Data-Parallel Query Processing on Non-Uniform Data

Henning Funke
TU Dortmund University

henning.funke@cs.tu-dortmund.de

ABSTRACT

Graphics processing units (GPUs) promise spectacular per-
formance advantages when used as database coprocessors.
Their massive compute capacity, however, is often hampered
by control flow divergence caused by non-uniform data dis-
tributions. When data-parallel work items demand for dif-
ferent amounts or types of processing, instructions execute
with lowered efficiency. Query compilation techniques—a
recent advance in GPU-accelerated database processing—
suffer from the problem even more, because divergence ef-
fects are amplified during the execution of fused pipeline
operators.

In this work, we identify two types of control flow diver-
gence—filter divergence and expansion divergence—that fre-
quently occur in real world workloads. We quantify the
problem for two poster cases and propose techniques to bal-
ance these divergence effects. By balancing divergence ef-
fects, our approach is able to restore processing efficiency
even when pipelines contain heavily skewed operations. Our
query compiler DogQC achieves a wider range of function-
ality than other query coprocessors and performance im-
provements up to 4.2x over existing GPU query compilation
techniques and up to 29.6x over CPU-based systems.

PVLDB Reference Format:

Henning Funke, Jens Teubner. Data-Parallel Query Processing
on Non-Uniform Data. PVLDB, 12(xxx): xxxx-yyyy, 2019.
DOI: https://doi.org/10.14778 /XXXXXXX.XXXXXXX

1. INTRODUCTION

Data-parallelism is frequently used for efficient query pro-
cessing (e.g. SIMD, coprocessors). As means of specializa-
tion, it is a way to overcome the power wall that limits the
design of modern multiprocessors [6]. Instead of dedicating
chip resources to control flow management, data-parallel ar-
chitectures target throughput. For instance, executing an
instruction for 32 fields at a time reduces control flow man-
agement work by 32x compared to scalar execution.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 12, No. xxx

ISSN 2150-8097.

DOT: https://doi.org/10.14778/XXXXXXX.XXXXXXX

Jens Teubner
TU Dortmund University

jens.teubner@cs.tu-dortmund.de

Underutilized
lanes > and I3

Figure 1: Data-parallel computation of R > S with
inefficient use of compute resources due to non-
uniform distribution of S.

Leveraging data-parallelism in a beneficial way can be
challenging. While uniform data can be processed natu-
rally, irregular data and computation patterns may compro-
mise the benefits. In the uniform case, it is sufficient to
package data into parallel lanes and then to run an instruc-
tion sequence. Non-uniform data, however, cannot easily be
packaged into a fixed number of fields and the instruction se-
quences may diverge. Consequently, for irregular problems,
data-parallel operations execute with lowered efficiency.

Figure 1 illustrates the problem for a database join oper-
ation. While rows r; and 74 find three/four join partners,
there is only a single join partner for r2 and none for r3. A
naive data-parallel execution, therefore, will leave execution
lanes I and I3 underutilized.

In real-world problems, unfortunately, such irregularities
are the norm, rather than the exception, e.g.

Variable Length Data. The size of an attribute may
vary across different entities (e.g. strings).

Skewed Distributions. Skewed data distributions lead
to divergence during recombination tasks (e.g. joins).

Computation Divergence. As a secondary effect of
data properties, divergence may occur during computations
(e.g. hash collisions).

1.1 State of the Art

Non-uniformness can be particularly harmful to parallel
query compilation approaches. Query compilation closely
entwines sequences of operators (pipelines) into native code.

Efficient use of parallelism

Thus non-uniform effects that occur in the data-parallel ex-
ecution of one operator may be amplified during the exe-
cution of successive operators. In CPU-based systems, the
problem of data-parallelism in compiled pipelines has been
addressed by database researchers [19, 33]. A promising ap-
proach by Lang et al. [18] refills inactive SIMD lanes with
buffered elements from previous low-activity iterations.

By contrast, in the context of data-parallel accelerators—
such as GPUs—existing systems tend to circumvent the
problem of non-uniformity at a high price. E.g., they use
string dictionaries [23, 3, 7, 13, 12|, specialized joins [29],
materialization barriers [37, 13, 7], or bit-packed keys [7,
8] to provide a uniform surrogate. The surrogate, however,
usually has limited expressivity, and query coprocessing en-
gines struggle to match the same range of operations sup-
ported by their CPU counterparts.

1.2 Contributions and Outline

To address the problem of processing non-uniform data on
data-parallel processing devices, we devise the query com-
piler DogQC. DogQC’s mechanisms are orthogonal to other
GPU-based query processing techniques.

Our work is the first to pinpoint the problem of diver-
gence in the context of GPU-accelerated database processing
(Section 2). We identify two flavors of divergence: ezpan-
ston divergence (Section 3) and filter divergence (Section 4).
With Push-down Parallelism (Section 3.2) and lane refill
(Section 4.2), we provide novel and effective mechanisms to
counter the two divergence effects. In an extensive set of
experiments (Section 5), we demonstrate how Push-down
Parallelism and Lane Refill can speed up query processing
by more than a factor of two for realistic benchmarks.

To round up this report, we discuss related work in Sec-
tion 6, and summarize in Section 7. Appendix Section A
details implementation aspects.

2. NON-UNIFORM PIPELINES

Data-parallel processing of non-uniform data encounters
the following problem: Some data elements need a different
amount or kind of processing than others. Consequently,
parallel lanes need to diverge to follow their tuples’ process-
ing path. Due to this effect, called control flow divergence,
(short: divergence) the affected lanes may idle or unmatched
execution paths are sequentialized. The advantage of data-
parallelism to reduce the amount of control flow work is
compromised.

Control flow divergence is particularly harmful in kernel-
p]fog]ramrls1 that execute operator sequences (e.g. op; ...op,,)
as they are typical in compiled query pipelines [12]. If the
operator op, introduces divergence, the subsequent opera-
tors op, ;. ..op,, may suffer from it as well. For example, a
tuple that is filtered out should be disregarded by the follow-
ing operators, leaving the respective lane idle throughout.

In the following, we take the TPC-H benchmark and ana-
lyze the divergence effects that occur in actual query pipelines.
We differentiate between two types of control flow diver-
gence, called filter divergence and expansion divergence. Their
difference is based on properties of the operation they orig-
inate from.

IParallel GPU procedures, called kernels in short.

TTTTT 0

I I I I

| | | |

| | | |

| | | |

! ! ! I 2.9M tpl
: : : : 2.3M warp its.
(e I I

= g I dheh !

(== [g gy

I ch ! = mpm

I I I I

18.8M tpl

g S.1.2M warp its.
5 N
R
g
37.5M tpl
TPC-H 1.2M warp its.

Q10
Scax (orders)

Figure 2: Analytic benchmark query with expansion
divergence in join operator. Varying numbers of join
matches cause more warp iterations for fewer tuples.

2.1 Lane Activity

Data-parallel processors execute instructions on multiple
lanes at a time, e.g. GPUs execute instructions in warps of 32
lanes. Starting with scan, each warp reads the attribute data
for 32 tuples into an on-chip register file [14, 26]. Each of the
warp lanes is responsible for one scanned tuple and we call
the lane active when it holds at least one tuple to pass on to
the next operator. In subsequent operators, lanes may resign
from their tuple, e.g. by applying a filter. However, warp
instructions will still compute a value for these passive lanes,
but the result is discarded. Passive lanes do not contribute
to the computation, but cause dissipation of chip resources
for register allocation and instruction execution. To achieve
a high execution efficiency, it is important to minimize the
number of passive lanes.

3. EXPANSION DIVERGENCE

Expansion divergence occurs in operators such as string
comparisons and joins, where parallel lanes need to process
varying amounts of work items depending on data proper-
ties. Expansion divergence can lower the execution-efficiency
due to divergence in the operator itself (e.g. comparisons
of short strings finish early) and due to divergence in sub-
sequent operators. The latter occurs when the expansion
process creates a varying amount of new tuples, e.g. join
matches.

3.1 Poster Case 1

TPC-H query 10 contains a join between the orders and
lineitem tables. Both tables are filtered, therefore optimiz-
ers may decide on ordersi<lineitemor lineitem< orders.
For the latter DogQC computes a hash join with lineitem

as build relation and orders as probe relation. During probe
the tuples from orders have varying numbers of matches,
which correspond to the items in an order. Producing the
matches is a process with expansion divergence. To analyze
the execution efficiency, we execute the query with DogQC
and look at two metrics at each pipeline stage: The number
of tuples and the number of warp iterations. The number of
warp iterations indicates how many times a warp of 32 lanes
goes through an operation. If at least one element is active,
the full warp performs the iteration. However, each iteration
can process up to 32 elements.

Figure 2 illustrates the compiled pipeline. First, a scan
of 37.5M tuples from orders, then selection leaving 18.8 M
tuples active, and then join probe producing 2.9 M match
tuples. The scanned orders-tuples are evenly parallelized
and thus processed in 37.5M/32 ~ 1.2M warp iterations.
Selection has the same number of warp iterations because
almost all warps have remaining tuples. The following join
probe produces a lower number of 2.9 M tuples but requires
a higher number of 2.3 M warp iterations. Each lane iterates
through varying match numbers and only 2.9 M/2.3M =~ 1.3
lanes per warp are active on average. In an ideal setting
only 2.9M/32 ~ 0.1 M warp iterations would be sufficient.
Expansion divergence that occurs in the join probe operator
causes a low execution efficiency.

3.2 Push-down Parallelism

Existing query compilers [19, 8, 12] parallelize over the
scanned table and within each parallelization unit, expan-
sion processes are executed sequentially. For example in the
join R <1 S, where r € R is part of the scanned table, all join
matches of r with S are produced by the same thread. This
causes inefficiency as lanes diverge along the distribution of
join matches. In the worst case the operators op, to op,,
are executed sequentially when all tuples with matches are
processed by the same lane.

Push-down Parallelism has the ability to prevent this ef-
fect by changing the parallelization strategy within the pipe-
line. For operators with expansion properties, it pushes par-
allelization down one level to the expansion process. E.g.
for joins, the parallelization level moves from parallelizing
over the scanned tuples of R to parallelizing over the join
matches with S. This is achieved with broadcast operations
that redistribute parallel work.

Figure 3 illustrates how Push-down Parallelism redistribu-
tes join matches to prevent imbalance caused by expansion
divergence. The mechanism is formalized as pseudocode in
Figure 4. Figure 3 shows a sequence of broadcast operations,
denoted by (D through (@), performed in a warp with parallel
lanes®. Each broadcast has an expansion source, i.e., a join
probe, represented as filled circle . The join matches are
represented as boxes .

Before applying Push-down Parallelism, the warp has gone
through op; to op,_; (lines 1-5 in the pseudocode). Now
the expansion process in op, has varying amounts of work
items in each lane. Existing approaches proceed and iter-
ate through the expansion. Push-down Parallelism instead
selects one lane at a time (lines 9-10) and performs a se-
ries of broadcast operations. Each broadcast takes the work
items from an individual lane and spreads them out across

2Figures 2, 3, 5 and 7 use eight instead of 32 lanes for illus-
tration purposes.

r

Whus: 0 0 0 0 0 0 0 O

@ Q\k\ broadcast(7, tbuf, 3, Sbuf)
a=7T

Whuet 0 0 0 0 0 0 3 0

o |
o s I I s |
o s e s s I

® SR

Whae: 0 0 0 0 0 28 3 0

® N

Whus: 0 0 O 6 0 28 3 0

broadcast(6, tbuf, 28, Sbuf)

broadcast(4, thuf, 6, Sbuf)

@ broadcast(2, thuf, 4, Sbuf)
a=2
Wput: 0 4 0 6 0 28 3 0
>

Figure 3: Illustration of Push-down Parallelism that
expands the join matches of four warp lanes.

the warp (line 11). Now the warp parallelizes over the join
matches and consumes them in coalesced iterations. Al-
though Push-down Parallelism consumes the tuples from
op,_; sequentially for a warp, both op,_, and op, are ex-
ecuted in parallel.

Push-down Parallelism comes at a small space penalty:
in line 8 of the algorithm, the current processing state is
buffered in registers tpuf, Whuf, and Spuf.

3.3 Implementation

We implement Push-down Parallelism in DogQC by adding
the strategy to the code generation of the join operator. Our
implementation uses warp primitives via intrinsics [25], e.g.,
shuffle and ballot, for lightweight communication between
lanes. Using those intrinsics, we implement lane buffering,
leader selection, and broadcast operations as follows:

Buffering Active Lanes. Lanes that receive work items
during broadcast may already have an active tuple in regis-
ter. To switch to a new work item, it is necessary to post-
pone processing of that tuple. This is done by buffering
active tuples (line 8) before broadcast and leader selection.
The buffer operation is local to each lane (i.e., lanes post-
pone only their own tuple). Consequently, buffering is as
simple as writing each attribute value to a local buffer vari-
able.

Leader Selection. During leader selection (line 10),

PusH-DOWN PARALLELISM
1 foreach warp of 32 lanes in parallel do

2 laneix < [1,...,32]

3 while more inputs do

4 t < scan 32 tuples /* op; */
5 [...] /* opy, = op,_q */
6 w < number expansion items op,

7 s + data structure state op;

8 touf, Whut, Sbut <— &, W, s

9 while warp_any(wput > 0) do

10 a < select_leader(whut)

11 t,w, s broadcast(a, thuf, Whuf, Sbuf)

12 for e < lanejx to w by 32 do

13 process op, expansion item e

14 L [...] /* op;iq - op, */
15 if lane;x = a then

16 | whus <0

Figure 4: Pseudocode for a pipeline that applies
Push-down Parallelism to op,. The strategy expands
op, with another level of parallelism.

Push-down Parallelism picks one lane as broadcast source
and provides its lane index a to the other warp lanes. This
is implemented with the following expression using only two
warp intrinsics:

// select broadcast source lane
a = __ffs(__ballot_sync(w_buf>0,ALL));

The first primitive __ballot_sync(...) builds a bitmask of
lanes that have remaining work items and shares it with all
lanes. The second primitive __ffs(...) computes the index
of the first 1-bit of the bitmask. The lane with index a is
selected for broadcast.

Broadcast Operation. The broadcast operation (line 11)
takes the buffered data from one lane a and distributes it to
the other warp lanes. The following values are broadcasted:
The attributes of the tuple tput,q, the number of expansion
items wput,q, and the data structure state spuf,q, €.g., the
hash bucket offset. The following code performs the broad-
cast for a tuple with two attributes and the hash bucket
offset using warp shuffle primitives.

// gather w_buf, t_buf, and s_buf from lane a
w = __shfl_sync(w_buf,a);

o_orderdate = __shfl_sync(o_orderdate_buf,a);
o_orderkey = __shfl_sync(o_orderkey_buf,a);
c_acctbal = __shfl_sync(c_acctbal_buf,a);
bucket_offs = __shfl_sync(bucket_offs_buf,a);

The __shfl_sync(...) intrinsic takes the payload as first pa-
rameter and the source lane as second parameter. All lanes
of the warp execute the instruction and obtain data from
lane a. After the broadcast, each lane processes a distinct
expansion work item (lines 12-14). E.g., hash bucket entries
are obtained by adding the expansion index e to the base
address of the hash bucket. In this way, warps consume the
tuples from the hash bucket in coalesced iterations.

3.4 Usage Scenarios

Push-down Parallelism allows efficient execution of opera-
tors with expansion processes. The expansion may produce

new tuples as the join in the previous example. Alterna-
tively, expansions can be local and the operator passes on
only one tuple, e.g., when processing the characters of an
attribute. For the latter case line 14 of the pseudocode in
Figure 4 moves behind the for-loop.

By taking the parallelization level to the same level as the
expansion process, Push-down Parallelism gives two main
benefits. First, non-uniform distributions of the number of
expansion items no longer cause expansion divergence. Sec-
ond, memory accesses that are performed during expansion
are transformed from sequential memory access to coalesced
memory access [15]. In the following, we discuss several sce-
narios for the application of Push-down Parallelism.

Joins. Joins between tables with varying key distribu-
tions are a poster child for the application of Push-down
Parallelism. Existing GPU-based techniques restrict func-
tionality by limiting the number of join matches, join condi-
tions, or attributes stored in the hash table [16, 29, 31]. The
restrictions limit divergence effects, but also lack support
for important query plan options. DogQC handles varying
key distributions, multi-predicate joins, and different pay-
load sizes gracefully by using Push-down Parallelism to bal-
ance expansion work. Additionally, the technique increases
memory efficiency by reading hash bucket contents with co-
alesced access.

(Anti-) Semi Joins. Push-down Parallelism applies to
(anti-) semi-joins with multiple match candidates (e.g., for
combinations of equality and inequality predicates). The
technique helps to balance the parallel evaluation of match
candidates. However, the parallelization can prevent join
strategies from early exit once the first match is found.

String Equality. Equals operations on string datatypes
cause expansion divergence due to a varying numbers of
characters in the strings. Push-down Parallelism expands
the string characters across lanes and compares the charac-
ters in parallel. This reduces divergence effects from varying
string lengths and increases memory efficiency by loading
the string data using coalesced access.

Graph Processing. The node degree of real world graphs
follows skewed distributions, e.g., power law [9]. Conse-
quently, parallel graph algorithms are challenged by varying
amounts of traversal work per node. Existing GPU tech-
niques address these imbalances with node partitioning [20],
edge partitioning [11], and compression [32]. Push-down
parallelism naturally applies to the problem for relational
graph representations.

4. FILTER DIVERGENCE

Filter divergence occurs in operators that inactivate some
of the parallel lanes, for example filters and primary key-
foreign key joins. The subsequent operations experience
a lowered execution efficiency due to lane inactivity. This
problem has been addressed by stream compaction [2] ear-
lier; however, existing solutions are not suitable for compiled
query pipelines because of their use of global synchroniza-
tion barriers.

4.1 Poster Case 2

TPC-H Query 10 contains two selective operations on tu-
ples from the lineitem table: a selection 1_returnflag =’R’
and a sparse foreign key join with 1_orderkey = o_orderkey.

50M tpl
o =0.33
J5M warp its

150M tpl
o=1.0
Tgclj(_)H 5M warp its

Scan (lineitem)

active
lanes

-108
0-4\\\\H\\\\H\\\H\\\\H\\\\H\\\

warp iterations

123456789... ...32

number of active lanes

Figure 5: Analytic benchmark query with heavy
filter divergence. After the filtering join operator
most warp iterations have few active lanes.

Figure 5 illustrates a pipeline that scans 1ineitem and then
performs selection, join probe, projection, and aggregation.
Compared to Section 3.1, the pipeline contains an addi-
tional projection for 1_extendedprice * (1-1l_discount).
The previous plan performed the projection in the build
pipeline favoring a smaller hash table payload.

Again, we look at the number of warp iterations (cf. Sec-
tion 3.1) in each pipeline stage to analyze the effect of the fil-
ters on execution efficiency. Starting with scan, the pipeline
parallelizes 150 M lineitem tuples evenly across lanes. This
requires 150 M/32 = 5M warp iterations. The following fil-
ter with o = 0.33 is likely to leave elements active in each
warp. Consequently, the number of 5 M warp iterations re-
mains constant. Subsequently, the (single match) join probe
produces 2.9 M tuples that are processed in 1.1 M warp iter-
ations. Due to the selectivity of ¢ = 0.01 most lanes in the
pipeline have become inactive and the remaining tuples are
spread across warps. The histogram at the bottom of Fig-
ure 5 shows a profile of this pipeline stage, illustrating how
many active lanes we measured in the 1.1 M executed warp
iterations. Only few lanes are active in each warp causing
a low execution efficiency that is carried through the sub-
sequent projection and aggregation operators. Ideally, both
operators would be processed with only 1.1M/32 = 30K
warp iterations.

LANE REFILL
1 foreach warp of 32 lanes in parallel do

2 Npuf < 0
3 thur — empty
4 while more inputs do
5 t < scan 32 tuples /* op; */
6 [...] /* opy, = op,_q */
7 m < bitmask of active lanes
8 Nactive — popcount(m)
9 while npufter + Nactive > 7 do
10 if nactive < T then
11 L Npuf I‘efill(?’h, t, tbuf, nbuf)
12 execute op;
13 [...] /* op;iq ~— op, */
14 m < bitmask of active lanes
15 Nactive < popcount(m)
16 if nactive > 0 then
17 L Npuf flush(m7 t, tbuf, ’nbuf)

Figure 6: Pseudocode for a pipeline with Lane Refill
between op,_; and op,. The control flow only pro-
ceeds with op, with lane activity above threshold T'.

4.2 Lane Refill

Selective filters or sparse foreign key joins that trigger fil-
ter divergence situations are commonplace in analytic work-
loads [4]. The Lane Refill technique is a natural match to
counter the imbalances caused by such operations. The tech-
nique we describe here resembles the mechanism proposed
by Lang et al. [18] as consume everything strategy for SIMD
processing. A similar idea was introduced by Polychroniou
et al. [30] for a sequence of Bloom-filter bitmasks.

Lane Refill introduces buffering operators that control the
lane activity during pipeline execution. The buffering oper-
ator is designed to work with a given threshold. If the lane
activity drops below threshold there are two options:

1. There are insufficient buffered tuples. Active lanes are
buffered and the pipeline starts over with fresh tuples.

2. There are sufficient buffered tuples to reach threshold
and the tuples are reactivated in empty lanes.

This strategy ensures that the operators succeeding the buffer-
ing operator always start with a lane activity above thresh-
old. It is worth noting that one element buffer space for
each lane is sufficient for any given threshold.

We show the pseudocode for the technique in Figure 6
and illustrate it in Figure 7. As an example, we assume a
Lane Refill operator with threshold 7 (out of 8 lanes) that
is placed after the sparse join of TPC-H Query 10. Figure 7
shows four iterations D to @ of the same warp receiving
tuples from the sparse join. The boxes [represent active
lanes holding tuples. The first iteration receives two tuples
from the join (pseudocode lines 1-6). Activity lies below
threshold and the tuples are flushed to the buffer (lines 9
and 17). The pipeline starts over and the Lane Refill oper-
ator receives new tuples from the join. The following two
iterations are flushed as well because the highest possible
acitivity is 6 (out of 8) for three tuples from join plus three
buffered tuples. In iteration (@), there are two fresh tu-
ples and six buffered tuples. The empty lanes are refilled

(lines 10-11) and the pipeline proceeds to the following op-
erators with full lane activity. In the following, we show how
Lane Refill is implemented in compiled query pipelines on
GPUs.

4.3 Implementation

We implement Lane Refill in DogQC by introducing a
buffering operator with the semantics shown in pseudocode
Figure 6. The buffering operator is code generation-based,
similar to the other operators in DogQC. The main chal-
lenges in adapting the approach by Lang et al. [18] to GPUs
are efficient implementations of flush and refill and the
application of warp parallelism. The previous implementa-
tion of Push-down Parallelism performed gather-style lane
communication with warp shuffles. In contrast Lane Refill
uses gather during refill and scatter during flush. As
the latter is unsupported by warp shuffles, shared memory
is better suited here. In fact, further investigation showed
no significant benefit when expanding the use of warp shuf-
fles to £lush. We attribute this to the low number of shared
memory bank conflicts [22] caused by Lane Refill.

Flush to Buffer. The flush operation is executed when
the number of active lanes is below threshold and there not
enough buffer elements to restore sufficient activitiy. The re-
maining active lanes are written to empty buffer slots. flush
takes a bitmask of active lanes m, the tuples ¢, the buffer
tbut, and the buffer count nyur as input. Then flush com-
putes the buffer destination dest that specifies the buffer
position for each lane to write its active tuple to. This is
done with the following code:

// warp prefix sum on active lanes
dest = __popc((m) & (pre_lanes)) + n_buf;

We look at an example with 8 lanes and lane activity m =
[0,1,0,0,1,1,0,0]. The bitmask pre_lanes marks all pre-

ceding lanes, e.g. lane 4 has pre_lanes = [1,1,1,0,0,0,0,0].

With the population count intrinsic __popc(...), we count
the set bits on preceding lanes. This gives us an exclusive
prefix sum of the warp. With nyus = 2 previously buffered
elements, the destinations are dest = [x,2,%,x%,3,4,x,x].
Next, flush writes the tuples ¢t from active lanes to the
buffer t,us at their respective destinations dest. This is done
by scattering the tuple’s attributes to shared memory, e.g.

// scatter to shared memory
1_extprice_buf [dest] = 1_extprice;
o_orderdate_buf [dest] = o_orderdate;

Refill from Buffer. The refill operation is executed
when the lane activity is below threshold and there are suffi-
cient buffered tuples to reach threshold. The operation takes
tuples from the buffer and reactivates them in passive lanes.
refill receives the bitmask of passive lanes m, the tuples
t, the buffer tuples tpyus, and the buffer count nyys as input.
To always maintain dense adjacent buffer elements, we push
and pop the buffer content like a stack. To this end, we first
compute the number of remaining buffer elements n_remain
based on the buffer count and the number of empty lanes.
Then we compute the buffer source index src with a warp
prefix sum, similar to flush.

// warp prefix sum on passive lanes
src = __popc((inv_m) & (pre_lanes)) + n_remain;

11

refill(m, tout, t,6)

O Lidobnde

thuf

33
o =
O =
o~
= O
o =
o =
O =
= o

flush(m, t, tbus, 3)

® [] =B

thuf

m 1 01 1 0 0 0 O

flush(m, t, thus, 2))

thuf

m 0000100 0
flush(m,t, thuf, 0) ==
tbuf

m 0 0 100 0 10

>

Figure 7: Illustration of Lane Refill that postpones
processing of three low-activity iterations for full
lane activity in the fourth iteration.

After computing the buffer source index src, we can refill
passive lanes from the buffer as shown below.

// gather from shared memory

if(src < n_buf) {
1_extprice = 1_extprice_buf [src];
o_orderdate = o_orderdate_buf [src];

}

The code reads the attributes of buffered tuples from shared
memory locations and stores them in registers by executing
assignments to local variables. Note that we only load tuples
from the buffer for the first npus passive lanes to account for
the number of buffer elements.

4.4 Usage Scenarios

Lane Refill restores balanced lane activity in sequences of
operators with filter divergence. The technique can be used
after an operator that leaves execution in divergent stage
(e.g. selection) before continuing with the next operator. Al-
ternatively, Lane Refill can be used in succeeding iterations
of the same operator (e.g. character comparisons in string
equality) to restore lane activity between iterations. For the
latter application, Lane Refill has the beneficial property to
preserve sequential order of the iterations. This property is
contrary to Push-down parallelism which parallelizes itera-
tions. The sequential order can be leveraged by operators,
such as regular expression matching with automata, where
each iteration is dependent on the previous iterations. In the
following we discuss several usage scenarios for Lane Refill.

Selection. Selection operators are a poster child for fil-
ter divergence. Database systems usually perform selection
push-down to reduce workload sizes early. However, in data-
parallel pipelines, the early selection does not reduce the
workload size. Unless the full warp exits, lanes with filtered-
out tuples still allocate the same processing resources. By
filling the gaps with useful work, Lane Refill scales process-
ing with the workload size.

Filter Join. Sparse foreign key joins occur in normalized
database workloads [4] and in de-normalized star schema
workloads [36]. The latter contain chains of joins operators
that combine the dimension tables with the fact table. The
join chain typically filters out most tuples, e.g. the combined
selectivity of 10 out of 13 queries from the Star Schema
Benchmark [27] is below 1%. The successive join filters leave
an increasing amount of lanes idle. Lane Refill reactivates
these idle lanes with useful work for efficeint processing.

String Pattern Matching. Database systems support
string pattern matching with LIKE-predicates and regular
expression (regexp) predicates. Most GPU-based systems,
however, have very limited pattern matching capabilities,
likely because of divergence effects [1, 7, 8, 12, 13]. Still there
is existing work on GPU-based pattern matching. There is
work on NFA-based regexp matchers [39], which parallelize
over the states of the automaton. Albeit this parallelization
strategy collides with per-tuple parallelization of GPU query
engines. Other work on DFA-based matchers [34] uses per-
string parallelism, which appears more suitable for query
engines. During pattern matching, however, non-matching
strings reach rejecting states of the DFA early. Lane Re-
fill can be used to reactivate those lanes with new tuples
to make string pattern matching efficient. The property of
Lane Refill to preserve sequential order is essential for fol-
lowing state transitions through DFAs.

Index Traversal. Index traversals are used to find tu-
ples that match predicates. The hierarchical index structure
is traversed from coarse-grained ranges to more fine-grained
ranges to localize matching tuples. For regions with sparse
population, traversal paths are often shorter than for densely
populated regions. This leads to filter divergence during
concurrent traversals. While B-Trees have relatively uni-
form path lengths, other index structures, e.g., for geospatial
data [17], show more variation. To support such datatypes
efficiently on GPUs, Lane Refill can be used to address these
divergence effects during traversal.

5. EVALUATION

In this section, we evaluate the proposed techniques. We
first evaluate the effect of Push-down Parallelism for expan-
sion divergence. Then we evaluate the effect of applying
Lane Refill to filter divergence. Next, we contrast Push-
down Parallelism and Lane Refill, when being applied to
the same operation. Finally, we evaluate the overall perfor-
mance of the divergence-optimized system.

Query Processor. We use the query compiler DogQC
as evaluation system on the GPU. DogQC follows an or-
thogonal approach to other GPU query processors. Instead
of tuning operator-implementations for efficient GPU uti-
lization, DogQC constructs pipelines from relatively simple
operators and applies tuning on the pipeline level. This ap-
proach makes it more feasible to achieve both functionality

and performance. We evaluate the effect of using divergence
balancing techniques in DogQC to tune pipelines for efficient
GPU utilization. A version of DogQC without divergence
balancing serves as baseline. It produces similar code to
HorseQC [12]. The source code of DogQC is available for
download at github.com/todo®. For further implementa-
tion aspects we refer to Appendix Section A.

System. As experimentation platform, we use an NVidia
RTX2080 GPU with 46 Streaming Multiprocessors (SMs)
and 8 GB GPU Memory. We use Cuda 10.0 and DogQC is
configured to compile binaries with nvec V10.0.130. When
not indicated differently, we use grid configurations of 80
warps per Streaming Multiprocessor (117,760 threads). This
choice is due to sufficiently large grid sizes showing only
small performance variations (cf. Figure 13). The GPU
is placed in a workstation-class host system with 32GB
main-memory, operating an Intel Core i7-9800X CPU with
Ubuntu 18.04 as operating system.

5.1 Effect of Push-down Parallelism

We first evaluate the benefit of Push-down Parallelism for
expansion divergence. We execute a query that scans two
relations and joins them with different join key distribu-
tions. We use a synthetic dataset where one relation has a
dense primary key distribution and the other has one of the
following key distributions:

pk-fk Uniform distribution of foreign keys.

pk-32-fk Each foreign key occurs 32 times.

Foreign keys sampled from Zipfian
distribution with z = 0.75 and n = 107.

Foreign keys sampled from four Zipfian
distributions with z = 0.75 and n = 10”.

pk-zipf-fk
pk-4zipf-fk

We generate join workloads for each of the distributions with
10 M build tuples and also 10 M result tuples. The first two
workloads are fairly regular and serve as baselines. For pk-
fk, each probe has exactly one match. For pk-32-fk, each
probe has 32 matches. With an even number of matches
we expect performance differences mainly due to changes
of the memory access patterns. The latter two workloads
are non-uniform and the number of matches follows Zipfian
distributions. The heaviest skew is for pk-zipf-fk with one
probe matching the most frequent key ~ 45K times. For
pk-4zipf-fk, there are four frequent keys that occur ~ 11 K
times.

We show the results in Figure 8. The Figure reports exe-
cution times of the probe pipeline with the naive approach
and with Push-down Parallelism for two different projection
strategies. Full scan reads all attributes into registers during
scan. Post-proj performs tuple-id based post projection.

We observe that Push-down Parallelism reduces execu-
tion times for join key distributions with multiple matches
per probe by up to 4.2x. We attribute the improvements
of Push-down Parallelism to two effects. The first effect
is better load balance across threads, which is observed for
pk-zipf-fk and pk-4zipf-fk. The workloads have different lev-
els of skew affecting the execution times naive. Push-down
parallelism achieves even execution times for both distribu-
tions. The second effect is due to memory access patterns.

3We will upload the source code of DogQC at publication
time of the article.

execution time ms

pk-fk pk-32-tk

pk-zipf-fk pk-4zipf-fk

f8 naive (full scan) BB naive (post proj.)
0 Push-down (full scan) I B Push-down (post proj.)

Figure 8: Divergence balancing for hash join with
different build distributions. Push-down Parallelism
is robust to skew and improves performance.

Although the probes for pk-32-fk do not provoke load imbal-
ance, the execution times for Push-down Parallelism are 4.2x
shorter. We attribute this to adjacent lanes accessing adja-
cent hash bucket entries. Push-down Parallelism yields co-
alesced memory accesses, which is preferable on GPUs [15].

Looking at the two projection strategies, we observe that
Push-down Parallelism provides benefits for both. Push-
down parallelism improves by factors up to 2.7x for post-
proj and by factors up to 4.2x for full scan. We attribute
the higher benefit for full scan to the way Push-Down Paral-
lelism channels tuple data to lanes with new join tuples. For
post-proj only the tuple-id communicated via warp shuffles
and other attributes are read from memory.

Poster Case 1. In Section 3.1, we discussed a query
pipeline from TPC-H Query 10 with expansion divergence.
Here we evaluate the ef-
40 fect of applying Push-down
HE naive Parallelism in this pipeline
00 Push-down to counter expansion di-
vergence. We measure
the execution time of the
* pipeline for a benchmark
database with scale factor
, 25. We use a pipeline
with the naive approach
that has heavy expan-
sion divergence in the join
and we compare it to a
pipeline that applies Push-
down Parallelism in the
join operator to counter ex-
pansion divergence. Fig-
ure 9 shows the experiment results. The naive approach
has an execution time of 26.4 ms. Adding Push-Down Par-
allelism to the join operator of the pipeline reduces the ex-
ecution time by a factor of 1.9x to 13.8 ms.

5.2 Effect of Lane Refill

We evaluate Lane Refill for filter divergence. The work-
load is a query that scans lineorder and part from the
Star Schema Benchmark. The lineorder relation is filtered

30

20 |

execution time ms

Figure 9: Effect of
Push-down Parallelism
in Poster Case 1.

400 |- -

2]
=]
()
£
e
=
S 200 |- -
e}
=
9]
9]
%
5]
—— naive
‘ ‘ ‘ —a— Lane Refill
0
0 0.2 0.4 0.6 0.8 1

selectivity

Figure 10: Effect of Lane Refill on filter divergence
workload with one warp per SM. Execution times
scale with the workload size when using Lane Refill.

on lo_orderdate with varying selectivities and then joined
with part. For Lane Refill, we place a balancing operator
after the filter to restore lane activity. GPUs typically over-
subscribe the number of warps to the number of streaming
multiprocessors (SMs). This ability allows GPUs to hide
divergence effects to some extent. To understand the way
Lane Refill works, we first suppress effects from oversub-
scription by using only one warp per SM. After that we
perform another experiment with multiple warps per SM.

One Warp per SM. Figure 10 shows the results of the
experiment with one warp per SM. If we set the filter to
leave all tuples in the result (selectivity 1.0, right end of the
graph), we observe an execution time of 410 ms for the naive
approach. The query becomes faster as we make the filter
predicate more restrictive. For the naive strategy, that bene-
fit is small, however: setting the selectivity to 0.24 improves
performance by only 19% (333 ms). Only for very selective
predicates, execution time noticeably drops, as shown in the
graph for selectivity 0.09 (220 ms). This is because the naive
approach can only benefit from filtering as soon as full warps
become inactive, but not if only subsets of the 32 lanes get
filtered out.

Lane Refill, by contrast, benefits from restrictive predi-
cates more directly and to a stronger extent. As we see in
Figure 10, Lane Refill shows the desired linear scaling. For
selectivity 0.09, execution time drops by 77% compared to a
selectivity of 1. Compared to naive execution, this is a 2.3-
fold improvement. We conclude that Lane Refill successfully
prevents the GPU from working on inactive lanes and thus
improves the processing efficiency.

Multiple Warps per SM. Figure 11 shows results for
the same experiment, but we let the system overcommit
and assign 8 and 16 warps to each SM. With 46 SMs on
the RTX2080 GPU, this corresponds to 11,776 and 23,552
threads. As expected, overcommitting can hide some of the
divergence effect that we saw in the previous experiment.
Still, Lane Refill can better utilize the available resources,
resulting in an performance advantage of 2.3x for the 8-warp
configuration (14ms vs. 32ms) and 2.1x for the 16-warp
configuration (8ms vs. 18 ms).

Poster Case 2. In Section 4.1 we presented a query
pipeline from TPC-H Query 10 with filter divergence. Here
we evaluate the effect of applying Lane Refill in this pipeline.

—6— naive 8 warps/SM
100 | —&— Lane Refill 8 warps/SM

E —e— naive 16 warps/SM
E —a— Lane Refill 16 warps/SM
3
g
s 50 - ,
5
9]
9]
%
)
0 | | | | |
0 0.2 0.4 0.6 0.8 1

selectivity

Figure 11: Effect of Lane Refill on filter divergence
workload with multiple warps per SM. Lane Refill
improves run-times for configurations with high de-
grees of warp-parallelism.

80 We measure the execution
BB naive time of the pipeline for a
2 ol 0O Lane Refill benchmark database with
© scale factor 25. We use
E the naive approach with fil-
g 40 N ter divergence originating
g from the selection opera-
§ 20 |- - tor and from the sparse
© join operator. Then we
compare the performance

0 . .
to a pipeline that adds a
Lane Refill operator after
Figure 12: Effect of the sparse join. Figure 12
Lane Refill in Poster shows the experiment re-
Case 2. sults. The pipeline with

the naive approach has an

execution time of 53.4 ms.
Adding the Lane Refill operator reduces the execution time
of the pipeline by 1.2x to 44.5 ms.

5.3 Push-down Parallelism vs. Lane Refill

In this experiment, we apply Push-down Parallelism and
Lane Refill to the same divergence problem. This allows us
to determine whether each technique is best-suited for its
respective divergence domain or if one technique may work
for most cases. Expansion divergence can be viewed as fil-
ter divergence that occurs in steps of the same operation.
E.g., when iterating through join matches, lanes with fewer
expansion items act like filtered-out lanes in the current iter-
ation. For the experiment, we use the workload pk-zipf-fk
from Section 5.1, which joins a dense primary key with a
Zipf-distributed foreign key. We use the naive approach,
Lane Refill, and Push-down Parallelism for the join.

Observations. Figure 13 shows the results of the exper-
iment. The figure shows execution times for different num-
bers of warps per Streaming Multiprocessor. The execution
times for Lane Refill are split into regular work and pipeline
flush. Pipeline flush represents work that is performed when
all tuples are already scanned and only one remaining lane
is active. We observe that Lane Refill can not improve over
naive with regard to the best performing warp/SM config-
uration. For 1 warp/SM Lane Refill performs better than
naive, but for larger warp/SM configurations, Lane Refill

100 T T
Eﬁ naive

80| — Lane Refill |
12} R
& R @ pipeline flush
E 60 |- O Ppush-down |
e o
g 3
L . :
ERR I = . a
3] : = o
5] i R
é o % - X ™ R
20 (6] | B = H :EH E:H N
o Lt 1l N HAn D
1 2 4 32 64 128

warps / SM

Figure 13: Push-down vs. Lane Refill when joining
a Zipfian distribution. Push-down Parallelism is ef-
fective while Lane Refill suffers from pipeline flush.

suffers from growing amounts of flush work. To achieve high
performance, GPUs need many warps in flight. Therefore it
is likely that heavy hitting tuples are isolated in warps. This
prevents Lane Refill from performing effective balancing op-
erations. Push-down Parallelism does not run into this prob-
lem because its balancing approach is effective, even when
one tuple per warp is remaining. Push-down Parallelism
improves over naive by 3.3x for the workload.

5.4 End-to-End Performance

We evaluate the overall performance of DogQC with re-
gard to the integration of divergence optimizations and in
comparison to a CPU-based in-memory query processor. As
workload, we use the TPC-H benchmark with a scale factor
25 GB database.

Divergence Optimizations. To evaluate the overall
benefit of divergence optimizations, we execute the TPC-H
queries with the naive implementation in DogQC and with a
divergence-optimized version of DogQC. We add divergence
optimizations in the following way: We replace the join im-
plementations of the naive approach with join implementa-
tions that utilize Push-down Parallelism. Additionally, we
add 8 divergence buffers to the query plans; One buffer is
added to each of the Queries 4, 5, 7, 10, 15, 17, 19, and 20.

Observations. We show the results of the experiment in
Figure 14. The divergence optimizations reduce the execu-
tion times by more than 5% for 10 out of 22 queries. The
biggest improvement of 2.0x is observed for Query 22. Ex-
ecution of Query 19 takes 533 ms with the naive approach,
which makes it the longest-running query. The divergence
optimizations achieve a substantial improvement by 1.6x.
The improvement for Query 19 is due to a combination of a
divergence buffer and Push-down Parallelism. The improve-
ment for Query 22 is only due to Push-down Parallelism.

Comparison to CPU-based System. We evaluate
how the GPU-based query processor DogQC performs in
comparison with a CPU-based in-memory system. To this
end, we measure the end-to-end execution times of DogQC
and compare them against the execution times of Mon-
etDB [5]. We run MonetDB 11.33.3 on a two-socket server
with Intel Xeon E5-2695 v2 CPUs and 256 GB main mem-
ory. DogQC runs on the same system that was used in the

0o divergence opt.

naive

400

200

execution time ms

12345678 910111213141516171819202122
TPC-H query

Figure 14: Execution times of DogQC for TPC-H
benchmark queries (scale factor 25). The divergence
optimizations improve query performance.

3
.\10\ e S s I
8 = —]
E|E| MonetDB 0 ¥
- |00 DogQC end-to-end

execution time ms
e
-
|

[\S]
T

| Ll

12345678 910111213141516171819202122
TPC-H query

0 (il HD“D Papi DHDE' - ﬂﬂnﬂﬂﬂﬂ

Figure 15: End-to-end performance for TPC-H
benchmark queries with DogQC (GPU) and Mon-
etDB (CPU). DogQC is faster for 18 queries.

previous experiments with the NVidia RTX2080 GPU and
8 GB GPU global memory.

Observations. The execution times for all TPC-H queries
are shown in Figure 15. With MonetDB, the execution times
range from 142 ms for Query 2 up to 7464 ms for Query 18.
MonetDB’s execution times show strong variations for differ-
ent query complexities. With DogQC, the execution times
range from 43ms 1018 ms. DogQC has shorter end-to-end
execution times than MonetDB for 18 out of 22 queries,
with the highest speedup of 29.6x for Query 18. For Queries
6, 12, 14, and 19, DogQC has longer execution times than
MonetDB. We attribute this to the low complexity of the
queries. In comparison with Figure 14, we observe that
DogQC’s operator execution is actually faster than Mon-
etDB’s. The longer execution times are due to end-to-end
data transfers.

6. MORE RELATED WORK

In this section, we relate our approach to work that was
not mentioned in one of the other sections. First we discuss
work in the database context that uses the GPU feature dy-
namic parallelism to balance the use of parallel resources.

10

Second we discuss other related GPU query processing tech-
niques.

Dynamic Parallelism. Dynamic parallelism is a fea-
ture that allows GPUs to start new kernels from within a
kernel [25]. The number of threads for the inner kernels can
be chosen dynamically. Rui et al. [31] apply dynamic par-
allelism for sort-merge joins. Wang et al. [35] evaluate the
feature for joins based on binary search and regular expres-
sion matching. Liu et al. [21] propose the implementation
of a MapReduce framework for GPUs with dynamic par-
allelism. Similar to Push-down Parallelism, dynamic par-
allelism adapts parallel resources to the characteristics of
sub-problems. The main advantage of the approach is pro-
grammability. The downside, however, are costs for context
switching. Chen et al. report overheads of up to 21x [10].

Pipelined GPU Query Processing. This work targets
GPU query engines that implement pipelining via just-in-
time compilation. In related work other means of pipelining
have been proposed, such as in-cache processing [28] and ker-
nel fusion [37]. Other related work that performs pipelining
via just-in-time compilation [8, 38] may be susceptible to
the presented divergence optimizations.

7. SUMMARY

In this research, we put the processing capabilities of data-
parallel coprocessors for non-uniform database workloads to
the test. DogQC introduces techniques, that allow us to
gracefully align parallel processing units with work items,
even when problems are heavily skewed. The evaluation an-
alyzes different filter and join scenarios with distinct work-
load imbalances. We observe that the techniques Lane Refill
and Push-down Parallelism are able to increase processing
efficiency for these non-uniform workloads.

Existing query coprocessors typically avoid imbalances by
working on a uniform surrogate (e.g. dictionary keys, ma-
terialization barriers). This has led to the perception, that
GPUs have limited capabilities of processing irregular prob-
lems. DogQC conversely avoids the overhead of maintain-
ing such additional data-structures and instead restores bal-
ance during non-uniform processing. This approach achieves
a bigger functionality range and better performance than
other query coprocessing engines. This is shown by support
of the full set of TPC-H benchmark queries with best-in-
class performance.

8. REFERENCES

[1] P. Bakkum and S. Chakradhar. Efficient data
management for GPU databases. High Performance
Computing on Graphics Processing Units, 2012.

M. Billeter, O. Olsson, and U. Assarsson. Efficient
stream compaction on wide SIMD many-core
architectures. In Proceedings of the conference on high
performance graphics 2009, pages 159-166. ACM,
2009.

C. Binnig, S. Hildenbrand, and F. Farber.
Dictionary-based order-preserving string compression
for main memory column stores. In Proceedings of the
2009 ACM SIGMOD International Conference on
Management of data, pages 283-296. ACM, 2009.

P. Boncz, T. Neumann, and O. Erling. TPC-H
analyzed: Hidden messages and lessons learned from

2]

8]

[9]

[12]

an influential benchmark. In Technology Conference
on Performance Evaluation and Benchmarking, pages
61-76. Springer, 2013.

P. A. Boncz, S. Manegold, M. L. Kersten, et al.
Database architecture optimized for the new
bottleneck: Memory access. In VLDB, volume 99,
pages 54—65, 1999.

S. Borkar and A. A. Chien. The future of
microprocessors. Communications of the ACM,
54(5):67-77, May 2011.

S. Bref3; H. Funke, and J. Teubner. Robust query
processing in co-processor-accelerated databases. In
Proceedings of the 2016 International Conference on
Management of Data, pages 1891-1906. ACM, 2016.
S. Bref3, B. Kocher, H. Funke, S. Zeuch, T. Rabl, and
V. Markl. Generating custom code for efficient query
execution on heterogeneous processors. The VLDB
Journal-The International Journal on Very Large
Data Bases, 27(6):797-822, 2018.

A. Broder, R. Kumar, F. Maghoul, P. Raghavan,

S. Rajagopalan, R. Stata, A. Tomkins, and J. Wiener.
Graph structure in the web. Computer networks,
33(1-6):309-320, 2000.

G. Chen and X. Shen. Free launch: optimizing GPU
dynamic kernel launches through thread reuse. In
Proceedings of the 48th International Symposium on
Microarchitecture, pages 407-419. ACM, 2015.

A. Davidson, S. Baxter, M. Garland, and J. D. Owens.
Work-efficient parallel GPU methods for single-source
shortest paths. In 2014 IEEE 28th International
Parallel and Distributed Processing Symposium, pages
349-359. IEEE, 2014.

H. Funke, S. Bref}, S. Noll, V. Markl, and J. Teubner.
Pipelined Query Processing in Coprocessor
Environments. In Proceedings of the 2018
International Conference on Management of Data,
pages 1603-1618. ACM, 2018.

M. Heimel, M. Saecker, H. Pirk, S. Manegold, and

V. Markl. Hardware-oblivious parallelism for
in-memory column-stores. Proceedings of the VLDB
Endowment, 6(9):709-720, 2013.

Intel Corporation. Accelerating x265 with Intel
Advanced Vector Extensions 512 (Intel AVX-512).
2018.

B. Jang, D. Schaa, P. Mistry, and D. Kaeli. Exploiting
memory access patterns to improve memory
performance in data-parallel architectures. IEEE
Transactions on Parallel and Distributed Systems,
22(1):105-118, 2010.

T. Kaldewey, G. Lohman, R. Mueller, and P. Volk.
GPU join processing revisited. In Proceedings of the
Eighth International Workshop on Data Management
on New Hardware, pages 55-62. ACM, 2012.

A. Kipf, H. Lang, V. Pandey, R. A. Persa, P. Boncz,
T. Neumann, and A. Kemper. Approximate geospatial
joins with precision guarantees. In 2018 IEEE 3jth
International Conference on Data Engineering
(ICDE), pages 1360-1363. IEEE, 2018.

H. Lang, A. Kipf, L. Passing, P. Boncz, T. Neumann,
and A. Kemper. Make the most out of your SIMD
investments: counter control flow divergence in
compiled query pipelines. In Proceedings of the 14th

(19]

(21]

(22]

(34]

International Workshop on Data Management on New
Hardware, page 5. ACM, 2018.

V. Leis, P. Boncz, A. Kemper, and T. Neumann.
Morsel-driven parallelism: a NUMA-aware query
evaluation framework for the many-core age. In
Proceedings of the 2014 ACM SIGMOD international
conference on Management of data, pages 743-754.
ACM, 2014.

H. Liu and H. H. Huang. Enterprise: breadth-first
graph traversal on GPUs. In SC’15: Proceedings of the
International Conference for High Performance
Computing, Networking, Storage and Analysis, pages
1-12. IEEE, 2015.

L. Liu, Y. Zhang, M. Liu, C. Wang, and J. Wang.
A-MapCG: an adaptive MapReduce framework for
GPUs. In 2017 International Conference on
Networking, Architecture, and Storage (NAS), pages
1-8. IEEE, 2017.

X. Mei and X. Chu. Dissecting GPU memory
hierarchy through microbenchmarking. IEEFE
Transactions on Parallel and Distributed Systems,
28(1):72-86, 2016.

I. Miller, C. Ratsch, F. Faerber, et al. Adaptive String
Dictionary Compression in In-Memory Column-Store
Database Systems. In EDBT, pages 283—294, 2014.
T. Neumann. Efficiently compiling efficient query
plans for modern hardware. Proceedings of the VLDB
Endowment, 4(9):539-550, 2011.

NVidia Corporation. NVidia Kepler GPU
Architecture. 2012.

NVidia Corporation. NVidia Turing GPU
Architecture. 2018.

P. E. O’Neil, E. J. O’Neil, and X. Chen. The star
schema benchmark (ssb). Pat, 200(0):50, 2007.

J. Paul, J. He, and B. He. Gpl: A gpu-based pipelined
query processing engine. In Proceedings of the 2016
International Conference on Management of Data,
pages 1935-1950. ACM, 2016.

H. Pirk, S. Manegold, M. L. Kersten, et al.
Accelerating Foreign-Key Joins using Asymmetric
Memory Channels. In ADMS@QVLDB, pages 27-35,
2011.

O. Polychroniou and K. A. Ross. Vectorized Bloom
filters for advanced SIMD processors. In Proceedings
of the Tenth International Workshop on Data
Management on New Hardware, page 6. ACM, 2014.
R. Rui and Y.-C. Tu. Fast Equi-Join Algorithms on
GPUs: Design and Implementation. In Proceedings of
the 29th International Conference on Scientific and
Statistical Database Management, page 17. ACM,
2017.

M. Sha, Y. Li, and K.-L. Tan. GPU-based Graph
Traversal on Compressed Graphs. In Proceedings of
the 2019 International Conference on Management of
Data, pages 775-792. ACM, 2019.

J. Sompolski, M. Zukowski, and P. Boncz.
Vectorization vs. compilation in query execution. In
Proceedings of the Seventh International Workshop on
Data Management on New Hardware, pages 33—40.
ACM, 2011.

G. Vasiliadis, M. Polychronakis, S. Antonatos, E. P.

class SelectionTranslator (UnaryTranslator): 1 plemented in Python3 and generates Cuda 10 code. The

def produce (self, codegen, ctxt): 2 choice of Python3 is due to quick prototyping. Cuda was
self.child.produce (codegen, ctxt) 3 chosen over OpenCL because it exposes low-level hardware
def consume (self, codegen, ctxt): 4 features through intrinsics such as warp shuffle instructions,

commentOperator ("selection", codegen)
condition = self.algExpr.condition 6
with IfClause (ctxt.activeVar, codegen): 7

warp ballot instructions, warp voting, population count, etc.
The generated Cuda code uses warp synchronous program-

emit (assign (. ming, which means that it leverages synchronous control
ctxt.activeVar, 9 flow of 32 warp lanes, but avoids synchronizing on more
condition.translate (ctxt)), 10 coarse-grained levels.
codegen) 11
self.parent.consume (ctxt, codegen) 12 Query Translation. As the SQL parser and query plan

optimizer of DogQC are still under development, DogQC
takes pre-optimized relational algebra plans as input. The
relational algebra plans are stored as .py scripts and con-
tain only the query semantics. We obtained optmized query
plans using with HyPer v0.6-167. DogQC is able to execute
the query plans mostly unchanged with exceptions for the
unsupported groupjoin and markjoin operators.

Figure 16: Implementation of the selection operator
in DogQC. The consume function generates code to
evaluate the selection condition.

Markatos, and S. Ioannidis. Regular expression The relational query plans are converted into operator
matching on graphics hardware for intrusion detection. translators during plan traversal. The operator translators
In International Workshop on Recent Advances in implement the code generation of Cuda code that processes
Intrusion Detection, pages 265-283. Springer, 2009. the respective kernel code. With the help of a CodeGenerator-
[35] J. Wang and S. Yalamanchili. Characterization and object, the operators place their functionality in a kernel
analysis of dynamic parallelism in unstructured gpu code frame for each pipeline. DogQC has operator trans-
applications. In 201 IEEE International Symposium lators for Scan, Selection, Nested Join, Hash Join, Map,
on Workload Characterization (IISWC), pages 51-60. Aggregation and Projection. Sorting is performed as post-
IEEE, 2014. processing step. After code generation of the . cu-file DogQC

calls the nvcc compiler to translate the file to machine code.

[36] A. Weininger. Efficient execution of joins in a star Finally DogQC executes the binary to process the query.

schema. In Proceedings of the 2002 ACM SIGMOD

international conference on Management of data, Sample Operator. In this section, we discuss the Py-
pages 542-545. ACM, 2002. thon3 implementation for a selection operator translator as

[37] H. Wu, G. Diamos, S. Cadambi, and S. Yalamanchili. example. The source code is shown in Figure 16. All trans-
Kernel weaver: Automatically fusing database lators follow the produce/consume interface [24]. The main
primitives for efficient GPU computation. In 2012 code generation functionality of most operators lies in the
45th Annual IEEE/ACM International Symposium on consume function. Here we access the selection condition
Microarchitecture, pages 107-118. IEEE, 2012. from the respective algebra expression. Then we generate

[38] H. Wu, G. Diamos, T. Sheard, M. Aref, S. Baxter, code for an if-clause, that checks ctxt.activeVar to execute
M. Garland, and S. Yalamanchili. Red fox: An only for active lanes. Within the if-clause, we generate code
execution environment for relational query processing that checks the condition and updates ctxt.activeVar. Af-
on gpus. In Proceedings of Annual IEEE/ACM ter checking the condition, we call consume of the parent
International Symposium on Code Generation and operator.

Optimization, page 44. ACM, 2014.

[39] Y. Zu, M. Yang, Z. Xu, L. Wang, X. Tian, K. Peng,
and Q. Dong. GPU-based NFA implementation for
memory efficient high speed regular expression
matching. In ACM SIGPLAN Notices, volume 47,

I/O Architecture. DogQC uses memory mapped I/O
to maintain the database in memory. Each column resides
in one memory mapped file and generated query programs
access them e.g. via:

pages 129-140. ACM, 2012. iatt15_lquantit = (int*) map_memory_file (
"mmdb/lineitem_1_quantity");
APPENDIX The column content is then copied to GPU memory using
cudaMemcpyAsync(...). For queries that consist of multiple
A. IMPLEMENTATION ASPECTS pipelines, intermediate tables, which are hash tables in most
We discuss several implementation aspects of DogQC to cases, remain in GPU memory [12]. The query result is
clarify the context of the underlying system. DogQC is im- printed or written into a csv-File.

12

