Variable Word Length Word-Aligned Hybrid Compression

Florian Grieskamp
G DATA CyberDefense AG
florian.grieskamp@gdata.de

ABSTRACT

The Word-Aligned Hybrid (WAH) compression is a prominent ex-
ample of a lightweight compression scheme for bitmap indices that
considers the word size of the underlying architecture. This is a
compromise toward commodity CPUs, where operations below the
word granularity perform poorly. With the emergence of novel
hardware classes, such compromises may no longer be appropriate.
Field-programmable gate arrays (FPGAs) do not even have any
meaningful “word size”.

In this work, we reconsider strategies for bitmap compression
in the light of modern hardware architectures. Rather than tuning
compression toward a fixed word size, we propose to tune the
word size toward optimal compression. The resulting compression
scheme, Variable Word Length Word-Aligned Hybrid (VWLWAH),
improves compression rates by almost 75 % while maintaining line
rate performance on FPGAs.

ACM Reference Format:

Florian Grieskamp, Roland Kithn, and Jens Teubner. 2020. Variable Word
Length Word-Aligned Hybrid Compression. In International Workshop on
Data Management on New Hardware (DAMON20), June 15, 2020, Portland,
OR, USA. ACM, New York, NY, USA, 3 pages. https://doi.org/10.1145/3399666.
3399935

1 INTRODUCTION

Bitmap indices are an important building block in the design of
large-scale data warehouses. They appeal with high flexibility, e.g.
when used as join indices in star schema settings.

To combat the prohibitive space overhead that would result from
naive bitmap index designs, systems use lightweight compression
schemes, which aim to provide decent compression rates while
maintaining high throughput. The most well-known incarnation of
this idea is the Word-Aligned Hybrid (WAH) scheme of Wu et al. [17].
Rather than treating bit vectors at a bit or byte level for compression,
WAH operates at the granularity of machine words (usually 32 bits).
This word alignment is a compromise toward the characteristics of
CPUs, where operations on data below the intrinsic machine word
size are complicated and slow.

Since the inception of WAH, the hardware landscape has changed
significantly. Commodity CPUs have become just one piece in a
mix of heterogeneous processing components with different or no
specific word sizes (e.g. FPGAs).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

DAMON 20, June 15, 2020, Portland, OR, USA

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-8024-9/20/06...$15.00
https://doi.org/10.1145/3399666.3399935

Roland Kithn

TU Dortmund University
roland.kuehn@cs.tu-dortmund.de

Jens Teubner
TU Dortmund University
jens.teubner@cs.tu-dortmund.de

In this work, we aim to understand what the changing hardware
landscape means to the design of bitmap indices and their com-
pression schemes. We specifically look at FPGAs, which not only
fit well with the typical uses of bitmap indices but also become
increasingly attractive with tighter integrations into mainstream
platforms (e.g., in the form of Intel’s HARP platform [5]). We de-
vise Variable Word Length Word-Aligned Hybrid (VWLWAH) as a
more flexible variant of WAH that can leverage the opportunities
of heterogeneous hardware platforms.

2 BACKGROUND

Word-Aligned Hybrid (WAH) was proposed as a compression scheme
for bitmap indices by Wu et al. [17] and uses a variant of run-length
encoding to compress sequences of identical bits within a bit vector.
To achieve this, repeated chunks of 1s or Os are represented as single
fill words while incompressible chunks are stored as literal words.

A beauty of the WAH scheme is that important operations on
bit vectors can be performed without decompressing the operand
vectors. This includes all usual bitwise Boolean operations (-, V, A)
and systems derive much of their performance from this potential.

The tension between the optimization goals CPU efficiency (~»
large word size) and compression quality (~ small word size) has
inspired a number of follow-up articles that propose modifications
of the original WAH scheme. Their common theme is to make
better use of the “unused bits”. [2-4, 6, 7, 9, 10, 13, 14]. Other papers
discuss the possibility of meta-compression, i.e., to compress the
output of already WAH-compressed data [8, 15, 18].

From the hardware technology side, FPGAs have emerged a few
years ago as a highly promising technology for database acceler-
ation. Early proposals have pioneered the field [12], to be picked
up by system makers to develop full-stack database solutions with
FPGA accelerations[1, 11, 16].

3 VARIABLE WORD LENGTH WAH

WAH and all variants known to us stick to the idea of matching the
machine word size of the underlying hardware, usually 32 or even
64 bits. While such values make sense in the light of commodity
CPU hardware, from the perspective of the achievable compression
rate, smaller values would be much more desirable.

To illustrate the effect of the configured word size on the achiev-
able compression rate, we generated bit vectors of size 100 MiB with
different distributions and compressed them using WAH using dif-
ferent word width configurations. Figure 1! visualizes the size of the
compressed representations that we observed for w € {4, 8, 16, 32}.

!In the graph, “1-density” refers to the characteristics of the input bit vectors. In a
relational database setting, a bitmap index on a relation R that indices an attribute a
with e distinct values (“attribute cardinality”) will consist of « bit vectors Xy, . . . X4 of
length |R|. Since every row in R will carry exactly one a value, all bit vectors together
will have exactly |R| bits set to 1. Under the premise of a uniform data distribution in

R, the proportion of 1-bits in a vector, the 1-density, will be &'

https://doi.org/10.1145/3399666.3399935
https://doi.org/10.1145/3399666.3399935
https://doi.org/10.1145/3399666.3399935

DAMON’20, June 15, 2020, Portland, OR, USA

100 -

Output Size [MiB]

Lo Lol Lo L1
1074 1073 1072 107!
1-Density d

Figure 1: Size of the compressed vectors with varying den-

sity for four different word sizes and uniformly distributed
values

Input: 0°-1-0%0.1.0%

w=7[o]ofolofofo[1] [z[ofofofofo[1] Frioi1]1]o[1]o] [070fo[1]ofofo]
6 5 4 3 2 1 0 6 5 4 3 2 1 0 6 5 4 3 2 1 0 6 5 4 3 2 1 0

Figure 2: Representation of a compressed bitvector with a
word size of w = 7. In that case two fill words are concate-
nated to represent a long 0-fill

The right end of the plot shows the “compression penalty” on in-
compressible data. While we observe that the compression penalty
is higher for smaller word sizes, it is also clear that smaller word
sizes enable compression for a wider variety of input data. As we
can see in the graph, for moderate 1-densities the choice of the word
width can have a significant effect on the size of the compressed
data. For some configurations, w = 4 compresses up to four times
better than the standard value of w = 32.

In the light of these measurements, we propose to make word
width a tuning knob that can be chosen based on data set charac-
teristics. In most situations, w < 32 will significantly improve the
compression ratio of WAH. At some point, very small values for w
will have a negative effect on compression ratios, too. Smaller word
sizes will also limit the length of fills that can be encoded, counter-
acting the idea of run-length encoding. To remedy the situation,
we picked up the idea of flexible block sizes that was introduced by
Guzun et al. [9] to devise our Variable Word Length Word-Aligned
Hybrid (VWLWAH) compression scheme.

Figure 2 illustrates how VWLWAH addresses the problem of
limited fill ranges in standard WAH for small values of w. As a
convention in VWLWAH, successive fill words (here: the second
and third words for w = 7) are interpreted by merging their fill width
encodings as originally proposed by van Schaik and de Moor [14].
In the illustrated example, this enables the encoding of up to 2>+
blocks of 0s with just two encoded 7-bit words.

4 EXPERIMENTS

For the practical evaluation we used the Zynq Ultrascale+ ZCU102
evaluation kit from Xilinx. In addition to programmable logic (PL),
this development board contains a quad-core CPU (PS) from ARM,
whereby the communication between both components is carried
out via the AXI bus. In order to access the main memory also from
the programmable logic, we used an AXI Streaming DMA IP from
Xilinx [19]. This made further components necessary to convert the
AXI streaming data to VWLWAH compatible data. Since “through-
put” is much easier to interpret for a single input data stream, we

Grieskamp et al.

w

S

S
T
x
I

300 |- x|

x - -~ ARM CPU (1.5 GHz)
x x Xilinx FPGA
100 | % . H

| I I I
100 150 200 250 300 350 100 150 200 250 300 350

IS

S

S
T
I

[Mw/]]

Throughput [Mw/s]
x
Energy Efficiency

1)
S
T
L

Frequency [MHz] Frequency [MHz]

Figure 3: Throughput [million words per second] and energy
efficiency [million words per joule] on the Odroid C2 and on
the FPGA with different frequencies

chose ‘negation’ as the operation to apply to the compressed bit
vector in our experiments.

For our experiments, the size of the investigated input vectors
was varied between 500 and 4000 words. We chose clock frequencies
between 100 MHz and 375 MHz for the PL, since higher frequen-
cies caused complications during data transmissions on the AXI
bus. Despite the significantly lower frequencies, the FPGA almost
reaches the same throughput as the CPU-based implementation.

Another important aspect is energy consumption. For this reason,
we investigated the energy consumption of VWLWAH on a CPU as
well as on the FPGA. The power consumption of the FPGA is an
estimate of the Vivado suite from Xilinx. For the examination of the
power on the CPU side, we monitored an Odroid C2 with an ARM
Cortex-A53 Quad-Core (1.5 GHz) with the Odroid SmartMeter.

For the evaluation of the runtime a word size of 32 bit was chosen
for VWLWAH. This decision may seem unintuitive at first glance,
as the memory evaluation would have suggested a small word size.
We expect the word size of 32 bit to result in a best case scenario
for the CPU. As can be seen in Figure 3, the CPU can achieve
higher throughput than the implementation on the FPGA, but there
is a clear indication that the implementation on the FPGA side
has significant saving potential in terms of energy consumption.
This point is especially noteworthy if it is considered that all word
sizes below 32 bits are likely to have a rather negative effect on the
throughput and energy consumption of the CPU.

5 CONCLUSION AND OUTLOOK

In this paper we discussed the influence of variable word sizes for
WAH based compression techniques. For this purpose, we opti-
mized the original WAH scheme, analyzed the possible savings,
and implemented it on an FPGA. A key feature of VWLWAH is
its simplicity resulting from the strong similarity with the origi-
nal WAH idea, but other optimizations, such as meta-compression,
would be possible here as well. Our analysis shows that a small
word size leads to much better compressibility in most cases and
space savings of up to 75% compared to a standard word size. Fur-
thermore, we were able to implement a working prototype on an
FPGA to demonstrate the feasibility of our approach. We continue
to follow this approach and are currently developing a library for
FPGA-based database acceleration at TU Dortmund University.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their helpful comments. The
work has received funding from the Deutsche Forschungsgemein-
schaft (DFG), SFB 876, project C5 (http://sfb876.tu-dortmund.de/).

http://sfb876.tu-dortmund.de/

Variable Word Length Word-Aligned Hybrid Compression

REFERENCES

[1] Andreas Becher, Florian Bauer, Daniel Ziener, and Jirgen Teich. 2014. Energy-

[2

(3

]

]

aware SQL query acceleration through FPGA-based dynamic partial reconfig-
uration. In 2014 24th International Conference on Field Programmable Logic and
Applications (FPL). IEEE, 1-8.

Jiahui Chang, Zhen Chen, Wenxun Zheng, Junwei Cao, Yuhao Wen, Guodong
Peng, and Wen-Liang Huang. 2015. SPLWAH: A bitmap index compression
scheme for searching in archival internet traffic. In 2015 IEEE International Con-
ference on Communications (ICC). IEEE, 7089-7094.

Jiahui Chang, Zhen Chen, Wenxun Zheng, Yuhao Wen, Junwei Cao, and Wen-
Liang Huang. 2014. PLWAH+: A bitmap index compressing scheme based on
PLWAH. In 2014 ACM/IEEE Symposium on Architectures for Networking and
Communications Systems (ANCS). IEEE, 257-258.

Alessandro Colantonio and Roberto Di Pietro. 2010. Concise: Compressed
‘n’composable integer set. Inform. Process. Lett. 110, 16 (2010), 644-650.

Intel Corporation. 2015. Xeon + FPGA Platform for the Data Center.

Fabian Corrales, David Chiu, and Jason Sawin. 2011. Variable length compression
for bitmap indices. In International Conference on Database and Expert Systems
Applications. Springer, 381-395.

Francois Deliége and Torben Bach Pedersen. 2010. Position list word aligned
hybrid: optimizing space and performance for compressed bitmaps. In Proceedings
of the 13th international conference on Extending Database Technology. 228-239.
Francesco Fusco, Marc Ph Stoecklin, and Michail Vlachos. 2010. Net-fli: on-the-fly
compression, archiving and indexing of streaming network traffic. Proceedings
of the VLDB Endowment 3, 1-2 (2010), 1382-1393.

Gheorghi Guzun, Guadalupe Canahuate, David Chiu, and Jason Sawin. 2014. A
tunable compression framework for bitmap indices. In 2014 IEEE 30th International

[10

[11

[12
[13

[14

[15

[16

(17

(18

DAMON’20, June 15, 2020, Portland, OR, USA

Conference on Data Engineering. IEEE, 484-495.

Daniel Lemire, Owen Kaser, and Kamel Aouiche. 2010. Sorting improves word-
aligned bitmap indexes. Data & Knowledge Engineering 69, 1 (2010), 3-28.
Nusrat Jahan Lisa, Annett Ungethiim, Dirk Habich, Wolfgang Lehner, Tuan DA
Nguyen, and Akash Kumar. 2018. Column Scan Acceleration in Hybrid CPU-
FPGA Systems.. In ADMS@ VLDB. 22-33.

Rene Mueller, Jens Teubner, and Gustavo Alonso. 2009. Data Processing on
FPGAs. Proceedings of the VLDB Endowment 2, 1 (Aug. 2009), 910-921.

Andreas Schmidt, Daniel Kimmig, and Mirko Beine. 2011. A proposal of a new
compression scheme of medium-sparse bitmaps. (2011).

Sebastiaan J van Schaik and Oege de Moor. 2011. A memory efficient reachability
data structure through bit vector compression. In Proceedings of the 2011 ACM
SIGMOD International Conference on Management of data. 913-924.

Yuhao Wen, Zhen Chen, Ge Ma, Junwei Cao, Wenxun Zheng, Guodong Peng,
Shiwei Li, and Wen-Liang Huang. 2014. SECOMPAX: A bitmap index compression
algorithm. In 2014 23rd International Conference on Computer Communication and
Networks (ICCCN). IEEE, 1-7.

Louis Woods, Zsolt Istvan, and Gustavo Alonso. 2014. Ibex: an intelligent storage
engine with support for advanced SQL offloading. Proceedings of the VLDB
Endowment 7, 11 (2014), 963-974.

Kesheng Wu, Ekow] Otoo, and Arie Shoshani. 2006. Optimizing bitmap indices
with efficient compression. ACM Transactions on Database Systems (TODS) 31, 1
(2006), 1-38.

Yinjun Wu, Zhen Chen, Yuhao Wen, Wenxun Zheng, and Junwei Cao. 2016.
Combat: A new bitmap index coding algorithm for big data. Tsinghua Science
and Technology 21, 2 (2016), 136-145.

Xilinx. 2019. AXI DMA v7.1 LogiCORE IP Product Guide.

	Abstract
	1 Introduction
	2 Background
	3 Variable Word Length WAH
	4 Experiments
	5 Conclusion and Outlook
	References

