Like Water and Oil: With a Proper Emulsifier, Query
Compilation and Data Parallelism Will Mix Well

Henning Funke
DBIS Group, TU Dortmund University

henning.funke@cs.tu-dortmund.de

1. INTRODUCTION

In response to physical limitations, hardware has changed
significantly during the past two decades. As the database
community, we have no chance but adapt to those changes in
order to benefit from these and further hardware advances.

Two strategies to deal with the change have proven partic-
ularly successful. To avoid hitting the memory wall, modern
engines compile queries into native machine code [3]; this
way, data can be kept longer in registers and performance-
limiting memory I/Os can be avoided. To escape the power
wall, the use of heterogeneous and massively parallel ar-
chitectures has been proposed; graphics processors (GPUs)
in particular can deliver spectacular compute performance
at a very attractive power footprint. But while both these
strategies are very successful and well understood, it is sur-
prisingly difficult to bring both together without losing much
of their benefit.

In this demo, we showcase DogQC, the query compiler
that we develop at TU Dortmund University. DogQC in-
cludes the Lane Refill and Push-Down Parallelism tech-
niques to combat divergence effects that are the root cause
for the above mentioned difficulty. The two techniques very
effectively avoid resource under-utilization on graphics pro-
cessors, while leveraging the bandwidth efficiency of com-
piled code. In practice, DogQC’s anti-divergence measures
can improve query performance by several factors.

1.1 Divergence in GPU-Based Execution

The root cause for the discrep-
ancy between query compilation aggr
and (heterogeneous) parallelism is |
divergence. To understand the ef- 7“'
fect, consider the plan excerpt from DA

TPC-H Q10 shown here on the RGN -
right. A query compiler will at- :
tempt to compile the marked plan (lineitem)

region into a straight-line se-
quence of code, a pipeline. The mo-
tivation to do so is to propagate tuple data within registers,

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 12, No. xxx

ISSN 2150-8097.

DOT: https://doi.org/10.14778/FIXME

Jens Teubner
DBIS Group, TU Dortmund University

jens.teubner@cs.tu-dortmund.de

50M tpl
o =0.33
JBM warp its

150M tpl
oc=1.0
5M warp its

sScan
(lineitem)

Figure 1: GPU under-utilization due to filter diver-
gence.

rather than spilling data to (slow) memory.

During execution, not all lineitem tuples will actually tra-
verse the full pipeline. Some tuples might instead be elimi-
nated by operators such as filter o or join M. If this happens,
a sequential processor will immediately abort the pipeline,
continue with the next input item, and hence keep CPU
efficiency at peak.

Data-parallel execution back-ends, by contrast, do not
have the option of aborting a pipeline early, unless all tuples
in the same batch of work are eliminated.

Figure 1 illustrates this effect for a GPU-based back-end
(assuming a batch—or “warp”—size of eight for illustration
purposes). In some warp iteration, only warp lanes 1, 5, and
7 might have passed the filter o, leaving the five remaining
warp lanes inactive (indicated as dashed arrows - -3). The
following join de-activates another two warp lanes, bringing
GPU efficiency down to !/s in this example.

The resulting GPU under-utilization is even worse in real
settings. To scan a lineitem table with 150 million rows, ac-
tual GPUs will require 5 million warp iterations, each con-
sisting of 32 warp lanes. Although o filters out about 2/3
of all rows, it is extremely unlikely that all lanes within
a warp become inactive. Therefore, (almost) all 5 million
warp iterations proceed into the join operator X. Only 1%
of the remaining rows find a match during the join. In an
actual data set, 2.9 million rows remain after the join, but

V) w W~
I

warp iterations

123456789 32

number of active lanes

Figure 2: Lane activity profile with filter divergence.

they are spread across 1.1 million warp iterations. Ideally,
the projection 7 and aggregation aggr operators could have
been processed by only 2.9 M/32 = 90 K warp iterations. In
other words, state-of-the-art query compilation techniques
will leave 92 % of the GPU’s processing capacity unused.

1.2 GPU Query Compiler DogQC

GPU code generated by our query compiler DogQC* lever-
ages Lane Refill and Push-Down Parallelism techniques to
counter divergence effects like the ones we described. In the
rest of this demonstration proposal, we will give a high-level
idea of the Lane Refill technique (Section 2), then describe
how we intend to demonstrate the internals of the DogQC
engine at VLDB (Section 3); in Section 4, we report on
experimental results for DogQC before we wrap up in Sec-
tion 5. More details on the Lane Refill and Push-Down
Parallelism mechanisms can be found in the respective full

paper [1].

2. LANE REFILL TECHNIQUE

Divergence effects (here: filter divergence) are a conse-
quence of the SIMT, “single instruction, multiple threads,”
execution paradigm embodied in all modern graphics pro-
cessors. A number of threads (or lanes, typically 32 of them)
is grouped into a warp. During execution, all lanes within
a warp execute the same GPU instruction.

The SIMT model encounters a problem whenever some
lanes or data elements need a different amount or kind of
processing than others. In such situations, control flows
will diverge. Since all lanes within a warp still execute the
same instruction, lanes will be turned inactive and their
computation result will be discarded. As illustrated above,
this can result in resource under-utilization.

To illustrate the severity of this effect, we instrumented
the query plan shown earlier (Figure 1) to monitor warp uti-
lization at the plan point marked with a magnifying glass Q.
Figure 2 shows a histogram on the number of warps that
have passed this plan stage with a warp utilization of 1, ...,
32 active lanes. It is easy to see that only a fraction of the
available compute capacity is used; in most warps, only one
or two out of 32 warp lanes performed actual work.

2.1 Balance Operators and Refill Buffers

To combat the situation, DogQC injects balance operators
into the relational query plan. Code generated for these
operators detects warp under-utilization at runtime. When-
ever utilization drops below a configured threshold, the state
of all remaining active lanes is suspended to a refill buffer
and the pipeline starts over with a fresh set of input tuples.

https://github. com/Henningl/dogqc

T
® LII_4il
%] ? refill
buffer
flush -
Yor Tt -
refill
buffer
flush
@ =
refill
buffer
flush ==
@©
refill
N buffer

Figure 3: Lane Refill: tuples belonging to three low-
activity iterations are suspended to the refill buffer
and resumed for full lane activity in the fourth iter-
ation.

Figure 3 illustrates this for three successive warp itera-
tions (I) through (3). Since only 2, 1, and 3 lanes remained
active in these iterations (respectively), their state is flushed
to the refill buffer. After flushing, each of those warp itera-
tions is terminated and processing starts over with the next
set of input tuples.

2.2 Refilling

As soon as a sufficient number of lane states has been
stored to the refill buffer, the buffer can be used to refill
lanes that have become inactive. This time, the under-
utilized warp iteration is not terminated but continues pro-
cessing with full utilization after refilling. This is visualized
in Step (@) of Figure 3. Here, only two out of eight warp lanes
remained active after the downstream join operator. Using
the refill buffer, the remaining six warp lanes can be filled
with useful work, resulting in full warp utilization upstream.

Implementation-wise, flushing and refilling are backed up
in DogQC by CUDA’s _ballot_sync, __popc (“population
count”), and shuffling primitives. These primitives are highly
efficient; balance operators will cause little overhead even
when only few warps go below the utilization threshold.

2.3 Effect of Lane Refill

Lane Refill brings warp utilization back to a high com-
pute efficiency. Following the balancing operator, all exe-
cuted warps (except for the last warp in each grid block)
are guaranteed to have a warp utilization above the config-
ured threshold.

In Figure 4, this is illustrated with a histogram for the
same plan point that we profiled earlier (Figure 2), but this
time with a balance operator applied. The histogram con-
firms that (a) (almost) no warps exist with a utilization
below 26 lanes (the threshold we configured); and (b) the
total number of executed warps has dropped by a factor of
about ten. In terms of overall execution performance, lane

-10°

V) w W~
T
I

warp iterations

123456789 32

number of active lanes

Figure 4: Lane activity profile with lane refill buffer
to consolidate filter divergence.

refill will improve execution times by about 2-3x for the
example plan shown in Figure 1.

3. DEMO SETUP

Our demonstration at VLDB will enable visitors to look
under the hoods of the DogQC query compiler, with a focus
on anti-divergence techniques.

DogQC provides mechanisms to visualize generated query
plans (we leverage the dot? utility for this purpose), which
demo spectators can use for inspection. An example of an
actual query plan is shown in Figure 5(a) for the TPC-
H Q10 plan sketched in Figure 1. As part of the demo,
visitors will be able to freely place balance operators into
DogQC-generated query plans and observe their effects (in
Figure 5(b), a balance operator—highlighted in red—has
been injected, corresponding to the Q marker in Figure 1).

Balance operators (if placed properly) will have an imme-
diate effect on query execution speeds, which demo visitors
will be able to verify with TPC-H and other data sets.

To inspect the inner workings of anti-divergence tech-
niques, DogQC is equipped with profiling mechanisms that
visualize GPU lane utilization. At the demo, visitors will
be able to generate histogram graphs like those in Figures 2
and 4 for their own queries and at arbitrary points in the
query plan.

Finally, demo visitors will be able to verify the utilization
of further GPU resources, such as registers, memories, or
caches.

3.1 Flavors of Divergence

Filter divergence as described in this proposal and illus-
trated in Figure 1 is just one flavor of divergence that DogQC
provides support for. Lane Refill and Push-Down Paral-
lelism are the two main techniques that we use in DogQC
to combat divergence, including all of the following types of
divergence:

Variable-Length Data. The size of an attribute may vary
across different entities. Strings are a prime example of
this divergence flavor. If strings are evaluated character by
character, warp lanes that process shorter strings will finish
earlier than other lanes.

Skewed Data Distributions. When processing joins, some
attribute values may find more join partners than others.
Again, this may cause some lanes to run out of work earlier
than other lanes.

Computation Divergence. As a secondary effect of data
properties, divergence may occur during computations. F.g.,

’https://www.graphviz.org/

(a) “naive” query plan (b) with balance operator
Figure 5: DogQC query plans corresponding to the
TPC-H Q10 plan sketched in Figure 1. Left: query
plan without balance operators; right: plan with
balance operator injected after the join operator
(corresponding to Q in Figure 1).

hash collisions will result in longer processing times for some
warp lanes.

For the demo, we will prepare datasets and queries that
highlight the individual flavors of divergence. Visitors will
be free, of course, to discover their own divergence effects
based on TPC-H data and their own queries.

Divergence effects arise also in further scenarios that do
not directly apply to DogQC. Lang et al. [2] report on di-
vergence effects that may arise in (CPU-based) SIMD en-
vironments. Sha et al. [5] use similar techniques to combat
divergence when traversing graphs using GPUs.

4. EVALUATION

With DogQC, we provide a query compiler with a wide
range of SQL functionality; sufficient to support the 22 queries
from the TPC-H benchmark set.

4.1 TPC-H Performance

To assess the benefits of measures to contain divergence,
we performed a series of measurements with the TPC-H
benchmark set. Our measurements were based on an NVIDIA
RTX2080 GPU with 46 Streaming Multiprocessors and 8 GB
GPU memory, installed in a host system with an Intel i7-
9800X GPU and 32 GB of main memory. As a reference,
we compared DogQC with the hybrid CPU/GPU system
OmniSci [4].

9.0

6.0 OmniSci
" .
© 3.0 M total time
£ 0.6 | = B GPU part
= 0.
g DogQC naive
33 0.4 - O processing
3 DogQC opt
% [
3 0.2 .
< < [processing
z 2
0.0

1 2 3 4 5 6 e 8 9 10 11 12
TPC-H query

14 15 16 17 18 19 20 21 22

Figure 6: Execution times of DogQC for TPC-H benchmark queries (scale factor 25). The divergence

optimizations improve query performance.

Our benchmark results are depicted in Figure 6. For each
of the 22 TPC-H queries, the bars indicate query execution
time assuming that the data set is resident in GPU memory.

For OmniSci, we report the total wall clock time needed
to execute the query as well as the amount of time spent
on GPU processing. OmniSci is a hybrid execution engine,
meaning that both, CPU and GPU, will be used to jointly
answer the query. As can be seen in the figure, several
queries can, in fact, not benefit much from GPU accelera-
tion in OmniSci. Also mind that OmniSci could successfully
execute only 13 of the 22 TPC-H benchmark queries.

The focus of this demonstration is on avoiding divergence
effects. To this end, we prepared a version of DogQC where
the divergence-related optimizations can be turned off (if
appropriate, see below). In the graph, this is reported as
“naive.” As can be seen in the figure, the mitigation of diver-
gence will result in a significant performance improvement
for some queries, while never having any negative impact on
any query. DogQC can run all 22 TPC-H queries entirely on
the GPU (benefits from hybrid CPU/GPU processing would
be orthogonal to divergence mitigation).

A secondary benefit of divergence handling in DogQC can-
not directly be observed in the figure. An important flavor
of divergence stems from the processing of (variable-length)
strings. Existing systems, including OmniSci, circumvent
the problem and apply dictionary encoding on all string
data. The resulting overhead on ingestion speed and mem-
ory requirement cannot be inferred from Figure 6. DogQC,
by contrast, can naturally handle variable-length data, in-
cluding strings (also in its “naive” configuration). See [1]
for details.

5. SUMMARY

Divergence effects can seriously impair the performance
potential of modern, data-parallel execution platforms such

as GPUs. With help of the Lane Refill and Push-Down Par-
allelism techniques, our query compiler DogQC' can combat
divergence effects and restore processing efficiency.

DogQC supports the full TPC-H benchmark set. In the
demo, visitors will be able to experiment with DogQC, state
their own queries, and watch the inner workings of DogQC.

Acknowledgements

This work was supported by the DFG, Collaborative Re-

search Center SFB 876, project A2, and DFG Priority Pro-
gram “Scalable Data Management for Future Hardware”

(TE111/2-1).

6. REFERENCES

[1] H. Funke and J. Teubner. Data-parallel query
processing on non-uniform data. Proceedings of the
VLDB Endowment, 13(6), 2020.

[2] H. Lang, A. Kipf, L. Passing, P. Boncz, T. Neumann,
and A. Kemper. Make the most out of your SIMD
investments: Counter control flow divergence in
compiled query pipelines. In Proc. of the 14th Int’l
Workshop on Data Management on New Hardware
(DaMoN), pages 5:1-5:8, Houston, TX, USA, June
2018.

[3] T. Neumann. Efficiently compiling efficient query plans
for modern hardware. Proceedings of the VLDB
Endowment, 4(9):539-550, 2011.

[4] OmniSci Incorporated. OmniSciDB.
https://www.omnisci.com/, 2019.

[5] M. Sha, Y. Li, and K. Tan. GPU-based graph traversal
on compressed graphs. In Proc. of the 2019 ACM
SIGMOD Conference on Management of Data, pages
775-792, Amsterdam, The Netherlands, June 2019.

