Shared Load(ing): Efficient Bulk Loading into
Optimized Storage

Stefan Noll*s, Jens Teubnert, Norman May", Alexander Béhm*

“SAP SE, firstname.lastname@sap.com
$TU Dortmund University, firstname.lasthame@cs.tu-dortmund.de

ABSTRACT

Bulk loading into the optimized storage of a database system
is a performance-critical task for data analysis, replication,
and system integration. Depending on the storage layout, it
may entail complex data transformations, making it also an
expensive task that can disturb other workloads.

In this work, we demonstrate that for a commercial, in-
memory columnar system with compression-optimized stor-
age, data transformation dominates the cost of bulk loading.
The transformations may cause resource contention on a
stressed system, resulting in poor and unpredictable perfor-
mance for both bulk loading and query processing. To miti-
gate this problem, we propose Shared Loading, a distributed
bulk loading mechanism that enables dynamically offload-
ing deserialization and data transformation to the machine
where the input data resides. In our evaluation we demon-
strate that, for different network bandwidths and data sets,
Shared Loading accelerates bulk loading into compression-
optimized storage and improves the performance and pre-
dictability of queries running concurrently.

1. INTRODUCTION

In today’s heterogeneous system landscape, an ever-growing
volume of data is available in plain text files. Plain text files
are frequently used to transfer scientific data sets or business
data, to facilitate replication and system integration, or to
migrate to a new system. In the latter case, customers of
SAP state that the bulk loading of text files can quickly be-
come the bottleneck in mission-critical migration processes.
Thus, fast and efficient bulk loading is imperative.

Related work [1,2, 5] assumes that data resides on local
storage. However, files are often stored close to the client
machine, where an application produces data or data is pre-
processed, and not close to the server machine running the
DBMS. Thus, data needs to be transferred over the network.
This can be a fast internal network, in case of a cloud-only or
an on-premise scenario, or a slow Internet connection, e.g.,
when loading data from an on-premise setup into the cloud.

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribution
and reproduction in any medium as well allowing derivative works, pro-
vided that you attribute the original work to the author(s) and CIDR 2019.
9th Biennial Conference on Innovative Data Systems Research (CIDR ‘19)
January 13-16, 2019 , Asilomar, California, USA.

In addition, related work [2,17] focuses on optimizing pars-
ing and the creation of an index during bulk loading. They
conclude that most time is lost on deserialization. However,
modern systems [4,10,15] employ a (highly) compressed stor-
age. In such a system, it is also challenging to transform
data because compression is resource-intensive. In fact, we
demonstrate in our analysis of a production system that
most time is lost on data transformation—mnot on deseri-
alization. In addition, such transformations may take away
precious CPU cycles from queries running in parallel: we ob-
served tail latencies degrade by a factor of 2.5 under load.

To address these issues, we study bulk loading in a dis-
tributed environment and its impact on query workloads
running in parallel. Ultimately, we develop a new mecha-
nism for efficient bulk loading into optimized storage. Our
mechanism accelerates loading and improves the performance
and predictability of concurrent query processing. Its archi-
tecture allows dynamically adapting data transformations
and shifting work between client(s) and server at loading
time—without the need for the user to partition the data or
to manually parallelize bulk loading [16,18]. To that end,

(i) we analyze where time is lost in a complete bulk load-

ing pipeline using SAP HANA as an example database;

(ii) we present the architecture of the distributed bulk
loading mechanism Shared Loading, which can dynam-
ically offload work to the client machine; and

(iii) we evaluate the performance characteristics of our ap-
proach and study whether it improves tail latency of
concurrently running queries for different network band-
widths and data sets.

2. RELATED WORK & BACKGROUND

Bulk Loading. Commercial and open-source database sys-
tems offer a range of interfaces for bulk loading files. We
group existing approaches into three categories: First, sys-
tems may offer a command for a terminal-based front-end.
The user either manually transfers the file or it is trans-
ferred during the loading operation. Second, systems may
support parameterized SQL queries with array bindings. In
contrast to submitting a query for every row of a table, it
allows batching multiple rows in a single query. In both ap-
proaches, the DBMS does the data processing. Third, some
vendors provide dedicated tools for importing files such as
SQL*Loader [18]. Their documentation does not detail, how-
ever, what is computed by the client and by the server.
Dziedzic et al. [9] analyze data loading for different DBMS.
They assume that data already resides on the server. They

corroborate our results by showing that bulk loading is slow
and expensive, especially in compression-optimized systems.
In fact, we close the gap discussed in their work: Our dy-
namic loading mechanism accelerates loading, takes the load
off the system and improves query performance.

In-situ Query Processing. Query processing on files [1,
2,5,12] focuses on analyzing large files with the goal to min-
imize the (initial) response times for a sequence of queries.
Related work identifies the repeated parsing, tokenizing, and
data type conversion as a performance bottleneck but does
not consider network transfers or complex transformations
Instant Loading. Miihlbauer et al. [17] use SIMD in-
structions to accelerate deserialization and create mergeable
indexes during bulk loading. We do not focus on these oper-
ations because our analysis (see Section 3) shows these op-
erations consume less than 20 % CPU time in a commercial
system and are orthogonal to our work. We focus on a dis-
tributed environment where our approach can dynamically
shift data transformations between client(s) and server.
Dictionary Compression. The in-memory database sys-
tem SAP HANA [10] makes heavy use of order-preserving
dictionary compression in its read-optimized storage—other
systems employ similar ideas to varying degrees [4,15]. An
ordered dictionary maps domain values to a dense set of con-
secutive numbers. Instead of the actual value of the columns,
the engine stores the index of the dictionary entry. A column
or a dictionary may be further compressed. In our work, we
focus on order-preserving dictionary compression. Applying
additional compression such as bit packing or prefix encod-
ing is orthogonal. We observed in experiments (not shown)
that they can be combined efficiently by exploiting the sort-
ing and the known distinct count of dictionary compression.
Buffered Updates. To facilitate data ingestion into op-
timized storage, SAP HANA transforms new data gradu-
ally, migrating records from write- to read-optimized stor-
age. Our approach bypasses the write-optimized storage and
merges new data directly into the read-optimized storage—
similar to Lamb et al. [15]. However, our approach en-
ables offloading data transformations at loading time to the
client.

3. COST ANALYSIS OF BULK LOADING

We analyze where time is lost in a complete bulk load-
ing pipeline using SAP HANA. While the results are spe-
cific to the data set and the implementation of the bulk
loading pipeline in SAP HANA, we expect similar results
for other systems with (complex) data transformations—
especially for systems with compressed storage. We bulk
load the lineitem table of the TPC-H benchmark from a
local solid-state drive. The setup is described in Section 5.1.

The results shown in Figure 1 demonstrate that data trans-
formations consume more than half of the CPU time. This
includes the time it takes to insert new rows into the write-
optimized storage, to compute a compressed representation
using an unsorted dictionary, and to create a columnar in-
memory representation. The deserialization including pars-
ing, validating and creating an instance of the SQL data
type in memory consumes around 15 % CPU time. Checking
constraints, partitioning the table, or updating meta data
such as indexes requires only a small amount of CPU time.
Merging the write-optimized storage into the read-optimized
storage consumes 10 % CPU time. Logging and persisting
consume a negligible amount due to asynchronous 1/0. The

10T Overhead {[722777

<Persist
Mcrgc{ ersis
751 Metadata{ <Log .
L »Constraints
Partition<{

Transform

Rel. CPU time [%)]
[l
(==}

[~}
ot

Deserialize{

Figure 1: Cost analysis of bulk loading into SAP HANA.
Most CPU time is spent on data transformation.

remaining 10 % are overhead from the transaction manager,
lock handling, and memory management.

In summary, our results differ from previous results [2, 5,
17] that attribute the highest cost for bulk loading to dese-
rialization. For compression-optimized systems, the cost of
transforming the data dominates computing time and out-
weighs the cost of deserialization by a factor of 3.7.

4. SHARED LOADING

Bulk loading and concurrently running queries compete
for hardware resources. The result is poor loading through-
put and poor query performance. To address the problem,
we propose to offload part of the bulk loading. In particu-
lar, we can exploit that the input data of the bulk loading
is often stored close to the client machine and not close to
the server machine running the DBMS. Our cost analysis
of the bulk loading pipeline identifies which steps are worth
offloading: deserialization and data transformation.

We argue that offloading work needs to be done dynami-
cally depending on, e.g., the input data, the compute power
of client and server, or the available network bandwidth.
To that end, we propose the architecture of a distributed
bulk loading mechanism that enables offloading deserializa-
tion and data transformation to the client at loading time.

Figure 2 gives an overview of the processing steps on client
and server. We assume that the input file is a delimiter-
separated values file such as CSV. However, by adjusting the
parsing step of the deserialization of the file, our approach
may support other flat file formats. We use the example
of order-preserving dictionary compression, but the concept
of dynamically offloading deserialization and the transfor-
mation into a dictionary-compressed column store may be
applicable to other transformations and compressions.

For the purpose of illustration, we first present client-
centric and server-centric loading. Afterwards, we describe
how we can combine both approaches dynamically.

4.1 Client-Centric

Client Component. The client component transforms
data by pushing file chunks through a processing pipeline.
When we shift data transformations to the client, the client
produces a dictionary-compressed, columnar partition and
sends it to the server. This allows the DBMS to merge a
partition directly into optimized storage. We briefly describe
the individual steps, shown in Figure 2a, in the following.
The deserialization step converts a file chunk to an in-
memory instantiation of the data. It parses the chunk to
identify delimiter symbols, validates fields, and instantiates

—— Chunk —f» Fragment Ai}ik Fragment(s) —(P)— Partition

(a) Client-centric bulk loading into optimized storage.

—Py Partition(s)

Partition

Fragment,

optimized
storage

ile 2

N Client \} i ! Chunk
1 I
| ! ‘
- - N) - eac

File =& Deserialize =<7)= ~&1- ~@ 1 @ Sort |7 { Compress | Merge optimized || (¢) Shared Loading transforms a file chunk into
[Deseriaice| | ! [Sort] ‘
| ! ‘
(|

Read-

storage a columnar in-memory fragment. Multiple frag-

”””””””””” ments form a logical partition. A fragment’s col-
(b) Server-centric bulk loading into optimized storage

umn (gray) may be dictionary-compressed.

Figure 2: Processing steps in Shared Loading. Computational work (gray) can dynamically shift between client (a) and server
(b): at loading time, we can decide for a fragment’s column (c) where to compute its data transformation.

data types in memory according to the schema of the table
it gets from the server. Finally, the deserialization step as-
sembles all rows of the chunk into a columnar in-memory
representation, which we refer to as a fragment. The sort
step adds a temporary dictionary to a fragment’s column,
which is a sorted copy of the column without duplicates. The
compression step logically assembles multiple fragments into
a horizontal partition, shown in Figure 2¢, and (physically)
merges all temporary dictionaries of a column into a single
dictionary. Afterwards, it uses the dictionary to encode the
columns of the fragments. The transfer step sends a parti-
tion to the server. Dictionary compression reduces the trans-
fer size: we show in the evaluation in Section 5.2 that dic-
tionary compression reduces the data size of the warehouse
data set by 56 % compared to the original file size.

Server Component. The server component is designed
as a part of the database system with internal access to the
storage engine. When we shift the data transformation to
the client, it receives a dictionary-compressed, columnar par-
tition that allows the DBMS to merge the partition directly
into its read-optimized storage.

The merge step merges one or more partitions into the
read-optimized storage. It merges all partitions available
since the last merge operation. For each column of the par-
titions, it merges the dictionaries with the corresponding
dictionary of the optimized storage. First, the merge step
creates mappings from the dictionaries of the partitions to
the new dictionary. Afterwards, it uses the mappings to up-
date the optimized storage as well as to update the data
of the partitions, which is then appended to the optimized
storage. Note that we could merge the data into a specific
partition of the target table or create a new partition to
avoid updating the dictionary compression.

4.2 Server-Centric

Client Component. When we shift only deserialization
to the client, but compute data transformations on the server,
the client component of Shared Loading produces an un-
compressed, columnar partition (see Figure 2b). The dese-
rialization step produces a fragment just as in case of the
client-centric loading. Afterwards, the client groups frag-
ments logically into a horizontal partition without applying
dictionary compression. Subsequently, it transfers a parti-
tion to the server by sending fragment after fragment over
the network.

Server Component. The server component receives an
uncompressed, columnar partition from the client. It needs
to transform the data before merging it into optimized stor-
age. The sort step receives a partition consisting of frag-
ments from the client. This allows the server to process
each fragment independently and as soon as a fragment ar-
rives. For each column of a fragment, it creates a temporary
dictionary—similar to the sort step of the client component.
The merge step merges all partitions available since the last
merge operation into the read-optimized storage. For each
column of the partitions, it first merges the temporary dic-
tionaries with the corresponding dictionary of the optimized
storage. Afterwards, the merge step maps the dictionaries of
the optimized storage to the merged dictionaries. It uses the
mappings to update the optimized storage and the merged
dictionaries to compresses the partitions, which are then ap-
pended to the optimized storage.

4.3 Dynamic Offloading

The architecture of Shared Loading combines client- and
server-centric loading. It allows deciding whether to trans-
form a fragment’s column, shown in Figure 2c, on the client
or on the server. The decision can be made at loading time.
To that end, Shared Loading can use heuristics during the
sort step at the client. It either creates a temporary dic-
tionary and performs client-centric loading for a fragment’s
column, or it omits the creation of the temporary dictionary
and performs server-centric loading.

The remaining steps adapt to the decision (dotted boxes in
Figures 2a and 2b). The compression step at the client only
compresses a fragment’s column if it has a temporary dic-
tionary. Otherwise the fragment’s column remains uncom-
pressed in the partition. The sort step at the server checks
if a fragment’s column is not already dictionary-compressed.
Only if that is the case, it creates a temporary dictionary.
Thus, the sort step produces a partition where a fragment’s
column either is dictionary-compressed or has a temporary
dictionary. The merge step either updates the dictionary
compression of a fragment’s compressed column or it en-
codes a fragment’s uncompressed column when writing to
the optimized storage.

Heuristics. The architecture of Shared Loading enables
the use of different heuristics. For instance, we use a heuris-
tic for minimizing the amount of data sent over the network.
In particular, we estimate the number of unique values in a
column using the HyperLogLog algorithm [11] with HIP es-

timator [6]. The algorithm allows us to estimate the total
memory size of the dictionary-compressed column and the
corresponding dictionary. If we estimate the memory size
to be smaller than the uncompressed column, we transform
the column at the client; otherwise we delegate the trans-
formation to the server.

Note that other heuristics could decide to shift data trans-
formations based on the server’s utilization, the client’s and
the server’s compute capabilities, or the network bandwidth.
In particular, heuristics can use information that is only
available at runtime.

4.4 Implementation

Our C++ implementation of the data processing pipeline
shown in Figure 2 exploits independent work whenever pos-
sible to achieve a high degree of parallelism. The implemen-
tation is independent of the codebase of SAP HANA but
simulates major characteristics.

To facilitate in-place sorting, we store variable-sized strings
of type VARCHAR(N) as fized-sized strings of length N. Note
that we avoid the increased memory and transfer size of
fixed-sized strings by employing dictionary compression. We
reduce the memory footprint of the merge operation by merg-
ing at most two columns in parallel. The same configuration
is the default in SAP HANA. This also limits the impact of
the merge operation on other workloads.

We set the size of a file chunk to 10 MiB and we group
50 fragments into a partition. This means that a parti-
tion corresponds to 500 MiB of the input file. We experi-
mentally confirmed that both parameters are robust. The
chunk size needs to be big enough to contain multiple rows
and to amortize the parallelization overhead (e.g., 10KiB)
and small enough to allow a high degree of parallelism (e.g.,
100 MiB). Similar arguments apply to the partition size: a
partition should contain between 10 and 100 chunks.

5. EVALUATION

We evaluate the performance of Shared Loading and state-of-
the-art architectures without and with concurrent query pro-
cessing, we analyze how much work Shared Loading can of-
fload, and, more importantly, whether it improves through-
put or query performance and predictability.

5.1 Setup

Data Set. We evaluate two data sets: the lineitem table
of the TPC-H benchmark and the warehouse table, which
was extracted from the data warehouse of a customer. Both
data sets are available in the file format of the TPC-H bench-
mark. We use the 1lineitem table with a scale factor of 10.
The file has a size of 7.24 GiB. The file of the warehouse
table has a size of 17.57 GiB, 12 - 10° rows and 155 columns.
Hardware. Our system has 128 GiB of DRAM and two
Intel Xeon E5-2660 v3 processors with 10 physical cores
each. The client process and the server process run on dif-
ferent sockets of the same machine. We allocate 10 physical
cores to the server and vary the number of cores for the client
from 2 to 8. The files reside on an local SSD with a read
bandwidth of up to 530 MB/s. Note that, for a single HDD,
a weak client would never be compute-bound. In addition,
the SSD is only used for reading. We do not evaluate per-
sisting and logging because we assume the server’s storage
to be more powerful than the client’s.

Network. We use the tc utility to emulate different net-
work bandwidths—similar to [19]. TCP/IP messages are
sent to the localhost address. We evaluate a network band-
width of 1 Gbit/s and 10 Gbit/s because these represent 69 %
of the market share [14]. 1Gbit/s represents the maximum
Internet bandwidth when loading data from an on-premise
solution into the cloud. 10 Gbit/s, on the other hand, rep-
resents a typical sizing option/quota within the cloud [3,13]
when performing a cloud-internal bulk loading operation.
Configurations. We evaluate Shared Loading in three dif-
ferent configurations: SL, corresponds to Figure 2a, i.e., the
client compresses all—it transforms all data into dictionary-
compressed partitions. SLs uses the heuristic to minimize
data size—the client dynamically decides for each column of
a fragment to compress it on the client or on the server. SLy
corresponds to Figure 2b, i.e., the client compresses none—
it transforms all data into uncompressed partitions.

In addition, we compare Shared Loading against two state-

of-the-art approaches: PIPE and SEQ. They represent the
bulk loading mechanism of current systems using terminal-
based commands. PIPE means that the client sends file
chunks to the server, while the server ingests the data. SEQ
means that the client first transfers the file. Then, the server
performs the bulk loading.
Query Workload. We use two analytical queries inspired
by the TPC-H benchmark to evaluate the impact of concur-
rent query processing. Queries run against a second instance
of the lineitem table with a scale factor of 10. Thus, query
processing is independent from bulk loading. We execute
each query ten times in a batch, wait for all queries to finish
and then execute the next batch. In each experiment, we
base the duration of the query workload on the maximum
loading time of all configurations.

Ql: select sum(l_extendedprice) from L;

Q2: select count(*) from L where l_shipdate

between ’1994—1—1’ and ’1995—1-1";
Measurement Method. We measure throughput, i.e., the
size of the file divided by the elapsed time. In addition, we
measure CPU time, the total time which processor cores
spent on executing instructions, to quantify computational
work. To evaluate the impact of query processing, we mea-
sure tail latency—a performance metric for mission-critical
systems with stringent SLAs [7, 8].

5.2 Loading in Isolation

10-Gbit Network. Figure 3 shows the results for a net-
work bandwidth of 10 Gbit/s: Shared Loading can offload a
large amount of work to the client (independent of the num-
ber of cores allocated to the client). For the lineitem table,
we can shift 71 % (SL,), 44% (SLs), and 7% (SLy) of the
total CPU time to the client. For the warehouse table, we
are able shift 74 %, 69 %, and 20 %, respectively.

‘We observe that for SLg the amount of CPU time shifted
to the client varies due to the heuristic: the client compresses
10 out of 16 columns for the lineitem table and 140 out of
155 columns for the warehouse table. In addition, the results
demonstrate that the server component of Shared Loading
always consumes less CPU time than the state-of-the-art
bulk loading architectures PIPE and SEQ.

The throughput of Shared Loading is comparable to the
state of the art and in some cases even up to 15 % higher. We
observe that without concurrent query processing shifting
only deserialization to the client (SLy) results in the highest

SSD O Server

5001 m8 m6 m4 O2 #cores 500 O Client
400
300
200
100

Throughput [MB/s]
CPU time [s]

> A 5.
S (T

%\) »(b\)%%\)‘v < \Q@%@Q

(a) lineitem

- O Server
~ 5 O Client
E = 500 len
=3 g 400

2 £ 300

=

! 2 200

<)

= © 100

I

c;\)v%\p% Ot < 89%@0.

%\) ?‘\O\ﬁ%\)% < &Q@%@O‘

(b) warehouse

Figure 3: Bulk loading over a 10-Gbit network without query processing.

W8 m6 O4 O2 #cores O Server
500 O Client

network

Throughput [MB/s]
@
S
CPU time [s]

AL S oD > AU, QO O
Y S Y o Fe

(a) lineitem

m8 6 04 O2 #cores @ Server

O Client

network

Throughput [MB/s]
@
=
CPU time [s]

é\ﬁ%\)% O < SQ%Q)O: (5\)> %\)%% S p \Q@%@Q.

(b) warehouse

Figure 4: Bulk loading over a 1-Gbit network without query processing.

throughput. The results come as no surprise because the
bulk loading is not network-bound but limited by the SSD’s
read-bandwidth and the client’s compute capability.
1-Gbit Network. Figure 4 shows the results for a net-
work bandwidth of 1Gbit/s: The measured CPU times
resemble the results for a network bandwidth of 10 Gbit/s
due to asynchronous network transfer. In addition, the re-
sults demonstrate that throughput is network-bound. It dif-
fers significantly between configurations. We attribute this
to the amount of data that the client transfers. Note that
SLy increases the transfer size compared to the original file
because we store strings with a fixed size (cf. Section 4.4).
For the lineitem table, SLs reduces the transfer size to
77 % of the size of the input file and it increases through-
put by 26 % compared to PIPE. For the warehouse table,
SLs transfers data with 41 % of the file size and it increases
throughput by 117 % compared to PiPE. Thus, using the
heuristic results indeed in the smallest transfer size.

5.3 Loading With Concurrent Queries

10-Gbit Network. Figure 5 shows the results for a net-
work bandwidth of 10 Gbit/s. We notice that the results
differ from previous results without query processing. Com-
pared to the baseline PIPE, SL, increases throughput by
90 % for the lineitem table and by 29 % for the warehouse
table. This demonstrates that, by shifting all transforma-
tions including compression to the client, Shared Loading
can maintain a high loading rate even when the server is
stressed—unlike state-of-the-art bulk loading methods.

By offloading transformations to the client, Shared Load-
ing relieves the server as well: When we compare PIPE with
SL,, tail latency improves by 32 % for Q1 and 53 % for Q2
for the lineitem table. For the warehouse table, tail latency
improves by 47 % and 60 %, respectively. Thus, Shared Load-
ing can reduce stress in peak load situations, which in return
improves query performance and predictability.

Note that the client can be relatively weak: 4 cores suf-
fice to transform and compress all data on the client while
achieving a higher throughput than the state of the art.

Average response times (not shown) improve by 20 % and
50% for the lineitem table and by 15% and 37 % for the
warehouse table when comparing SL, with PIPE.
1-Gbit Network. Figure 6 shows the results for of a net-
work bandwidth of 1 Gbit/s. The results for throughput are
similar to the ones without query processing: bulk loading
is again network-bound. SLs improves throughput by up to
27 % and 116 % compared to PIPE. In particular, we observe
that throughput does not degrade even though the server is
stressed: the low loading rate induces smaller load spikes.
SL, improves tail latency by 12% for Q1 and by 33 %
for Q2 compared to PIPE for the lineitem table. For the
warehouse table, tail latency only improves by 7-17 %, which
demonstrates that the transformations of the warehouse ta-
ble cause fewer load spikes than the lineitem table. Shared
Loading primarily improves throughput due to the reduced
transfer size, while its efficient offloading never degrades
query processing on the server.

5.4 Discussion

Our evaluation demonstrates that Shared Loading performs
up to 2X better than state-of-the-art architectures in 1-Gbit
environments due to the compressed network transfer. The
performance advantage in 10-Gbit environments becomes
clear once the server is stressed, e.g., by running a query
workload concurrently: offloading data transformations to
the client reduces CPU contention on the server which ben-
efits query processing and bulk loading. The results also
demonstrate why work needs to be shifted dynamically: dif-
ferent configurations of Shared Loading perform best or show
trade-offs depending on network bandwidth, server load, and
compute capability of the client.

Ultimately, we envision the client component of Shared
Loading to be part of a lightweight SQL client. Its complex-
ity stays low because it performs only deserialization and
data transformation. In addition, Shared Loading consumes
a low amount of memory—it buffers only one partition in-
between processing steps. Thus, the total memory consump-
tion will not exceed the equivalent of 7-50-10 MiB ~ 3.5 GiB

- ___sspD . oQl o Q2
g 5001 m8 @6 04 O2 #cores é 800
= =
=400 >
= g 600
2. 300 g
= <
@ 200 5 400
o =
0 0
c‘;\)v%\)% N < \Q@%@O: %\y%\f% O < \Q@%@Q-

(a) lineitem

Figure 5: Bulk loading over a 10-Gbit network with concurrent query processing.

= B8 06 O4 O2 #cores o Ql @ Q2
~ = w
8 250 £, 800
=
~ 20 & 600
a 150 network °
= M=z e - < 400
% 100 —
o o
5 50 ﬁ 200

0 0

AL D AR e

(a) lineitem

- o Q1L o Q2
~ w
g £ 800
=3
= £ 600
= 3
f::? S 400
2 =
b E«s 200
& 0
c;\y%\;ocg N < 89%@01 %\)30\)“% O < &Q@%@O‘
(b) warehouse
= B8 06 04 O2 #cores . o QL @ Q2
~. or 3
8 250 é 800
& 200 & 600
a 150 network §
£ - 400
® 100 3
2 =
5 50 éﬁ 200
0 0
PACA S O O rAPA S O O

(b) warehouse

Figure 6: Bulk loading over a 1-Gbit network with concurrent query processing.

of file data for any table. The low resource consumption
makes Shared Loading also a good candidate for implement-
ing bulk loading in a cloud-native database. When loading
a large volume of data, the system could start a (small) in-
stance running the client component of Shared Loading to
ensure elasticity and reduce costs.

6. CONCLUSION

In today’s heterogeneous system landscape, bulk loading
plain text files is a performance-critical task for data analy-
sis, replication, system integration, and migration. However,
for systems that employ a (highly) compressed storage, bulk
loading can stress the system significantly. In particular, the
data transformation during bulk loading can be very expen-
sive and negatively impact workloads running in parallel.

In this work, we analyze the costs of bulk loading into a
commercial in-memory database system with a compression-
optimized storage. Our analysis shows that most processing
time is spent on transforming the data into a compressed
format—mnot on deserializing the file. Moreover, we confirm
that state-of-the-art bulk loading significantly degrades tail
latency of a query workload running in parallel, while the
performance of the bulk loading suffers as well.

To mitigate this problem, we propose Shared Loading, a
distributed bulk loading mechanism that enables dynami-
cally offloading deserialization and data transformation to
the client machine holding the file. Our evaluation using
the lineitem table of the TPC-H benchmark and a real-world
data set determines that Shared Loading increases bulk load-
ing throughput especially in slower network environments or
when the DBMS is stressed. At the same time, it can signifi-
cantly improve tail latency of a query workload to enable effi-
cient bulk loading into compression-optimized storage with-
out sacrificing query performance and predictability.

7. REFERENCES

[1] Abouzied et al. Invisible loading: Access-driven data
transfer from raw files into database systems. In Proc.

(12]
(13]
(14]
(15]
(16]
(17]

(18]
(19]

EDBT, 2013.

Alagiannis et al. NoDB: Efficient query execution on
raw data files. In Proc. SIGMOD, 2012.

Amazon. EC2 instance types. [Online].

Boncz et al. Breaking the memory wall in MonetDB.
Commun. ACM, 2008.

Cheng et al. Parallel in-situ data processing with
speculative loading. In Proc. SIGMOD, 2014.
Cohen. All-distances sketches, revisited: HIP
estimators for massive graphs analysis. In Proc.
PODS, 2014.

Dean et al. The tail at scale. Commun. ACM, 2013.
DeCandia et al. Dynamo: Amazon’s highly available
key-value store. In Proc. SOSP, 2007.

Dziedzic et al. DBMS data loading: An analysis on
modern hardware. In In Proc. ADMS/IMDM, 2016.
Farber et al. The SAP HANA database — an
architecture overview. Data Eng. Bull., 2012.
Flajolet et al. Hyperloglog: The analysis of a
near-optimal cardinality estimation algorithm. In
Proc. AOFA, 2007.

Ge et al. Speculative distributed csv data parsing for
big data analytics. In Proc. SIGMOD, 2019.

Google. Virtual private cloud resource quotas.
[Online].

IDC. Worldwide Ethernet switch and router trackers,
2019. [Online].

Lamb et al. The Vertica analytic database: C-store 7
years later. PVLDB, 2012.

Microsoft. The Data Loading Performance Guide,
2009. [Online].

Miihlbauer et al. Instant loading for main memory
databases. PVLDB, 2013.

Oracle Database 18c Documentation. [Online|.
Raasveldt et al. Don’t hold my data hostage: A case
for client protocol redesign. PVLDB, 2017.

https://aws.amazon.com/ec2/instance-types/
https://cloud.google.com/vpc/docs/quota
https://www.idc.com/getdoc.jsp?containerId=prUS45119319
https://docs.microsoft.com/en-us/previous-versions/sql/sql-server-2008/dd425070(v=sql.100)
https://docs.oracle.com/en/database/oracle/oracle-database/18/sutil/oracle-sql-loader.html

	Introduction
	Related Work & Background
	Cost Analysis of Bulk Loading
	Shared Loading
	Client-Centric
	Server-Centric
	Dynamic Offloading
	Implementation

	Evaluation
	Setup
	Loading in Isolation
	Loading With Concurrent Queries
	Discussion

	Conclusion
	References

