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ABSTRACT
The hardware environment has changed rapidly in recent years:

Many cores, multiple sockets, and large amounts of main memory

have become a commodity. To benefit from these highly parallel

systems, the software has to be adapted. Sophisticated latch-free

data structures and algorithms are often meant to address the situa-

tion. But they are cumbersome to develop and may still not provide

the desired scalability.

As a remedy, we present MxTasking, a task-based framework

that assists the design of latch-free and parallel data structures. Mx-
Tasking eases the information exchange between applications and

the operating system, resulting in novel opportunities to manage

resources in a truly hardware- and application-conscious way.
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1 INTRODUCTION
The basic architectures of Database Management Systems (DBMSs)

in use today were designed decades ago. Since their inception, the

hardware landscape has changed significantly: Today’s servers have

many cores distributed acrossmultiple sockets, big caches, and large

amounts of main memory, structured in a Non-Uniform Memory

Access (NUMA) fashion. While the hardware keeps changing, the

software has to adapt to benefit from the newly available resources.

Massive parallelism and heterogeneity offer immense opportu-

nities to improve performance but also pose complex challenges.

Synchronization of concurrency, utilization of available CPU re-

sources, and integration of co-processors represent critical exam-

ples. Latches—as synchronization primitives—, for instance, re-

duce parallelism by serializing accesses and cause overhead by

contention.
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Parallelization and Synchronization. In this light, during the past

years, researchers have invested great efforts to better leverage the

available hardware parallelism, e.g., through very fine-grained latch-

ing mechanisms or by avoiding latches altogether [19, 28, 30, 31].

But despite the progress made, it remains difficult to design latch-

free algorithms and data structures. Most of them are carefully

tailored to very specific situations; it is not clear how they could

be generalized to different problem settings. Transactional Mem-
ory, e.g., in the form of Hardware Transactional Memory (HTM),

promises to assist developers in the transformation of serial algo-

rithms into parallel code. Again, progress has been made; but it was

also shown how hard it is to outperform well-engineered “classical”

code with HTM alternatives [29, 32].

Resource Management and Frameworks for Parallel Computing. To
utilize the entire computational parallelism, operations have to be

allocated carefully to available (CPU) resources. This requires a

solid understanding of the particular physical system and appli-

cation behavior. Dividing the work into small, closed units, called

tasks, assists the developer in designing parallel software without

having to worry about the underlying many-core hardware. Frame-

works such as Intel
®
Threading Building Blocks (TBB) [40] and

native support within Operating Systems (OSs) like fibers in Win-

dows [2] as well as Apple Grand Central Dispatch in macOS [41]

make use of this concept. They offer sophisticated implementations

for synchronization and automatic load balancing primitives. Yet,

it remains the programmer’s responsibility to apply them carefully;

and experience shows that it is hard to exploit the full potential

of parallel computing units this way [11]. Not least because those

frameworks have just sparse knowledge regarding the application

and its intention.

In this paper, we present MxTasking1, a task-based environment

for today’s and future many-core hardware. The principal abstrac-

tion in MxTasking is the MxTask. An MxTask is a short program

sequence that performs a single, small unit of work, with the guar-

antee to run uninterruptedly to completion.

The true power of MxTasking lies in the possibility to attach

annotations to every MxTask. With annotations, applications may

convey characteristics of a task to the execution unit, for instance,

runtime characteristics (such as expected resource needs); infor-

mation about related data objects (including access intention such

as read or write access); or desired scheduling priorities. MxTask-
ing will then use such knowledge to optimize resource allocation,

scheduling, and placement.

1
The source code of MxTasking is available at https://github.com/jmuehlig/mxtasking

and http://dbis.cs.tu-dortmund.de
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Wewill specifically report on two ways of using annotations that

ease the development of parallel applications and improve perfor-

mance at the same time. One is to enable automatic data prefetching.
Existing work has shown that software-based prefetching can be

very effective at reducing data access latencies [10, 22, 35, 39]. But

the mechanism is also known to be cumbersome to use, its effec-

tiveness hinges on the developer’s hardware understanding baked

into manually tuned code. With task annotations, MxTasking can
instead infer relevant metrics and inject prefetch instructions auto-

matically at runtime. In practice, this can reduce memory stalls by

up to 50 % with negligible assistance from the application developer.

Synchronization annotations are the second powerful way of

using annotations that we will discuss in this work. Rather than

manually implementing and tuning intricate and error-prone syn-

chronization mechanisms (spinlocks, reader/writer locks, version

locks, . . . ), with MxTasking, developers may simply express their

desired type of isolation as a task annotation. Our library will take

care of the rest and inject the synchronization primitive that is ap-

propriate for the current system and application state. Again, this

not only eases the development of massively parallel applications

but may also improve performance by several factors in contended

scenarios.

The rest of this paper is organized as follows: Section 2 intro-

duces task-based parallelism in general. Afterward, Sections 3 and

4 present details of the MxTasking runtime and annotation prin-

ciples for memory-prefetching and synchronization. In Section 5,

we provide practical insights into our tasking library. The first re-

sults of a key-value store, built with MxTasks, are demonstrated

and discussed in Section 6. The paper concludes in Section 7.

2 TASK-BASED PARALLELISM
With the shift of the hardware landscape toward massively parallel,

heterogeneous architectures, the expectations toward software have

become immense: software is supposed to leverage parallelism

for scalability; exploit heterogeneous hardware for efficiency; use

fine-grained synchronization for correctness; and tune cache and

memory accesses for performance. And to make matters worse,

most of these challenges are still each developer’s responsibility,

with only little assistance from the system software underneath.

We argue that this is also due to the prevalent control flow

abstraction that essentially dates back to the 1960s: threads. Threads
are essentially opaque about their runtime characteristics; sche-

dulers—e.g., in operating systems—have to guess each program’s

intentions. Conversely, runtime systems tend to hide (“abstract”)

most hardware details away from application programs.

2.1 Background and Related Work
The idea of asynchronous, fine-grained control flows has been

discussed several times in the recent past. Popular programming

languages and environments implement this approach, for exam-

ple, NodeJS, C++, and Rust. In general, lightweight threads (we

refer to them as tasks; others may name them fibers) are scheduled
and executed at the user-level. Some OSs provide native support

for such lightweight threads (e.g., cooperative scheduled fibers in

Windows [2] and tasks in macOS [41]).

With Cilk, Blumofe et al. published one of the first runtime

systems for parallel programming that schedules tasks onto OS

threads [8]. Aiming to simplify the engineers’ work, Cilk focuses

on the automatic load balancing of parallel applications and easy

integration into existing software programs. To assist the synchro-

nization of concurrent tasks, Cilk supports lock/unlock calls on a

latch variable.

Intel® provides the TBB framework focussing on portability

and robust performance [24, 40]. The latter aspect is accomplished

primarily by using a work-stealing mechanism that balances the

load over the worker threads. TBB provides several synchroniza-

tion primitives such as scalable (reader/writer-) latches, partially

based on HTM. It is up to the developer to use them accordingly. For

higher-level (and typically stream-based) data flow processing, TBB

provides a graph-based programming interface. TheWool frame-

work purses similar objectives through a comparable work-stealing

strategy [13].

StarPU intends to provide fine-granular tasks for heterogeneous

multicore platforms [3]. The authors argue that the modern hard-

ware landscape features not only CPU-based parallelism but also

uses special co-processors. StarPU offers a framework that sup-

ports both CPUs and co-processors such as GPUs. Like TBB, StarPU

leaves the synchronization to the user.

Tasks—or similar concepts—have also been exploited in the con-

text of DBMSs. Gasiunas et al. use fibers for realizing a DBMS

underlying virtual network functions in a shared-nothing environ-

ment [15]. Tözün and Kotthaus provide a concept for scheduling

database tasks to heterogeneous hardware and discuss the chal-

lenges of granularity and scheduling [43]. TAMEX translates logical

query plans into task-graphs to benefit from the load-balancing of

fine-grained work packages in parallel settings [48].

Specifically, in the HyPer engine, morsels resemble tasks that

execute segments of a query [27]. The scheduler of the query ex-

ecution framework takes care of NUMA-local execution. Morsels

can be load-balanced at runtime. For example, when the workload

changes.

DORA avoids disorganized data access across parallel transac-

tions by transferring execution units to the data instead of vice

versa [37]. To that end, DORA divides transactions into multiple

(task-like) actions while the present data is partitioned logically to

threads. For execution, DORA distributes actions among threads.

Bang et al. utilized tasks for various index structures like B-

trees and hash-tables, as well as transactional workloads [4]. The

main idea is to divide a given multi-socket machine into several

domains. By allocating data structures within a concrete domain,

the accessing tasks are implicit processed NUMA-aware.

Based on coroutines, Psaropoulos et al. invented fine-granular

tasks for index joins to hide memory latencies [38]. Every time

a coroutine attempts to access not cached memory, it executes a

prefetch instruction and yields the coroutine. This way, the CPU

executes other coroutines while the memory subsystem loads the

requested data into the cache instead of wasting cycles to wait for

the load fulfilled. Likewise, Jonathan et al. exploited coroutines

to hide memory latencies in terms of state-of-the-art index struc-

tures [20]. He et al. also demonstrated the performance-related

benefits of software-based prefetching by interleaving coroutines

to process transactions [18].
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Figure 1: MxTasks provide annotations for accessed data ob-
jects, core, NUMA region, and priority. Data objects main-
tain metadata for isolation level and expected access fre-
quency, as well as a read-write ratio.

2.2 MxTask Abstraction
A key-proposition of MxTasking is to replace the application-facing
control flow abstraction by what we call MxTasks. An MxTask corre-
sponds to a small, closed unit of work, rather than to the sequence

of straight-line code that a thread would correspond to. With tasks

as an abstraction, it becomes surprisingly natural to convey pre-

cisely the information about application characteristics that the

runtime system needs to optimize resource utilization. By using

MxTasking, such information can be attached to every MxTask in
the form of annotations.

A task will typically process a single (or few) data objects. An-
notating data objects with application-based knowledge, as well,

offers the runtime a detailed understanding of the interaction of

code and data. A complete, higher-level algorithm will be composed

of a (possibly large) number of MxTasks that jointly solve the given
application problem.

To illustrate the tasking concept in this paper, we will use tree
navigation as a running example. MxTasking can be applied here

by spawning a new task for every node visited during tree traversal.

Each task will access a single tree node and spawn a new task (to

process the next node) just before it finishes.

Spawning a task is an extremely lightweight operation, imple-

mented using efficient assembly atomic instructions. Spawned tasks

will asynchronously be moved to a task pool, from where the Mx-
Tasking runtime will select tasks for execution (possibly based on

annotated information).

Annotations. The engine provides mechanisms to attach annota-

tions to tasks and data objects. Annotations can be used to transfer

knowledge from the application to the execution layer, as demon-

strated in Figure 1. Specifically, annotations enable the developer

to specify the execution target of an MxTask, for example, a specific

CPU core or a NUMA region to utilize locality.

In this paper, we will focus on an annotation that can be used to

link a task to the data objects that it intends to access (including

/* create an annotated resource, that is read by tasks in parallel,

read heavy, and accessed with high frequency */

1 tree->root =
tasking::create_resource<TreeNode>(isolation::shared,
rw_ratio::read_heavy, access_frequency::high)

/* spawn a lookup task that starts traversal at the root node */

2 lookup = tasking::create_task<LookupTask>(tree->root,key)
3 lookup->annotate(priority::high) // priority

4 lookup->annotate(access::readonly) // access mode

5 lookup->annotate(tree->root, tree->node_size()) // accessed data

object and size

6 tasking::spawn(lookup)

Figure 2: Example-based usage of the MxTasking API to cre-
ate a tree node and spawning a lookup-task accessing that
node.

information whether that access will be read-only or writing). Mx-
Tasking will exploit such information to (a) minimize memory
access cost and (b) perform scheduler-assisted task synchronization.

With respect to the former use of annotations, we will investigate

annotation-based memory prefetching in Section 3. The latter use

is on our agenda for Section 4, where we show how task-based

programming can improve performance and ease developer efforts

at the same time.

The use of annotations by the developer is optional (though

more and better annotations may help MxTasking to improve per-

formance). We envision that annotations may also be attached

automatically, e.g., by a JIT-style code generator that knows about

the characteristics of generated tasks or by an optimizing compiler.

2.3 MxTasking System Interface
MxTasking Programming Interface. Internally, task annotations are

stored as part of the task object in a structured way. As such, anno-

tated metadata is accessible for both the developer and the runtime.

In Figure 2, we illustrate the MxTasking programmer interface. In

the example, a data object is created where we allow shared access

and assume a read-heavy workload and a high access frequency

(line 1). In lines 2–5, a high-priority lookup task is created, starting

in read-only mode at the root of a search tree. That task is finally

spawned in line 6.

MxTasking Library /Worker Threads. MxTasking is a layer between
task-based applications and the operating system. From the appli-

cation’s perspective, spawning a task adds it to the task pool of a

logical core. This is a latch-free operation (realized using a single

atomic xchg), making task spawns a very lightweight operation.

From the operating system’s perspective, each of the MxTasking
logical cores corresponds to a worker thread that will pick tasks

from the pool and execute them. In this sense, MxTaskingmediates

between the task-based execution model and the thread model

of the underlying operating system. In our implementation, we

further pin all worker threads to a dedicated CPU core, which gives

MxTasking control over NUMA and locality effects.

Whenever the worker thread picks an MxTask, that task will be

executed uninterruptedly to completion. Often, tasks will spawn
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and prefetches both tasks and data objects early enough to
hide memory latencies.

further tasks. Such spawning will happen asynchronously and is

lightweight.

3 ANNOTATION-BASED MEMORY
PREFETCHING

Once annotations have been attached, MxTaskingwill use the anno-
tated information to improve runtime performance and hardware

efficiency. We will now specifically look into how MxTasking mini-

mizes memory access cost based on annotations (no further action

from the application side is required for this beyond creating the

annotations).

Particularly for data processing systems, memory access has be-
come the key factor when it comes to efficiency and performance.

Prefetching memory contents into CPU caches can be an excellent

means to hide memory access latency and improve performance.

However, effective prefetching is intricate to achieve: if the prefetch

request is issued too late, hardware will not have enough time to

bring the data into the cache; if the prefetch distance is too wide,

data might already get evicted from the cache again before it is

used.

Prefetch requests may be issued either by hard- or software.

Efforts have been made to teach caching hardware the access pat-

terns of database code [17, 23, 44, 47]. Yet, hardware prefetching re-

mains unfeasible beyond stream-based look-aheads. Software-based

prefetching was shown to be more effective (e.g., [10, 22, 35, 39])

but depends on substantial algorithm restructuring to work out.

Annotation-Based Prefetching. In a task-based execution environ-

ment, efficient prefetching is surprisingly simple. When making

scheduling decisions, the MxTasking scheduler will consult the

task pool to gain an understanding of the upcoming tasks for the

near future. Whenever tasks are annotated with the data object

that they access—we assume this annotation because it is trivial to

make—, MxTasking will automatically inject software prefetching

instructions on the application’s behalf.

Thereby, we hit two birds with one stone. Prefetching becomes

simple on the application end. In fact, the prefetching mechanism in

MxTasking is completely transparent to the application developer.

All she needs to do is provide proper data object annotations to

exec. task init. prefetch load into cache

worker task0 task1 task2 task3

memory

subsystem
time

t1 0xA t2 0xD t3 0xC

Figure 4: Timeline of prefetching and executing MxTasks.

MxTasks. At the same time, the prefetching mechanism is signif-

icantly more powerful than the existing approaches. In contrast

to hand-crafted solutions, MxTasking will automatically schedule

prefetch instructions even across task executions from different ap-

plications. Plus, there is now only a single point in the systemwhere

details, such as the prefetch distance, can be configured. Though

not realized in our current implementation, it is also conceivable

to dynamically adapt prefetching, e.g., to data locality in NUMA

environments.

Prefetching Implementation. MxTasking keeps spawned tasks in

a task pool. Thus, the runtime can already “see” tasks and their

associated memory objects (together with the annotated size) ahead

of time. Based on this information, the worker thread will inject

prefetch instructions in-between task executions. MxTasks will thus
see their data already cached in the CPU when they start.

Zooming into implementation details, a tasking::spawn () call
will not only place the MxTask in the task pool but also add appli-

cable prefetch information to a separate prefetch buffer.
Figure 3 illustrates this mechanism. Prefetch requests are placed

in the prefetch buffer at a position such that prefetches belonging to

a task are initiated sufficiently early. In the figure, we assume that

prefetch requests are issued with a prefetch distance of 1, i.e., task1
and its associated data are prefetched just before task0 is executed,
giving the hardware sufficient time to prefetch.

A corresponding timeline is illustrated in Figure 4, showing

also how prefetch requests are processed asynchronously by the

memory subsystem.

Prefetch Distance. The prefetch distance is a configuration parameter

in our current prototype, which can be tuned to the characteris-

tics of a particular piece of hardware. A natural extension of this

mechanism would be to dynamically adjust the prefetch distance at

runtime, e.g., based on performance monitoring [1, 25, 34]. In con-

trast to these existing proposals, however, MxTasking is not bound

to profiling results from the past: annotations allow our scheduler

to also glimpse into the future. This might, in fact, open up new

opportunities to derive even better prefetch decisions at runtime.

4 ANNOTATION-BASED SYNCHRONIZATION
We will now turn our attention to a way of exploiting annotations

that goes beyond “only” improving performance. Annotations can,

in fact, be used to realize synchronization across parallel units in a

simple, yet powerful and scalable way.

The classical mechanism to ensure correctness in parallel envi-

ronments is to protect sensitive data structures using latches. The
mechanism often quickly hits scalability limits unless enormous



engineering efforts are put into tweaking the code toward very

fine-grained latches. Optimistic synchronization techniques, such

as versioning, may provide better scalability in the case of highly

contended data objects. But they are error-prone to develop, and

their benefits heavily depend on access characteristics and hard-

ware parameters. More recently, transactional memory is touted

as an alternative; but existing work shows that it is still hard to

match the performance of well-engineered latch- or version-based

code [29, 32]. To summarize, all these mechanisms require the

developer to deeply intertwine application code with hardware

characteristics, and often also with knowledge about workloads

and/or data access patterns.

Instead, with MxTasking, we strictly separate concerns. From the

developer, we only expect that she uses annotations to express data
dependencies and/or isolation properties for data objects. Optionally,
she may add hints about access frequencies or read/write ratios.

Based on the annotated information, MxTasking will infer and
apply appropriate synchronization mechanisms—automatically, at

runtime, and based on a view of the entire system state. With

concerns on semantics and implementation separated in this way,

the developer can focus her attention on the actual application

logic, knowing that MxTasking will take care of the rest.

Before we delve into automatic mechanism selection and the

inner workings of the MxTasking scheduler, we will first re-visit

the synchronization mechanisms (or primitives) that MxTasking
currently supports.

4.1 Integrated Synchronization Primitives
Our current prototype of MxTasking supports three basic synchro-

nization primitives, which we will sketch in the following. Some

of them may be tunable, e.g., to distinguish between reading and

writing accesses or not.

A task itself is unaware of the primitive that MxTasking will

choose (unless the task requests a particular primitive explicitly

through annotations). MxTasking will select among its built-in

primitives at runtime, depending on the current system state as

well as on task annotations.

Latches. Spinlocks are known for their easy realization and sim-

ple usage. As in thread-based implementations, we can also apply

spinlocks to synchronize concurrent tasks. MxTasking provides

different spinlock variants. For mutual exclusion, a simple spin-

lock can serialize all accesses, whether tasks are read-only or not.

Given an application that desires parallel reads on a shared object,

MxTasking chooses a reader/writer-lock instead.

In MxTasking, tasks are executed by a worker thread of the

runtime system. The corresponding worker thread will acquire and

release latches automatically on behalf of the executed task.

Optimistic Versioning. Latch-based protocols turn parallelism into

concurrency. Especially for read-dominated workloads, this may

limit the achievable parallelism and throughput unnecessarily.

Here is where optimistic alternatives excel. The idea is to let

read operations run in parallel and without synchronization. Only

concurrent write accesses are protected from each other, e.g., using

latches. Conflicts between read- and write accesses are allowed to

occur; but they are detected with help of a version counter. More

specifically, write accesses will increment the version counter af-

ter each modification; reading operations will check the version

counter before and after they access the data object, and this way

detect writes that happened in parallel. If a conflict is detected, the

read operation is repeated.

Optimistic mechanisms were shown to achieve better through-

put on hardware with high degrees of parallelism (e.g., [9, 28, 30]).

In-memory index structures are a good example to illustrate the

advantage of optimistic protocols. While all tree-operations will

have to traverse the root node (thereby possibly leading to high con-

tention), actual modifications of the root node are rare. Optimistic

synchronization mechanisms can avoid high latching overhead; the

penalty of a repeated read operation arises only rarely.

The positive effects of optimistic versioning are exacerbated on

platforms (such as MxTasking) that are aware of the underlying
hardware cache locality. Pessimistic synchronization strategies in-

evitably depend on data, latches, or code to be exchanged between

parallel units upon every access. Optimistic versioning, by contrast,

enables the hardware to replicate and cache data structures for

read-only accesses, thereby permitting true parallelism. Hardware

cache coherence protocols will make sure that messages are sent

between cores exactly and only when a true conflict arises.

Note that writers still have to be synchronized in optimistic

schemes. In this sense, MxTasking will combine optimistic version-

ing with either a latch-based or a scheduling-based (see below)

synchronization primitive.

In MxTasking, optimistic versioning too is performed by the wor-

ker thread on behalf of the task that requested to be synchronized.

If the worker thread detects a version mismatch, the task is reset

and re-executed until the execution was valid.

Synchronization through Scheduling. In addition to “classical” syn-

chronization mechanisms such as latches or versioning, the task-

based execution model of MxTasking enables another powerful

synchronization mode: scheduling-based synchronization.
As the most simple form of scheduling-based synchronization,

MxTasking can guarantee that tasks which access the same data

object are executed sequentially. Such a guarantee is easy to make:

MxTasking will schedule tasks that access the same data object to

the same task pool; tasks within one pool are executed in-order

by a worker thread that is associated with the pool (cf. Figure 5).

Blocking or contention can fully be avoided this way.

Load balancing is achieved by instantiating several task pools

per worker thread. If necessary, worker threads may also steal task

pools (not tasks!) from each other to distribute the load.

Besides the avoidance of concurrency, scheduling-based syn-

chronization can have an additional benefit, especially in NUMA

environments. Rather than moving data objects between NUMA

nodes, scheduling-based synchronization effectively moves code
to data. Similar principles were shown to improve cache locality

and transaction throughput, e.g., in systems like DORA [37] or

H-Store [21].

A more generalized form of scheduling-based synchronization

can be realized by annotating dependencies between tasks (in the

spirit of [7]). To illustrate, in a task-based hash join implementation,

the first probe task will not start before all build tasks have finished

populating the in-memory hash table.
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5 elseif 𝑑 is latched: // wrap latch around

6 acquire latch of 𝑑

7 execute 𝑡

8 release latch of 𝑑

9 elseif 𝑑 is optimistic versioned:

10 if 𝑡 is reading: // annotated as reader

11 repeat until 𝑣1 = 𝑣2
12 𝑣1 ← version of 𝑑 // check version before..

13 execute 𝑡

14 𝑣2 ← version of 𝑑 // ..and after read

15 if 𝑣1 ≠ 𝑣2: // detected concurrent write

16 reset 𝑡 // undo all modifications to 𝑡

17 else: // writer are synchronized by scheduling

18 execute 𝑡

19 increase version of 𝑑

20 else: // no data object annotated or 𝑑 not synchronized

21 execute 𝑡

Figure 5: Interaction of scheduler and worker thread. The scheduler ensures the serialization of writing tasks by dispatching
them to the identical task pool. The worker, however, injects synchronization of tasks in the execution of those.

4.2 Selecting Synchronization Primitives
For injecting synchronization, the runtime applies one of the de-

scribed primitives to every newly spawned data object. This primi-

tive can either specified by the developer using explicit annotations

or selected by MxTasking. For choosing the synchronization mech-

anism automatically, the runtime uses a cost model considering

given annotations that describe the access properties. Especially,

the isolation level, the expected access frequency, and assumed read-

write ratio are taken into account. For example, requesting exclusive
access to the object will result in serializing by scheduling as it lever-

ages better performance than spinlocks in our benchmarks. Using

more relaxed isolation—which enables parallel reads—matches an

optimistic synchronization strategy. Depending on the expected

read-write ratio, MxTaskingwill use scheduling for writing tasks in
case reading operations predominate. By specifying one task pool

for write operations to an object, read-only tasks running at the

same worker are guaranteed to execute successfully; version checks

and saving the state of the task is dispensable. For written-heavy re-

sources that are accessed moderate or sparse, scheduling overhead—

mainly contention on a task pool—prevails latch-contention regard-

ing the data object. Hence, MxTasking prefers optimistic latches

for such resources.

As an illustration, the nodes within a task-based tree structure

are synchronized using varying (optimistic) primitives: While the

higher-level nodes are usually read, leaf-nodes are accessed less

but may be modified more often. Thus, MxTasking determines op-

timistic scheduling for inner nodes and optimistic latches for leaf

nodes—assuming appropriate annotations by the developer.

4.3 Scheduler/Worker/Task Interaction
Figure 5 illustrates how the synchronization of tasks bases its in-

teraction with the scheduler and worker thread. The scheduler

ensures to place MxTasks in the pool of the appropriate worker

thread, depending on the synchronization mechanism and access

type. The worker, in turn, applies synchronization primitives when-

ever needed.

The Scheduler Side. To serialize a set of tasks, the scheduler places

them in the same task pool. This becomes necessary when (a) opti-

mistic scheduling is applied, and the task modifies the annotated

object or (b) all accesses to a data object are synchronized through

scheduling. For both cases, the scheduler selects the task pool asso-

ciated with the annotated data object as a destination (lines 1–3).

Otherwise, the scheduler prefers the local task pool to reduce over-

head in the form of cache-coherence. Local, in this context, indicates

the task pool of the worker thread producing the task (potentially

while executing another task).

Exceptions to this rule are annotations that explicitly affect the

placement of MxTasks, for example, a specific core (lines 6–7). It is

also conceivable to annotate particular NUMA regions to support

applications building NUMA-aware software.

TheWorker Side. Applying the synchronization primitive, whenever

necessary, is performed by the worker thread, wrapped around

the execution of a task. First, the worker evaluates the annotated

data object (line 2). Supposing no synchronization is needed or

scheduling already guarantees serial access, the worker executes

it directly (lines 21 and 3–4). Otherwise, we distinguish between

the two additional mechanisms we discussed before. In case the

accessed data object is synchronized using a latch, the worker

acquires the latch related to the data object before executing the

task and releases it after execution (lines 5–8). Whenever possible,

we acquire the latch in shared mode using reader/writer latches.
For data objects synchronized by optimistic versioning, the wor-

ker thread separates between reading and writing tasks. To verify

a data object was not modified while performing a read-only oper-

ation, the worker checks the version before and after the execution

(lines 10–16). Whenever the counter mismatches, the read access

has to be retried. To ensure that the version changes at all, the

worker increments it after executing a writing task (line 19).



4.4 Implementation Aspects
Comparable to other optimistic procedures, operations (or tasks

in our context) that physically remove a shared object have to be

treated with special care. Reference counting, hazard-pointers [36],

and Epoch Based Memory Reclamation (EBMR) [14] are general ap-

proaches to protect read accesses while another thread attempts to

free the memory. For performance reasons, MxTasking implements

an EBMR, similar to Silo [45] and the decentral procedure realized

by the open BwTree [46]. The memory of logically deleted objects

is not released for reuse instantly but delayed until all potential

read operations finish.

In general, time is separated into coarse-grained epochs using a

global epoch counter that increases periodically (e.g., every 50ms).

To detect possible concurrent read- and delete operations, all uti-

lized threads provide a local epoch wheres logically removed data

objects are marked with the current global epoch when removing.

The thread-local epochs, in turn, represent the relative progresses

to the global epoch. On entering a critical section, the thread syn-

chronizes the local- with the global epoch. When leaving the critical

path, the worker resets its local value to infinity, indicating that

the thread is not in a crucial execution state. At the beginning of

a new epoch, a separated garbage collection routine determines

the minimal progress made by emphasizing the lowest thread-local

epoch. Data objects deleted logically within an even earlier epoch

get safely reclaimed.

In widely used implementations, critical sections are defined as

logical operations that include optimistic reads (e.g., a tree insert

including the traversal). Consequently, the local epoch is updated

at the beginning of such an operation and reset afterward. By using

tasks, however, logical operations are divided into multiple units of

work, executed at different worker threads. Hence, it is ambiguous

to determine the beginning and end of a logical operation processed

by several tasks. A similar situation faces when using coroutines

(which are asynchronous, too) [18]. Wrapping local epoch updates

around every single MxTask-execution causes many fencedmemory

loads and stores. To avoid this potential inefficiency, MxTasking
updates the local- to the global epoch after a limited number of

executed tasks (and also when idling to guarantee progress). The

chosen limit becomes a trade-off between maximum performance

and delay of releasing unused memory. In our implementation, we

keep the number as small as possible without suffering from per-

formance losses (e.g., 50). For garbage collection of finally unused

memory, MxTasking spawns corresponding tasks at the beginning

of a new epoch.

5 MXTASKING IN ACTION
Utilizing tasks to design data structures and algorithms differs in

general from well-understood thread-based programming. Morsel-

driven parallelism [27] and DORA [37] have already demonstrated

the advantages for analytical- and transactional processing in a

task-like fashion. MxTasking advances the task-paradigm beyond

the current standard by offering annotations for prefetching and im-

plicit synchronization. This section reviews some practical aspects

of using MxTasks for building parallel software.

We illustrate the simplicity of designing a latch-free, task-based

data structure, using a B
link

-tree as an example. Accordingly, we

insert task

task input: node the task accesses, key and value to insert, callback
to notify on finish

1 if node->high_key <= key: // key is out of range of this node

2 next = node->right_sibling
3 task = tasking::create_task<InsertTask>(next,key,value)
4 task->annotate(next,tree->node_size())
5 tasking::spawn(task)

6 elseif node->type == inner: // continue traversal to the leaf

7 next = node->child(key)
8 task = tasking::create_task<InsertTask>(next,key,value)
9 task->annotate(next,tree->node_size())

10 task->annotate(access::readonly)
11 tasking::spawn(task)

12 elseif node->type == branch: // child is a leaf, next task will write

13 next = node->child(key)
14 task = tasking::create_task<InsertTask>(next,key,value)
15 task->annotate(next,tree->node_size())
16 task->annotate(access::write) // change to writing mode

17 tasking::spawn(task)

18 else: // found correct leaf, insert value

19 node->insert(key,value)
20 callback->insertion_finished(key,value)

Figure 6: Insert operation of an MxTask-based Blink-tree.

will examine the relevance of memory management regarding task-

allocation and demonstrate the robustness of MxTasks concerning
the granularity.

5.1 Building a Task-based Blink-tree
Since latching has become a bottleneck for in-memory data struc-

tures on modern hardware, past research investigated optimistic

or fully latch-free procedures (e.g., [9, 28, 30, 31, 33, 46]). The B
link

-

tree [26], as a variant of the B-tree, focuses on reducing the number

of simultaneously held latches at a time. To this end, newly inserted

nodes are not connected to the parent instantly, eliminating the

need for holding the parent’s latch. Instead, a node split will create a

link between the old and the new node. With that help, the recently

inserted node will also be accessible for parallel traverse opera-

tions, even when there is no link from the parent to the new node.

Consequently, every logical procedure becomes a concatenation of

multiple tiny steps related to a single node.

Whereas thread-based implementations result in synchronous

calls most of the time, MxTasks (and comparable task-based so-

lutions, e.g., [3, 20, 27, 37, 40]) get executed asynchronously. For

instance, instead of calling an insert method on a tree that returns

after finishing, spawning an insert task that notifies the caller after

inserting is the way to go.

Insert task. Tasks only have a limited view of the system. Every Mx-
Task solely performs on a single tree node, taking the appropriate

node and the requested key-value-pair as input parameters. The

pseudocode in Figure 6 illustrates an example of implementing an

insert task. On every step, it examines whether the accessed node

is an inner- or a leaf node. If the node is of type inner, the task



determines the next node to traverse by applying a binary search

(line 7). However, parallel insert operations may have modified the

content of the node since the task was spawned.

Sometimes, one of these insertions splits the node. At that point,

a traversing task may have missed the direct pointer to the node

containing the searched key for now. For that reason, every task

checks the key-range of the given node and follows the right sib-

ling pointer when necessary (lines 2–5). That can also occur in

traditional (thread) implementations and is—in general—part of

the B
link

-tree algorithm. Nevertheless, it is slightly more likely to

happen using asynchronous models since the time between node

accesses during a traversal may be increased.

For continuing the traversal, the task instantiates and spawns a

new MxTask, annotated with the next node (e.g., lines 8–11). Label-

ing the new task as a reader (line 10) enables MxTasking to execute
in parallel with other reading operations. In contrast, a thread-based

implementation will call the child method in a loop until reaching

a leaf node. Given a task executed on a leaf, it inserts the item and

notifies the caller (lines 19–20). To respond to a client’s request in

an end-to-end setting, we use a callback function. Another option

would be to spawn a new follow-up task that handles the response.

Synchronization through Annotations. Noticeably, the demonstrated

code comes without synchronization of competing tasks—rather,

MxTasking injects synchronization at runtime. Instead of explicit

synchronization, we annotate the insert task as access::readonly
during the traversal and as access::write whenever it might

attempt to modify a node. Annotating as a writer at the appropriate

time, however, becomes a minor challenge: when annotating too

soon, parallelism may decrease because of serializing accesses. Too

late, contrarily, requires re-annotating and re-scheduling the task,

which causes overhead. To inhibit, we need to know during the

traversal whether the next is an inner or leaf node as modifications

are related to leaf nodes. Since loading the targeted node’s metadata

causes additional cache-misses, we introduce a new node type:

branch nodes represent inner nodes whose children are leaf nodes.

Accordingly, we annotate the insert task preventively as writing

when we reach a branch node during traversal (lines 13–17).

Blink-tree Node Splits. For simplicity, we ignored the case of node

splitting in this example. Splitting a node is required when no

capacity left for an additional record. Given that case, the insert

task spawns a separated task that links the newly created node and

the parent. Until the pointer is seated to the parent node, the new

node can be reached by following the sibling pointer.

Beyond Insertion. Implementing the corresponding update- or look-
up-tasks is straightforward. Instead of inserting the value into

the leaf (line 19), the appropriate MxTask modifies or reads the

requested record. Consequently, found values are passed to the

callback. In particular, for lookups, we omit the writing-annotation

since all steps during the lookup perform read-only accesses.

5.2 Task Allocation Cost
The B

link
-tree-example indicates that MxTasks are created and deleted

with a high frequency. Each operation on a tree structure, for ex-

ample, corresponds to a separate task, which spawns several subse-

quent tasks. Hence, the allocation of those is a central component.
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Using the global heap may turn into a bottleneck when many cores

request memory for new tasks concurrently.

Figure 7 shows the CPU cycles spent during a single lookup
2

on a task-based B
link

-tree, including the traversal from the root to

the leaf node. Allocating tasks using the system’s malloc interface

consumes 450 cycles per operation on a 48 core machine (∼ 16 % of

total CPU cycles)
3
.

To overcome this costly aspect, we designed a multi-level alloca-

tor, matching seamlessly into the tasking-runtime. The architecture

is mainly inspired by Hoard [6]. Hoard focuses on fast, cache-aware,

and scalable allocation. Dedicated memory heaps for every proces-

sor enable scalability. Threads allocate memory from their local

processor heap instead of calling the system-wide malloc inter-

face to request memory from the OS. Each processor-heap holds

a buffer of free memory and delegates it to threads that want to

allocate memory. The processor-heaps, in turn, demand memory

from the OS when the local buffer becomes empty. That reduces

synchronization costs between processors.

We extend this concept by supplying a third layer to the alloca-

tion stack: A separated heap per worker thread becomes the point

of contact for task allocation. Figure 8 outlines this approach.When-

ever a task spawns a new one, it asks the local heap for memory.

Allocating from this heap is very lightweight since the runtime

guarantees MxTasks to run-to-completion, making synchronization

2
We decided to use a read-only benchmark because nothing other than tasks are

allocated.

3Perf was used to analyze and track consumed CPU cycles.



redundant. Free memory blocks are stored within a LIFO list. Implic-

itly, the allocator places freed blocks at the top of the list ( 2○). Thus,

an allocation will use recently freed memory blocks, increasing the

chance that the newly allocated task still rests in the CPU cache.

Reducing inter-processor communication and providing NUMA-

aware allocation is a trade-off. Figure 8 shows a task ( 1○) that is

allocated on one core but deleted on a different one. The free block

is pushed to the heap of the deleting core. In the worst case, where

a task is allocated and deleted among workers located in differ-

ent NUMA regions, memory blocks are shuffled across. However,

we minimize synchronization and implicit communication costs

between them.

When a core-heap runs out of memory, it will request a new

memory block from the processor-heap. The processor-heap, in

turn, will allocate memory from the global heap in a NUMA-aware

manner when the processor-heap has no memory in stock. As

a result, memory management for MxTasks requires only a single

latch when allocating memory from the processor-heap, reinforcing

scalability. However, by reusing deleted tasks, this issue occurs

rarely. Compared to using malloc, Figure 7 demonstrates that our

multi-level allocator has almost no overhead. Only 30 cycles are

spent for task-allocation during a single tree-lookup. Likewise, we

observe ∼ 7% fewer cycles spent for prefetching as some tasks

remain in the cache when reusing the memory.

5.3 Granularity of Tasks
While designing task-based applications or data structures, the

granularity of a task may be an adjustable parameter. For some

workloads, the task-granularity becomes implicit, given by the

access-characteristics of the application. MxTasks accessing the

B
link

-tree described before, for instance, operate on a single node

per MxTask. For various applications, the granularity is arbitrary.

To give an example, think of accessing and processing tuples

of an in-memory DBMS for query execution. Spawning MxTasks
causes additional overhead that could become a bottleneck when

tasks are too short-lived. In particular, the exact costs for dispatch-

ing an MxTask depend on the targeted task pool: Transferring a task

to any core located in a remote NUMA region is at more expense

than attributing a consumer placed on the same socket.

For demonstration, we implement a parallel hash join on top of

MxTasking, following the idea of morsels [27]. As shown in Fig-

ure 9, MxTasks are robust against performance penalties affected

by granularities. Here, we join consumer and order tables from the

TPC-H benchmark (with scale factor 100) using core-local hashta-

bles. The join operator partitions the input and dispatches build-

and probe-tasks, equipped with a certain number of records. Parti-

tions are processed locally—exploiting NUMA-localities and with-

out synchronization by taking advantage of the run-to-completion

semantic.

The results verify a broad range of suitable task-granularities:

Processing 2
7
up to 2

16
records per task behaves approximately

equivalent. Using only 16 tuples or less at a working unit causes

scheduling-overhead to dominate the workload. Vice versa, too

heavyweight (and consequently few) tasks cause imbalanced distri-

bution.
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Figure 9: Hash join execution exploiting various task-
granularities.

6 EXPERIMENTAL EVALUATION
To study the behavior and potential of MxTasking in real-world

scenarios, we use an in-memory B
link

-tree that is indicative of the

behavior of modern in-memory database engines. Our implementa-

tion of the data structure follows state-of-the-art principles.

6.1 Environment
All benchmarks are evaluated on a two-socket Intel Xeon Gold

6226 machine, clocked at 2.7 GHz. Each of the two processors holds

12 cores, 24 hardware threads, and 12 × 32 kB L1, 12 × 1 MB L2,

and 1 × 19.25 MB L3 data caches. The logical cores are ordered by

NUMA regions, whereas the first 24 logical cores are located in the

first region, the next 24 in the second. To be precise, the first 12

cores of each region are physical cores. From then, hyperthreading

cores are added step by step.

Following former work [46], we rely on the Yahoo! Cloud Serving

Benchmark (YCSB) [12]. We use workloads A (read/update, 50/50)
and C (read-only), both with Zipfian distribution and 100 million

operations. Before running each workload, the tree is initialized

with 100 million records. Insert results correlate to the initialization
phase of workload A. The tree stores pairs of 64 b keys and 64 b

payloads within 1 kB sized nodes.

We distribute the workload operations in batches of 500 requests

at a time to (worker) threads. Whenever a thread finishes its as-

signed work, it picks the next batch. Our p_thread implementations

use an atomic integer to acquire work-packages from a global list.

Within task-based environments, we spawn one low prioritized

task per core that takes the next batch (like threads) when almost

no other task is ready for execution.

Ubuntu 20.04 is used as OS, clang 10.0.0 as the compiler, config-

ured to apply optimization level -O3. Because all threads are pinned
to corresponding cores, we disabled the system’s NUMA balancing
option for all experiments. This way, the kernel will not migrate

memory or threads between the regions.

6.2 Annotation-based Prefetching
As discussed in Section 3, the fine granularity of tasks allows

an exact prediction of which data is accessed by an MxTask. Fig-
ure 10 compares the B

link
-tree build on MxTaskingwith and without

annotation-based prefetching. Experiments regarding the prefetch

distance indicated that the results behave as expected: If the interval
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Figure 10: Impact of software-based prefetching for the Mx-
Task-based Blink-tree.

is too small (e.g., 1 for prefetching the next task ready), the work-

load does not benefit from prefetching. Similarly, if the prefetch

comes too late (more than four tasks apart), the advantage becomes

smaller but still noticeable. For the measurements shown, we spec-

ified a distance of 2, which performed best on our experimental

analysis of the prefetch distance.

Since the benchmark is memory bound for the most times, anno-

tation-based prefetching of tree-nodes results in 21 % higher through-

put rates on average for inserts and reads/updates, as well as 45 %

for the read-only workload. We demonstrate the outcome in Fig-

ure 10a. Especially the tree-traversal that bases on binary search

benefits from this mechanism. Because binary search creates a hard-

to-predict access pattern for the CPU, hardware prefetching has a

lesser effect.

The impact of software-based prefetching becomes visible when

observing memory stalls, shown in Figure 10b. Memory stalls are

cycles in which the CPU actively waits for memory until it is avail-

able in the cache before continuing execution. The prefetching

mechanism of MxTasking reduces the number of those stalled cy-

cles, resulting in increased throughput. This effect is, in particular,

observable in read-only workloads. Here, the number of memory

stalls is reduced by 52%. The insert and read/update workloads

also benefit with 31% and 41% fewer stalls on average. Notably,

the number of stalled cycles equalizes the read/update workload as

more cores are applied. This is due to increasing latch-contention

caused by updates.
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Figure 11: Scaling performance of EBMR in a task-based en-
vironment.

Preloading, however, requires prefetch instructions to be exe-

cuted. Figure 10c demonstrates the number of performed instruc-

tions per operation. Prefetching utilizes about 245 additional in-

structions per operation—compared to the non-prefetching run.

Nevertheless, these extra efforts reduce the memory stalled cycles

to such an extent that prefetching still pays off.

6.3 Epoch Based Memory Reclamation
As discussed in Section 4.4, optimistic synchronization requires the

coordination of concurrent physically removing and reading oper-

ations. Therefore, MxTasking adapts widely used EBMR (e.g., [33,

45, 46]) to a task-based environment. Instead of wrapping local

epoch-updates around logical operations, a tree-insert including

the traverse, for instance, we focus on individual tasks. MxTasking
implements two different approaches: Synchronizing the local- and

global epoch in advance of every task execution (resetting the local

epoch afterward) and batching a limited number of tasks before

aligning the local- to the global counter.

The results in Figure 11 demonstrate that both mechanisms

have little to no impact on performance, using omitting EBMR as

a baseline. The most significant performance loss occurs during

the execution of read-only workloads when enwrapping every Mx-
Task with local epoch updates. Write-heavy workloads are almost

not affected at all. Due to the slightly better performance, we will

perform further measurements with batching-based EBMR.

6.4 Comparison of Tasks and Threads
Weargue that MxTasks offer a superior abstraction level to build scal-
able software for modern and future many-core hardware easily—

without decreasing performance. To study this hypothesis, we com-

pare different programming models, libraries, and synchronization

mechanisms: the B
link

-tree on top of MxTasking, p_threads, and
Intel’s TBB tasking library. Additionally, we apply proven state-of-

the-art index structures. Figure 12 shows the results.

Serialized Access. Spinlocks are widely used to serialize and, as a

result, synchronize accesses to a specific resource. As discussed

in Section 4, MxTasking supports synchronization by scheduling

for exclusive accesses. Although it is well-known that serialization

does not perform best for tree-like data structures, we discuss some

insights into comparable scheduling-based synchronization. Fig-

ure 12a compares the throughput of our B
link

-tree implementation,

using scheduling for MxTasking and spinlocks for TBB-tasks and

threads. Applying TBB and threads, accesses to tree nodes are pro-

tected by spinlocks. MxTasks accessing the same tree node are, in
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(a) Serialized synchronization for Blink-tree
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(b) Reader/writer-locks for Blink-tree
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Figure 12: Throughput of different synchronization primi-
tives and programming models of a Blink-tree and state-of-
the-art index structures.

contrast, dispatched to the same task pool. Hence, tasks reading or

writing the same tree node are serialized implicitly since MxTasks
execute without interruption.

The results demonstrate that the scheduling-based synchroniza-

tion offers a significantly better performance related to spinlocks

until using logical cores (from 13) and the second NUMA region

(from 25 cores). Although MxTasks avoids latching, we can observe

two bottlenecks preventing this approach to scale. First of all, every

operation starts by reading the root node of the tree. Regardless

of subsequent steps operate in parallel by distributing tasks to fur-

ther tree nodes and implicit additional CPU cores, the inherently

sequential access to the root limits parallelism and throughput, con-

sequently. This also applies to spinlocks. Secondly, moving tasks to

task pools of other cores involves overhead. Even if the operation is

atomic, the expense of cache-coherence can degrade performance.

This affects, in particular, the task pool associated with the root

node since many producers try to (atomically) dispatch tasks simul-

taneously. We observe a similar effect using latches when many

threads (or TBB tasks) access the same cache line to acquire the

root’s latch.

Reader/Writer-locks. Figure 12b demonstrates the results using

reader/writer-locks for synchronization. This way, MxTasks are
primarily spawned at the local core, minimizing frequent accesses

to a single task pool. Balancing the load in this fashion turned

out to be a straightforward and effective strategy for the given

workload. However, when using the second NUMA region, the

throughput decreases, too. In this case, the additional effort for

keeping the latch variable coherent has a negative effect and causes

communication costs across the sockets. We obtain similar results

when using threads. Due to the built-in prefetching mechanism of

MxTasking, we can observe a benefit of up to 45% more lookups

per second compared to threads. For both implementations, we

borrowed the reader/writer-lock from Facebook’s folly library
4
.

Contrarily, TBB provides different synchronization mechanisms,

partially based on HTM. Applying the HTM-based reader/writer-

lock to TBB, we notice less overhead due to latching and thus better

performance: more than 2.6× compared to MxTasking and 3.7× to

threads.

Optimistic Synchronization. MxTasking utilizes optimistic synchro-

nization by providing versioned data objects and differentiating

between reading and modifying tasks. Read-only annotated Mx-
Tasks perform optimistically while modifications, in contrast, are

synchronized by the runtime. Most executed tasks in the B
link

-tree

benchmark are read-only, including the traverse needed by insert

operations.

Using both threads and TBB as a fundament, optimistic synchro-

nization requires careful implementation on top of the application.

This also applies to state-of-the-art data structures like the open

BwTree [46], Masstree [33], and BtreeOLC [28]. We compare our

optimistic-synchronized B
link

-tree implementations and the named

data structures in Figure 12c. State-of-the-art implementations are

borrowed from the index-microbench framework
5
.

Given the insert-only workload, we observe comparable results

for the B
link

-tree based on threads and MxTasks, as well as for Btree-
OLC. As far as using cores from a single NUMA region, Masstree

achieves similar performance. The B
link

-tree implementation based

on TBB is comparable to the results of Masstree but also scales

beyond the first NUMA region. Notably, BtreeOLC does not pro-

vide memory reclamation in contrast to all other evaluated data

structures.

For the mixed read/update workload, MxTasking performs best

until using logical cores located in the second NUMA region (from

37 cores). When applying all available cores, the thread-based B
link

-

tree and BtreeOLC achieve 4 %more read/update operations per sec-

ond, compared to MxTasks. This is due to increased latch-contention
on the side of MxTasks. As observed within the insert-only work-

load, Masstree scales until using the second NUMA region.

The most significant differences are noticeable in the read-only

workload. Here, MxTasks accomplish 74.6 million lookups, 9.3%

more compared to Masstree (68.2 M). Note that both implemen-

tations benefit from prefetching. The thread-based B
link

-tree and

BtreeOLC provide 57.7 and 55.3 million read-operations per second.

All measurements show that TBB suffers from the additional effort

caused by the runtime environment.

4
https://github.com/facebook/folly

5
https://github.com/wangziqi2016/index-microbench

https://github.com/facebook/folly
https://github.com/wangziqi2016/index-microbench
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Figure 13: Detailed, cycle-based analysis of Blink-tree (using MxTasking, threads, and TBB) and state-of-the-art index structures.

Cycle-Based Analysis. Discovering the reasons for varying results,
Figure 13 shows a cycle-accurate comparison between the task- and

thread-based implementations. Note that MxTasking, Intel TBB,
and p_thread are related to the B

link
-tree. We distinguish between

effort for traversing the tree, performing the insert/update/lookup

operation, cycles spent in kernel mode (e.g., syscalls), as well as
synchronization and memory reclamation. Additionally, we present

cycles consumed by the runtimes of MxTasking and Intel TBB.

For MxTasking and Masstree, we further show the complexity of

initiating memory prefetches. We recorded those details using perf.
However, the aggregated cycles only give an impression. Mapping

spent cycles to function names might sometimes be ambiguous,

e.g., as a result of inlining.

The results prove the effectiveness of the prefetching mechanism

used by MxTasking: Traversing the tree requires fewer cycles when
applying MxTasks, compared to threads and TBB tasks. It turns out

that prefetching decreases synchronization costs by prefetching

the header of tree-nodes containing the version counter. Accord-

ingly, the additional effort for synchronization is lower for MxTasks
than for TBB and threads. By this, MxTasking equalizes overhead
coming along with tasks, mainly caused by task-spawning and -

annotations. Comparable runtime-overhead is also observable for

the TBB-scheduler. We are not able to break it down more pre-

cisely since perf does not provide revealing function names. We

assume that this is an expense for load balancing, task-stealing, and

scheduling.

The results confirm that the abstraction of tasks and simplifica-

tion of synchronization and prefetching implemented in MxTasking
do not cause substantial performance degradation. In particular,

the software-controlled prefetching of data objects offers consid-

erable increases in throughput. The findings of Masstree strongly

support this assumption. Integrating prefetching into threads and

TBB manually requires considerably more effort: the application

engineer is, possibly, forced to restructure the data structure.

In the end, there are only two extremes to choose from: leaving

control entirely to the OS or taking control completely.

7 CONCLUSIONS
In this paper, we presented MxTasking, a task-based framework

with run-to-completion semantic. The unique selling point of Mx-
Tasks is given by annotations, which offers the algorithm engineer

to transfer knowledge from the application level to the control-flow

abstraction. Hence, the tasking runtime hides memory latencies by

loading soon-to-be-accessed data into CPU caches, without the engi-

neer’s intervention. Furthermore, appropriately using fine-grained

tasks completed by annotations opens up the possibility to design

parallel data structures and algorithms, without exposed synchro-

nization. Requirements of data object synchronization, e.g., type

of isolation and the task’s access intention, enable MxTasking to

choose and inject the most efficient synchronization technique.

As a result, MxTasking eases the development of latch-free data

structures without performance degradation.

The first results of an MxTask-based key-value store promise

great potential on modern and future many-core hardware. Using

a B
link

-tree as the foundation, MxTasks outperform classical threads

by 29 % more lookups per second while using annotations reduces

the implementation effort.

Looking ahead. MxTasking, as described in this paper, is part of our

larger MxKernel6 effort, where we try to resolve a dilemma in the

design of hardware-conscious system stacks. Traditional operating

systems essentially hide the inner characteristics of the underlying

hardware, ruling out optimizations that could address just these

characteristics. An often-seen circumvent is to overtake many oper-

ating system tasks—such as I/O, memory, or thread management—

and perform them on the application side (through quirks such as

thread or memory pinning). Conquering the entire system, however,

is incompatible with efforts to consolidate services and/or share

resources.

The vision of MxKernel is to make the interfaces between ap-

plications and the operating system underneath more transparent,

in both directions. The annotation mechanisms of MxTasking are
an important building block of that vision. Through annotations,

applications can make their expectations and wishes explicit to

the scheduling layer, obviating the need to conquer the entire sys-

tem. In this sense, we see MxTasking also close to efforts on data-

base/operating system co-design (e.g., COD [16]) or to facilities in

modern operating system architectures (e.g., the system knowledge
base of Barrelfish [5, 42]).
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