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ABSTRACT
Bulk loading into the optimized storage of a database system
is a performance-critical task for data analysis, replication,
and system integration. Depending on the storage layout, it
may entail complex data transformations, making it also an
expensive task that can disturb other workloads running in
parallel.

In this work, we demonstrate that for a commercial, in-
memory columnar system with compression-optimized stor-
age, data transformation dominates the cost of bulk loading.
The transformations may cause resource contention on a
stressed system, resulting in poor and unpredictable perfor-
mance for both bulk loading and query processing. To miti-
gate this problem, we propose Shared Loading , a distributed
bulk loading mechanism that enables dynamically offload-
ing deserialization and data transformation to the machine
where the input data resides. In our evaluation we demon-
strate that, for different network bandwidths and data sets,
Shared Loading accelerates bulk loading into compression-
optimized storage and improves the performance and pre-
dictability of queries running concurrently.

1. INTRODUCTION
In today’s heterogeneous system landscape, an ever-growing
volume of data is available in plain text files. Popular for-
mats include delimiter-separated values files, such as CSV,
fixed-width values files, JSON, or XML. Plain text files are
frequently used to transfer scientific data sets [44] or busi-
ness data, to facilitate replication and system integration, or
to migrate to a new system. In the latter case, customers of
SAP state that the bulk loading of text files can quickly be-
come the bottleneck in mission-critical migration processes.
Thus, fast and efficient bulk loading is imperative.

Related work [1, 2, 10, 25, 35] assumes that data resides
on local storage where the DBMS is installed on. However,
files are often stored close to the client machine, where an
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Figure 1: Tail latency of query workload when executed
in isolation and in parallel to bulk loading without Shared
Loading . Tail latency degrades by a factor of 3.2 under load.

application produces data or data is preprocessed, and not
close to the server machine running the DBMS. Thus, data
needs to be transferred over the network. This can be a fast,
internal network, in case of a cloud-only or an on-premise
scenario, or a slow Internet connection, e.g., when loading
data from an on-premise setup into the cloud.

In addition, related work [2, 32] primarily focuses on op-
timizing parsing and the creation of an index during bulk
loading. They conclude that most time is lost on deseri-
alization. However, modern systems [9, 16, 27, 29, 38] em-
ploy a (highly) compressed storage. In such a system, it is
also challenging to transform data because compression is
resource-intensive. In fact, we demonstrate in our analysis
of a commercial database system that most time is lost on
data transformation—not on deserialization. In addition,
such transformations may take away precious CPU cycles
from queries running in parallel. Figure 1 illustrates this
problem. We execute a simple analytical workload both in
isolation and in parallel to the bulk loading of the lineitem

table of the TPC-H benchmark. We observe that tail la-
tency degrades by a factor of 3.2 when bulk loading runs in
parallel.

To address these issues, we study bulk loading in a dis-
tributed environment and its impact on query workloads
running in parallel. Ultimately, we develop a new mecha-
nism for efficient bulk loading into optimized storage. Our
mechanism accelerates bulk loading and improves the per-
formance and predictability of concurrent query processing.
Its architecture allows dynamically adapting data transfor-



mations and shifting work between client(s) and server at
loading time—without the need for the user to partition the
input data or to manually parallelize bulk loading [4,30,36].
To that end,

(i) we analyze where time is lost in a complete bulk load-
ing pipeline using SAP HANA as an example database;

(ii) we present the architecture of the distributed bulk
loading mechanism Shared Loading , which can dynam-
ically offload work to the client machine; and

(iii) we evaluate the performance characteristics of our ap-
proach and we study whether it improves tail latency
of concurrently running queries for different network
bandwidths and data sets.

2. RELATED WORK & BACKGROUND
Bulk Loading. Database systems offer a range of inter-
faces for bulk loading external files. We group existing ap-
proaches into three categories.

First, various systems offer a command for a terminal-
based front-end. The user either manually transfers the file
to the DBMS server or it is transferred during the load-
ing operation. All data processing is done by the DBMS
server. Examples include the commands IMPORT FROM from
IBM Db2 [22], BULK INSERT from Microsoft SQL Server [31]
or COPY from PostgreSQL [39].

Second, systems may support parameterized SQL queries
with array bindings. In contrast to submitting a query for
every row of a table, it allows batching multiple rows in a
single query. The database system may support array bind-
ings natively by processing a single SQL statement per batch
or it may emulate array bindings by processing a prepared
statement per row of a batch. Most systems with support
for ODBC [19] or JDBC [5] support array bindings.

Third, some vendors provide dedicated tools for bulk load-
ing external files. Some of these tools use array bindings,
such as bcp from Microsoft [31], while other tools, such
as SQL*Loader from Oracle [36] or the LOAD utility from
Db2 [22], write data blocks “directly to the database”. Their
documentation does not detail, however, what is computed
by the client and by the server.

Dziedzic et al. [15] analyze data loading with terminal-
based commands for different DBMS. They assume that
data already resides on the server. They corroborate our
results by showing that bulk loading is slow and expensive,
especially in compression-optimized systems. In fact, we
close the gap discussed in their work: Our dynamic loading
mechanism accelerates loading, takes the load off the system
and improves query performance.
In-situ Query Processing. Query processing on files [1,
2, 8, 10, 18] focuses on analyzing large files with the goal to
minimize the initial response times. Thus, first loading the
entire file into a DBMS incurs a high initial cost and is usu-
ally avoided. In addition, it may suffice to read only a subset
of the data for answering a query. Related work identifies
the repeated parsing, tokenizing, and data type conversion
as a performance bottleneck but does not consider network
transfers or complex transformations.
Fast Parsing and Ingestion. Mühlbauer et al. [32] use
SIMD instructions to accelerate deserialization and propose
mergeable indexes for bulk loading. More recently, Langdale
et al. [28] present techniques, e.g., for identifying escaped
quote characters and converting digits to integer values using
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Figure 2: Example of applying order-preserving dictionary
compression to a column.

recent SIMD instructions. Xie et al. [46] propose a storage
layer for analytics that combines parsing of selected fields
and a dynamic, hash-based subset index for querying data
during ingestion. They store data in an immutable, row-
based log and do not consider data transformations such as
compression or a columnar storage layout. We do not focus
on optimizing parsing and deserialization because our analy-
sis (see Section 3) shows that these operations consume less
than 20 % CPU time in a commercial database system. Be-
sides, optimizing parsing and deserialization by applying re-
cent SIMD techniques and using just-in-time generated glue
code is orthogonal to our work. We focus on a distributed
environment where our approach can dynamically shift data
transformations between client(s) and server to bring data
into the optimized storage format of the database system.

Network Serialization. Raasveldt et al. [40] analyze the
data export from various database systems. They conclude
that protocols suffer from a per-row overhead and expensive
(de)serialization. They propose to transfer data in column-
major chunks with variable-sized strings as well as to employ
columnar compression techniques. Our network protocol re-
sembles their design. However, we transfer larger chunks
of data, i.e., 500 MiB not 1 MB, and we choose to repre-
sent strings fixed-sized instead of variable-sized to simplify
in-place sorting. We reduce transfer volume by employing
dictionary compression.

Dictionary Compression. The in-memory database sys-
tem SAP HANA [16] makes heavy use of order-preserving
dictionary compression in its read-optimized storage—other
systems employ similar ideas to varying degrees [9,27,29,38].
Figure 2 gives a short example. An ordered dictionary maps
domain values to a dense set of consecutive numbers. In-
stead of the actual value of the columns, the engine stores
the typically much smaller index of the dictionary entry. The
compression works especially well for large string columns
with a low distinct count. Such data is very common in
real-world business applications [7, 33]. A column or a dic-
tionary may be further compressed.

In our work, we focus on order-preserving dictionary com-
pression. Applying additional compression such as bit pack-
ing or prefix encoding is orthogonal. We observed in exper-
iments (not shown) that they can be combined efficiently
by exploiting the sorting and the known distinct count of
dictionary compression.

Buffered Updates. To facilitate data ingestion into op-
timized storage, SAP HANA transforms new data gradu-
ally, migrating records from write- to read-optimized stor-
age as shown in Figure 3. New records are first appended
to a write-optimized column store. Values are dictionary-
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Figure 3: Buffered updates in SAP HANA. Records migrate
from write- to read-optimized storage.

compressed without preserving the order in the encoding. A
CSB+-tree [41] provides a sorted view of the unsorted dictio-
nary to accelerate accesses. Eventually, data is merged into
the read-optimized column store, which employs more elab-
orate compression methods, such as order-preserving dictio-
nary encoding.

Our approach bypasses the write-optimized storage and
merges new data directly into the read-optimized storage—
similar to Lamb et al. [27]. However, our approach enables
offloading data transformations at loading time to the client.

3. COST ANALYSIS OF BULK LOADING
We analyze where time is lost in a complete bulk loading
pipeline using SAP HANA. While the results are specific
to the data set and the implementation in SAP HANA, we
expect similar results for other systems with (complex) data
transformations—especially for systems with a compressed
storage. First, we describe the individual steps of a bulk
loading operation. Then, we demonstrate where time is lost.
Loading Steps. Bulk loading starts with the deserializa-
tion of the file. For a delimiter-separated values file, it parses
the file contents in search for symbols marking the end of a
row (e.g., ’\n’) or the end of a column (e.g., ’|’) and splits
the character stream into individual fields of the input table.
It validates whether a value conforms to the specification of
the SQL type given by the schema. If the validation suc-
ceeds, the operation creates an instance of the SQL data
type in memory; otherwise it handles the error.

In addition, the system transforms new data into the
physical storage layout, such as a row-based or a columnar
representation. This might involve complex restructuring
and different compression methods. In SAP HANA, new
records migrate from a compressed, write-optimized storage
to a compressed, read-optimized storage. If the target table
is partitioned, each row needs to be assigned to its correct
partition. If the system is distributed, it might be neces-
sary to route data over the network to another node. The
system also checks constraints, such as the absence of null
values, and updates metadata, such as indexes or statistics.
Ultimately, it writes a log to persistent storage to assure
durability. Systems maintaining a (read-)optimized storage
additionally merge new data (periodically) into their opti-
mized storage. To speed up recovery, the optimized storage
may be written to persistent storage.
Loading Costs. To analyze where times is lost, we bulk
load the lineitem table of the TPC-H benchmark from a
local solid-state drive. The experimental setup is described
in Section 5.1. The results shown in Figure 4 demonstrate
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Figure 4: Cost analysis of bulk loading into SAP HANA.
Most CPU time is spent on data transformation.

that data transformations consume 55 % CPU time. This
includes the time it takes to insert new rows into the write-
optimized storage and to compute a compressed, columnar
in-memory representation.

Deserialization consumes around 15 % CPU time. Check-
ing constraints, partitioning the table, or updating meta
data requires only a small amount of CPU time. Merging
the write-optimized storage into the read-optimized storage
consumes 10 % CPU time. Logging and persisting consume
a negligible amount of CPU time due to asynchronous I/O.
The remaining 10 % are overhead from the transaction man-
ager, lock handling, and memory management.

In summary, our results differ from previous results [2,10,
32] that attribute the highest cost for bulk loading to dese-
rialization. For compression-optimized systems, the cost of
transforming the data dominates computing time and out-
weighs the cost of deserialization by a factor of 3.7.

4. SHARED LOADING
Bulk loading and concurrently running queries compete for
hardware resources. The result is poor loading throughput
and poor query performance. To address the problem, we
propose to offload part of the bulk loading. In particular, we
can exploit that the input data of the bulk loading is often
stored close to the client machine and not close to the server
machine running the DBMS. Our cost analysis of the bulk
loading pipeline identifies which steps are worth offloading:
deserialization and data transformation.

We argue that offloading work needs to be done dynami-
cally depending on, e.g., the input data, the compute power
of client and server, or the available network bandwidth.
To that end, we propose the architecture of a distributed
bulk loading mechanism that enables offloading deserializa-
tion and data transformation to the client at loading time.

We assume that the input file is a delimiter-separated
values file such as CSV. However, by adjusting the pars-
ing step of the deserialization of the file, our approach may
support other flat file formats. We use the example of order-
preserving dictionary compression in a column store, but the
concept of dynamically offloading deserialization and data
transformation may be applicable to other storage formats
and compression techniques. Note that we propose that the
client transforms data towards the storage format. This al-
lows the server to ingest data with little effort. The server
still needs to validate all client data.
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Figure 6: Shared Loading transforms a file chunk into a
columnar in-memory fragment. Multiple fragments form
a logical partition. A fragment’s column (gray) may be
dictionary-compressed.

Figure 5 gives an overview of the data flow and the pro-
cessing steps on client and server. First, we introduce client-
centric loading shown in Figure 5a. Afterwards, we present
server-centric loading shown in Figure 5b. Finally, we de-
scribe how we can combine both approaches dynamically.

4.1 Client-Centric
Client Component. The client component transforms
data by pushing file chunks through a processing pipeline
enabling a high degree of parallelism. It produces horizon-
tal partitions of the input table as shown in Figure 6. When
we shift data transformations to the client machine, the
client component of Shared Loading produces a dictionary-
compressed, columnar partition and sends it to the server
machine. This allows the DBMS to merge a partition effi-
ciently into its optimized storage. We describe the individual
steps in the following.
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optimized
storage

Deserialize Sort Compress Network Mergec f F p p P

Client Server
The deserialization step converts a

file chunk to an in-memory instantia-
tion of the data. It parses the chunk to
identify delimiter symbols, validates fields, and instantiates

data types in memory according to the schema of the table
it gets from the server. Finally, the deserialization step as-
sembles all rows of the chunk into a columnar in-memory
representation, which we refer to as a fragment.
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The sort step adds a temporary dictionary

to a fragment’s column. For each column of
the fragment, it creates a copy, sorts the copy,
and removes duplicates. The temporary dictionary facili-
tates dictionary encoding in the next step.
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The compression step logically assem-

bles multiple fragments into a horizontal
partition shown in Figure 6, and (phys-
ically) merges all temporary dictionaries of a column into a
single dictionary. This means that a partition’s dictionary
is locally ordered—not globally with respect to the entire
table, previous partitions or preexisting data on the server.
We assure that the order of rows matches their original oc-
currence in the input file. This preserves the ordering if
the file contents are already sorted. Afterwards, it uses the
dictionary to encode the columns of the fragments.
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Client Server
The transfer step sends a partition to the server.

The client component transfers fragment after frag-
ment. This enables the server component to process
a fragment before the partition is transferred completely.
Dictionary compression reduces the transfer size: we show
in the evaluation in Section 5.2 that dictionary compression
reduces the data size of the warehouse data set by 56 %
compared to the original file size.

Server Component. The server component is designed
to be part of the database system with internal access to
the storage engine. When we shift the data transformation
to the client, it receives a dictionary-compressed, columnar
partition. This allows the DBMS to merge the partition
efficiently into its read-optimized storage by updating the
dictionary encoding (instead of creating the dictionary en-
coding from scratch) and speeds up network transfers.
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Client Server
The merge step merges one or more par-

titions into the read-optimized storage. It
merges all partitions available since the
last merge operation. For each column of the partitions,
it merges the dictionaries with the corresponding dictionary
of the optimized storage. First, the merge step creates map-



pings from the dictionaries of the partitions to the new dic-
tionary. Afterwards, it uses the mappings to update the
optimized storage as well as to update the data of the par-
titions, which is then appended to the optimized storage.

Note that we could merge incoming data into a specific
partition of the target table or we could create a new parti-
tion to avoid updating the dictionary compression.

4.2 Server-Centric
Client Component. When we shift only deserialization
to the client, but transform data on the server, the client
component of Shared Loading produces an uncompressed,
columnar partition (see Figure 5b).
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The deserialization step

produces a fragment
just as in case of client-
centric loading, described in Section 4.1. Afterwards, the
client groups fragments logically into a horizontal partition
without applying dictionary compression. Subsequently, it
transfers a partition to the server by sending fragment after
fragment over the network.

Server Component. The server component receives an
uncompressed, columnar partition. It needs to transform
the data before merging it into optimized storage.
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The input for the sort step is a partition

consisting of multiple fragments. This allows
the server to process each fragment indepen-
dently and as soon as a fragment arrives. For each column
of a fragment, it creates a temporary dictionary—similar to
the sort step of the client component.
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Client Server
The merge step merges all

partitions available since the last
merge operation into the read-
optimized storage. For each column of the partitions, it first
merges the temporary dictionaries with the corresponding
dictionary of the optimized storage. Afterwards, the merge
step maps the dictionaries of the optimized storage to the
merged dictionaries. It uses the mappings to update the op-
timized storage and the merged dictionaries to compresses
the partitions, which are then appended to the optimized
storage.

4.3 Dynamic Offloading
The architecture of Shared Loading combines client- and
server-centric loading. It allows deciding whether to trans-
form a fragment’s column, shown in Figure 6, on the client
or on the server. The decision can be made at loading time.
To that end, Shared Loading can use heuristics during the
sort step at the client. It either creates a temporary dic-
tionary and performs client-centric loading for a fragment’s
column, or it omits the creation of the temporary dictionary
and performs server-centric loading.

The remaining steps of the bulk loading pipeline adapt to
the decision (dotted boxes in Figure 5). The compression
step at the client only compresses a fragment’s column if it
has a temporary dictionary. Otherwise the fragment’s col-
umn remains uncompressed in the partition (see Figure 6).
The sort step at the server checks if a fragment’s column
is not already dictionary-compressed. Only if that is the
case, it creates a temporary dictionary. Thus, the sort step
produces a partition where a fragment’s column either is
dictionary-compressed or has a temporary dictionary. The
merge step either updates the dictionary compression of a

fragment’s compressed column or it encodes a fragment’s
uncompressed column when writing to optimized storage.

Heuristics. The architecture of Shared Loading enables
the use of different heuristics. For instance, we use a heuris-
tic for minimizing the amount of data sent over the network.
In particular, we estimate the number of unique values in a
column using the HyperLogLog algorithm [17] with HIP es-
timator [11, 34] at loading time. The algorithm allows us to
estimate the total memory size of the dictionary-compressed
column and the corresponding dictionary. If we estimate the
memory size to be smaller than the uncompressed column,
we transform the column at the client; otherwise we delegate
the transformation to the server. We demonstrate that the
heuristic produces indeed the smallest size in our evaluation.

Note that other heuristics could decide to shift data trans-
formations based on the server’s utilization, the client’s and
the server’s compute capabilities, or the network bandwidth.
In particular, heuristics can use information that is only
available at runtime, e.g., to implement a feedback loop.

4.4 Implementation
Our C++ implementation of the data processing pipeline ex-
ploits independent work whenever possible to achieve a high
degree of parallelism. The implementation is independent
of the code base of SAP HANA, but simulates major char-
acteristics of SAP HANA.

We execute each pipeline step in at least one thread. In
addition, we use the thread pool provided by Intel Thread
Building Blocks [24] to implement fine-grained task paral-
lelism: we sort, compress and merge columns in parallel and
we implement parallel algorithms for compressing and merg-
ing, e.g., a parallel merge algorithm similar to [12, p. 800].

We use different sorting algorithms depending on the data
type: a radix sort implementation for integers and dates,
boost::string_sort [42, 43] for strings, and pdqsort [37]
for the remaining types. To facilitate in-place sorting, we
represent variable-sized strings of type VARCHAR(N) as fixed-
sized strings of length N in partitions sent by the client,
while the server stores variable-sized strings. Note that we
avoid the increased memory and transfer size of fixed-sized
strings by employing dictionary compression. To implement
asynchronous network communications, we use the library
boost::asio [26].

We currently do not support delimiter symbols marking
the end of a column or the end of a row when they are
enclosed in quotes without being escaped. This is orthogo-
nal to our work and only affects the deserialization step of
the bulk loading. To identify unescaped delimiter symbols,
others propose, e.g., to perform an additional scan over the
input file [32] or to employ speculative parsing [18].

We additionally annotate each chunk/fragment with an
identifier and assure that the order of the rows in a partition
corresponds to the order of the rows in the file. This allows
the database system to exploit the fact that rows in a file
might be sorted, e.g., by the primary key to accelerate index
creation. We reduce the memory footprint of the merge
operation by merging at most two columns in parallel. The
same configuration is the default in SAP HANA. This also
limits the impact of the merge operation on other workloads.

We set the size of a file chunk to 10 MiB and we group
50 fragments into a partition. This means that a parti-
tion corresponds to 500 MiB of the input file. We experi-
mentally confirmed that both parameters are robust. The



chunk size needs to be big enough to contain multiple rows
and to amortize the parallelization overhead (e.g., 10 KiB)
and small enough to allow a high degree of parallelism (e.g.,
100 MiB). Similar arguments apply to the partition size: a
partition should contain between 10 and 100 chunks.

5. EVALUATION
We evaluate the performance of Shared Loading and state-of-
the-art architectures without and with concurrent query pro-
cessing, we analyze how much work Shared Loading can of-
fload, and, more importantly, whether it improves through-
put and query performance and predictability.

5.1 Setup
Data Set. We evaluate two data sets: the lineitem ta-
ble of the TPC-H benchmark [45] and the warehouse table,
which was extracted from the data warehouse of a customer.
Both data sets are available in the file format of the TPC-H
benchmark. We use the lineitem table with a scale factor
of 10. The file has a size of 7.24 GiB, close to 6 · 107 rows,
and 16 columns. The file of the warehouse table has a size
of 17.57 GiB, around 12 · 106 rows, and 155 columns.
Hardware. Our system has 128 GiB of DRAM and two
Intel Xeon E5-2660 v3 processors with 10 physical cores. We
enable simultaneous multithreading. The client process and
the server process run on different sockets of the same ma-
chine. We allocate 10 physical cores to the server and vary
the number of cores for the client from 2 to 8. The text
files reside on a local SSD. We measured a sequential read
bandwidth of up to 530 MB/s using fio [6]. Note that in
case of a significantly slower storage devices, such as a single
HDD, a weak client could compute all data transformations
without ever being compute-bound. In addition, the SSD
is only used for reading. We do not evaluate persisting and
logging because we assume the server’s storage to be more
powerful than the client’s. We clear the page cache of the
Linux kernel (LTS version 4.4) before every run.
Network. We use the tc utility to emulate different net-
work bandwidths—similar to [40]. TCP/IP messages are
sent to the localhost address. Note that we profiled the
transfer of a file both between two machines in a local net-
work and between two processes via the localhost address on
the same machine, where we emulated the same bandwidth:
we did not observe a difference in execution or CPU time.

We evaluate a network bandwidth of 1 and 10 Gbit/s be-
cause these represent 69 % of the market share [23]. 1 Gbit/s
represents the maximum Internet bandwidth when loading
data from an on-premise solution into the cloud. 10 Gbit/s,
on the other hand, represents a typical sizing option/quota
within the cloud [3, 20] when performing a cloud-internal
bulk loading operation.
Configurations. We evaluate Shared Loading in three dif-
ferent configurations: SLa corresponds to Figure 5a, i.e., the
client compresses all—it transforms all data into dictionary-
compressed partitions. SLs uses the heuristic to minimize
data size—the client dynamically decides for each column of
a fragment to compress it on the client or on the server. SLn

corresponds to Figure 5b, i.e., the client compresses none—
it transforms all data into uncompressed partitions.

In addition, we compare Shared Loading against two state-
of-the-art approaches: Pipe and Seq. They represent the
bulk loading mechanism of current systems using terminal-
based commands. Pipe means that the client sends file

chunks to the server, while the server ingests the data. Seq
means that the client first transfers the file. Then, the server
performs the bulk loading. Note that in all configurations we
bypass the write-optimized storage and ingest data directly
into the read-optimized storage.
Query Workload. We use two analytical queries inspired
by the TPC-H benchmark to evaluate the impact of concur-
rent query processing:

Q1: select sum( l e x t e n d e d p r i c e )
from l i n e i t e m ;

Q2: select count (∗ ) from l i n e i t e m
where l s h i p d a t e between
’ 1994−1−1 ’ and ’ 1995−1−1 ’ ;

Queries run against a second instance of the lineitem table
with a scale factor of 10. Thus, query processing is indepen-
dent from bulk loading. We execute each query ten times in
a batch, wait for all queries to finish and then execute the
next batch. In each experiment, we base the duration of the
query workload on the maximum loading time of all config-
urations. This way, we induce a constant query load from
the time the client starts reading the file until the server
has merged all data into its read-optimized storage. For a
given data set and network bandwidth, we base the duration
of the query workload on the maximum loading time of all
configurations.
Measurement Method. We measure throughput, i.e., the
size of the file divided by the elapsed time of bulk loading.
In addition, we measure CPU time of the bulk loading to
quantify computational work. CPU time is the total time
which processor cores spent on executing instructions. This
does not include idle time, i.e., the time cores spend waiting
for asynchronous I/O operations.

To evaluate the impact of query processing, we measure
tail latency—a performance metric for mission-critical sys-
tems with stringent service level agreements [13, 14, 21]. In
particular, we focus on the maximum response time of 99.9 %
of the requests, i.e., the 99.9th latency percentile. Accord-
ing to our experience, customers often prefer predictable re-
sponse times over peak performance.

5.2 Loading in Isolation
10-Gbit Network. Figure 7 shows the results for a net-
work bandwidth of 10 Gbit/s. Shared Loading can offload a
large amount of work to the client (independent of the num-
ber of cores allocated to the client). For the lineitem table,
we can shift 71 % (SLa), 44 % (SLs), and 7 % (SLn) of the
total CPU time to the client. For the warehouse table, we
are able shift 74 %, 69 %, and 20 %, respectively.

We observe that for SLs the amount of CPU time shifted
to the client varies due to the heuristic: the client compresses
10 out of 16 columns for the lineitem table and 140 out of
155 columns for the warehouse table. In addition, the results
demonstrate that the server component of Shared Loading
always consumes less CPU time than the state-of-the-art
bulk loading architectures Pipe and Seq.

The throughput of Shared Loading is comparable to the
state of the art and in some cases even up to 15 % higher.
We observe that without concurrent query processing shift-
ing only deserialization to the client (SLn) results in the
highest throughput. The results come as no surprise be-
cause the bulk loading is not network-bound but limited by
SSD’s read-bandwidth and the client’s compute capability.
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Figure 7: Bulk loading over a 10-Gbit network without query processing.

network

T
h
ro

u
g
h
p
u
t

[M
B
/
s]

0

50

100

150

200

250
8 6 4 2 #cores

SL
a
SL

s

SL
n

P
ip
e
Se
q

C
P

U
ti

m
e

[s
]

0

100

200

300

400

500

SL
a
SL

s

SL
n

P
ip
e
Se
q

Server
Client

(a) lineitem

network

T
h
ro

u
g
h
p
u
t

[M
B
/
s]

0

50

100

150

200

250
8 6 4 2 #cores

SL
a
SL

s

SL
n

P
ip
e
Se
q

C
P

U
ti

m
e

[s
]

0

100

200

300

400

500

SL
a
SL

s

SL
n

P
ip
e
Se
q

Server
Client

(b) warehouse

Figure 8: Bulk loading over a 1-Gbit network without query processing.

SLa SLs SLn Pipe Seq

lineitem 5.80 5.58 7.65 7.24 7.24
warehouse 8.06 7.76 28.33 17.57 17.57

Table 1: The amount of data (in GiB) per data set and
configuration that is transferred over the network during
bulk loading.

1-Gbit Network. Figure 8 shows the results for a net-
work bandwidth of 1 Gbit/s. The measured CPU times
resemble the results for a network bandwidth of 10 Gbit/s
due to asynchronous network transfer. In addition, the re-
sults demonstrate that throughput is network-bound and
that throughput differs significantly between configurations.
We attribute this to the amount of data, shown in Table 1,
that the client transfers to the server. This is especially no-
table for the warehouse table, where dictionary compression
achieves a compression ratio of 2.3. Note that SLn increases
the transfer size compared to the original file because we
store strings with a fixed size (cf. Section 4.4).

We observe that in slower network environments Shared
Loading performs best when the client selectively transforms
the data in order to minimize transfer size (SLs). For the
lineitem table, SLs reduces the transfer size to 77 % of the
size of the input file and it increases throughput by 26 %
compared to Pipe. For the warehouse table, SLs transfers
data with 44 % of the file size and it increases throughput by
117 % compared to Pipe. Thus, using the heuristic results
indeed in the smallest transfer size.

5.3 Loading With Concurrent Queries
To study whether Shared Loading improves throughput and
query performance when the server is stressed, we perform
bulk loading with queries running concurrently.

10-Gbit Network. Figure 9 shows the results for a net-
work bandwidth of 10 Gbit/s. We notice that the results dif-
fer from previous results without query processing. When
the server is stressed, Shared Loading performs best when
the client transforms all data (SLa). Compared to Pipe,
SLa increases throughput by 89 % for the lineitem table
and by 27 % for the warehouse table. This demonstrates
that, by shifting all transformations including compression
to the client, Shared Loading can maintain a high loading
rate even when the server is stressed—unlike state-of-the-
art bulk loading methods.

By offloading transformations, Shared Loading leaves the
server more resources for query processing: When we com-
pare Pipe with SLa, tail latency improves by 33 % for Q1
and 53 % for Q2 for the lineitem table. For the warehouse

table, tail latency improves by 45 % and 60 %, respectively.
Thus, Shared Loading can reduce stress in peak load sit-
uations, which in return improves query performance and
predictability.

The client can be relatively weak: 4 cores suffice to trans-
form and compress all data on the client while achieving a
higher throughput than the state of the art. Average re-
sponse times (not shown) improve by 19 % and 47 % for the
lineitem table and by 13 % and 33 % for the warehouse ta-
ble when comparing SLa with Pipe. Note that if the server is
under heavy load, job scheduling cannot effectively reduce
resource contention. Shared Loading , instead, mitigates a



SSD
T

h
ro

u
g
h
p
u
t

[M
B
/
s]

0

100

200

300

400

500 8 6 4 2 #cores

SL
a
SL

s

SL
n

P
ip
e
Se
q

T
a
il

L
a
te

n
cy

[m
s]

0

200

400

600

800

Q1 Q2

SL
a
SL

s

SL
n

P
ip
e
Se
q

(a) lineitem

SSD

T
h
ro

u
g
h
p
u
t

[M
B
/
s]

0

100

200

300

400

500 8 6 4 2 #cores

SL
a
SL

s

SL
n

P
ip
e
Se
q

T
a
il

L
a
te

n
cy

[m
s]

0

200

400

600

800

Q1 Q2

SL
a
SL

s

SL
n

P
ip
e
Se
q

(b) warehouse

Figure 9: Bulk loading over a 10-Gbit network with concurrent query processing.
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Figure 10: Bulk loading over a 1-Gbit network with concurrent query processing.

high system load by leveraging the additional hardware re-
sources of the client.
1-Gbit Network. Figure 10 shows the results for of a net-
work bandwidth of 1 Gbit/s. The results for throughput are
similar to the ones without query processing: bulk loading
is again network-bound. SLs improves throughput by up to
26 % and 116 % compared to Pipe. In particular, we observe
that throughput does not degrade even though the server is
stressed. We attribute this to the low network bandwidth:
it gives the server more time to process incoming partitions
and makes merging the data into optimized storage less vul-
nerable to resource contention.
SLa improves tail latency by 12 % for Q1 and by 32 %

for Q2 compared to Pipe for the lineitem table. For the
warehouse table, tail latency only improves by 8–16 %, which
demonstrates that the transformations of the warehouse ta-
ble cause fewer load spikes than the lineitem table. Shared
Loading primarily improves throughput due to the reduced
transfer size, while its efficient offloading never degrades
query processing on the server.

5.4 Discussion
Our evaluation demonstrates that Shared Loading performs
up to 2× better than state-of-the-art architectures in 1-Gbit
environments due to the compressed network transfer. In
addition, the approach is very robust. Throughput never
degrades. The performance advantage in 10-Gbit environ-
ments becomes clear once the server is under load. Shared
Loading increases throughput by up to 89 %. Tail latencies
of the query workload improve by up to 60 %.

The results also demonstrate why work needs to be shifted
dynamically : different configurations of Shared Loading per-

form best depending on network bandwidth, server load, and
compute capability of the client: In fast network environ-
ments, when loading without query processing or when the
client is weak, it is best to only deserialize on the client; in
slow network environments, it is best to selectively trans-
form data on the client to minimize transfer size; and when
loading with concurrent query processing, it is best to trans-
form all data on the client.

We illustrate offloading transformations dynamically by
employing a heuristic that optimizes transfer size. To further
improve throughput for slow networks, we combined Shared
Loading with additional compression (not shown), such as
LZ4 [47]. Combining Shared Loading with LZ4 compression
increases throughput by up to 91 %. Compared to state-
of-the-art architectures with LZ4, Shared Loading with LZ4
increases throughput by up to 27 % with and by up to 35 %
without query processing. Tail latency improves by up to
48 %. This demonstrates that Shared Loading works well
with other compression methods.

Ultimately, we envision the client component of Shared
Loading to be part of a lightweight SQL client. Its complex-
ity remains low because the client performs only deserializa-
tion and data transformation. In addition, Shared Loading
consumes a low amount of memory. In our implementa-
tion, the client buffers only one partition in-between pro-
cessing steps resulting in 7 partitions in total. If we assume
the chunk and partition sizes discussed in Section 4.4, the
total memory consumption will not exceed the in-memory
equivalent of 7 · (50 · 10 MiB) ≈ 3.5 GiB of file data for any
table. The low resource consumption makes Shared Load-
ing also a good candidate for implementing bulk loading in



a cloud-native database. When loading a large volume of
data, the system could start a (small) instance running the
client component of Shared Loading to ensure elasticity and
reduce costs.

6. CONCLUSION
In today’s heterogeneous system landscape, bulk loading
plain text files is a performance-critical task for data analy-
sis, replication, system integration, and migration. However,
for systems that employ a (highly) compressed storage, bulk
loading can stress the system significantly. In particular, the
data transformation during bulk loading can be very expen-
sive and negatively impact workloads running in parallel.

In this work, we analyze the costs of bulk loading into a
commercial in-memory database system with a compression-
optimized storage. Our analysis shows that most processing
time is spent on transforming the data into a compressed
format—not on deserializing the file. Moreover, we confirm
that state-of-the-art bulk loading significantly degrades tail
latency of a query workload running in parallel, while the
performance of the bulk loading suffers as well.

To mitigate this problem, we propose Shared Loading , a
distributed bulk loading mechanism that enables dynami-
cally offloading deserialization and data transformation to
the client machine holding the file. Our evaluation using
the lineitem table of the TPC-H benchmark and a real-world
data set determines that Shared Loading increases bulk load-
ing throughput especially in slower network environments or
when the DBMS is stressed. At the same time, it can signifi-
cantly improve tail latency of a query workload to enable effi-
cient bulk loading into compression-optimized storage with-
out sacrificing query performance and predictability.
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