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ABSTRACT
Query compilation can make query execution extremely efficient,
but it introduces additional compilation time. The compilation time
causes a relatively high overhead especially for short-running and
high-complexity queries.

We propose Flounder IR as a lightweight intermediate represen-
tation for query compilation to reduce compilation times. Flounder
IR is close to machine assembly and adds just that set of features
that is necessary for efficient query compilation: virtual registers
and function calls ease the construction of the compiler front-end;
database-specific extensions enable efficient pipelining in query
plans; more elaborate IR features are intentionally left out to maxi-
mize compilation speed.

In this paper, we present the Flounder IR language and motivate
its design; we show how the language makes query compilation
intuitive and efficient; and we demonstrate with benchmarks how
our Flounder library can significantly reduce query compilation
times.
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1 INTRODUCTION
Query compilation is a technique for query execution with ex-
tremely high efficiency. It uses just-in-time (JIT) compilation to
generate custom machine code for the execution of each query.
The approach leverages a compiler stack that first translates the
query from a relational query plan to an intermediate representation
(IR), and then from the IR to native machine code for the target ma-
chine. The execution-efficiency of the compiled code is very high
compared to standard interpretation-based backends. However, by
using compilation the technique adds a step to query execution,
which introduces translation cost. Especially short-running queries
and queries with high-complexity experience a relatively high trans-
lation cost, which ultimately extends query response times.

When using query compilation for queries on smaller datasets,
the relative cost of compilation increases. The query engine spends
most of the time during compilation before entering execution only
for a very short time. Further, complex queries can have particu-
larly long compilation times due to complexity of algorithms used
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Figure 1: Effect of different intermediate representation lev-
els on JIT query processing performance.

in JIT machine code translation [19]. Approaches to mitigate the
impact of compilation time on response time have been proposed
previously [13]. However, these typically rely on providing both
an interpretation-based and a compilation-based backend at a high
implementation cost.

1.1 Intermediate Representation Levels
The intermediate representation is an important design choice for
query compilers. Figure 1 illustrates the effect of the IR choice
on JIT compile times. Query compilers with high-level IRs, such
as C/C++ [8, 11, 20] or OpenCL and Cuda [6, 9, 10, 18] generally
have longer compilation times than query compilers that generate
lower-level IRs such as LLVM IR [16, 17]. Existing work on JIT
compilers, however, shows the feasibility of much shorter compile
times [2, 5] than those of LLVM. In fact non-database JIT com-
pilers reach break-even points for dynamic compilation versus
static compilation already for thousands of records [2]. By contrast,
LLVM-based query compilers have compilation times of tens of
milliseconds [16], which is sufficient time to process queries on
millions of tuples [4].

LLVM IR is general purpose and was designed to serve as back-
end for the translation of high-level language features [14]. Being
general purpose, LLVM is relatively heavyweight and devises a
translation stack that is "overkill" for relational workloads. The
code for relational queries typically consists of tight-loops with
conditional code mainly to drop non-qualifying tuples. This plain
structure offers potential for much simpler translation than per-
formed by general purpose translators, which leverage complex
code analysis and register allocation algorithms.

1.2 Contributions and Outline
Our work is the first to integrate machine-level code generation
with query compilers (Section 2). We show the abstractions that we
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Translate Hash Join Operator to IR
Function Z.consume(attributes, caller):

1 if caller is Z.left: /* build-side */

2 ht ← createHashtable(...)
3 emit entry← ht_ins (ht, Z.buildKey) /* get bucket */

4 emit materialize (entry, attributes) /* write to ht */

5 al ← attributes

6 if caller is Z.right: /* probe-side */

7 emit entry← null /* initialize */

8 emit while (true): /* loop over join matches */

/* probe hash table and get next matching entry */

9 emit entry← ht_get (ht, Z.probeKey, entry)
10 emit if entry is null: /* check result */

11 emit break /* no more match */

12 emit dematerialize (entry, al) /* read to regs */

13 Z.parent.consume (al ∪ attributes, Z) /* next ops */

Figure 3: Operator emitter of the hash join operator. We un-
derlined the functionality that is placed in the JIT query.

add with Flounder IR to machine assembly for efficient query compi-
lation (Section 3). Then we show the algorithm used for translating
Flounder IR to machine code that is tailored to relational workloads
(Section 4). We analyze the performance of our Flounder-based
query compiler and compare against LLVM-based query compi-
lation (Section 5). Finally we wrap-up the paper with a summary
(Section 6).

2 QUERY TRANSLATION
Query compilation typically involves a step that translates rela-
tional queries to an intermediate representation (IR) and another
step that translates the IR to machine code. In the following, we give
an overview of how both steps are realized for query compilation
with Flounder IR.

2.1 Query Plan to IR
The first translation step traverses the query plan and builds an
intermediate representation of the query functionality. A common

R
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produce(...)
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Figure 2: Query Plan

way to do this is the produce/-
consume model [16], which emits
code for operator functionality ei-
ther in produce or consume meth-
ods. We call these methods oper-
ator emitters. Figure 2 illustrates
the operator emitters that are ex-
ecuted during translation of the
probe-side pipeline of a sample
query. The operators of the pipeline
are surrounded by a dotted line.
In the example the code to scan R

was already emitted by produce(...) and for selection (σ ) by
consume(...). The consume call for hash join (▷◁) follows next. The
code of the hash join operator emitter is shown in Figure 3. The

[...] ;child code
vreg {entry}
mov {entry}, 0
;while head
loop_headN:
;ht_get(..) call
mcall {entry},{ht_get},

{ht},{r_a},{entry}
;break when entry=NULL
cmp {entry}, 0
je loop_footN
;dematerialize ht entry
vreg {s_a}
vreg {s_b}
mov {s_a}, [{entry}]
mov {s_b}, [{entry}+8]
[...] ;parent.consume(..)
clear {s_a}
clear {s_b}
;loop foot
jmp loop_headN
loop_footN:
clear {entry}
[...] ;child code

Flounder IR
(in-memory)

(a)

[...] ;child code
mov r11, 0; init entry
loop_headN: ;while head
mov [rsp-8], r8 ;caller-
mov [rsp-16], r9 ;save
mov [rsp-24], r10
mov rdi, 0x25cac0 ;call
mov rsi, r9 ;params
mov rdx, r11
sub rsp, 24 ;adjust stack
mov rax, 0x42fa10
call rax ;ht_get call
add rsp, 24 ;restore stack
mov r8, [rsp-8] ;restore
mov r9, [rsp-16] ;caller-
mov r10, [rsp-24] ;save
mov r11, rax ;return value
cmp r11, 0 ;break condition
je loop_footN
mov r12, [r11] ;demate-
mov r13, [r11+8] ;rialize
[...] ;parent.consume(..)
jmp loop_headN ;next probe
loop_footN:
[...] ;child code

x86_64 assembly
(in-memory)

(b)

Figure 4: Intermediate representation of hash join probe
functionality (a) and corresponding machine assembly (b).

code lines following an emit statement are underlined to empha-
size that this code is not executed immediately but instead placed
in the JIT query.

In the example, the consumemethod is called from its right child
and therefore the probe-side code is produced (lines 7–13). The code
first initializes the variable entry, which holds hash probe results
(line 7) and then loops over the hash join matches (lines 8–13).
In the loop, we first call ht_get(...) to retrieve the next match
(line 9) and then perform a check to exit when no more matches
exist (lines 10–11). To process join matches, we read the attributes of
the match to registers (line 12) and then the join’s parent operators
place their code by calling consume(...) (line 13).

The resulting intermediate representation is shown in Figure 4 (a)1.
It performs the described probe functionality. We briefly describe
the resulting IR here and provide a detailed description of the used
Flounder IR features in Section 3.

The attribute values are held in {r_a}, {s_a}, and {s_b} and
the locations of hash table entries in {entry}. The hash_get(...)
call is realized with mcall and the loop over the probe matches
with a combination of compare (cmp) and two jumps (jmp, je). To
read attributes from a hash table entry (dematerialize), we use mov
from a memory location in brackets [] to e.g. {s_a}.

1We use an nasm-style assembler notation with the destination operand on the left
and the source operand on the right.
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2.2 IR to Machine Code
The next step translates the query’s intermediate representation to
machine code. The machine code needs to follow the application
binary interface (ABI) of the execution platform. In this work, we
use the target architecture x86_64 [15].

The Flounder IR emitted by the hash join is translated to the
machine assembly shown in Figure 4 (b). Several abstractions that
were used during IR generation are now replaced by machine-level
concepts. E.g. themachine assembly uses processor registers such as
r12 instead of {s_a}. Further the machine assembly uses additional
mov instructions to transfer values between registers and the stack,
e.g. mov r8,[rsp-8]. The translation process from Flounder IR to
machine code needs to manage machine resources such as registers
and stack memory and find an efficient way for their use during
JIT query execution.

This section provided an overview of query compilation with
Flounder IR and the following sectionswill describe themechanisms
in detail. The next Section 3 shows the abstractions used by Flounder
IR during code generation. The following Section 4 will show the
translation process from Flounder IR to machine code.

3 LIGHTWEIGHT ABSTRACTIONS
Flounder IR is similar to x86_64 assembly, but it adds several light-
weight abstractions. The abstractions are designed with the inter-
face to the query compiler and with the resulting machine code
in mind. For operator emitters, the abstractions provide indepen-
dence of several machine-level concepts, which allows similar code
generation as typically performed with LLVM. For machine code
translation, the abstractions are lightweight enough to avoid the
use of compute-intensive algorithms and additionally they enable
tuning the machine code for relational workloads.

In the following, we present the lightweight abstractions. They
add several pseudo-instructions, i.e. vreg, clear, and mcall to
x86_64 assembly and use additional tokens, which are shown in
braces, e.g. {param1}.

3.1 Virtual Registers
An unbounded number of virtual registers is a common abstraction
in compilers [3]. Query compilers use them to handle attributes
without the restrictions of machine registers. When replacing vir-
tual registers with machine registers for execution, general purpose
compilers perform live-range analysis [1]. This is rather expen-
sive because compilers consider all execution-paths that lead to a
register usage.

Query workloads use virtual registers in a much simpler way
than general purpose code. They hold attribute datawithin a pipeline
and the pipeline’s execution path only consists of tight loops. This
allows query compilers to use a simpler approach that skips live-
range analysis. In Flounder IR, operator emitters mark the validity
range of virtual registers. The vreg pseudo-instruction marks the
start of a virtual register usage, e.g. using

;start virtual register use is
vreg {vreg_nameN}

and the clear pseudo-instruction marks the end of the usage, e.g.
;finish virtual register use
clear {vreg_nameN} .

We use these markers in a way similar to scopes in higher-level
languages. For instance the Flounder IR in Figure 4 (a) marks the
range of the probe attributes {s_a} and {s_b} to reach around the
operators in the probe loop.

3.2 Function Calls
Being able to access pre-compiled functionality is important for
query compilers. It reduces compile times and avoids the imple-
mentation cost of code generation for every SQL feature. To this
end Flounder IR provides the mcall pseudo-instructions to specify
function calls in a simple way. For instance

;function call to ht_ins
mcall {res} {ht_ins} {param1} ... {paramN}

represents a function call to ht_ins(...) with parameters param1
to paramN and the return value is stored in {res}. A pointer to the
function code is provided as an address constant via {ht_ins}. This
pseudo-instruction is later replaced with an instruction sequence
that realizes the calling convention.

3.3 Constant Loads
Large constants, e.g. 64 bit, can not be used as immediate operands (imm)
on current architectures. To use large constants, they have to be
placed in machine registers. The constant load abstraction in Floun-
der IR, allows using such constants without restrictions. E.g.

;load from 64 bit address with offset
mov {attr} [{0x7fff5a8e39d8} + {offs}]

loads data from the address {0x7fff5a8e39d8}+{offs} to the vir-
tual register {attr}. During translation to machine assembly, the
address constant will be placed in a machine register.

3.4 Transparent High-Level Constructs
We use transparent high-level constructs that mimic high-level lan-
guage features such as loops and conditional clauses. They are
used to generate Flounder IR in operator emitters. For example
operator emitters can generate a while loop with the condition
{tid} < {len} by using the methods While(...), close(...), and
isSmaller(...) as shown below.

// Produce code for while loop (C++)
wl = While(isSmaller(tid,len)); {

[...]
} wl.close();

loop_headN:
cmp {tid},{len}
jge loop_footN
;loop body
[...]
jmp loop_headN;
loop_footN:

This generates the Flounder IR on the right,
that realizes the loop functionality. The cmp
instruction evaluates the loop condition and
jge jumps to the loop_footN-label when the
condition is not met. The loop is repeated by
the jump instruction jmp loop_headN at the
end of the loop body.

4 MACHINE CODE TRANSLATION
This section shows the translation of Flounder IR resulting from
plan translation to x86_64 machine code. The abstractions that
were used to facilitate code generation in the previous step are now
replaced with machine concepts.
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Temporary Registers
tmpReg1 , tmpReg2 , tmpReg3

Attribute Registers
attReg1 , . . . , attReg12

rax rbx

rcx rsp

rdx rbp rsi rdi r8 r9

r10 r11 r12 r13 r14 r15

attribute data
tuple ids

stack pointerspill loads
constant loads
return values

Figure 5: Usage of machine registers by translator.

A key challenge here is to replace virtual registers with ma-
chine registers and to manage spill memory locations for cases
of insufficient registers. Finding optimal register allocations is an
NP-hard problem and even the computation of approximations is
expensive [7]. In the context of JIT compilers, linear scan has been
proposed as a faster algorithm [19] and was adopted by LLVM.
However, linear scan register allocation is still relatively expensive
due to live range computations and increasing numbers of registers.

In this section, we present a much simpler technique that bene-
fits from the explicit usage ranges marked in Flounder IR. In the
following, we first show the machine register configuration used
by the translator and then we show the algorithm to translate the
lightweight abstractions.

4.1 Register Layout
We use a specific register layout for the machine code generated
from Flounder IR. The layout is shown in Figure 5. We split the 16
integer registers of the x86_64 architecture into three categories.

We use twelve attribute registers attReg1, . . . , attReg12 to carry
attribute data and tuple ids. We use three temporary registers
tmpReg1, tmpReg2 and tmpReg3, which are-multi purpose for ac-
cessing spill registers and constant loads. Lastly, we use the stack
pointer rsp to store the stack offset. The stack base pointer rbp is
repurposed for attribute data and not used for the stack.

4.2 Translation Algorithm
The translation algorithm translates Flounder IR to x86_64 assem-
bly in one sequential pass over the code. It replaces the Flounder
abstractionswithmachine instructions, machine registers, and stack
access. The algorithm is shown in Figure 6.

When iterating over the IR elements, the algorithm keeps track
of a the number of in-use attribute registers (line 1) and t the
number of temporary registers per instruction (line 3). We describe
the translation in three parts. The first part is register allocation,
then the replacement of virtual operands with machine operands
in instructions, and finally function calls.

Register Allocation. Register allocation is used to decide which vir-
tual registers are stored in machine registers and which virtual
registers are stored on the stack. Register allocation does not pro-
duce code directly, but it sets the allocation state for spill code and
operand replacement. The procedure is illustrated below.

Translate Flounder IR to machine assembly
1 a ← 0 /* attribute registers in use */

2 foreach instruction i in input:
3 t ← 0 /* temporary registers in use */

4 if i is vreg {v}: /* allocate pseudo-instruction */

5 if a < number attribute registers:
6 allocate free attRegk /* machine register */

7 a ← a + 1

8 else allocate spill location /* spill */

9 elseif i is clear {v}: /* deallocate pseudo-instruction */

10 if any attRegk holds v :
11 release attRegk /* free machine reg */

12 a ← a − 1

13 elseif i is mcall (...): /* function call pseudo-instr. */

14 emit call-convention code

15 else: /* other instructions */

16 foreach virtual register operand v in i :
17 if v is spilled:
18 emit spill code for v to tmpRegt /* spilled */

19 replace v with tmpRegt
20 t ← t + 1

21 else replace v with attRegk /* machine register */

22 foreach constant load operand c in i :
23 emit load c to tmpRegt /* place c in temp reg */

24 replace c with tmpRegt in i
25 t ← t + 1

26 emit i /* output native instruction */

Figure 6: Pseudocode for the translation of Flounder IR to
machine assembly. The code is translated in one pass.

vreg {vnew}clear {vold}

alloc A B spillfree C

vnew

vnew

spill slot

spill slot

spill slot

Stack

vold

Attribute Registers

When a vreg {vnew} pseudo-instruction is encountered (line 4),
there are two options. In case A there are sufficient machine regis-
ters available and we assign one of them to vnew (lines 5-7). In case
B all machine registers are occupied and we assign a spill slot on
the stack (line 8). For vreg {vold}, illustrated by C , any machine
registers assigned to vold are freed (line 11).

This assignment procedure has the effect that spilled virtual
registers remain spilled. However, this happens only when the
pipeline requires to hold more than 12 attributes simultaneously.

Spill Code andOperand Replacement. For each instruction, operands
that use constant loads or virtual registers have to be replaced with
machine-compatible operands. Virtual registers that were assigned
with machine registers are simply swapped (line 21). For the other
cases, the algorithm uses tmpReg1 to tmpReg3 to hold values tem-
porarily per instruction. Three registers are sufficient for this pur-
pose as this is the highest numner of non-immediate operands per
instruction. As an example, we look at the following instruction.
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mov {r_a}, [{0x7fff5a8e39d8}+{tid_os}]

It reads an 8 byte value with the offset {tid_os} from the memory
address 0x7f... and stores it in {r_a}. The address is too large for
an immediate operand and we assume for illustration purposes that
both virtual registers {r_a} and {tid_os} are spilled.

The translator assigns temporary registers to each operand and
emits spill code that exchanges values between spill slots and tem-
porary registers. This is performed in pseudocode lines 16 to 26
and illustrated in the following.

spill slot

spill slot

Stack

r_a

tid_os

rax

tmpReg1

rbx

tmpReg2

rcx

tmpReg3

0x7fff5a8e39d8
Constant

spill
store
1

2
spill load

3
constand load

The algorithm enumerates the virtual register accesses (lines 16-
21) and the constant loads (lines 22-25) from the instruction. It
assigns one of the temporary registers tmpReg1 to tmpReg3 to each.
In step 1 the translator assigns tmpReg1 (rax) to the operand
{r_a}. This is the only output operand of the instruction and the
operator emits a store to {r_a}’s spill slot on the stack. Step 2
assigns tmpReg2 (rbx) to the operand {tid_os}. The translator
emits a load to retrieve the value from its spill slot. Step 3 assigns
tmpReg3 (rcx) to the constant load of address 0x7f... . The trans-
lator emits a load for the constant. This results in the following
machine code sequence, which includes the original mov instruction
with replaced operands.

mov rbx, [rsp-24] ;load spill tid_os
mov rcx, 0x7fff5a8e39d8 ;load constant
mov rax, [rcx+rbx] ;instruction
mov [rsp-8], rax ;store spill r_a

Call Conventions. The mcall pseudo-instruction is replaced with
an instruction sequence that realizes the call convention. To per-
form the function call, it is necessary to follow the x86_64 call
convention, which includes saving 7 caller-save registers, setting up
to 7 parameter registers, retrieving the return value of the function,
and restoring the caller-save registers [15].

The pseudo-instruction is translated to machine assembly in
lines 13 to 14 of the pseudocode. At this point, the machine register
allocation to the point of the call is known. We can take the register
usage into account to produce only minimal code for realizing the
call convention. Thus we avoid unnecessary work, for instance
we do not preserve registers that are not assigned to any virtual
registers. Further we do not preserve the values held by temporary
registers.

5 EVALUATION
This section evaluates our approach of using a simple IR specialized
to relational workloads over a general purpose IR. We analyze
the compilation times and the machine code quality for different
compilation techniques using Flounder IR and LLVM IR.

Query Compiler Prototype. Our query compiler prototype supports
translation of relational query plans to both Flounder IR and LLVM

SELECT AVG(r.e)
FROM r,s --len(r)=len(s)=l
WHERE r.b = s.d

AND r.c BETWEEN 40 AND 50

Q : Vary relation lengths (l ).

SELECT r.a1, r.a2, ..., r.ap
FROM r
WHERE r.a1 < c

Qπ : Vary projection complexity (p).

SELECT r1.a, r2.a, ..., rj.a
FROM r1, r2, ..., rj
WHERE r1.a = r2.a

...
AND rj−1.a = rj.a

QZ : Vary join complexity (j ).

SELECT r.a
FROM r
WHERE r.a != c1

AND r.a != c2
...

AND r.a != cs

Qσ : Vary selection complexity (s ).

Figure 7: Evaluation workloads.

IR. Translation from query plan to IR is similar for both backends
and follows the produce/consume model [16]. The translation from
Flounder IR to machine assembly is performed with the algorithm
from Figure 6. Then we use the AsmJit library [12] to emit the
binary representation to avoid the overhead of running external
assemblers, e.g. nasm.

For LLVM IR, the machine code is generated by the LLVM li-
brary’s JIT functionality. We use O0 and O3 optimization levels for
tradeoffs between compilation time and code quality.

Workload Design. We use four query templates that vary data size
and query complexity. The templates are specified in an SQL-form,
which uses additional integer parametes (cf. Figure 7). The param-
eter l varies the data size in Q . Parameters p, j, and s vary query
complexity in Qπ , QZ , and Qσ respectively. The attribute data is
generated from uniform random distributions with the following
relation sizes: Q has l tuples for r an s , Qπ has 1M tuples, QZ has
10 K tuples per join relation, and Qσ has 1M tuples.

Execution Platform. We use a system with Intel(R) Xeon E5-1607
v2 CPU with 3.00GHz and 32GB main memory. The experiments
run in one thread. We use operating system Ubuntu 18.04.4 and
clang++ 6.0.0 to compile the query compiler and the library for JIT
queries. The LLVM backend uses LLVM 6.0.0.

5.1 Compilation Times
We compare the machine code compilation times for LLVM and
Flounder for Qπ and QZ . We use Qπ with values of p to project 50
to an extreme case 500 attributes (filter with selectivity 1%). We use
QZ with values of j to join 2 to 100 relations. We show the results
for Flounder, llvm-O0, and llvm-O3 in Figure 8.

Observations. For all techniques, the compilation times increase
with the query complexity. The compilation times forQZ are higher
(up to 657ms) than for Qπ (up to 560ms) and we look in detail at
QZ . With O0 optimization LLVM has compilation times between
10ms up to 265ms. With O3 compilation times range from 28ms up
to 657ms. For both levels, the graphs show super-linear growth of
compilation times with query complexity. Flounder shows lower
compilation times that scale linearly between 0.3ms to 10.8ms. The
highest factor of improvement is 24.6x over llvm-O0. and 60.9x
over llvm-O3 (both for 100 join relations). For Qπ Flounder has
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Figure 8: Effect of query complexity on compilation times
for different query compilation techniques.

very low compilations times ranging from 0.1ms (50 attributes) to
0.6ms (500 attributes). This leads to factors of improvement up to
933x over llvm-O3. We attribute this to the time LLVM uses for
register allocation of all virtual registers holding attributes.

5.2 Machine Code Quality
To evaluate machine code quality, we execute two configurations
of each query template and measure the execution time and the
number of executed instructions. The results are shown in Figure 9.
The bars show the execution time in milliseconds and the number
ontop shows the executed instructions in millions.

Register Allocation. We analyze the effect of our register allocation
strategy on machine code quality. To this end we look at the tech-
niques Flounder (spill) and Flounder. The former uses spill access
for every virtual register use. The latter allocates machine registers
with the translation algorithm. We observe that register allocation
reduces the number of executed instruction by factors between
1.2x and 1.8x (with one exception). This shows that our register
allocation strategy effectively reduces the amount of executed spill
code. We explain the lack of improvement for QZ j = 25 with a
large number of hash table operations, which execute invariant
library code. The results show that the register allocation technique
reduces execution times for all queries by factors between 1.02x
to 1.35x. The factors are not as high as the factors between L1
access and register access. This is because the memory access for
reading relation data limits throughput (as is typical for database
workloads). The improvements shown by the experiment are due
to faster machine register access and execution of less spill code.

Comparison with LLVM. Next we compare the machine code quality
of Flounder and LLVM (cf. Figure 9). On average llvm-O0 executes
1.4x less instructions than Flounder. The execution times, how-
ever, are similar and are longer for Flounder only by an average
factor of 1.01x. With regard to execution times the machine code
quality resulting from Flounder is similar to llvm-O0. We attribute
the small time difference despite the higher instruction count to
memory bound execution.

llvm-O3 executes 2.2x less instructions than Flounder on av-
erage. The average factor between the execution times of 1.05x
is still low. However, especially queries on larger datasets benefit
from the optimizations applied by llvm-O3. E.g. the larger variant
Q 1M executes 1.3x faster. We conclude that despite the much
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Figure 9: Time and instruction count for execution of ma-
chine code from different query compilation techniques.

llvm-O0 llvm-O3 Flounder
cmpl exec all cmpl exec all cmpl exec all

Q l = 0.1M 4.9 3.5 8.5 9.9 3.3 13.2 0.1 3.6 3.8
Q l = 1M 4.7 43.6 48.4 9.7 38.9 48.7 0.1 50.1 50.2
Qπ p = 10 4.0 6.5 10.6 9.2 6.4 15.7 0.1 6.4 6.4
Qπ p = 100 15.9 14.0 29.9 56.7 13.9 70.7 0.1 14.0 14.1
QZ j = 1 4.9 0.3 5.3 10.9 0.5 11.4 0.1 0.3 0.4
QZ j = 25 36.8 38.1 74.9 105.2 36.7 141.9 2.8 39.1 42.0
Qσ s = 10 3.8 9.7 13.5 7.8 13.9 21.7 0.1 9.5 9.6
Qσ s = 100 10.3 40.0 50.3 18.5 25.6 44.2 0.2 39.0 39.2

Figure 10: Overall performance with values in milliseconds.

shorter translation times, our compilation strategy produces code
with competitive performance to LLVM’s code.

5.3 Overall Performance
We show a table with overall performance for each technique in
Figure 10. The workloads are the same as in Section 5.2 with two
configurations for each template. The relation sizes range from 10 K
to 1M tuples with total attribute numbers between 2 and 100.

Observations. The technique Flounder has overall execution times
between 0.4ms and 50.2ms and llvm-O0 between 5.3ms and 74.9ms.
For llvm-O0, compilation makes up 46% of the execution on aver-
age. For Flounder the average is 5%. This leads to better perfor-
mance of Flounder for 7 of 8 queries. For Q l = 1M compilation
times are generally low; thus llvm-O0 achieves a slightly shorter
overall time due to 1.15x faster execution. The technique llvm-O3
has execution times between 11.4ms and 141.9ms, which is longer
than the other techniques for 7 of 8 queries. The compilation times
make up a high percentage of 62% of the overall on average. The
highest factor of improvement of Flounder over llvm-O0 is 10.7x.
The highest factor of improvement over llvm-O3 is 23.2x.

6 SUMMARY
We showed a query compilation technique that includes all machine
code generation steps in the query compiler. The technique uses an
intermediate representation with abstractions that enable simple
translation of query plans to IR and fast translation from IR to
machine code. While the translation of query plans to IR is similar
to existing approaches, the next step, translation to machine code, is
much simpler than in existing techniques. Compared to established
low-level query compilers, our approach achieves much shorter
compilation times and provides more control over the resulting
machine code.
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