
Analyzing Memory Accesses With Modern Processors
Stefan Noll

stefan.noll@sap.com
TU Dortmund University

SAP SE

Jens Teubner
jens.teubner@cs.tu-dortmund.de

TU Dortmund University

Norman May
norman.may@sap.com

SAP SE

Alexander Böhm
alexander.boehm@sap.com

SAP SE

ABSTRACT
Debugging and tuning database systems is very challenging.
Using common profiling tools is often not sufficient because
they identify the machine instruction rather than the in-
stance of a data structure that causes a performance problem.
This leaves a problem’s root cause such as memory hotspots
or poor data layouts hidden. The state-of-the-art solution is
to augment classical profiling with a memory trace. How-
ever, current approaches for collecting memory traces are
not usable in practice due to their large runtime overhead.
In this work, we leverage a mechanism available in mod-

ern processors to collect memory traces via hardware-based
sampling. We evaluate our approach using a commercial and
an open-source database system running the JCC-H bench-
mark. In particular, we demonstrate that our approach is
practical due to its low runtime overhead and we illustrate
how memory traces uncover new insights into the memory
access characteristics of database systems.
ACM Reference Format:
Stefan Noll, Jens Teubner, Norman May, and Alexander Böhm.
2020. Analyzing Memory Accesses With Modern Processors. In
International Workshop on Data Management on New Hardware
(DAMON’20), June 15, 2020, Portland, OR, USA. ACM, New York, NY,
USA, 9 pages. https://doi.org/10.1145/3399666.3399896

1 INTRODUCTION
Today’s database management systems are increasingly com-
plex and complicated [40]. They offer numerous features,
configuration parameters, and low-level optimizations for

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
DAMON’20, June 15, 2020, Portland, OR, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8024-9/20/06. . . $15.00
https://doi.org/10.1145/3399666.3399896

various hardware setups. This complexity makes it difficult
to debug a system during development or to identify new
optimization and tuning opportunities.
To gain insights into the execution engine and data flow,

engineers rely on general-purpose profiling tools such as
perf [20] or VTune Profiler [14], or on custom profiling mech-
anisms implemented directly into the DBMS [31]. Common
profiling tools pinpoint the machine instruction (and the
source code line) where CPU time is spent or where hard-
ware events such as cache misses occur. However, profiling
tools often fail to identify the instance of a data structure
that causes a problem, which makes a root cause analysis
very challenging. In fact, whenever the same program code
such as hash_table.lookup(key) is executed for different
instances of a hash table, it may be impossible to detect the
instance (e.g., hash table used in hash join of 𝑅 and 𝑆) that
causes problems—even with detailed call stack information.
In addition, performance problems might only occur when
accessing some parts of a data structure, e.g., due to skew.

To identify the root cause of a performance problem, oth-
ers [15, 16, 23, 27, 35] propose to combine profiling infor-
mation with a memory trace, i.e., all memory addresses the
system accesses during runtime. By assigning profiling met-
rics such as CPU time or cache misses to memory addresses
rather than machine instructions, we can identify specific
instances or parts of a data structure that cause performance
problems.

However, collecting memory traces with tools such as Val-
grind [24] or Intel’s Pin [21] incurs a high overhead: They
slow down the application by more than an order of magni-
tude. This makes them unusable for profiling complex appli-
cations such as database systems—especially for analyzing
issues that only occur in production. The good news is that
modern processors feature powerful profiling capabilities
via precise event-based sampling (PEBS) [13] that potentially
allows overcoming these restrictions.
In this work, we demonstrate that collecting memory

traces with PEBS on recent Intel processors is feasible in
practice. We show in a comprehensive experimental evalua-
tion that memory traces provide detailed information about

https://doi.org/10.1145/3399666.3399896
https://doi.org/10.1145/3399666.3399896

DAMON’20, June 15, 2020, Portland, OR, USA Stefan Noll, Jens Teubner, Norman May, and Alexander Böhm

how a database system accesses memory. We analyze the
access frequency and the access pattern of memory accesses
to reveal skew, hot data structures, or implementation and
algorithmic details of the execution engine. In particular,

(i) we present a practical implementation of memory trac-
ing based on Intel’s PEBS mechanism;

(ii) we evaluate our approach using both a commercial and
an open-source database system running the JCC-H
benchmark;

(iii) we demonstrate and discuss practical use cases; and
(iv) we analyze the runtime overhead.

We present our first major contribution, the memory tracing
implementation, in Section 3. In Section 4, we evaluate the
implementation and discuss practical use cases as our second
and third major contribution. As our final major contribution,
we study the runtime overhead in Section 5.

2 BACKGROUND
Profiling. Common profiling tools such as perf [20] or
VTune Profiler [14] allow analyzing detailed performance
characteristics of applications. They incur almost no slow-
down. This makes them usable everywhere—even in produc-
tion environments. In addition to detecting where CPU time
is spent, they also provide microarchitectural insights by
collecting events that are exposed by modern processors via
hardware performance counters [13]. These allow the user
to measure cache misses, stalled cycles, memory bandwidth,
non-uniform memory accesses, TLB misses, and many more
events [13]. Profilers can report the machine instruction (and
source code line) that was executed when an event occurred.
They do not reveal what and how data was accessed.

VTune Profiler takes a step into this direction. It features a
profiling mode that maps certain events such as cache misses
to memory objects by instrumenting memory allocations
and de-allocations [15]. However, VTune Profiler does not
provide a memory trace, which is necessary to reveal detailed
memory access statistics and access patterns.
Precise Event-Based Sampling. We use hardware perfor-
mance counters with support for precise event-based sampling
(PEBS) [13]. PEBS is available in modern Intel processors and
currently supports a subset of the events such as L1, L2, L3
cache misses or cache hits, all memory reads, or all memory
stores. PEBS enables writing debug information associated
with an event to a memory resident buffer. In addition to a
precise instruction pointer, this information includes, e.g.,
copies of general-purpose registers, latency information or
the accessed data address. Figure 1 illustrates the mechanism.

The operating system configures the performance monitor-
ing unit (PMU) of a processor’s core to count an event such
as an L2 cache miss. It specifies the sampling rate by setting
a threshold and creates a buffer for PEBS records in memory.

PEBS record
PEBS record

Record
buffer

Memory

CounterCore PMU

Interrupt
handler

Operating
system

1

2

3

4

Figure 1: PEBS mechanism. The core’s PMU counts an
event such as L2 cache misses 1 . It writes a record to
memory when the Counter reaches a threshold 2 . It
sends an interrupt when the buffer is full 3 . Then, the
interrupt handler of the operating system drains the
buffer 4 and processes the records.

Then, the PMU counts the specified event and, when the
counter reaches the threshold, the hardware automatically
writes a record with debug information to the buffer. When
the buffer is full, the PMU sends an interrupt. The interrupt
triggers the interrupt handler of the operating system. The
interrupt handler drains the buffer and processes the records.
Afterwards, it resets the counter and the PMU starts count-
ing again. The advantage is that the hardware writes the
information to memory. In addition, the buffer mechanism
amortizes the cost of executing the interrupt handler.

3 MEMORY TRACING
The memory tracing implementation is our first major contri-
bution of this work. To minimize runtime overhead, we lever-
age the PEBS mechanism of modern processors (cf. Section 2)
to trace memory accesses. The PEBS mechanism allows us to
sample the memory address associated with a specific hard-
ware event. For the experiments presented in this work, we
focus on the event mem_load_uops_retired.all_loads,
which occurswhenever the CPU reads data frommemory [13].
This includes both cache hits and cache misses to the L1, L2
and last-level cache. Note that depending on the use case, we
could use other events to collect memory addresses, e.g., asso-
ciated with all memory writes, only last-level cache misses, or
cache misses where the cache line was modified by another
core (possibly indicating false sharing [23]).
Figure 2 gives an overview of our approach. We assume

that the PEBS mechanism of the PMU is already configured
to write a record every 𝑛-th occurrence of the event. For each
logical core, we create a buffer for storing the address sam-
ples. When a worker thread of the DBMS accesses memory,
the core’s PMU may write a record with the event’s debug
information to the record buffer (cf. Figure 1). When the
record buffer is full, the PMU triggers the operating system
which executes a custom interrupt handler to process the
collected records. It extracts only the field with the virtual

Analyzing Memory Accesses With Modern Processors DAMON’20, June 15, 2020, Portland, OR, USA

0xf00

42 x at <0xf00>

Address
buffer

Memory

Core &
Operating system

read x

Thread

DBMS

Offline
analysis1

2

3

Figure 2: Our memory tracing implementation. When
a thread accesses a data structure 1 , we may collect
the virtual memory address of the accessed data using
PEBS (cf. Figure 1) and store the address inmemory 2 .
We analyze the addresses offline 3 .

memory address associated with the event and stores the
address into the buffer of the logical core. After running a
workload, we analyze the address data.

To enable memory tracing in performance-critical envi-
ronments, we implement the memory tracing by modifying
the Linux kernel (version 5.1) and by adding a custom kernel
module1. Our implementation has ~1000 lines of code. In par-
ticular, we leverage the extensive, tested functionality of the
perf subsystem [41] of the Linux kernel to program a core’s
PMU, to setup PEBS, to register an interrupt handler, and to
implement filtering, e.g., for user space or kernel space, or for
particular processes or threads. We can start and configure
the memory tracing using the perf tool from user space. To
improve scalability, we modify the interrupt handler to place
the sampled addresses into per-core address buffers instead
of the global ring buffer used by the perf subsystem. The
kernel module acts as an interface for managing the address
buffers from user space.

Modifying the perf subsystem is necessary in order to re-
duce the runtime overhead of collecting memory addresses
with a high sample frequency. That is because the perf sub-
system collects extensive metadata for a single sample. Pro-
cessing this metadata wastes memory and compute time. In
contrast, our implementation is very efficient: It extracts and
stores only the addresses needed for memory tracing.

4 USE CASES
The evaluation of our implementation of memory tracing
and the demonstration of practical uses cases for database
systems are the second and third major contribution of this
work. Note that we expect many more use cases, e.g., when
focusing on other parts of the system such as intermediate
results or when using other hardware events.

1The source code is available at http://dbis.cs.tu-dortmund.de and at
https://github.com/stefannoll/mat.

Experimental Setup. We use the JCC-H benchmark [4],
an extension of the TPC-H benchmark [39] with skewed data
and query predicates, with a scale factor of 10. We execute
custom queries as well as a complete workload with 200
random queries of the JCC-H benchmark (excluding Q21).
We run SAP HANA [10], a commercial, in-memory data-
base management system. SAP HANA makes heavy use of
order-preserving dictionary compression2—similar to other
systems [5, 17, 18, 28]. In addition, we run experiments with
DuckDB [29], an open-source, embedded, analytical data-
base system, by using its Python interface. Our test machine
has two Intel Xeon E5-2670 v3 processors and 256GB of
main memory. While DuckDB executes queries with a single
thread, SAP HANA executes queries with multiple threads
using up to 48 logical cores.
Processing of Memory Traces. Due to the sampling me-
chanic we do not trace every memory load, especially if data
is accessed only once during profiling. To compensate for
missed accesses due to sampling and to improve visualiza-
tion, we group addresses into buckets of a fixed size.We denote
the bucket size in each figure. This means that, for each mem-
ory address, we report a data access of, e.g., 4 KiB instead of
8 bytes3. We assign an address to a bucket of size, e.g., 4 KiB
by ignoring the least significant log2 (4096) − 1 = 11 bits of
the address. We explain the visualization of a memory trace
using the example of Figure 3 in Section 4.1.

4.1 Detecting Access Patterns
To illustrate how memory traces reveal access patterns or
other implementation and algorithmic details of the execu-
tion engine, we analyze the execution of a custom query
with DuckDB. The SQL statement is shown below:

SELECT o_totalprice , o_orderdate , o_shippriority

FROM orders WHERE o_orderstatus = 'O'

ORDER BY o_totalprice

Figure 3 shows the memory trace. It visualizes how DuckDB
accesses memory over time. The x-axis shows the samples
ordered by their sampling time. The y-axis represents the
virtual memory address of the samples sorted by address
in ascending order. We illustrate the size of the accessed
memory. In particular, we visualize each sampled address as
an access to a bucket of size 4 KiB.
Figure 3 shows that scanning the table a while apply-

ing the filter predicate 1 reads memory sequentially. Af-
terwards, DuckDB sorts 2 the data. The trace reveals that
the sort operator accesses one data structure sequentially
2An ordered dictionary maps domain values to a dense set of consecutive
numbers. Instead of the actual value of the columns, the engine stores the
typically much smaller index of the dictionary entry. The encoded column
or the dictionary may be further compressed.
3The actual data size depends on the load instruction associated with the
sampled memory address: e.g., 8 B for 64-bit or 4 B for 32-bit operations.

http://dbis.cs.tu-dortmund.de
https://github.com/stefannoll/mat

DAMON’20, June 15, 2020, Portland, OR, USA Stefan Noll, Jens Teubner, Norman May, and Alexander Böhm

a

b
c

1 2 3 4

Figure 3: The trace illustrates the access patterns of
DuckDB’s execution engine. In particular, it reveals
how the operators for filtering 1 , sorting 2 , materi-
alizing 3 , and assembling the result 4 access impor-
tant data structures: the table () a , the filtered col-
umn () b , and the position list () c .

and the other randomly. Note that DuckDB’s implementa-
tion uses the quicksort algorithm and that it sorts a position
list c instead of the actual data. To compare a position p,
it accesses the filtered column b indirectly by fetching the
value with column[p], which may be increasingly random
as the list’s order changes. The trace illustrates both access
patterns: The quicksort algorithm splits the position list re-
cursively and traverses each sublist from the start and the
end simultaneously; for the comparison, it indirectly accesses
the column. In the next phase, DuckDB materializes 3 the
projected columns. It reads the sorted position list sequen-
tially and accesses the table randomly. Finally, the Python
interface of DuckDB transforms the result 4 into Python
data structures.
Note that the memory trace allows us to break down the

individual phases/operators of the query execution. We can
infer the different memory access patterns from the visual-
ization alone. We do not require the source code to collect the
trace. Knowing the memory addresses of data structures by
tracking allocations or knowing the implemented algorithms
helps, however, to explain the trace.

4.2 Access Counting at Byte-level
To demonstrate how memory traces allow us to collect de-
tailed access statistics at byte-level and to reveal skew, we
analyze the execution of a custom query with SAP HANA:

SELECT AVG(l_extendedprice) FROM lineitem

We limit SAP HANA to execute the query with two threads.
We show only the results of the first thread (the results of
the other thread are very similar). Figure 4 illustrates the
memory trace of the encoded column and the dictionary of
l_extendedprice. Figure 4a shows the memory accesses

b

a

(a) Column and dictionary. (b) Dictionary only.

Figure 4: The aggregation operator of SAP HANA ac-
cesses the encoded column () a sequentially. Due to
the data distribution, it accesses the dictionary () b
randomly (a). The trace reveals skew at the granularity
of individual dictionary entries () (b).

over time (left) and the total number of accesses as a his-
togram (right). Figure 4b visualizes the total number of ac-
cesses to only the dictionary at byte-level. The samples are
sorted by address in ascending order.

The aggregation operator sequentially reads the encoded
column. Due to the dictionary encoding, it needs to decode
each reference in the column by looking up its value in the
dictionary. The data distribution causes these accesses to be
random. In addition, we observe that the dictionary is ac-
cessed more frequently (l_extendedprice contains 97.77 %
duplicates). This demonstrates that memory traces show
both the access pattern and the access frequency in detail.
When we look only at the dictionary, the trace reveals

that the dictionary accesses are heavily skewed: 20 entries
are accessed more frequently than others (by several orders
of magnitude). Note that this property of the JCC-H bench-
mark becomes easily observable with the memory trace: We
are able to identify “hot” data at the granularity of memory
loads—not only at the granularity of pages [11]. By tracking
memory allocations in SAP HANA, we know the memory
address range of the dictionary. This allows us to identify, for
example, that the dictionary entry at position 997959 (with
the value 55740.45) has the most accesses.

4.3 Hot Working Set Size
To demonstrate how memory traces enable us to estimate a
workload’s “hot” working set size, we execute a workload
with 200 random queries of the JCC-H benchmark with SAP
HANA. To evaluate a smaller data set, we also run a modified
version of the workload with only 85 out of 200 queries that
do not reference the orders table. SAP HANA executes the
query workload on all 48 logical cores. Figure 6a visualizes
the memory trace as a histogram, where we sort the sampled
addresses by how often they occur in the trace.

Analyzing Memory Accesses With Modern Processors DAMON’20, June 15, 2020, Portland, OR, USA

1

2
3

4

5

6

7 8

Figure 5: JCC-Hbenchmarkwith 200 randomqueries. Thememory trace details the access pattern of the table data
and reveals skew.We detect the 5 “populous orders”, e.g., for the encoded columns l_orderkey 2 and l_quantity 4 .
We also detect filter skew that causes 2 of the populous orders to be accessedmore frequently, e.g., for the encoded
columns l_partkey 3 , l_shipdate 5 , l_shipmode 6 , and l_suppkey 7 .

(a) Histogram sorted by
number of accesses.

25MB 1GB 2GB

1

2

3

Page buffer

Sl
ow

do
w
n

(b) Slowdown for differ-
ent buffer sizes.

Figure 6: JCC-H benchmark with all tables () and
without the orders table (). The working set size as-
sociated with a specific access frequency (a) matches
() the performance characteristics of executing the
workload with a specific page buffer size (b).

We observe that the complete workload accesses table data
(encoded columns and dictionaries) with a size of 1.8GB. In
contrast, the total size of the table data of all tables amounts
to 3.8GB in main memory. This demonstrates that the mem-
ory trace allows us to quantify the working set size, i.e., the
size of the table data that is actually accessed during the exe-
cution of the benchmark. Additionally, we can measure how
much data the workload accesses with a specific frequency,
i.e., the “hot” data. We discover, for example, that the system
accesses table data with a size of 600MB more frequently.
Deriving a Buffer Size. We can use this information to de-
rive a buffer size for SAP HANA when we execute the work-
loadwith page-loadable columns [33], i.e., using a page buffer
to hold only a subset of the table data—at page granularity—
in memory. Figure 6b shows how the size of the page buffer
impacts execution time: It illustrates the relative slowdown

compared to the execution time when all data fits in memory.
If we compare the results to the working set size of a specific
access frequency, shown in Figure 6a, we observe a strong
similarity (highlighted in the figures with). The same holds
true for the workload without the orders table.
We argue that the traces could help to determine the op-

timal buffer size for disk-based systems [25] or help to size
DRAM when using NVRAM as main memory and DRAM
only as a cache—referred to by Intel as “memory mode” [12].

4.4 Table Partitioning
To demonstrate howmemory traces allow us to analyze table
partitioning, we use again the JCC-H workload consisting
of 200 queries. SAP HANA executes the query workload
on all 48 logical cores. Figure 5 shows the memory trace
as a histogram, where the samples are sorted by address in
ascending order. The memory trace illustrates the access
pattern of the encoded columns and dictionaries.

The memory trace reveals the populous order4 skew [4] of
the table data. The skew becomes visible in the access pattern
of the encoded column l_orderkey 2 and l_quantity 4 ,
where 5 parts of the columns (the 5 populous orders) are
accessed more frequently. In addition, the trace also reveals
filter skew [4]. In the access pattern of the encoded columns
l_partkey 3 , l_shipdate 5 , l_shipmode 6 , as well as
l_suppkey 7 , we observe that only 2 parts of the column (2
of the 5 populous orders) are accessed more frequently. The
reason is that query predicates include the years 1993 and
1994 more frequently, resulting in more accesses to the 2 pop-
ulous orders of the two years. The trace also highlights the
skew of l_extendedprice, where 20 distinct values of the
dictionary 1 are accessed more frequently (cf. Section 4.2).

4The JCC-H benchmark has 5 populous orders with 25 % of the lineitems.

DAMON’20, June 15, 2020, Portland, OR, USA Stefan Noll, Jens Teubner, Norman May, and Alexander Böhm

Figure 7: Impact of partitioning on l_shipdate.
Comparison of no partitioning (), partitioning per
year () and partitioning per populous order ().

Figure 8: Impact of partitioning on l_orderkey.
Comparison of no partitioning (), partitioning per
year () and partitioning per populous order ().

Impact of Partitioning. We can use the trace to analyze
the impact of table partitioning. We compare no partitioning
(previously shown in Figure 5) to the partitioning used byMi-
crosoft SQL Server 2017 for the TPC-H benchmark [7]. They
recommend a range partition on the columns o_orderdate
and l_shipdate. We perform a range partition per year
on the two columns which splits the tables lineitem and
orders in 7 partitions each. Furthermore, we compare to a
range partition on the column l_orderkey, which splits
the lineitem table in 6 partitions: a partition per popu-
lous order and one partition holding the remaining rows.
Figures 7, 8, and 9 visualize how the different partitioning
schemes change the access pattern of the encoded columns
l_shipdate 5 , l_orderkey 2 , and o_orderdate 8 .
We observe that the partitioning causes some parts of

the columns to be accessed rarely, i.e., they become “colder”.
Instead of focusing only on execution time, the trace en-
ables us to evaluate the partitioning schemes by quantifying
the accessed data volume (by multiplying the number of ac-
cesses per bucket with the bucket size). The partitioning per
year decreases the accessed data volume for l_shipdate,
l_orderkey, and o_orderdate by 72 %, 5 %, and 93 %. The
partitioning per populous order decreases the accessed data

Figure 9: Impact of partitioning on o_orderdate.
Comparison of no partitioning (), partitioning per
year () and partitioning per populous order ().

volume by 19 %, 15 %, and 0 %, respectively. While the par-
titioning per year allows for partition pruning whenever a
filter predicate selects only some years, the partitioning per
populous order increases the access locality of the lineitem
table for populous orders. We observed similar effects for
other columns (not shown).

5 RUNTIME OVERHEAD
The analysis of the runtime overhead of our implementation
is the final contribution of this work. The advantage of us-
ing Intel’s PEBS mechanism for memory tracing is that the
hardware writes sampled addresses automatically to mem-
ory and that it buffers the samples. The user can configure
the sampling rate to adjust the trade-off between runtime
overhead and precision by setting the threshold that controls
after how many events the CPU writes a PEBS record (cf.
Section 2). Table 1 shows how the threshold impacts the exe-
cution time of the JCC-H workload of 200 queries running
on SAP HANA on all 48 logical cores.

Threshold 200 400 600 800 1000 2000 4000

Slowdown 2.30× 1.67× 1.45× 1.34× 1.27× 1.13× 1.05×
Trace [GB] 45.192 22.999 15.393 11.585 9.285 4.656 2.324
Trace* [GB] 1.518 0.855 0.548 0.375 0.308 0.134 0.064

Table 1: Tracing overhead for different thresholds: the
slowdown of the execution time, the size of the com-
plete trace, and the size of the trace containing only
addresses of table data, i.e., of the encoded columns
and the dictionaries (*).

In our experiments presented in Section 4.4, we use a thresh-
old of 1000 which causes a slowdown of 27 %. In the other
experiments, we use a threshold of 200 to demonstrate a
very high precision. It increases runtime by a factor of 2.3.
Our implementation based on PEBS is more than an order
of magnitude faster than approaches based on binary in-
strumentation such as Valgrind [24] or Intel’s Pin [21]. It

Analyzing Memory Accesses With Modern Processors DAMON’20, June 15, 2020, Portland, OR, USA

makes memory tracing practical and even usable in produc-
tion. The user can further decrease overhead by lowering
the sampling rate or by choosing a hardware event which
occurs less frequent, e.g., only cache misses.

6 RELATEDWORK
Tracing Methods. Related work from the systems com-
munity explores different approaches for collecting mem-
ory traces: simulation or emulation [3], binary instrumen-
tation [6, 9, 21, 24], passing all memory access through an
FPGA [19], or using custom hardware to snoop the memory
bus of DRAM DIMMs [2]. These approaches allow tracing
all memory accesses at the cost of slowdowns by more than
an order of magnitude or require additional hardware. Oth-
ers propose to use performance monitoring units of modern
processors from AMD [16], Intel [32], or IBM Power [36] to
trace memory accesses via hardware-based sampling. The
integration effort or the runtime overhead of employing such
an approach in practice remains unclear, however. Other re-
lated work [1, 26] studies PEBS parameters such as the size
of the record buffer and the sampling rate—but not for an
end-to-end database workload. To the best of our knowledge,
we are the first to explore memory tracing via PEBS running
(a complex workload on) a commercial database system.
Use Cases. While we use memory tracing to study access
patterns, to detect skew or to count accesses, related work ex-
plores many other use cases. Tozun et al. use memory traces
together with hardware simulation to map cache misses
back to database operators and to components of the storage
manager for OLTP workloads [38]. They propose a trans-
action scheduling mechanism that uses memory traces to
maximize instruction cache locality [37]. Others use mem-
ory traces to build cache miss ratio curves to quantify an
application’s cache usage [36] or to derive cache partitioning
schemes [42], to detect memory errors such as buffer over-
flows or use-after-frees [34], to detect false sharing [30], to
optimize data placement in NUMA systems [8, 22], to pin-
point performance bottlenecks related to cache usage [27],
or to remove redundant memory loads [35].
Applying these methods on top of our memory tracing

implementation could provide new insights into database
systems and possibly reveal optimization opportunities that
are hard to discover with current profiling approaches.

7 CONCLUSION
The state-of-the-art solution for identifying the root cause
of performance problems related to memory accesses is to
augment classical profiling with a memory trace. However,
current approaches are not usable in practice due to their
large runtime overhead.

In this work, we present an implementation for collecting
memory traces via hardware-based sampling that leverages
Intel’s PEBSmechanism. In our experiments using the JCC-H
benchmark, SAP HANA, and DuckDB, we illustrate for vari-
ous use cases that memory traces enable us to analyze the
runtime characteristics of a database system: The traces re-
veal access patterns of specific data structures, detect skew
at byte-level, or allow us to estimate the working set size of
a workload and to analyze the impact of table partitioning.
In addition, we demonstrate that our implementation has a
low runtime overhead—making it possible to collect memory
traces in production environments.

ACKNOWLEDGMENTS
We thank Roman Dementiev and Michael Brendle for their
helpful comments. The work has received funding from
the Deutsche Forschungsgemeinschaft (DFG), Collaborative
Research Center SFB 876, project C5 (http://sfb876.tu-
dortmund.de/).

REFERENCES
[1] Soramichi Akiyama and Takahiro Hirofuchi. 2017. Quantitative Eval-

uation of Intel PEBS Overhead for Online System-Noise Analysis. In
Proceedings of the 7th International Workshop on Runtime and Oper-
ating Systems for Supercomputers ROSS 2017 (Washingon, DC, USA)
(ROSS ’17). Association for Computing Machinery, New York, NY, USA,
Article 3, 8 pages. https://doi.org/10.1145/3095770.3095773

[2] Yungang Bao, Mingyu Chen, Yuan Ruan, Li Liu, Jianping Fan, Qingbo
Yuan, Bo Song, and Jianwei Xu. 2008. HMTT: A Platform Independent
Full-System Memory Trace Monitoring System. In Proceedings of the
2008 ACM SIGMETRICS International Conference on Measurement and
Modeling of Computer Systems (Annapolis, MD, USA) (SIGMETRICS ’08).
Association for Computing Machinery, New York, NY, USA, 229–240.
https://doi.org/10.1145/1375457.1375484

[3] Fabrice Bellard. 2005. QEMU, a Fast and Portable Dynamic Translator.
In Proceedings of the Annual Conference on USENIX Annual Technical
Conference (Anaheim, CA) (ATEC ’05). USENIX Association, USA, 41.

[4] Peter Boncz, Angelos-Christos Anatiotis, and Steffen Kläbe. 2018. JCC-
H: Adding Join Crossing Correlations with Skew to TPC-H. In Perfor-
mance Evaluation and Benchmarking for the Analytics Era, Raghunath
Nambiar and Meikel Poess (Eds.). Springer International Publishing,
Cham, 103–119.

[5] Peter A. Boncz, Martin L. Kersten, and StefanManegold. 2008. Breaking
the Memory Wall in MonetDB. Commun. ACM 51, 12 (2008), 77–85.
https://doi.org/10.1145/1409360.1409380

[6] Derek L. Bruening. 2004. Efficient, Transparent, and Comprehensive
Runtime Code Manipulation. Ph.D. Dissertation. Massachusetts Insti-
tute of Technology, USA. AAI0807735.

[7] Cisco. 2019. TPC Benchmark H Full Disclosure Report for Cisco
UCS C480 M5 Rack-Mount Server using Microsoft SQL Server 2017
Enterprise Edition and Red Hat Enterprise Linux 7.6. http://www.
tpc.org/3337

[8] Mohammad Dashti, Alexandra Fedorova, Justin Funston, Fabien Gaud,
Renaud Lachaize, Baptiste Lepers, Vivien Quema, and Mark Roth.
2013. Traffic Management: A Holistic Approach to Memory Place-
ment on NUMA Systems. In Proceedings of the Eighteenth Interna-
tional Conference on Architectural Support for Programming Languages

http://sfb876.tu-dortmund.de/
http://sfb876.tu-dortmund.de/
https://doi.org/10.1145/3095770.3095773
https://doi.org/10.1145/1375457.1375484
https://doi.org/10.1145/1409360.1409380
http://www.tpc.org/3337
http://www.tpc.org/3337

DAMON’20, June 15, 2020, Portland, OR, USA Stefan Noll, Jens Teubner, Norman May, and Alexander Böhm

and Operating Systems (Houston, Texas, USA) (ASPLOS ’13). Asso-
ciation for Computing Machinery, New York, NY, USA, 381–394.
https://doi.org/10.1145/2451116.2451157

[9] S. Economo, D. Cingolani, A. Pellegrini, and F. Quaglia. 2016. Config-
urable and Efficient Memory Access Tracing via Selective Expression-
Based x86 Binary Instrumentation. In 2016 IEEE 24th International
Symposium on Modeling, Analysis and Simulation of Computer and
Telecommunication Systems (MASCOTS). 261–270. https://doi.org/
10.1109/MASCOTS.2016.69

[10] Franz Färber, Norman May, Wolfgang Lehner, Philipp Große, Ingo
Müller, Hannes Rauhe, and Jonathan Dees. 2012. The SAP HANA
Database – An Architecture Overview. Data Eng. Bull. 35, 1 (2012),
28–33.

[11] Florian Funke, Alfons Kemper, and Thomas Neumann. 2012. Compact-
ing Transactional Data in Hybrid OLTP&OLAP Databases. Proc. VLDB
Endow. 5, 11 (July 2012), 1424–1435. https://doi.org/10.14778/
2350229.2350258

[12] Intel. 2020. Intel® 64 and IA-32 Architectures Optimization Reference
Manual. https://software.intel.com/en-us/articles/intel-
sdm.

[13] Intel. 2020. Intel® 64 and IA-32 Architectures Software Developer’s
Manual. https://software.intel.com/en-us/articles/intel-
sdm.

[14] Intel. 2020. VTune Profiler. https://software.intel.com/vtune/.
[15] Intel. 2020. VTune Profiler: Memory Access Analysis.

https://software.intel.com/en-us/vtune-help-memory-
access-analysis.

[16] Renaud Lachaize, Baptiste Lepers, and Vivien Quéma. 2012. MemProf:
A Memory Profiler for NUMA Multicore Systems. In Proceedings of
the 2012 USENIX Conference on Annual Technical Conference (Boston,
MA) (USENIX ATC’12). USENIX Association, USA, 5.

[17] Andrew Lamb, Matt Fuller, Ramakrishna Varadarajan, Nga Tran, Ben
Vandiver, Lyric Doshi, and Chuck Bear. 2012. The Vertica Analytic
Database: C-store 7 Years Later. PVLDB 5, 12 (2012), 1790–1801. https:
//doi.org/10.14778/2367502.2367518

[18] Per-Åke Larson, Cipri Clinciu, Eric N. Hanson, Artem Oks, Susan L.
Price, Srikumar Rangarajan, Aleksandras Surna, and Qingqing Zhou.
2011. SQL Server Column Store Indexes. In Proc. SIGMOD. 1177–1184.
https://doi.org/10.1145/1989323.1989448

[19] Letitia W. Li, Guillaume Duc, and Renaud Pacalet. 2015. Hardware-
Assisted Memory Tracing on New SoCs Embedding FPGA Fabrics. In
Proceedings of the 31st Annual Computer Security Applications Confer-
ence (Los Angeles, CA, USA) (ACSAC 2015). Association for Comput-
ing Machinery, New York, NY, USA, 461–470. https://doi.org/10.
1145/2818000.2818030

[20] Linux. 2020. perf. https://perf.wiki.kernel.org/.
[21] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser,

Geoff Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazel-
wood. 2005. Pin: Building Customized Program Analysis Tools with
Dynamic Instrumentation. SIGPLAN Not. 40, 6 (June 2005), 190–200.
https://doi.org/10.1145/1064978.1065034

[22] Jaydeep Marathe, Vivek Thakkar, and Frank Mueller. 2010. Feedback-
Directed Page Placement for CcNUMA via Hardware-Generated Mem-
ory Traces. J. Parallel Distrib. Comput. 70, 12 (Dec. 2010), 1204–1219.
https://doi.org/10.1016/j.jpdc.2010.08.015

[23] Joe Mario. 2016. C2C – False Sharing Detection in Linux Perf. https:
//joemario.github.io/blog/2016/09/01/c2c-blog/.

[24] Nicholas Nethercote and Julian Seward. 2007. Valgrind: A Framework
for Heavyweight Dynamic Binary Instrumentation. SIGPLANNot. 42, 6
(June 2007), 89–100. https://doi.org/10.1145/1273442.1250746

[25] Thomas Neumann and Michael J. Freitag. 2020. Umbra: A Disk-Based
System with In-Memory Performance. In CIDR 2020, 10th Conference

on Innovative Data Systems Research, Amsterdam, The Netherlands,
January 12-15, 2020, Online Proceedings. www.cidrdb.org. http://
cidrdb.org/cidr2020/papers/p29-neumann-cidr20.pdf

[26] Aleix Roca Nonell, Balazs Gerofi, Leonardo Bautista-Gomez, Do-
minique Martinet, Vicenç Beltran Querol, and Yutaka Ishikawa. 2018.
On the Applicability of PEBS Based Online Memory Access Tracking
for Heterogeneous Memory Management at Scale. In Proceedings of the
Workshop on Memory Centric High Performance Computing (Dallas, TX,
USA) (MCHPC’18). Association for Computing Machinery, New York,
NY, USA, 50–57. https://doi.org/10.1145/3286475.3286477

[27] Aleksey Pesterev, Nickolai Zeldovich, and Robert T. Morris. 2010. Lo-
cating Cache Performance Bottlenecks Using Data Profiling. In Proceed-
ings of the 5th European Conference on Computer Systems (Paris, France)
(EuroSys ’10). Association for Computing Machinery, New York, NY,
USA, 335–348. https://doi.org/10.1145/1755913.1755947

[28] Meikel Poess and Dmitry Potapov. 2003. Data Compression in Oracle.
In Proc. VLDB. 937–947. http://dl.acm.org/citation.cfm?id=
1315451.1315531

[29] Mark Raasveldt and Hannes Mühleisen. 2020. Data Management for
Data Science - Towards Embedded Analytics. In CIDR 2020, 10th Con-
ference on Innovative Data Systems Research, Amsterdam, The Nether-
lands, January 12-15, 2020, Online Proceedings. www.cidrdb.org. http:
//cidrdb.org/cidr2020/papers/p23-raasveldt-cidr20.pdf

[30] Muhammad Aditya Sasongko, Milind Chabbi, Palwisha Akhtar, and
Didem Unat. 2019. ComDetective: A Lightweight Communication De-
tection Tool for Threads. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis
(Denver, Colorado) (SC ’19). Association for Computing Machinery,
New York, NY, USA, Article 18, 21 pages. https://doi.org/10.
1145/3295500.3356214

[31] Tobias Scheuer, Norman May, Alexander Böhm, and Daniel Scheibli.
2016. JexLog: A Sonar for the Abyss. PVLDB 9, 13 (2016), 1493–1496.
https://doi.org/10.14778/3007263.3007292

[32] Harald Servat, Germán Llort, Juan González, Judit Giménez, and
Jesús Labarta. 2015. Low-Overhead Detection of Memory Access
Patterns and Their Time Evolution. In Euro-Par 2015: Parallel Process-
ing, Jesper Larsson Träff, Sascha Hunold, and Francesco Versaci (Eds.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 57–69.

[33] Reza Sherkat, Colin Florendo, Mihnea Andrei, Rolando Blanco, Adrian
Dragusanu, Amit Pathak, Pushkar Khadilkar, Neeraj Kulkarni, Chris-
tian Lemke, Sebastian Seifert, Sarika Iyer, Sasikanth Gottapu, Robert
Schulze, Chaitanya Gottipati, Nirvik Basak, Yanhong Wang, Vivek
Kandiyanallur, Santosh Pendap, Dheren Gala, Rajesh Almeida, and
Prasanta Ghosh. 2019. Native Store Extension for SAP HANA. Proc.
VLDB Endow. 12, 12 (Aug. 2019), 2047–2058. https://doi.org/10.
14778/3352063.3352123

[34] Sam Silvestro, Hongyu Liu, Tong Zhang, Changhee Jung, Dongyoon
Lee, and Tongping Liu. 2018. Sampler: PMU-Based Sampling to Detect
Memory Errors Latent in Production Software. In Proceedings of the
51st Annual IEEE/ACM International Symposium on Microarchitecture
(Fukuoka, Japan) (MICRO-51). IEEE Press, 231–244. https://doi.
org/10.1109/MICRO.2018.00027

[35] Pengfei Su, Shasha Wen, Hailong Yang, Milind Chabbi, and Xu Liu.
2019. Redundant Loads: A Software Inefficiency Indicator. In Pro-
ceedings of the 41st International Conference on Software Engineering
(Montreal, Quebec, Canada) (ICSE ’19). IEEE Press, 982–993. https:
//doi.org/10.1109/ICSE.2019.00103

[36] David K. Tam, Reza Azimi, Livio B. Soares, and Michael Stumm. 2009.
RapidMRC: Approximating L2 Miss Rate Curves on Commodity Sys-
tems for Online Optimizations. SIGPLAN Not. 44, 3 (March 2009),
121–132. https://doi.org/10.1145/1508284.1508259

https://doi.org/10.1145/2451116.2451157
https://doi.org/10.1109/MASCOTS.2016.69
https://doi.org/10.1109/MASCOTS.2016.69
https://doi.org/10.14778/2350229.2350258
https://doi.org/10.14778/2350229.2350258
https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/vtune/
https://software.intel.com/en-us/vtune-help-memory-access-analysis
https://software.intel.com/en-us/vtune-help-memory-access-analysis
https://doi.org/10.14778/2367502.2367518
https://doi.org/10.14778/2367502.2367518
https://doi.org/10.1145/1989323.1989448
https://doi.org/10.1145/2818000.2818030
https://doi.org/10.1145/2818000.2818030
https://perf.wiki.kernel.org/
https://doi.org/10.1145/1064978.1065034
https://doi.org/10.1016/j.jpdc.2010.08.015
https://joemario.github.io/blog/2016/09/01/c2c-blog/
https://joemario.github.io/blog/2016/09/01/c2c-blog/
https://doi.org/10.1145/1273442.1250746
http://cidrdb.org/cidr2020/papers/p29-neumann-cidr20.pdf
http://cidrdb.org/cidr2020/papers/p29-neumann-cidr20.pdf
https://doi.org/10.1145/3286475.3286477
https://doi.org/10.1145/1755913.1755947
http://dl.acm.org/citation.cfm?id=1315451.1315531
http://dl.acm.org/citation.cfm?id=1315451.1315531
http://cidrdb.org/cidr2020/papers/p23-raasveldt-cidr20.pdf
http://cidrdb.org/cidr2020/papers/p23-raasveldt-cidr20.pdf
https://doi.org/10.1145/3295500.3356214
https://doi.org/10.1145/3295500.3356214
https://doi.org/10.14778/3007263.3007292
https://doi.org/10.14778/3352063.3352123
https://doi.org/10.14778/3352063.3352123
https://doi.org/10.1109/MICRO.2018.00027
https://doi.org/10.1109/MICRO.2018.00027
https://doi.org/10.1109/ICSE.2019.00103
https://doi.org/10.1109/ICSE.2019.00103
https://doi.org/10.1145/1508284.1508259

Analyzing Memory Accesses With Modern Processors DAMON’20, June 15, 2020, Portland, OR, USA

[37] Pinar Tözün, Islam Atta, Anastasia Ailamaki, and Andreas Moshovos.
2014. ADDICT: Advanced Instruction Chasing for Transactions. Proc.
VLDB Endow. 7, 14 (Oct. 2014), 1893–1904. https://doi.org/10.
14778/2733085.2733095

[38] Pundefinednar Tözün, Brian Gold, and Anastasia Ailamaki. 2013. OLTP
in Wonderland: Where Do Cache Misses Come from in Major OLTP
Components?. In Proceedings of the Ninth International Workshop on
Data Management on New Hardware (New York, New York) (DaMoN
’13). Association for Computing Machinery, New York, NY, USA, Arti-
cle 8, 6 pages. https://doi.org/10.1145/2485278.2485286

[39] Transaction Processing Performance Council (TPC). 2018. TPC Bench-
mark H (Decision Support) Standard Specification. Technical Report.
http://www.tpc.org/tpch/

[40] Dana Van Aken, Andrew Pavlo, Geoffrey J. Gordon, and Bohan Zhang.
2017. Automatic Database Management System Tuning Through

Large-Scale Machine Learning. In Proceedings of the 2017 ACM Inter-
national Conference on Management of Data (Chicago, Illinois, USA)
(SIGMOD ’17). Association for Computing Machinery, New York, NY,
USA, 1009–1024. https://doi.org/10.1145/3035918.3064029

[41] Vince Weaver. 2020. Linux Programmer’s Manual – perf_event_open.
http://man7.org/linux/man-pages/man2/perf_event_open.2.
html.

[42] Yaocheng Xiang, Xiaolin Wang, Zihui Huang, Zeyu Wang, Yingwei
Luo, and ZhenlinWang. 2018. DCAPS: Dynamic Cache Allocation with
Partial Sharing. In Proceedings of the Thirteenth EuroSys Conference
(Porto, Portugal) (EuroSys ’18). Association for Computing Machinery,
New York, NY, USA, Article 13, 15 pages. https://doi.org/10.
1145/3190508.3190511

https://doi.org/10.14778/2733085.2733095
https://doi.org/10.14778/2733085.2733095
https://doi.org/10.1145/2485278.2485286
http://www.tpc.org/tpch/
https://doi.org/10.1145/3035918.3064029
http://man7.org/linux/man-pages/man2/perf_event_open.2.html
http://man7.org/linux/man-pages/man2/perf_event_open.2.html
https://doi.org/10.1145/3190508.3190511
https://doi.org/10.1145/3190508.3190511

	Abstract
	1 Introduction
	2 Background
	3 Memory Tracing
	4 Use Cases
	4.1 Detecting Access Patterns
	4.2 Access Counting at Byte-level
	4.3 Hot Working Set Size
	4.4 Table Partitioning

	5 Runtime Overhead
	6 Related Work
	7 Conclusion
	Acknowledgments
	References

