 1 1 1
1 12 24 36 48 1 12 24 36 48
cores cores
(a) Throughput
- Optimistic (No Prefetching) Optimitistic + Prefetching
3 5 5
[} lookup —+—
5 4T insert —%— 4r
2 3 3
s
22 M 2 M
2
e 1 1y
g 0 1 1 1 0 1 1 1
M 1 12 24 36 48 1 12 24 36 48
cores cores
(b) Memory stalls per operation
Optimistic (No Prefetching) Optimitistic + Prefetching
g 25 25
s
2 2 X006 5050 2 m
=} N
E 1.5 1.5
g 1r 1
E 05 [lookup —— 05
| lnselrt _)hl 1 1 1 1
g o0 0
1 12 24 36 48 1 12 24 36 48
cores cores

(c) Executed instructions per operation

Figure 8: Impact of software-based prefetching for the Mx-
Task-based Blink-tree.

data objects. Besides, the scheduler has an ordered view of
the next tasks in line.

This knowledge is used to pre-load tasks itself and anno-
tated data from memory into the higher-level CPU cache,
allowing to run worker threads right away, without waiting
for memory. Figure 8 compares the Blitk-tree build on Mx-
Tasking with and without the automatic prefetching mech-
anism. Since the benchmark is memory bound for the most
times, automatically prefetching the nodes of the tree results
in 48% more lookups and 15% more inserts per second, as
demonstrated in Figure 8a. Especially the traversal of the
tree, which bases on binary search, benefits from this mech-
anism. Because the search creates a hard-to-predict access
pattern for the CPU, hardware prefetching has less effect.

The impact of software-based prefetching becomes partic-
ularly visible when observing memory stalls, shown in Fig-
ure 8b. Memory stalls are cycles in which the CPU actively
waits for memory until it is available in the cache before
continuing execution. The prefetching mechanism of Mx-
Tasking reduces the number of those stalled cycles, result-
ing in increased throughput. This effect is, in particular,
observable in read-only benchmarks. Here, the number of
memory stalls is reduced more than a half. The write-heavy
workload also benefits with 30 % fewer stalls.

Preloading the memory into the cache reduces the number
of stalls but requires prefetch instructions to be executed.

Figure 8c demonstrates the number of performed instruc-
tions per operation. Prefetching results in about 228 addi-
tional instructions per lookup and 300 per insert operation,
compared to the non-prefetching run. The difference results
from the dynamics of the tree during the fill phase. Due to
a node-split, a task may not be able to traverse directly but
has to “climb” along a tree-level first. Nevertheless, these
additional instructions reduce the memory stalled cycles to
such an extent that prefetching still pays off.

7.3 Comparison of tasks and threads

We argue that MxTasks offer a superior abstraction level
to build scalable software for modern and future many-core
hardware. To study this hypothesis, we will compare dif-
ferent programming models, libraries, and synchronization
mechanisms using the Blink-tree for a real-world scenario.
In addition to MxTasking, we also implemented the Blink
tree on top of p_threads and the tasking library Intel TBB,
which pursues similar goals as MxTasking. Besides, we evalu-
ate three different techniques for synchronizing parallel con-
trol flows: Sequencing of all accesses to a node, pessimistic
latches for parallel reads and exclusive writes, and an opti-
mistic approach. Figure 9 shows the results for all program-
ming models and synchronization procedures. We will first
examine the various programming models individually.

MxTasking. Figure 9a presents the results for filling and
reading an MxTask-based Blink-tree. We evaluated three dif-
ferent synchronization methods, described in Section 4. The
approach called Scheduling (left) maps each data resource,
e.g., a tree node, to a specific task pool. The scheduler
dispatches all tasks accessing a node to the assigned one.
Hence, tasks reading or writing the same tree node are im-
plicitly sequenced, because MxTasks will not be interrupted
during execution. That enables a parallelization level similar
to spinlocks, where each node is accessed exclusively by one
thread. However, in contrast to spinlocks, scheduling elimi-
nates active waiting by avoiding latches due to implicit syn-
chronization of concurrent control-flows. Furthermore, this
mechanism exploits the CPU cache more efficiently, since a
data object is not replicated in different caches, but is only
ever occupied by the very same core. The results show that
this synchronization method scales up to 10 cores with 8.2
million operations per second (both reads and writes) and
decreases slightly afterward. As soon as the second NUMA
region comes into play, the throughput decreases stronger.
That is due to the high effort caused by the task-scheduling,
which is realized by an atomic exchange instruction to push
tasks to task-pools. In particular, the core owning the task
pool associated with the root node gets highly frequented
by all other. That causes overhead due to cache-coherence
since the root is the starting point for all operations.

A similar factor is observable when using reader/writer-
locks, shown in Figure 9a (center). This way, tasks are
primarily dispatched to the core they are produced by to
minimizes overhead by scheduling. Moreover, reader/writer-
locks enable parallel reads that increases the throughput.
However, when using the second NUMA region, the through-
put decreases again. In this case, the additional effort for
keeping the latch variable coherent has a negative effect.
The maximum is reached at 12 million lookups and 9.3 mil-
lion inserts per second, utilizing 22 logical cores.

Other works have already pointed out the advantages of

optimistic synchronization [10, 28]. MxTasking implements
this approach by allowing any data objects to be versioned.
Scheduling reading tasks to the local pool avoids additional
overhead. To prevent concurrent write operations to the
same data object, these are still synchronized by scheduling.
However, many tasks in the Blink-tree benchmark, even for
insert operations, are readers until they reach a leaf node to
insert a value or an inner node to place a pointer to another
node. With this synchronization strategy, we gain more than
74 million lookups and 35 million inserts per second. The
tasks benefit, especially, from the possibility of prefetching
data objects so that they are already found in a local cache
when accessed.

p-threads. We present the results for the Blink-tree-bench-
mark built on top of traditional threads in Figure 9b. Uti-
lizing spinlocks for sequencing all accesses to one node ends
up with a throughput of 3.6 million lookup operations per
second at four cores. After that, the throughput decreases
steadily using more than four cores because of cache-cohe-
rence overhead. Using reader/writer-locks, to enable par-
allel read operations to a node, attain 9.3 million insert
operations and 9.8 million lookup operations per second
with 24 cores and decreases afterward. We borrowed the
reader/writer-lock implementation from Facebook’s folly 1i-
brary®.

According to expectation, optimistic synchronization ac-
complishes to the highest (thread related) throughput, where
reading operations read the version of a node before and
after read while writing procedures take a latch to be mu-
tually exclusive. Here, we measure 42.7 million inserts and
59.3 lookups per second to the Blitk-tree using all available
48 logical cores. This result is comparable to the Btree-
OLC [26], which ends up with 39.8 million inserts and 54.7
million lookups per second on our hardware.

Intel TBB. As a second task-based approach, we evaluated
a Blink_tree based on Intel TBB using version 2020 Update
2. The tasks implementing lookup and insert operations are
build similar to MxTasking, except synchronization, which is
part of the application layer since TBB does not include au-
tomatic synchronization. Figure 9c presents the results. For
concurrency control, we use on-board synchronization prim-
itives: speculative_spin_mutez for full mutual exclusion on
node-level and speculative_spin_rw_mutez for enabling par-
allel read operations. Both primitives provide speculative
latching based on HTM, which is supported by our hard-
ware. We found that the speculative mutexes delivered by
TBB produced the best performance.

Using the speculative_spin_mutex, which is described as
scalable by TBB documentation, the tree-benchmark gains
the highest throughput with 5.4 million lookups per second
at six cores. However, when applying more computing re-
sources, especially those from the second NUMA region, the
throughput decreases.

In contrast, the speculative_spin_rw_mutex enables parallel
reads. With this, the benchmark scales up to 25.8 million
insert and 35 million lookup operations per second using all
available 48 logical cores.

Utilizing the optimistic approach as we did before, using
threads as abstraction level, the throughput increases to 32.2

Shttps://github.com/facebook/folly

10

million inserts and 42.3 million lookups per second. Again,
we were required to build an optimistic synchronization on
top of TBB tasks within the application layer.

Comparison. Putting it all together, Figure 9 illustrates
the differences between the programming models and syn-
chronization strategies. When enabling only sequential ac-
cess to each node, both reading and writing do not scale
on any of the evaluated platforms. That is not surpris-
ing since many other works already investigated into latches
and approaches to read and write data structures in paral-
lel. Although MxTasks avoids latching by scheduling, we can
observe two bottlenecks preventing this approach to scale.
First of all, every operation starts by reading the root node
of the tree. Even when all subsequent steps run in par-
allel, by distributing tasks to the other nodes and implicit
more CPU cores, the inherently sequential access to the root
bounds the throughput. This also applies to (speculative)
spinlocks. Secondly, pushing tasks to “external” task pools
of other cores involves overhead due to cache-coherence, even
if the operation itself is atomic. Especially the task pool,
on which all tasks concerning the root are dispatched, is
affected since many producers try to (atomically) dispatch
tasks in parallel. The effect is similar to latches, where many
threads (or TBB tasks) want to modify the same cache line
to acquire the latch of the root.

Using RW-locks as an alternative latching approach, for
enabling parallel reads but separate writes to nodes, the
operations are most notably bound by latching overhead,
which is due to cache-coherence. On the MxTasking side,
we can observe a benefit of 22% more lookups per sec-
ond compared to threads. Nevertheless, both programming
models do not scale properly. However, using speculative
reader/writer-locks as done by TBB, we notice less over-
head due to latching and thus better performance, up to
25.3 million inserts, and 35.4 million lookups per second.
That is more than 2.9x compared to MxTasking and 3.6x
to threads.

All three compared libraries and models perform best
when using optimistic methods for synchronization. Nev-
ertheless, some differences are observable in this context.
While p_thread-based implementation provides the best re-
sults for insert operations with 42.7 million inserts per sec-
ond, MxTasking outperforms threads and TBB providing 74
million lookups per second.

Figure 10 shows a cycle-accurate comparison between the
approaches. We distinguish between effort for traversing the
tree, inserting or searching for a value, cycles in kernel mode,
e.g., syscalls, and additional effort for the libraries MxTask-
ing and Intel TBB. For MxTasking, we further differentiate
between complexity for prefetching and other MxTasking re-
lated work, most notably scheduling. We recorded those
details using Intels VTune™ Profiler [3].

The results prove the effectiveness of the prefetching mech-
anism used by MxTasking. Traversing the tree requires sig-
nificantly fewer cycles when applying MxTask, compared to
threads and TBB tasks. However, we even observe a notice-
able amount of time spent on prefetch instructions, which,
strictly speaking, should be added to the time of traversal.
During the insert phase, we notice several cycles expended
to MxTasking. That is primarily the effort for scheduling
tasks that are moved from one core to another to sequence
write operations. Also, the TBB scheduler involves some

https://github.com/facebook/folly

Scheduling + Prefetching

30 -

M operations / second

35 - lookup —+—
insert —>—

cores

Spinlock

M operations / second

M operations / second

RW-lock + Prefetching

cores

(a) MxTasking

RW-lock

w W
o U
T

N
o
I

12 24 36 48

cores

(b) p-thread

Speculative RW-mutex

12 24 36 48

cores

(c) Intel TBB

Optimistic + Prefetching

cores

Optimistic

cores

Optimistic

cores

Figure 9: Comparing the throughput of different programming models and libraries for a Blink-tree-benchmark.

MxTasking: Optimistic + Prefetching

5
g
S 4r N\
© NN\
5 \\\\\\\
a 3F NN\
o AR
<
1]
v 2
<5 RN
z
x 17

0

insert lookup

Figure 10: Detailed, cycle-based analysis

abstraction.

p_thread: Optimistic

Intel TBB: Optimistic

insert

lookup

11

insert

lookup

traversing tree
insert/lookup
system
TBB tasking EE]
MxTasking [~
prefetching

of Blink_tree implementations using MxTasking, threads, and TBB for control-flow

additional work, which we are not able to break down more
precisely. We assume that this is an expense for load bal-
ancing and task stealing.

To summarize, we believe that the software-controlled pre-
fetching of data objects, which is unique to the MxTask con-
cept, offers considerable increases in throughput. Manually
integrated prefetching into other approaches such as threads
and TBB requires considerably more effort on the part of the
application engineer and possibly restructuring of the data
structures.

8. CONCLUSIONS

In this paper, we presented MxTasking, a task-based frame-
work with run-to-completion semantic. The unique selling
point of MxTasking is given by task-annotations, which of-
fers the algorithm engineer to easily transfer knowledge from
application level to the control-flow abstraction. Hence, the
tasking runtime hides memory latencies by loading soon-
to-be-accessed data into CPU caches, without the inter-
vention of the engineer. Furthermore, appropriately using
fine-grained tasks in combination with task- and data ob-
ject annotations opens up the possibility to design parallel
data structures and algorithms, without exposed synchro-
nization. Requirements of data object synchronization, e.g.,
exclusive read/write, as well as the task’s access intention,
enable MxTasking to choose the most efficient synchroniza-
tion technique. As a result, MxTasking eases the develop-
ment of latch-free data structures.

Moreover, we presented our vision of MxKernel, a bare-
metal runtime for DBMS/OS Co-Design. MxKernel provides
a thin layer for both DBMS and OS running on top. This
way, mutually needed data structures can be shared with-
out any need for the DBMS to bypass the OS. Instead of
traditional threads, MxTasks form the abstraction for work
items.

The first results of an MxTask-based key-value store pro-
mise great potential on modern and future many-core hard-
ware. Using a Blink-tree as the foundation, MxTasks outper-
form classical threads by 25% more lookups per second.

9. ACKNOWLEDGMENTS

This work was supported by DFG, Deutsche Forschungs-
gemeinschaft, grant number TE 1117/2-1.

10. REFERENCES

[1] The DB2 UDB memory model.
https://www.ibm.com/developerworks/data/
library/techarticle/dm-0406qi/, June 2004. Online
available; accessed at 02/04/2020.

[2] Database Administrator’s Guide.
https://docs.oracle.com/database/121/ADMIN/
memory . htm#ADMIN00207, July 2017. Online available;
accessed at 02/04,/2020.

[3] Intel® VTune™ Profiler.
https://software.intel.com/content/www/us/en/
develop/tools/vtune-profiler.html, May 2020.
Online available; accessed at 22/06/2020.

[4] C. Augonnet, S. Thibault, R. Namyst, and P.-A.
Wacrenier. StarPU: A unified platform for task
scheduling on heterogeneous multicore architectures.
In European Conference on Parallel Processing, pages
863—-874. Springer, 2009.

12

[5] T. Bang, I. Oukid, N. May, I. Petrov, and C. Binnig.
Robust Performance of Main Memory Data Structures
by Configuration. In Proceedings of the 2020
International Conference on Management of Data,
pages 1651-1666, 2020.

[6] A. Baumann, P. Barham, P.-E. Dagand, T. Harris,

R. Isaacs, S. Peter, T. Roscoe, A. Schiipbach, and

A. Singhania. The multikernel: a new OS architecture
for scalable multicore systems. In Proceedings of the
ACM SIGOPS 22nd symposium on Operating systems
principles, pages 29—-44. ACM, 2009.

[7] R. Bayer and M. Schkolnick. Concurrency of
operations on B-trees. Acta informatica, 9(1):1-21,
1977.

[8] E. D. Berger, K. S. McKinley, R. D. Blumofe, and
P. R. Wilson. Hoard: A scalable memory allocator for
multithreaded applications. ACM Sigplan Notices,
35(11):117-128, 2000.

[9] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E.

Leiserson, K. H. Randall, and Y. Zhou. Cilk: An

efficient multithreaded runtime system. J. Parallel

Distributed Comput., 37(1):55-69, 1996.

S. K. Cha, S. Hwang, K. Kim, and K. Kwon.

Cache-conscious concurrency control of main-memory

indexes on shared-memory multiprocessor systems. In

VLDB, volume 1, pages 181-190, 2001.

S. Chen, A. Ailamaki, P. B. Gibbons, and T. C.

Mowry. Improving hash join performance through

prefetching. ACM Transactions on Database Systems

(TODS), 32(3):17—es, 2007.

G. Contreras and M. Martonosi. Characterizing and

improving the performance of intel threading building

blocks. In 2008 IEEE International Symposium on

Workload Characterization, pages 57-66. IEEE, 2008.

B. F. Cooper, A. Silberstein, E. Tam,

R. Ramakrishnan, and R. Sears. Benchmarking cloud

serving systems with YCSB. In Proceedings of the 1st

ACM symposium on Cloud computing, pages 143—154.

ACM, 2010.

K.-F. Faxén. Wool-a work stealing library. ACM

SIGARCH Computer Architecture News,

36(5):93-100, 2008.

H. Funke, S. Bref}, S. Noll, V. Markl, and J. Teubner.

Pipelined query processing in coprocessor

environments. In Proceedings of the 2018 International

Conference on Management of Data, pages 1603—-1618.

ACM, 2018.

J. Giceva, T.-1. Salomie, A. Schiipbach, G. Alonso,

and T. Roscoe. COD: Database/Operating System

Co-Design. In CIDR, 2013.

N. Hardavellas, M. Ferdman, B. Falsafi, and

A. Ailamaki. Reactive NUCA: near-optimal block

placement and replication in distributed caches. In

Proc. of the 86th annual international symposium on

Computer Architecture, pages 184-195. ACM, 2009.

T. E. Hart, P. E. McKenney, A. D. Brown, and

J. Walpole. Performance of memory reclamation for

lockless synchronization. J. Parallel Distributed

Comput., 67(12):1270-1285, 2007.

R. Johnson, I. Pandis, N. Hardavellas, A. Ailamaki,

and B. Falsafi. Shore-MT: a scalable storage manager

for the multicore era. In Proceedings of the 12th

(10]

(11]

(12]

https://www.ibm.com/developerworks/data/library/techarticle/dm-0406qi/
https://www.ibm.com/developerworks/data/library/techarticle/dm-0406qi/
https://docs.oracle.com/database/121/ADMIN/memory.htm#ADMIN00207
https://docs.oracle.com/database/121/ADMIN/memory.htm#ADMIN00207
https://software.intel.com/content/www/us/en/develop/tools/vtune-profiler.html
https://software.intel.com/content/www/us/en/develop/tools/vtune-profiler.html

[34]

[35]

International Conference on Extending Database
Technology: Advances in Database Technology, pages
24-35. ACM, 2009.

A. Kleen. A numa api for linux. Nowvel Inc, 2005.

O. Kocberber, B. Falsafi, and B. Grot. Asynchronous
memory access chaining. Proc. VLDB Endow.,
9(4):252-263, 2015.

D. Kroft. Lockup-free instruction fetch/prefetch cache
organization. In Proc. of the 8th annual symposium on
Computer Architecture, pages 81-87. IEEE Computer
Society Press, 1981.

A. Kukanov and M. J. Voss. The Foundations for
Scalable Multi-core Software in Intel Threading
Building Blocks. Intel Technology Journal, 11(4), 2007.
P. L. Lehman and S. B. Yao. Efficient locking for
concurrent operations on B-trees. ACM Transactions
on Database Systems (TODS), 6(4):650-670, 1981.
V. Leis, P. Boncz, A. Kemper, and T. Neumann.
Morsel-driven parallelism: a NUMA-aware query
evaluation framework for the many-core age. In
Proceedings of the 2014 International Conference on
Management of Data, pages 743-754. ACM, 2014.

V. Leis, M. Haubenschild, and T. Neumann.
Optimistic Lock Coupling: A Scalable and Efficient
General-Purpose Synchronization Method. IEEE Data
Eng. Bull., 42.1:73-84, 2019.

V. Leis, A. Kemper, and T. Neumann. Exploiting
hardware transactional memory in main-memory
databases. In 2014 IEEE 30th International
Conference on Data Engineering, pages 580-591.
IEEE, 2014.

V. Leis, F. Scheibner, A. Kemper, and T. Neumann.
The ART of practical synchronization. In Proceedings
of the 12th International Workshop on Data
Management on New Hardware, pages 1-8, 2016.

J. J. Levandoski, D. B. Lomet, and S. Sengupta. The
Bw-Tree: A B-tree for new hardware platforms. In
29th IEEE International Conference on Data
Engineering, pages 302-313. IEEE, 2013.

D. Makreshanski, J. J. Levandoski, and R. Stutsman.
To lock, swap, or elide: On the interplay of hardware
transactional memory and lock-free indexing. Proc.
VLDB Endow., 8(11):1298-1309, 2015.

P. Menon, T. C. Mowry, and A. Pavlo. Relaxed
operator fusion for in-memory databases: Making
compilation, vectorization, and prefetching work
together at last. Proc. VLDB Endow., 11(1):1-13,
2017.

M. M. Michael. Hazard Pointers: Safe Memory
Reclamation for Lock-Free Objects. IEEE Trans.
Parallel Distrib. Syst., 15(6):491-504, 2004.

G. Psaropoulos, T. Legler, N. May, and A. Ailamaki.
Interleaving with coroutines: a practical approach for
robust index joins. Proc. VLDB Endow.,
11(CONF):230-242, 2017.

G. Psaropoulos, T. Legler, N. May, and A. Ailamaki.
Interleaving with coroutines: a systematic and
practical approach to hide memory latency in index
joins. The VLDB Journal, 28(4):451-471, 2019.

J. Reinders. Intel threading building blocks: outfitting
C++ for multi-core processor parallelism. O’Reilly

13

(36]

37]

(38]

(40]

41]

(42]

(43]

Media, Inc., 2007.

O. Rodeh, J. Bacik, and C. Mason. Btrfs: The linux
b-tree filesystem. ACM Transactions on Storage
(TOS), 9(3):9, 2013.

K. Sakamoto and T. Furumoto. Grand central
dispatch. In Pro Multithreading and Memory
Management for iOS and OS X, pages 139-145.
Springer, 2012.

A. Schiipbach, S. Peter, A. Baumann, T. Roscoe,

P. Barham, T. Harris, and R. Isaacs. Embracing
diversity in the Barrelfish manycore operating system.
In Proceedings of the Workshop on Managed
Many-Core Systems, volume 27, 2008.

J. E. Stone, D. Gohara, and G. Shi. OpenCL: A
parallel programming standard for heterogeneous
computing systems. Computing in Science &
Engineering, 12(3):66, 2010.

P. T6ziin and H. Kotthaus. Scheduling Data-Intensive
Tasks on Heterogeneous Many Cores. IEEE Data Eng.
Bull., 42.1:61-72, 2019.

J. Tse and A. J. Smith. CPU cache prefetching:
Timing evaluation of hardware implementations. I[EEE
Transactions on Computers, 47(5):509-526, 1998.

Z. Wang, A. Pavlo, H. Lim, V. Leis, H. Zhang,

M. Kaminsky, and D. G. Andersen. Building a bw-tree
takes more than just buzz words. In Proceedings of the
2018 International Conference on Management of
Data, pages 473-488, 2018.

T. F. Wenisch, M. Ferdman, A. Ailamaki, B. Falsafi,
and A. Moshovos. Making address-correlated
prefetching practical. IEEE micro, 30(1):50-59, 2010.

	Introduction
	Background and Related Work
	MxTasking
	MxTask Abstraction
	Annotation-Based Memory Prefetching
	Implementation

	Annotation-Based Synchronization
	Integrated synchronization mechanisms
	Embedded task synchronization

	MxTasking in Action
	Building a task-based Blink-tree
	Task Allocation
	Discussion

	The vision of MxKernel
	Experimental evaluation
	Environment
	Automatic prefetching
	Comparison of tasks and threads

	Conclusions
	Acknowledgments
	References

