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ABSTRACT
Efficient and fast compression plays a crucial role in processing
large bitmap indices in modern database management systems.

The Word-Aligned Hybrid (WAH) compression is a prominent
example of a lightweight compression scheme for bitmap indices.
WAH is inspired by run-length encoding, but also considers the
word size of the underlying architecture. The latter is a compro-
mise toward commodity CPUs, where operations below the word
granularity perform poorly. With the emergence of novel hard-
ware classes, such compromises may no longer be appropriate.
Field-programmable gate arrays (FPGAs) do not even have any
meaningful “word size.”

In this work, we reconsider strategies for bitmap compression
in the light of modern hardware architectures. Rather than tuning
compression toward a fixed word size, we propose to tune the
word size toward optimal compression. The resulting compression
scheme, Variable Word Length Word-Aligned Hybrid (VWLWAH),
improves compression rates by almost 75 %, while maintaining line
rate performance on FPGAs.
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1 INTRODUCTION
Bitmap indices are an important building block in the design of
large-scale data warehouses. They appeal with high flexibility, e.g.,
when used as join indexes in star schema settings.

To combat the prohibitive space overhead that would result from
naive bitmap index designs, systems use lightweight compression
schemes, which aim to provide decent compression rates while
maintaining high throughput. The most well-known incarnation
of this idea is the Word-Aligned Hybrid (WAH) scheme of Wu et
al. [17].
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WAH is based on run-length encoding for compression. However,
rather than treating bit vectors at a bit or byte level for compression,
WAH operates at the granularity of machine words (usually 32 bits).
This word alignment is a compromise toward the characteristics
of commodity CPUs, where operations on data below the intrinsic
machine word size is complicated and slow.

Since the inception ofWAH, the hardware landscape has changed
significantly. Commodity CPUs—which is what WAH was designed
for—have become just one piece in a mix of heterogeneous pro-
cessing components that may further include graphics processors
(GPUs), field-programmable gate arrays (FPGAs), or other processor
classes. In such a mix, it is all but clear whether “word alignment”
even has a sensible meaning. Different processor classes may fa-
vor different word sizes; and some—FPGAs in particular—can deal
equally well with any word size.

In this work, we aim to understand what the changing hardware
landscape means to the design of bitmap indices and their com-
pression schemes. We specifically look at FPGAs, which not only
fit well with the typical uses of bitmap indexes but also become
increasingly attractive with tighter integrations into mainstream
platforms (e.g., in the form of Intel’s HARP platform [5]). We de-
vise Variable Word Length Word-Aligned Hybrid (VWLWAH) as a
more flexible variant of WAH that can leverage the opportunities
of heterogeneous hardware platforms.

The remainder of the paper is structured as follows. We sum-
marize the basic idea of Word-Aligned Hybrid compression and
some optimizations of other researchers in Section 2, followed by
a description of our idea VWLWAH in Section 3, where we also
highlight the similarities and differences of our implementation
to existing approaches. The theoretical and experimental results
regarding space complexity of VWLWAH can be found in Section
4. Section 5 contains a description of the library for FPGA-based
database acceleration that we are developing at TU Dortmund Uni-
versity. In Section 6, we examine the runtime behaviour of our
approach in theory and with an experimental implementation on
real hardware. The paper ends with a conclusion and an outlook to
possible future enhancements.

2 BACKGROUND
Word-Aligned Hybrid (WAH)was proposed as a compression scheme
for bitmap indices by Wu et al. [17] and uses a variant of run-length
encoding to compress sequences of identical bits within a bit vector.

2.1 WAH Compression
Figure 1 illustrates the WAH compression mechanism, assuming a
word size of𝑤 = 32. In the compressed representation, each word
(of size 𝑤 ) can either be a fill word (Figure 1a) or a literal word
(Figure 1b). The role of each word is encoded in its most significant
bit (MSB, leftmost bits in Figure 1).
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Figure 1: Layout of a fill and literal word. The fill word repre-
sents 42 0-fills with a block size of 31 bit each, which results
in a sequence of 1302 consecutive 0-bits.

If the word is a literal word, the remaining𝑤 − 1 bits are taken
literally from the uncompressed data. Fill words encode sequences
of all-0 or all-1 bits, and the bit at position𝑤−2 encodes whether the
fill encodes a sequence of 0s or 1s. In the latter case, the remaining
𝑤 − 2 bits are interpreted as a binary encoded integer number,
encoding the length of the fill (measured in multiples of𝑤 − 1; in
Figure 1a, the fill word would encode (1010102 = 42) × 31 = 1302
0-bits).

The word size 𝑤 in WAH is chosen based on the characteristics
of the underlying machine. All systems that we are aware of choose
𝑤 = 32. Smaller word sizes will underutilize the capabilities of
modern CPUs, which tend to favor large word and register sizes.
Larger word sizes will deteriorate compression ratios. As can be
seen already in the illustration in Figure 1, even long runs of 0s will
use only a fraction of the bits that would be available to encode the
run length (in Figure 1a, bits 6–29 are all 0, and we colored them in
gray for this reason).

A beauty of the WAH scheme is that important operations on
bit vectors can be performed without decompressing the operand
vectors. This includes all the usual bitwise Boolean operations (¬,
∨, ∧), and systems derive much of their performance from this
potential.

2.2 WAH Variants
The tension between the optimization goals CPU efficiency ({ large
word size) and compression quality ({ small word size) has inspired
a number of follow-up articles that propose modifications of the
original WAH scheme. Their common theme is to make better use
of the “unused bits” as we illustrated them in Figure 1a.

Enhanced Word Aligned Hybrid (EWAH) [10] uses the full word
size of 32 or 64 bit for literal words, thus a literal word can not
be distinguished by the MSB anymore. This implies that every
compressed sequence has to start with a special word, calledmarker
word, where the MSB specifies whether it is a 0-fill or a 1-fill and the
subsequent 16 bits determine the length of the fill. The following
bits specify the number of literal words which follow the 0- or 1-fills.
That means in return that 17 bits may be wasted, if the first block
is a literal word.

Partitioned Word Aligned Hybrid (PWAH) [14] tries to reduce
the disadvantage of a fixed word length by partitioning the word
in 2, 4 or 8 partitions, where each partition can be a valid fill or
literal word. Since the number of representable blocks in a fill word

decreases with smaller partitions, two or more fill words can be
simply concatenated to represent the number of fills.

In contrast to PWAH, Variable Length Compression (VLC) [6]
offers more degrees of freedom in the choice of different parti-
tion sizes. But in order to maintain the word alignment, words are
padded with 0-bits if necessary.

The work of Guzun et al. [9] showed that different block sizes
may be beneficial for different bit vectors. This led to a compression
scheme called Variable Aligned Length Word-Aligned Hybrid (VAL-
WAH), which is able to execute bitwise operations on compressed
data even if different bit vectors have been compressed with differ-
ent block sizes. The idea of this is approach is that each block size
is restricted to a multiple of a power of two, so that word alignment
is ensured.

In addition to the concepts that were discussed above, there are
a few more ideas that try to improve the original WAH scheme or
even try to improve already existing optimizations to WAH. Some
of these proposals try to extend the compression in such a way
that they try to detect and handle certain patterns that would not
compress well under the original WAH scheme [2–4, 7, 13]. Other
papers discuss the possibility of meta-compression, i.e., to compress
the output of already WAH-compressed data[8, 15, 18].

2.3 FPGAs for Database Tasks
From the hardware technology side, FPGAs have emerged a few
years ago as a highly promising technology for database acceler-
ation. Early proposals have pioneered the field [12], to be picked
up by system makers to develop full-stack database solutions with
FPGA accelerations. Examples of this include Ibex, which uses FP-
GAs to pre-filter and pre-process data close to storage [16]; Lisa et
al. [11] used FPGAs to accelerate scans in in-memory databases;
Becher et al. [1] leveraged dynamic reconfiguration on FPGAs for
full SQL support.

These systems have in common that they use the FPGA to pro-
vide processing capabilities along the system’s data path. This
matches particularly well the characteristics of FPGAs, which favor
high-throughput, stream-oriented processing modes.

3 VARIABLE WORD LENGTH
WORD-ALIGNED HYBRID

WAH and all of its above-mentioned variants stick to the idea
of matching the machine word size of the underlying hardware,
usually 32 or even 64. While such values make sense in the light of
commodity CPU hardware, from the perspective of the achievable
compression rate, smaller values would be much more desirable.

3.1 Word Widths in WAH
To illustrate the effect of the configured word size on the achiev-
able compression rate, we generated bit vectors of size 100MB and
compressed them usingWAH using different word width configura-
tions. Figure 2 visualizes the size of the compressed representations
that we observed for𝑤 ∈ {4, 8, 16, 32}.1

1In the graph, “1-density” refers to the characteristics of the input bit vectors. In a
relational database setting, a bitmap index on a relation 𝑅 that indexes an attribute a
with 𝛼 distinct values (“attribute cardinality”) will consist of 𝛼 bit vectors x1, . . . x|𝑅 |
(where |𝑅 | is the number of tuples in 𝑅). Since every row in 𝑅 will carry exactly
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Figure 2: Size of the compressed vectorswith varying density
for four different word sizes

The left end of the graph illustrates the situation where the input
bit vector is extremely sparse. In that case, WAH can efficiently
compress very long runs of 0s away, resulting in a very small output
data size, irrespective of the word width.

The right end is the other extreme. 0s and 1s mix equally in the in-
put data set, with no runs of 0s or 1s that could be compressed away.
This is the situation that would arise when very low-cardinality
attributes were indexed with a bitmap index. In that case, WAH
compression results in a slight increase of the data set size. Intu-
itively, all input data will be copied into literal words, and a 0-bit is
attached to each𝑤 −1-chunk to mark the literal word (cf. Figure 1b).
This “compression” penalty, therefore, increases for smaller values
of𝑤 .

Interesting for practical applications is the range in-between.
As we can see in the graph, for moderate 1-densities the choice
of the word width can have a significant effect on the size of the
compressed data. For some configurations,𝑤 = 4 compresses up to
four times better than the standard value of𝑤 = 32!

3.2 VWLWAH
In the light of these measurements, we propose to make word width
a tuning knob that can be chosen based on data set characteristics.
In most situations, values much smaller than 32 will significantly
improve the compression ratio of WAH (and we will look at perfor-
mance in the Section 5).

At some point, very small values for 𝑤 will have a negative
effect on compression ratios, too. Smaller word sizes will also limit
the length of fills that can be encoded, counteracting the idea of
run-length idea. To remedy the situation, we pick up ideas that
were introduced Guzun et al. [9] to devise our Variable Word Length
Word-Aligned Hybrid (VWLWAH) compression scheme.

Figure 3 illustrates how VWLWAH addresses the problem of
limited fill ranges in standard WAH for small values of 𝑤 . As a
convention in VWLWAH, successive fill words (here: the second
and thirdwords for𝑤 = 7) are interpreted bymerging their fill width
encodings. In the illustrated example, this enables the encoding of
up to 25+5 blocks of 0s with just two encoded 7-bit words.

one a value, all bit vectors together will have exactly |𝑅 | bits set to 1. Assuming a
uniform data distribution in 𝑅, the probability of hitting a 1-bit at an arbitrary bit
vector position, the 1-density, will therefore be inversely proportional to the attribute
cardinality 𝛼 .
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Figure 3: Representation of a compressed bitvector with dif-
ferent word sizes. For a word size of 𝑤 = 7 to fill words are
concatented to represent a long fill

10 20 30

80

100

O
ut

pu
t

Si
ze

[M
iB

]

d = 0.52.0

d = 0.52.5

d = 0.53.0

10 20 30
0

50

100

d = 0.54.0

d = 0.56.0

d = 0.58.0

10 20 30
0

2

4

6

Word Size w [Bit]
O

ut
pu

t
Si

ze
[M

iB
]

d = 0.510.0

d = 0.512.0

d = 0.514.0

10 20 30
0

0.05

0.1

Word Size w [Bit]

d = 0.516.0

d = 0.518.0

d = 0.520.0
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4 VWLWAH AND COMPRESSION RATIOS
To assess how VWLWAH can indeed improve the compression
characteristics of WAH, we used two generators that were proposed
in existing studies of the field to produce synthetic datasets (cf.
[7, 13, 17]. Since they contain relatively much entropy, uniformly
distributed bitmaps represent the worst case situation from the
perspective of compressibility. Clustered bitmaps aim to express
situations as they are frequent in data warehouses, where seasonal
or other effects let 1-bits accumulate in bitmap indices.

4.1 Uniformly distributed bitmaps
First, we created a model to estimate the number of bits that are
necessary for bit vector compression with VWLWAH. With this
model, we checked whether the variation of the word size could be
beneficial. For uniformly distributed input data, there were three
influential factors to the model: The selectivity, that determines the
density of the 1-bits in a bit vector BI.

𝑃 (𝐴 = 𝑎) = 𝑃 (BI(𝐴 = 𝑎)𝑖 = 1) = 𝑑

The additional parameters of the model are the word size 𝑤 and
the number of bits 𝑁 .

Evaluation. Figure 4 illustrates the effect of the word size on the
compressed data size for a fixed set of 1-densities.

As we had already seen earlier (Figure 2), high 1-densities can
benefit from a large word size. Our experiments showed that up
to a density of 𝑑 = 0.52.5, which corresponds to ≈ 17.7% of 1-bits
in the input vector, a large word size is preferable. For all other
densities, it was evident that small word sizes lead to a significant
improvement of the compression rate. Even at low densities starting



DaMoN ’20, June 15, 2020, Portland, OR Grieskamp et al.

104 105 106 107

0

0.5

1

w
=

18

65 %

w
=

17

39 %

w
=

16

21 %

Length in Bit

F (X)
Max. Fill Length

Figure 5: Distribution function of the geometric distribution
of 𝑑 .

from 𝑑 = 0.512 only slight differences between the different word
sizes are recognizable. It can be deduced from this observation that
small word sizes, with the exception of high 1-densities should be
preferred if the input data seems to be uniformly distributed.

Another remarkable observation is the non-monotonic progres-
sion of the size of the compressed vectors at very low densities
(Figure 4). This can be explained by a simple experiment:

For a density 𝑑 = 1
220 the expected length of a 0-fill is 220 − 1. To

encode such a fill, a word size of 18 bits is still sufficient, since

(218−2 − 1) · (18 − 1) > (220 − 1)

If we now look at the cumulative distribution function of the
associated geometric distribution (Figure 5), we can see that 65% of
the 0-fills can be encoded with a word size of 18 bits. However, for
a word size of 16 bits only 21% of the 0-fills can be covered. This
results much more often in the need to use two instead of one fill
word for a word size of 16 bits. The effect can also be observed in
a weakened form with smaller word sizes, where three fill words
must be used instead of two. But due to the small word size there are
not that many unused bits, which reduces the effect significantly.

In summary, for uniformly distributed bitmaps the best com-
pression was achieved, with the exception of uncompressible data,
with word sizes between 4 and 8 bits. Overall, the factor of memory
requirement between VWLWAH andWAH for compressible data is
up to 3.98 (with 𝑑 ≈ 0.55%).

4.2 Clustered Bitmaps
Since uniformly distributed bitmaps do not necessarily represent
real world behaviour (i.e. for clustered bitmaps) we used a Markov
process as described by Wu et al. [17] to evaluate VWLWAH with
clustered bitmaps.

0 11 − 𝑑
𝑓 · (1−𝑑)

𝑑
𝑓 · (1−𝑑)

1 − 1
𝑓

1
𝑓

Figure 6: Markov process as described by Wu et al. [17].

While 𝑑 denotes the density, the clustering factor 𝑓 describes
the probability of consecutive 1-bits, with the following rule: 𝑓 ≥ 1
and 𝑓 ≥ 𝑑

𝑑−1
The main focus of this experiment was the influence of the clus-

tering factor 𝑓 on the compression rate with different word sizes.
This is due to the fact that a larger clustering factor promises a
higher occurrence of consecutive 1-bits, which should have a bene-
ficial effect on the compression rate, as there are now potentially
fewer literal words and a even higher possibility to store 1-bits in a
1-fill. We chose the same values for the density 𝑑 as in the previous
experiment and f as follows: 𝑓 ∈ {2𝑛 |𝑛 ∈ 0, . . . 10}.
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Figure 7: Size of the compressed bitvectors with varying den-
sities and fixed word sizes.

Evaluation. We first evaluated the impact of varying densities on a
fixed word size with different clustering factors. Contrary to the
general assumption that clustered data is more compressible, a
clustering factor of 𝑓 = 1 shows a clearly different picture. This
observation can be explained by the fact that two or more consecu-
tive 1-Bits and thus 1-fills are not possible with a clustering factor
of 𝑓 = 1. Furthermore a negative effect on smaller word sizes is
also noticable, since the possibility of storing two 1-bits in a single
literal word is also low.

Apart from this exception, clustered bitmaps show a significant
better compressibility (Figure 7). It is also clearly visible that for a
word size of𝑤 = 4 and clustering factors of 𝑓 > 4 the compressed
size of bit vectors of any 1-density is smaller than the size of larger
word sizes. For higher clustering factors this effect can be also
observed with larger word sizes (e.g.𝑤 = 8).

As in Section 4.1 we examined the impact of fixed densities to
varying word sizes with different clustering factors. The analysis of
the most efficient word sizes shows a very similar result to the cor-
responding analysis with uniformly distributed data. Interestingly
the non-monotonic progress for low 1-densities is also oberservable
for data generated by a markov process and occur at nearly the
same word sizes. Interestingly different clustering factors for fixed
1-density seem to have no measurable influence on the optimal
word size. The word size, which gives the best result depending
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Figure 8: Pipeline that performs an OR-Operation to a
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on the density of the 1-bits, is always within the same range for
the test data used here as for the previously performed tests on
uniformly distributed data, with minimal deviations.

Despite the fact, that clustered bitmaps typically offer a better
compressibility, it can be summarized that a word size of 4 to 8 bit
usually offers the best compression ratio for both distributions and
low 1-densities.

5 VWLWAH ON FPGAS
VWLWAH has been designed with modern hardware platforms,
FPGAs in particular, in mind. The compression scheme is part of a
library for FPGA-based database acceleration that we develop at
TU Dortmund University.

To leverage the strengths of FPGAs, we set up the FPGA im-
plementation of VWLWAH as a set of hardware components that
can operate in a streaming manner and with high throughput. The
library includes components for VWLWAH compression and de-
compression, for pipelinemanagement (e.g., FIFO queues), as well as
for bitwise Boolean operations that can be evaluated on compressed
data.

The library is fully modular. Hardware components can not
only be combined to implement more complex bitwise operations
on compressed bit vectors. They also integrate well with other
streaming operators that support FPGA acceleration in the system’s
data path. To illustrate, Figure 8 shows an operator composition
that would combine two input bit vectors 𝑣 and 𝑣 ′, negating 𝑣 and
bitwise ORing it with 𝑣 ′.

Like VAL-WAH, VWLWAH also supports the processing of bit
vectors of different length. Therefore it is necessary to scale bit
vectors. We implemented a scaling unit that can scale bit vectors
up and down by a factor that is a power of two.

6 RUNTIME BEHAVIOUR
The use of small word sizes can lead to significant improvements
regarding the compression rate. However, due to the fixed word
size of current CPUs, the idea of VWLWAH promises no advantages
for commodity hardware. In contrast, accelerators, such as FPGAs,
which do not rely on a fixed word size for data processing could
profit massively from VWLWAH.

To demonstrate that potential, we evaluated our VWLWAH im-
plementation on mainstream FPGA hardware and let it compete
against a general-purpose CPU. Since “throughput” is much easier
to interpret for a single input data stream, we chose ‘negation’ as the
operation to apply to the compressed bit vector in our experiments.

6.1 Theoretical Runtime Evaluation
In order to be able to make more precise statements about the per-
formance of our approach on real hardware, we first determined the

theoretical latency and throughput of the negation component. The
total latency is composed of the input/output latency Δ𝑡𝐼𝑂 and the
circuit latency Δ𝑡𝐶𝐿 . The input/output latency Δ𝑡𝐼𝑂 describes the
time period between the moment a signal is applied to a processing
component and the moment it is registered by the processing com-
ponent. With a few exceptions, signals are always processed with
a rising clock edge. The circuit latency Δ𝑡𝐶𝐿 , on the other hand,
describes the time that a component requires for processing until
output.

The input/output latency Δ𝑡𝐼𝑂 for the negation component is 1
cycle in the worst case. The circuit latency is also just one cycle,
which can be explained by the fact that in literal words only each
individual bit of a block has to be negated, which can be done in
one cycle. The negation of fill words is even easier, since only the
type of fill has to be changed. This results in a latency of 2 cycles
in total for the negation component and a throughput of one word
per cycle.

6.2 Experimental Runtime Evaluation
For the practical evaluation we used the Zynq Ultrascale+ ZCU102
evaluation kit from Xilinx. In addition to programmable logic (PL),
this development board contains a quad-core CPU (PS) from ARM,
whereby the communication between both components is carried
out via the AXI bus. In order to access the main memory also from
the programmable logic, we used an AXI Streaming DMA IP from
Xilinx [19]. This made further components necessary to convert
the AXI streaming data to VWLWAH compatible data.

For the evaluation of the runtime a word size of 32 bit was chosen
for VWLWAH. This decision may seem unintuitive at first glance,
as the memory evaluation in Section 4 would have suggested a
small word size, but it is justified by the fact that the AXI bus in
our experiments also used a bus width of 32 bits. By using a word
size of 32 bits the two conversion components mentioned above
can be excluded from becoming a bottleneck. In addition, it allows
also a comparison with a CPU-based implementation.

For our experiments, we chose clock frequencies between 100
MHz and 375 MHz for the programmable logic, since higher fre-
quencies caused complications during data transmissions on the
AXI bus. The size of the investigated input vectors was varied be-
tween 500 and 4000 words. Therefore, our time measurements were
started before reading the input data from main memory and ended
after processing and complete presence of the output data in the
main memory. The generation of the input data was not included
in the time measurement.

The results are shown in Figure 9. It can be clearly seen, that
there is a linear relationship between input size and processing
time for each measured frequency. Based on the measurements we
were able determine the parameters 𝛽0 and 𝛽1 for a linear regres-
sion. However, it is noticeable that with increasing clock speeds,
the practical throughput is lower than the theoretically possible
throughput, whereas for low frequencies the theoretical through-
put can be achieved (see Figure 9 and Table 1). We explain these
deviations by memory access latencies. Therefore we repeated the
experiment once again with a word size of 8 bit values. Here, a
similarly linear behaviour could be observed, but even at high fre-
quencies only very slight deviations occurred.
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Figure 9: Cycles for different input sizes with different fre-
quencies.

Frequency Constant 𝛽0 Regression Coefficient 𝛽1 Goodness of Fit 𝑅2

99.99MHz 1180.0 cy 0.9994 cy 0.9997
124.99MHz 1423.5 cy 1.0032 cy 0.9999
166.67MHz 1820.3 cy 1.0139 cy 0.9997
214.29MHz 2294.7 cy 1.0310 cy 0.9997
249.98MHz 2593.6 cy 1.0933 cy 0.9991
299.97MHz 3125.9 cy 1.1467 cy 0.9993
374.96MHz 3899.6 cy 1.2289 cy 0.9994

Table 1: Parameters for a linear Regression of all measured
frequencies and a word size of 32 bit

6.3 Power Consumption
Another important aspect is the energy consumption. For this rea-
son, we investigated the energy consumption of VWLWAH with a
word size of 32 bit on a CPU as well as on the FPGA. The power
consumption of the FPGA is an estimate of the Vivado suite from
Xilinx. For the examination of the power on the CPU side, we used
an Odroid C2 with an ARM Cortex-A53 Quad-Core with a fixed
clock speed of 1.5 GHz. The power consumption of the entire system
was measured with the Odroid SmartMeter.

As can be seen in Figure 10, the CPU can achieve a higher
throughput than the implementation on the FPGA, but there is
a clear indication that the implementation on the FPGA side has
significant saving potential in terms of energy consumption. This
point is especially noteworthy, if it is considered that the word size
of 32 bits is likely to have a rather positive effect on the throughput
and energy consumption of the CPU.

7 CONCLUSION AND OUTLOOK
In this paper we discussed the influence of variable word sizes for
WAH based compression techniques. For this purpose, we took the
original WAH scheme and combined it with two existing optimiza-
tions, analyzed the possible savings and implemented it on a FPGA,
since variable word sizes do not seem beneficial in terms of speed
on conventional CPUs. Our analysis showed, that a small word
size could lead to much better compressibility in most cases and
space savings up to 75% compared to a standard word size. Further-
more, we were able to implement a working prototype on a FPGA
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Figure 10: Time needed on the FPGA and on the Odroid C2

to demonstrate the feasibility of our approach on non-standard
hardware.

A key feature of VWLWAH is its simplicity resulting from the
strong similarity with the originalWAH idea, but other optimiza-
tions, such as meta-compression, would be possible here as well.
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