
PipelinedQuery Processing in Coprocessor Environments
Henning Funke

TU Dortmund University

henning.funke@udo.edu

Sebastian Breß

DFKI GmbH

sebastian.bress@dfki.de

Stefan Noll

TU Dortmund University

stefan.noll@udo.edu

Volker Markl

Technische Universität Berlin

volker.markl@tu-berlin.de

Jens Teubner

TU Dortmund University

jens.teubner@udo.edu

ABSTRACT

Query processing on GPU-style coprocessors is severely limited by

the movement of data. With teraflops of compute throughput in

one device, even high-bandwidth memory cannot provision enough

data for a reasonable utilization.

Query compilation is a proven technique to improve memory

efficiency. However, its inherent tuple-at-a-time processing style

does not suit the massively parallel execution model of GPU-style

coprocessors. This compromises the improvements in efficiency

offered by query compilation. In this paper, we show how query

compilation and GPU-style parallelism can be made to play in

unison nevertheless. We describe a compiler strategy that merges

multiple operations into a single GPU kernel, thereby significantly

reducing bandwidth demand. Compared to operator-at-a-time, we

show reductions of memory access volumes by factors of up to 7.5x

resulting in shorter kernel execution times by factors of up to 9.5x.

ACM Reference Format:

Henning Funke, Sebastian Breß, Stefan Noll, Volker Markl, and Jens Teub-

ner. 2018. Pipelined Query Processing in Coprocessor Environments. In

SIGMOD’18: 2018 International Conference on Management of Data, June
10–15, 2018, Houston, TX, USA. ACM, New York, NY, USA, 16 pages. https:

//doi.org/10.1145/3183713.3183734

1 INTRODUCTION

GPUs are frequently used as powerful accelerators for query pro-

cessing. As the arithmetic throughput of the coprocessor peaks in

the teraflop range, it becomes a challenge to provision enough data.

For this reason, hardware vendors equip graphics cards with high

bandwidth memory that has read and write rates of hundreds of

GB/s. Still, memory intensive applications such as query process-

ing fall behind regarding the cost of data movement for different

reasons. Figure 1 shows the path of relational data through the

hierarchical memory levels in a typical coprocessor system. Along

the path, several bandwidth and capacity constraints need to be

considered to achieve scalability and performance:

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SIGMOD’18, June 10–15, 2018, Houston, TX, USA
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-4703-7/18/06. . . $15.00

https://doi.org/10.1145/3183713.3183734

Figure 1: The path of a tuple through the memory levels of

a coprocessor environment.

PCIe / OpenCAPI / NVLink. A widely-acknowledged problem

is the data transfer bottleneck between the host system and the

coprocessor [9], typically via PCIe. Due to the coprocessor’s limited

memory capacity, data transfers are necessary during computations.

With an order of magnitude between internal and external memory

bandwidth, database developers are challenged with data locality-

aware algorithms that efficiently use inter-processor communica-

tion. Recent technologies, i.e., OpenCAPI and NVLink, increase the

bandwidth over PCIe, shifting the bottleneck towards GPU global

memory.

GPU Global Memory. The fine-grained data parallelism of a GPU

typically requires that kernels perform additional passes over the

data. Performing multiple passes, however, can significantly inflate

memory loads and can cause a bandwidth bottleneck especially for

random memory accesses.

Main-Memory. A recent development are integrated GPU-style

coprocessors that can directly access the memory of the host CPU.

Such an Accelerated Processing Unit (APU) allows to use massively

parallel processing without additional data transfers. However, the

available memory bandwidth is lower than that of a dedicated GPU

(30GB/s vs. hundreds of GB/s).

Scratchpad Memory1. Scratchpad memory is located on-chip and

placed next to each compute unit of a GPU. It can be controlled as

an explicit cache for low-level computations and offers a very high

bandwidth. However, the capacity is limited to 16 KB – 96KB per

core which makes it challenging to use it for large-scale computa-

tions.

1
We use the term scratchpad memory to disambiguate shared memory for CUDA and

local memory for OpenCL.

https://doi.org/10.1145/3183713.3183734
https://doi.org/10.1145/3183713.3183734
https://doi.org/10.1145/3183713.3183734


Run-to-finish – input: R, output: P

move R Host→ GPU

tmp← op1(R) /* invoke first GPU kernel */

P← op2(tmp) /* invoke second GPU kernel */

move P GPU→ Host

Figure 2: Run-to-finish execution of two successive kernels.

Contributions

In this work, we present our new query compiler HorseQC. We

designed HorseQC to account for the hierarchical memory struc-

ture of coprocessor environments and for the inherent bandwidth

limitations. Our main contribution is to show how various exist-

ing techniques can be combined and extended to build an efficient

query processing engine on coprocessors.

(1) We analyze the bandwidth limitations in several execution

models (cf. Section 2).

(2) We show away to integrate query compilation into a coprocessor-
accelerated DBMS (cf. Sections 3 and 4).

(3) We present solutions to efficiently process all processing

steps of a pipeline in a single pass over the data (cf. Sections
5 and 6).

(4) We describe how these parts play together in an overall

system (Section 7) and evaluate our proposed concepts (cf.

Section 8).

(5) We discuss our results (cf. Section 9) and related work (cf.

Section 10), and conclude in Section 11.

GPU-accelerated database systems have used different macro exe-
cution models in the past. Orthogonally, our work describes a micro
execution model that can be integrated with different existing macro

execution models.

2 MACRO EXECUTION MODEL

We first analyze macro execution models that various systems have

used in the past. To evaluate a relational query operator, state-of-

the-art systems will select a number of primitives and execute the

corresponding kernel sequence on the GPU. To feed the kernels

with data, the macro execution model defines how data transfers

will be interleaved with kernel executions. Here, the data move-

ment from kernel to kernel may result in additional bandwidth

demand as compared to conventional systems. To understand the

effect, we study the implications that existing macro execution

models have on the use of bandwidth at multiple levels (PCIe, GPU

global memory, etc.). As a poster child, we profiled the execution of

Query 3.1 from the star schema benchmark (SSB) [24]. The query

was executed at scale factor 10 with CoGaDB [6] on a NVIDIA

GTX970 GPU
2
(details are given in Appendix Section A). In the

following, we discuss three macro execution models: run-to-finish,
kernel-at-a-time and batch processing.

2
We measured 146.1GB/s GPU global memory bandwidth in a host system with

16GB/s bidirectional PCIe bandwidth.

Kernel-at-a-time – input: R, output: P

foreach ri in R=r1 ∪ · · · ∪ rm do

move ri Host→ GPU

mi ← op1(ri) /* invoke first GPU kernel */

move mi GPU→ Host (assemble into M)

foreachmj in M=m1 ∪ · · · ∪mn do

move mj Host→ GPU

pj ← op2(mj) /* invoke second GPU kernel */

move pj GPU→ Host (assemble into P)

Figure 3: Kernel-at-a-time achieves scalability by transfer-

ring I/O for each kernel through PCIe.

2.1 Run-To-Finish (Not Scalable)

A straightforward way to execute a sequence of kernels is to first

transfer all input, execute the kernels, and finally transfer all output.

The approach, illustrated in Figure 2, has the advantage that inter-

mediate data remains in GPU global memory in-between kernel

executions and no significant PCIe transfers are necessary. How-

ever, run-to-finish has the disadvantage that it only works if all
input, output, and intermediate data is small enough to fit in GPU

memory. Run-to-finish macro execution models are used, e.g., by

Ocelot [12] and CoGaDB [6]. The lack of scalability leads us to

evaluate the following execution models.

2.2 Kernel-At-A-Time

To process large data on coprocessors, we can execute each kernel

on blocks of data. The pseudocode of this approach is shown in

Figure 3. Processing blocks of data requires algorithm choices that

can deal with partitioned inputs. Joins or aggregations, for instance,

can only be processed in this mode if their internal state (e.g. a hash

table) can fit in GPU global memory.

We analyze the data movement of kernel-at-a-time for SSB Query

3.1. Blocks are first moved via PCIe from the host to the coprocessor

and then read by the kernel fromGPU global memory (output passes

both levels vice-versa). In this way, the data volumes for GPU global

memory accesses equal the data volume transferred via PCIe, plus

the cost to build up the hash tables in GPU global memory (0.4 GB

here). Figure 5a shows the resulting data movement.

In the figure, the arrows annotated with data volumes represent

PCIe transfers and GPU global memory accesses. We aggregated the

data volumes by kernel types (e.g. scan, gather) and show only the

most important kernels responsible for 88.2% of the memory traffic.

Given a PCIe bandwidth of 16GB/s, all PCIe transfers together

require at least 350ms to complete. This exceeds the aggregate time

for GPU global memory access by a factor of 5.8x. For kernel-at-a-

time processing the PCIe link is clearly the bottleneck.
Kernel-at-a-time processing is used to scale out individual op-

erators [16]. Unified virtual addressing (UVA) produces the same

low-level access pattern, albeit transparent to the system developer.

2.3 Batch Processing

We can alleviate PCIe bandwidth limitations by rearranging the

operations of kernel-at-a-time. Instead of running kernels until a



Batch Processing – input: R, output: P

foreach ri in R=r1 ∪ · · · ∪ rm do

move ri Host→ GPU

tmpi ← op1(ri) /* invoke first GPU kernel */

pi ← op2(tmpi) /* invoke second GPU kernel */

move pi GPU→ Host (assemble into P)

Figure 4: Batch processing executes multiple kernels for

each block that is transferred via PCIe.

column is processed, we can short-circuit the transfer of intermedi-

ate results to the host. Batch processing achieves this by reusing

the output of the previous operation (op1) as input for the next
operation (op2) instead of transferring to the host. This is applicable
whenever intermediate batch results can be kept within GPU global

memory. The corresponding pseudocode is shown in Figure 4.

We analyze the data movement cost with the example of SSB

Query 3.1. The GPU global memory load is the same as for kernel-

at-a-time processing, because each kernel reads and writes I/O to

GPU global memory. We obtain the PCIe transfer cost using the

transfer volumes of input columns of the query and output of the

final result. Figure 5b shows the resulting data movement cost.

Batch processing reduces the amount of PCIe transfers by a factor

of 8.8x. This shows that transferring data in blocks and performing

multiple operators per block allows scalability and increases the

efficiency compared to kernel-at-a-time.

Batch processing macro execution models have been used for

coprocessing by GPUDB [36] and Hetero-DB [37]. Wu et al. [33]

describe the concept as kernel fission and detect opportunities to

omit PCIe transfers automatically.

Limitations. The lower amount of PCIe traffic can expose GPU

global memory bandwidth as the next limitation. Batch processing

reduces the PCIe transfer cost, but the amount of GPU global mem-

ory access remains unaffected. The memory access volume inside

the device is now an order of magnitude larger which, despite the

high bandwidth, takes longer to process than the PCIe bus transfers

(Figure 5b). For this reason, batch processing SSB Query 3.1 is not
limited by PCIe transfers, but by accesses to the (high-speed) GPU

global memory. Since in typical query plans, I/O and hashing oper-

ations both address the same GPU global memory, the situation, in

fact, may arise frequently in real-world workloads.

Other Queries. A limiting amount of global memory access can

easily occur when many kernels are executed one after another.

Karnagel et al. [15] show that a simple query with one selection and

one aggregation operator already uses 13 kernels for processing.

To determine the prevalence of GPU global memory bandwidth

limitations, we profiled several queries from the TPC-H and SSB

benchmark sets
3
. We look at the ratio of memory access to PCIe

traffic as number of passes to assess the load on memory and bus

links. Table 1 shows the number of passes for queries from the TPC-

H and SSB benchmarks. With a symmetric memory load, we can

afford
146GB/s

2·16GB/s
∼ 4 to 5 passes before being limited by GPU global

3
Note that CoGaDB does not support all TPC-H queries yet.

build

GPU MEMMEM CORES

probe

gather

prefix sum

0.6 GB

0.4 GB

1.5 GB

1.0 GB

2.2 GB

1.0 GB

1.0 GB

0.7 GB

0.6 GB

1.5 GB

2.2 GB

1.0 GB

1.0 GB

0.7 GB

PCIe Transfers
8 GB   ~350 ms

GPU Global Memory
8.4 GB          ~58 ms

1.0 GB

(a) kernel-at-a-time

0.9 GB

< 0.01 GB

build

GPU MEMMEM CORES

probe

gather

prefix sum

0.6 GB

0.4 GB

1.5 GB

1.0 GB

2.2 GB

1.0 GB

1.0 GB

0.7 GB

PCIe Transfers
0.9 GB   ~56 ms

GPU Global Memory
8.4 GB           ~58 ms

(b) batch processing

Figure 5: Data movement for processing SSB Query 3.1.

While the throughput of (a) is limited by PCIe transfers, (b)

exposes GPU global memory access as the next bottleneck.

Query Passes Query Passes Query Passes

ssb11 7.5 ssb34 2.2 tpch5 7.2

ssb12 6.9 ssb41 7.4 tpch6 6.2

ssb13 6.7 ssb42 3.9 tpch7 9.0

ssb21 9.6 ssb43 3.5 tpch9 9.0

ssb22 9.2 tpch1 15.5 tpch10 5.8

ssb23 9.1 tpch2 14.5 tpch15 6.3

ssb31 11.0 tpch3 5.2 tpch18 38.5

ssb32 7.9 tpch4 6.6 tpch20 10.5

ssb33 7.5

Table 1: Number of passes for benchmark queries. Out of 25

queries, 9 are definitely limited by GPU global memory.

memory. While memory can adapt to asymmetric read and write

loads, PCIe can service each direction with at most 16GB/s. This

changes the number of affordable passes for asymmetric workloads

to
146GB/s

16GB/s
∼ 9 in the worst case. Queries that require more than

9 passes are always limited by memory bandwidth before being

affected by the PCIe bottleneck. In Table 1 this is the case for 9 out

of 24 queries, which indicates that it is crucial to reduce the GPU

global memory load.

3 MICRO EXECUTION MODEL

Tuning the macro level helps to remove the main bottleneck for scal-

ability: data transfers over PCIe. However, the macro level change

exposes a new bottleneck: the memory bandwidth of GPU global



memory (cf. Section 2.3). To utilize the GPU global memory band-

width more efficiently, we need to apply additional micro-level

optimizations usingmicro execution models and combine them with

the macro execution model (batch processing) to achieve scalability

and performance.

Existing micro-level optimizations such as vector-at-a-time pro-
cessing [38] and query compilation [23] utilize memory bandwidth

more efficiently by leveraging pipelining in on-chip processor caches.

Therefore, both techniques are promising candidates for opening up

the bottleneck of limited GPU global memory bandwidth. However,

vector-at-a-time processing and query compilation are designed

in the context of CPUs. While it is highly desirable to apply both

techniques in the context of GPUs, mapping the techniques from

CPU to GPU is challenging, which we discuss in the following.

Vector-At-A-Time. To mediate the interpretation overhead of Vol-

cano and the materialization overhead of operator-at-a-time, vector-

at-a-time uses batches that fit in the processor caches. First, this

reduces the number of getNext() calls from one per tuple to one

per batch. Second, this makes materialization cheap because oper-

ators pick up the cached results of previous operators. On CPUs,

vector-at-a-time benefits from batch sizes that are large enough to

limit the function call overhead and small enough to fit in the CPU

caches.

On GPUs, the compromise between tuple-at-a-time and full ma-

terialization strategies is not a sweet spot, however. Kernel invoca-

tions are an order of magnitude more expensive than CPU function

calls. Furthermore, GPUs need much larger batch sizes to facili-

tate over-subscription and out-of-order execution. This leads to the

problem that batches, which fit in the GPU caches, are too small to

be processed efficiently. Alternatively, more recent GPUs support

pipes to move a local execution context from one kernel to another.

This has been used by GPL [25] for query processing. However,

this technique still introduces an overhead for switching the exe-

cution context. In addition, it is limited to a depth of 2–32 kernels

depending on the microarchitecture.

Query Compilation. Query compilation is a commonplace tool

for avoiding excessive memory transfers during query processing.

Compiling code for incoming queries becomes feasible with low-

level code generation and achieves performance close to hand-

written code. The compilation strategy of Neumann [23] keeps

intermediate results in CPU registers and passes data between

operators without accessing memory at all. The generated code

processes full relations or blocks of tuples using a sequential tight

loop.

To use query compilation on GPUs, we must integrate fine-

grained data-parallelism into compiled queries. The parallelization

strategy of HyPer [18], however, uses a coarse-grained approach,

which allows it not to break with the concept of tight loops. In fact,

HyPer does not use SIMD instructions [23] and thus omits fine-

grained data-parallelism. Even on CPUs with a moderate degree

of parallelism in SIMD instructions, database researches are chal-

lenged with integrating query compilation and SIMD instructions

[20, 30].

In summary, using a micro-level technique for efficient on-chip

pipelining on GPUs remains a challenge. Applying any of the com-

monplace techniques makes it necessary to combine at least three

things that are hardly compatible: fine-grained data-parallel process-

ing, extensive out-of-order execution, and deep operator pipelines.

To achieve our goal of mitigating the GPU global memory bottle-

neck, we need to develop a new micro execution model which we

build up step by step in the following sections.

4 DATA-PARALLEL QUERY COMPILATION

In the following, we show a micro-level execution strategy that

reduces GPU global memory access volumes by means of pipelining

in on-chip memory. To this end, we show the approach of our query

compiler HorseQC and its integration with the operator-at-a-time

execution engine of CoGaDB [6].

4.1 Fusion Operators

HorseQC extends the operator-at-a-time approach with the con-

cept of fusion operators, operators that embrace multiple relational

operations. A fusion operator replaces a sequence of conventional

operators in the physical execution planwith amicro-level-optimized

pipeline. The data movement within a fusion operator can be im-

proved by applying different micro level execution models.

4.2 Micro-Level Pipeline Layout

To keep matters simple, we first apply query compilation with the

operator-at-a-time primitives described byHe et al. [11]. This choice

is not limiting as other data-parallel primitives may be used instead.

However, a commonality of different primitive sets is that they use

relational primitives with relational functionality (e.g. select) and

threading primitives with thread coordination functionality (e.g.

map, prefix sum, gather).

select

prefix sum

aligned write

hash

prefix sum

aligned write

project

prefix sum

aligned write

aligned write

prefix sum

join probe

op1

op2 op3

op4

Figure 6: Operator-at-a-time

State-Of-The-Art. We look at

a query with two input tables

and a total of four relational op-

erators op1, · · · ,op4. Operator-
at-a-time runs three primitives

per operator (cf. Figure 6): The

first pass executes the relational

primitive (e.g. select, project)

and counts the number of out-

puts of each thread. The second

pass computes a prefix sum to

obtain unique per-thread write

positions. The third pass per-

forms an aligned write. This
means that the output values

are written into a dense array

and may include executing the

relational primitive for a second

time to produce the output values. Thus, the query is processed in

twelve operations with separate GPU global memory I/O.

Multi-Pass Query Compilation. By grouping operations that are

applied to the same input table, the query may be processed with

two fusion operators. Within each fusion operator,



count_kernel( ... ) {
  int tid = get_thread_offset(); 
  // select
  ...
  // join probe (check match)
  ...
  flags[tid] = is_selected;
}

write_kernel( ... ) {
  int tid = get_thread_offset();
  int wp = prefix_sum[tid];
  bool is_selected = flags[tid];
  if(is_selected) {
    // join probe (build tuple)
     ...
    // project/write
     ...
    }
}

prefix sum

...

Operator-at-a-time Data-parallel query compilation

project

prefix sum

aligned write

join probe

prefix sum

aligned write

select

prefix sum

aligned write

op2

op1

opn

Figure 8: Transforming data-parallel operator-at-a-time

into compiled execution. The functionality of each operator

maps to designated positions in the generated kernels.

fusion
operator 1 

fusion
operator 2

select / 
hash

prefix 
sum

aligned 
write

prefix 
sum

aligned write

project / 
join probe

Figure 7: Multi-pass QC

we apply the following query com-

pilation strategy (cf. Figure 7): We

extract the prefix sum from the op-

erators and execute it only once be-

tween all relational primitives and all

aligned writes. The relational primi-

tives are then compiled into one ker-

nel called count, which is executed

before the prefix sum. The aligned

writes are compiled into one kernel

called write, which is executed af-

ter the prefix sum. In this way, we

apply kernel fusion [31] to the four

relational primitives and to the four

aligned writes. The same query is pro-

cessed with six operations and the

operations in compiled kernels com-

municate through on-chip memory instead of GPU global memory.

4.3 Instancing Relational Code Templates

Webriefly describe the process used byHorseQC to compile OpenCL

code for the count and write kernels by an example of the pro-

jection operation (similar to [5]). Each primitive, except for prefix

sum, is mapped to a designated position in the count kernel or in
the write kernel (cf. Figure 8). The query compiler receives a C++

object that describes the primitive’s functionality (e.g. a tree for

an arithmetic expression) and maps the semantics to fragments of

OpenCL. To illustrate, πrevenue←price*discount would compile to

revenue[wp] = price[tid] * discount[tid];.

The global index tid is used to access the input columns and the

write position wp is used for the output columns.

0.9 GB

0.1 GB

PCIe Transfers 
0.9 GB   ~56 ms

GPU Global Memory 
4.4 GB          ~31 ms

< 0.01 GB

count kernel

input: 0.7 GB 4.3 GB

write kernel

0.5 GB

prefix sum

0.3 GB

0.5 GB

0.3 GB

probe: 0.9 GB

2.4 GB

< 0.01 GB

input: 1.0 GB 4.6 GB

probe: 0.9 GB

2.3 GB

On-Chip Memory
14.4 GB     ~12 ms

GPU 
MEMMEM CORES

SCRATCHPAD MEM/
REGISTERS/CACHE

Figure 9: Data movement for data-parallel query compila-

tion with three phases.

The instantiated code is placed in a code frame, which has several

invariant features, e.g., thread offset computations, a surrounding

loop, as well asmanaged features such as a parameter list. Projection

is positioned in a conditional clause of the write kernel that is

entered by all threadswith a positive is_selected flag (cf. Figure 8).
Other operations may include function calls for reductions or hash

table operations.

4.4 Memory Access and Limitations

In Figure 9, we illustrate the bandwidth characteristics of our ex-

ample query when using code generation with three phases. The

figure shows the behavior of the three-phase micro execution model

described above with the batch processing macro execution model.

To analyze the implications of forwarding intermediate results in

the generated kernels through registers and scratchpad memory,

we extended the illustration with an additional GPU-internal layer

of memory.

GPU global memory access has previously been the bottleneck

for query execution. Here the count kernel accesses 1.7 GB in GPU

global memory, the prefix sum computation 0.8 GB, and the write
kernel 1.9 GB respectively. This is a reduction by factor 1.9x com-

pared to batch processing. In the generated kernels, a substantial

amount of memory traffic has moved to on-chip memory. In on-chip

memory, the access volume of 14.4 GB is not a limiting factor due

to the extremely high bandwidth of 1.2 TB/s of scratchpad memory.

Although the reduced GPU global memory traffic may suggest

that the approach eliminates the bottleneck, real world queries still

experience limitations. In fact, Section 8.6 shows that compilation

with three phases can still not saturate PCIe for 9 out of 12 SSB

queries. This is because the query complexity prevents the strategy

from utilizing the full GPU global memory bandwidth. Therefore,



we investigate ways to further increase the processing efficiency in

the next section.

5 PROCESSING PIPELINES IN ONE PASS

The previous execution model relied on a typical programming

concept of GPUs that executes operations with multiple kernels.

The kernels that execute the actual work for the operation are

interleaved with kernels that execute prefix sum computations.

To further improve the processing efficiency, we have to break

with this concept. With a new micro execution model, we avoid

round trips to GPU global memory, which are caused by multi-pass

implementations. This enables us to radically reduce GPU global

memory traffic and lift the bandwidth bottleneck.

Compound Kernel. Kernel fusion brought reduction operations

(e.g. prefix sum) as boundaries into the spotlight.

fusion
operator 1 

fusion
operator 2 

aligned 
write

select / 
hash

prefix 
sum

aligned write

prefix 
sum

project / 
join probe

Figure 10: Compound kernel

Previously, we computed the prefix

sum between two generated kernels
to obtain write positions. Instead

of two separate kernels, we now

generate only one compound ker-
nel that integrates the prefix sum

computation (cf. Figure 10) and this

eliminates multiple passes. Com-

puting write positionswithin a gen-
erated kernel makes it possible to

process pipelines in one pass with-

out intermediate materialization.

In this way, each fusion operator is

executed by a single compound ker-

nel. In the following, we look at im-

plementation strategies for reduc-

tion operations that enable fully

pipelined processing.

5.1 Pipelining Data-Parallel Reductions

Reductions are a poster child for data-parallel algorithms [14] and

have been investigated in detail regarding complexity, efficient

implementations, and their applications. In the context of database

systems, they are especially relevant in the context of prefix sums

[2, 8] and aggregations. The latter involves two techniques: Simple

reductions aggregate to a single tuple and segmented reductions

compute grouped aggregates on sorted data [29]. As reductions

have inherent parallel dependencies, they are typically implemented

in a hierarchical structure that involves running multiple kernels in

sequence. This approach is applied in state-of-the-art coprocessor

database systems such as Ocelot [12], CoGaDB [6], GPUDB [36],

Kernel Weaver [32] and Voodoo [26].

Atomic Prefix Sum. The separation into multiple reduction ker-

nels with intermediate materialization is an obstruction for pipelin-

ing. To introduce a pipelined implementation, let us look at a very

simple sequential prefix sum at first:

for(i=0; i<n; i++)
if(flags[i]) prefix_sum[i] = sum++;

1

0

1

0

0

1

1

0

0

1

2

3

a

a

a

a

a

a

a

a

1

2

0

3

a

b

a

b

b

a

a

b

a

b

a

b

b

a

a

b

input flags prefix
sum

result

input atomic
prefix
sum

result

on
e 

ke
rn

el

(a) (b)

if(v==‘a’) 
  atom_add(,1)

sum

...

... ...

...

...

...

1 execution order

3

2

1

4

Figure 11: The computation of a prefix sum for writing se-

lected elements to a dense array (a) can be parallelized using

atomic operations (b).

The sequential prefix sum loops through the array flags while

writing and incrementing sum for every valid entry. Figure 11a il-

lustrates the use of the prefix sum for a dense write of selected input

elements. When parallelizing the for-loop, this implementation

runs into the issue of many threads trying to increment sum at the

same time. To resolve this parallel dependency, atomic operations

can be used to isolate parallel modifications of the same memory

address. Atomic operations ensure a consistent state, yet are exe-

cuted in an undefined order. The following code executes an atomic
prefix sum to compute unordered, dense write positions:

if(is_selected) wp = atom_add(&sum, 1);

Threads contribute an offset of 1 to the sum at address &sum by

executing the expression conditionally. Each atomic_add(..) re-
turns the previous state of sum. Thus, threads immediately obtain

a unique global write offset as wp in register. This is illustrated in

Figure 11b.

The use of atomic operations causes a break with the semantic

of the prefix sum because the result has no defined order. For the re-
lational semantic, however, only the uniqueness of output positions
is critical. Output permutations lead to non-aligned GPU global

memory access where adjacent threads do not write to adjacent

memory addresses. The impact on write throughput, however, is

limited, because the filter semantics lead to non-aligned access for

separate prefix sums too.

5.2 Code Generation for Compound Kernels

Computing write positions within a generated kernel allows us

to contract the three phases within a fusion operator into one

compound kernel. This simplifies code generation for two reasons

(cf. Figures 8 and 12): First, selection flags and write offsets remain

in registers and do not have to be passed between kernels through

materialization. Second, relational primitives that occur both in

the count and in the write kernel are executed only once in the

compound kernel, e.g., we probe the hash table to check the number

of matches and keep the payload in registers for projection. This

becomes possible in the compound kernel as the register content

remains valid until projection. In Appendix E, we show the full

code for an exemplary query.

To instantiate relational primitives, we follow a similar procedure

as previously described, but now we use only one kernel code

frame: All relational primitives that affect the number of outputs



compound_kernel( ... ) {
  int tid = get_thread_offset(); 
  // select
  ...
  // join probe
  ...

  //atomic prefix sum
  if(is_selected) 
    wp = atom_add(&sum, 1);
  
  if(is_selected) {
    // project/write
    ...
  }
}

Figure 12: The compound kernel integrates all three

pipeline phases into one kernel.

are placed before the atomic prefix sum and all relational primitives

that produce output after it. The atomic prefix sum is instantiated

from an invariant code template that takes the is_selected flag
as input and assigns the write position wp as output. Both the input

flag and the write position are available in registers.

5.3 Memory Access and Limitations

The compound kernel micro execution model further reduces GPU

globalmemory access by a factor of 2.4x to 1.8 GB (see Figures 9 and 13).

Compared to operator-at-a-time, this is a reduction by a factor of

4.7x. Pipelining the prefix sum avoids round trips to GPU global

memory that are necessary in the three-phase micro execution

model. The compound kernel has only a minimal GPU global mem-

ory access volume for input, output and hash table access. Now

the on-chip traffic is balanced with the GPU global memory traffic

when relating each memory volume to the available bandwidth.

The described approach heavily relies on atomic operations. This

has the disadvantage to cause limitations for parallelism. Although

the execution order is undefined, the operations are sequentialized
and reducing n values takes O(n) parallel steps. However, Egiel-
ski et al. [7] show that recent hardware support makes atomic

operations competitive to parallel algorithms. Still, the integrated

prefix sum puts a significant pressure on the atomic functional units,

which prevents pipeline kernels from utilizing full GPU global mem-

ory bandwidth. In the following, we address this issue and show

how the efficiency of parallel reductions in compound kernels can

be increased.

6 EFFICIENT PIPELINED REDUCTIONS

Previously, we showed a way to pipeline reductions in generated

kernels using atomic operations. This benefits the memory effi-

ciency, but at the same time exposes the atomic functional units

of a GPU as the bottleneck. This is especially critical because sev-

eral operations that are combined in the compound kernel rely on

atomic isolation as well, i.e., state-of-the-art implementations of

hash joins and hash aggregations [16] use atomic operations to

isolate hash table inserts.

4.3 GB

0.5 GB

0.3 GB

2.4 GB

3.7 GB

2.3 GB

0.9 GB

< 0.01 GB

input: 0.9 GB

probe: 0.9 GB

< 0.01 GB

Figure 13: Data movement for query compilation with one

pass. The compound kernel reduces data movement by 4.7x.

This section addresses performance bottlenecks that occur when

utilizing atomic reductions to pipeline relational operators. We

show a new technique local resolution, global propagation, that is
used by HorseQC to pipeline prefix sums, single tuple aggregation

and grouped aggregation efficiently. The approach reduces the

pressure on atomic functional units and offers tunability regarding

hardware and thread group granularity. We describe the approach

in the following.

6.1 Local Resolution, Global Propagation

Similar to other efficient GPU implementations such as in CUB [21],

local resolution with global propagation consists of two levels of

reductions. In contrast to other techniques, local resolution, global

propagation always uses pipelined techniques on both levels. Lo-

cal resolution is an additional pre-reduction step, computed by a

local thread group, whereas global propagation is the same atomic

reduction as described in Section 5. We use the term Collaborative
Thread Array (CTA) for the thread groups in local resolution. CTAs

can either match the workgroup (AMD) or thread-block (NVIDIA)

size of the GPU kernel or work on a finer granularity.

The following code, illustrated by Figure 14, executes an atomic

prefix sum using local resolution, global propagation:

l_os = cta_prfx(flags, &cta_total); //local res.
if(cta_thread_idx == 0)

g_os = atom_add(&sum, cta_total); //global prop.
wp = l_os + g_os;

First, each CTA executes cta_prfx to compute a local prefix

sum on flags. This is the local resolution step. We implement

cta_prfx with SIMD reductions (cf. Intra-Warp Scan Algorithm by

Sengupta et al. [28]). The function returns the local offset l_os and
the sum of all flags assigned to the CTA cta_total. Second, one
thread of each CTA adds cta_total atomically to a global counter



atom_add(...)

sum

2

3

1

5

... +8

+5

+10

+0

...

cta prefix sum 

local 
offsets

input

total
global 
offsets

1

0.
.
.

2

0.
.
.

0

0.
.
.

4

0.
.
.

write 
positions

9

8.
.
.

7

5.
.
.

10

10.
.
.

4

0.
.
.

Local Resolution
atomic add 

Global Propagation

... ...

... ...

1

4

2

3

1 execution order

Figure 14: Computing write positions with local resolution

(local offset), global propagation (global offset).

sum. This is the global propagation step. The call to atom_add re-
turns the global offsets g_os. Finally, the write position wp is the

sum of l_os and g_os.
Compared to the simple atomic prefix sum, we now add pre-

aggregates instead of 1/0 flags to sum. Therefore, each atomic add

obtains ranges of output indices instead of a single index. We make

the analogy of allocating segments of output memory to CTAs. The

order of the allocations however is undefined (see execution order

in Figure 14). This leads to output that is ordered within segments
and permuted between segments. Further investigation revealed

that, due to the GPUs stream processing engine, the permutations

exhibit locality, leading to semi-ordered output data.

Local Resolution Mechanisms. Themechanisms used for local res-

olution are interchangeable. This makes it possible to tune pipelined

reductions and to apply them in different operations (cf. Appendix

Section C for more details). Figure 15a and 15b show the integration

of work-efficient reductions [3] and SIMD reductions [28]. Both

techniques have different thread group granularities and we can

choose between them to adapt to the hardware parallelism of dif-

ferent processors. Figure 15c shows the use of pipelined segmented

reductions for grouping. First, segmented reductions compute pre-

aggregates in scratchpad memory. Second, global propagation in-

serts the pre-aggregates into a hash table with an atomic operation.

The ability to control scratchpad memory opens up a new design

space for grouping algorithms in pipelined computations (e.g. han-

dling frequent items). A similar approach PLAT [35] aggregates

frequent grouping keys in a table local to each CPU core.

7 DBMS INTEGRATION

We integrated our query compiler HorseQC into the open source

DBMS CoGaDB, leveraging the built-in code generator Hawk [5].

The DBMS uses a columnar data layout and processes full columns

operator-at-a-time on GPUs and CPUs. We use the front-end and

the storage layer of CoGaDB, and HorseQC adds a compiler-based

execution engine.

We added two components to the DBMS: 1. a query compiler

that compiles fusion operators to GPU code (cf. Section 4) and 2.

atomic
reduce

atomic 
hash aggregate

k v

xx  xxx xxxxx

xx  xxx xxxxx

xx  xxx xxxxx

xx  xxx xxxxx

atomic
reduce

(a) (b) (c)

Figure 15: Local resolution mechanisms: (a) Work-efficient

reduction (b) SIMD reduction (c) segmented reduction.

a translation layer that identifies fusion operators and drives the

query compiler. Currently, there are two different workflows for

the translation layer:

(1) CoGaDB parses the SQL code for a query and generates

a query plan. The translation layer applies the produce/-

consume model [23] to the query plan to determine fusion

operators. We use this approach for the SSB queries and

TPC-H Q6.

(2) The translation layer parses a JSON file that describes the

query plan including the fusion operators. This enables us to

process queries when (1) cannot handle the queries via SQL

(e.g. correlated subqueries or automatic unnesting). This is

used for the other TPC-H queries.

When the fusion operators are defined, the translation layer drives

the query compiler to compile and execute. Finally, decompression

of dictionary compressed columns and sorting are executed by

CoGaDB’s original execution engine.

8 EVALUATION

Section 2.1 showed that query coprocessing in existing macro ex-

ecution models is sensitive to memory bandwidth bottlenecks on

various hierarchical levels. We proposed several micro execution

models that allow to remove memory indirections to achieve a

more efficient use of bandwidth. In this section, we evaluate our

approaches and carefully assess bandwidth and throughput to show

several benefits.

The experimental study is structured as follows: First, we eval-

uate the micro execution models. Therefore, we execute specific

queries to analyze the reduction performance of the proposed tech-

niques in Experiments 1 and 2. Then, we evaluate the micro execu-

tion models for the SSB and TPC-H benchmarks in Experiments 3

and 4. Second, we analyze the integration of our micro execution

model with the batch processing macro execution model. Therefore,
we analyze the real-world benefits of our approach with a compari-

son of end-to-end performance in Experiment 5 and a scalability

analysis in Experiment 6. Note that all experiments, except for

Experiment 6, were executed with scale factor 10.

8.1 Processing Techniques

There are three micro execution models in HorseQC that result

from the paper. Table 4 in the appendix provides implementation

details. The goal of ourmicro executionmodels is to use themwithin

macro execution models to improve performance. Therefore, it is



Model Type Archi- Cores Scratch B/W

tecture pad (KB) (GB/s)

GTX970 (NV) GPU Maxwell 13 96 146.1

GTX770 (NV) GPU Kepler 8 48 167.6

RX480 (AMD) GPU Ellesmere 32 32 104.9

A10 (AMD) APU Godavari 8 32 18.7

Table 2: Coprocessors used in the evaluation.

select lo_extprice * lo_discount + lo_tax as revenue
from lineorder
where lo_quantity between 25 - x and 25 + x

Figure 16: Query 1 is a simple selection and projection query

inspired by the star schema benchmark.

crucial to achieve a higher throughput than PCIe when executing

queries. We show the benefit of our approaches by comparing them

to an operator-at-a-time micro execution model. In this way, we

analyze the benefit of moving data transfers between relational

operators to the on-chip level.

Multi-pass The first approach separates reductions from the gen-

erated kernels, which leads to an execution in multiple passes (Sec-

tion 4). Each reduction is executed on materialized data using the

boost::compute library.
Pipelined The second approach integrates reductions into a fully

pipelined kernel using atomic operations (Section 5). By using

atomic operations for each reduction input, the approach is an

instance of local resolution, global propagation that has no local

resolution step.

Resolution The third approach increases the efficiency of pipelined

reductions with local resolution methods like pre-aggregation (Sec-

tion 6). We differentiate between local resolution implementations

using Resolution:SIMD for SIMD reductions and Resolution:WE
for work-efficient reductions.

Operator-at-a-time We use CoGaDB 0.4.1, which processes full

columns of data in each operator with CUDA kernels. It features

a run-to-finish macro execution model and an operator-at-a-time

micro execution model.

8.2 Baselines

PCIe transfer The PCIe transfer time for transferring input and

output data between the host’s main-memory and GPU global mem-

ory. It is the target time for micro execution models for balancing

throughput and PCIe bandwidth. The PCIe transfer time is shown

in each graph with a dashed line ( ).

Memory bound The GPU global memory bound execution time is
the time for accessing the data. As each approach has to read the

input columns and write the output columns, the baseline is a lower

bound on the kernel execution time. We indicate it with a solid line

( ) in each graph.

8.3 System Configuration

For the experiments, we use three dedicated GPUs with PCIe gen

3.0 links and one APU that accesses main-memory directly. Table 2

0 0.5 1

0

20

40

GTX970

0 0.5 1

0

20

40

60

GTX770

0 0.5 1

0

50

100

150

selectivity

k
e
r
n
e
l
t
i
m
e
m
s

RX480

0 0.5 1

0

200

400

A10

Multi-pass (A1) Pipelined (A2)

Resolution:WE (A3) Resolution:SIMD (A3)

PCIe transfer Memory bound

Figure 17: Projection query executed with different ap-

proaches. Integrating prefix sums into kernels allows fastest

execution.

specifies the GPU models and shows hardware properties. The

amount of scratchpad is available per core. The reported bandwidth

refers to GPU global memory for the GPUs and to main-memory

for the APU. It was measured using on-GPU memcpy of 1GB data.

We measured bidirectional PCIe transfers between CPU and GPU

as 12.1GB/s.

Both NVIDIA GPUs GTX770 and GTX970 run in a system with

an Intel Xeon E5-1607 CPU. We use the NVIDIA 364.19 driver and

CUDA Toolkit 7.5 with OpenCL drivers. The AMD RX480 GPU is

placed in a separate system with the A10-7890K APU. We use the

AMDGPU-Pro 16.40 driver for the GPU and the fglrx 15.201 driver

for the APU. Each system is running Ubuntu 14.04 and uses the

boost library 1.61.

We used the profiling tools nvprof 2.0.28 for NVIDIA hard-

ware and CodeXLGpuProfiler V4.0.511 for AMD hardware to

measure kernel execution times, PCIe transfers, and GPU global

memory access. For the measurements of kernel execution times,

we used both tools to profile individual kernels and sum up the

kernel execution times if multiple kernels are involved.

8.4 Experiment 1: Pipelined Prefix Sum

We compare several pipelined prefix sum techniques to one non-

pipelined technique for a query that filters and projects one table.

This allows us to analyze the benefit of integrating prefix sum

computations into single-pass kernels. We execute Query 1, shown

in Figure 16, and vary the selectivity in the range [0, 1] using x. By
running the experiment on four GPUs, we aim to assess the best

local resolution mechanisms for a given hardware. Figure 17 shows

the results.



2
2

2
5

2
8

2
11

2
14

10
1

10
2

10
3

10
4

10
5

PCIe

transfer

Memory

bound

number of groups

k
e
r
n
e
l
t
i
m
e
m
s

Op.-at-a-time

Pipelined (C2)

Resolution (C3)

Figure 18: Performance of grouped aggregations.

Observations. Pipelined techniques perform better thanMulti-
pass in most cases. Integrating the prefix sum computation into

single-pass kernels reduces the kernel execution times by factors up

to 6.3x. While processing withMulti-pass takes up to 328.6% of the

PCIe time, Resolution:SIMD uses only 101.3% of the PCIe time in

the worst case (selectivity 1.0, RX480). This shows that the approach

can saturate the bus bandwidth for a variety of configurations. On

the A10 there are no PCIe transfers and Resolution:SIMD increases

the overall throughput by factors of up to 1.6x over Multi-pass.
The results show that the local resolution step reduces the per-

formance impact of atomic operations. This becomes visible for

higher selectivity factors: Pipelined has higher executions times

because the strategy executes one atomic addition per output. Reso-
lution:SIMD and Resolution:WE however show good performance

across all selectivities due to local resolution.

Resolution:SIMD achieves the shortest kernel execution times in

most cases and allows memory bound processing on the GTX970.

On the GTX770, lowering the output size down to 0 does not affect

the execution time.We conclude that the GTX770 is compute-bound

earlier than the GTX970. The higher memory bandwidth of the

GTX770 leads to an increased throughput for atomic operations and

Pipelined can outperform Resolution:SIMD for selectivities below

10%. On the RX480 and on the A10 there is no definite advantage

for one of the reduction techniques. In the following, we only

use Resolution:SIMD and skip the other techniques for a clear

presentation.

8.5 Experiment 2: Pipelined Group By

We evaluate the effect of pipelined GROUP BY aggregations using
different techniques. We execute Query 3 (shown in Figure 26)

with Operator-at-a-time, Pipelined and Resolution. The query

groups all tuples of lineorder according to the computed attribute

lo_orderkey%x into sums. We vary the number of groups by in-

creasing x from 2 to 16384. We show the results of the experiment

on a GTX970 GPU in Figure 18.

Observations. The execution times of Operator-at-a-time do not

depend on the group size. The main cost factor is sorting the input

columns. Pipelined shows up to 11.1x lower execution times but

only for larger group sizes. For group sizes below 64, we observe

high execution times. This is caused by heavy contention of parallel

aggregation hash table inserts.

The bottleneck is resolved by Resolution which uses pre-aggre-

gations to reduce the contention. The results show that execution

times reduce by factors of up to 126x. However, the local pre-

aggregations have a limited effect on larger group numbers. This

explains the spike at 128 groups, where both pre-aggregation and

contention have an effect. While the approaches cannot saturate

PCIe when aggregating a full table, filters reduce the cost of group-

ing for real-world queries.

8.6 Experiment 3: Star Schema Benchmark

The previous experiments showed that pipelining specific reduction

operations helps to increase the throughput of query processing.

In this experiment, we analyze whether this behavior carries over

to real-world situations. To this end, we execute the SSB Queries
4

on the GTX970 GPU (other coprocessors in Appendix Section G.2).

We use Operator-at-a-time and two variants of our query com-

piler. HorseQC: Multi-pass uses pipeline breaking implementations

for reductions (A1, B1 and C1). HorseQC: Fully pipelined integrates

all pipeline operations in one kernel (using A3, B3 and C2). We

show the results of the experiment in Figure 19.

Observations. The bandwidth analysis in Section 2.1 showed that

4 out of 12 queries are limited by GPU global memory access in

operator-at-a-time processing.

• The kernel execution times of Operator-at-a-time show that

compute and latencies further increase the problem. While

PCIe would allow execution times between 60.6ms to 90.9ms ,
the kernel execution times take longer for 10 out 12 queries

with up to 295.5%.

• HorseQC: Multi-pass improves overOperator-at-a-time and
uses only 50.5% of the PCIe bandwidth transfer time in the

best case and 215.5% in the worst case. This shows that with-

out efficient pipelining of reduction operations, the benefit

of query compilation is limited.

• HorseQC: Fully pipelined lowers all kernel execution times

to a level that is consistently lower than PCIe transfer times.

This shows that compiling pipelines into one kernel with

local resolution, global propagation provides an execution

approach with sufficient throughput. Processing takes 9.7%

of the PCIe transfer time in the best case and 78.1% in the

worst case. For Queries 1.1, 1.2 and 1.3 kernel execution is

memory bound by GPU global memory access.

8.7 Experiment 4: TPC-H Queries

We execute and profile queries from the TPC-H benchmark [1] to

show the effect when relaxing the specific assumptions of the star

schema benchmark (e.g. using one centralized table). We select a

subset of queries based on the work by Boncz et al. [4] to capture

challenging aspects of the TPC-H benchmark, i.e., Q1, Q4, Q13,

and Q21 contain heavy aggregation, Q9, and Q18 contain heavy

joins, and Q4, Q19, and Q21 contain parallelism bottlenecks. We

modified 4 queries, because HorseQC currently does not support

4
We could not process SSB Query 2.2 as we do not support range predicates on

dictionary compressed columns yet.



Q11 Q12 Q13 Q21 Q23 Q31 Q32 Q33 Q34 Q41 Q42 Q43

0

50

100

150

200

250

PCIe transfer

Memory bound

k
e
r
n
e
l
t
i
m
e
m
s

HorseQC: Fully pipelined

HorseQC: Multi-pass

Operator-at-a-time

Figure 19: Performance of SSB queries.

Q1 Q4 Q5 Q6 Q7 Q9 Q13 Q17 Q18 Q19 Q21

0

200

400

k
e
r
n
e
l
t
i
m
e
m
s

Figure 20: Performance of TPC-H queries.

all operations, e.g., like expressions (cf. Appendix Section F for

details). The results of the experiment are shown in Figure 20. For

Q1, there is no result for HorseQC: Multi-pass, because the strategy

ran out of GPU memory. The results shown for Operator-at-a-time
are for all TPC-H queries supported by the DBMS.

Observations. The PCIe and memory bound baselines show

larger variations than for the SSB benchmark. This is mainly caused

by the join structure, e.g., Q13 joins three small tables, while Q17,

Q18, and Q21 join multiple instances of the largest lineitem table.

The kernel execution times show that HorseQC can improve

over operator-at-a-time by factors of up to 8.6x. For Q1, Q4, and Q9,

there are cases where Operator-at-a-time has shorter kernel execu-
tion times than compiled strategies. Further investigation showed

that in these cases Operator-at-a-time moves some operators to

the CPU, therefore the measurements cover a limited amount of

operations.

Comparing the variants of the query compiler, we observe that

HorseQC: Fully pipelined consistently improves over HorseQC:

Multi-pass by factors of up to 5.4x. HorseQC: Fully pipelined

achieves lower execution times than PCIe transfer times for 8 out

of 11 queries. For Q1, Q13, and Q18 the PCIe bandwidth cannot

be fully saturated. This is because the queries contain grouped ag-

gregations of unfiltered columns (cf. Experiment 2). The execution

times of HorseQC: Fully pipelined take 5.6% of the PCIe transfer

time in the best case and 268.1% in the worst case.

8.8 Experiment 5: Scalability

Due to the deeply integrated storage layer implementations of the

host DBMS CoGaDB, we were not able to build a fully scalable

version of HorseQC. For this reason, we perform a separate exper-

iment that integrates the Resolution micro execution model with

0 50 100 150 200 250 300

0

1

2

3

block size

21.6 GB

input size

scale factor

e
x
e
c
u
t
i
o
n
t
i
m
e
s

0.5MB

2MB

8MB

PCIe

Figure 21: End-to-end performance of star join computation

for different scale factors.

the batch processing macro execution model for the star join from

SSB Query 3.1. Decoupling this experiment allows us to apply the

rules for coprocessor data management by Yuan et al. [36] and to

measure end-to-end performance for larger datasets.

The star join recombines three dimension tables and one fact

table with an overall selectivity of 3.4%. We build hash tables for

the dimension tables in GPU global memory. The fact table resides

in pinned host memory and each column is partitioned into blocks

of 0.5MB, 2MB or 8MB. The blocks are transferred asynchronously

via PCIe into an inner kernel that computes the star join by probing

each dimension hash table.

Figure 21 shows the end-to-end execution times for each block

size when executing the experiment. We observe that execution

times grow linearly with increasing scale factors and that block sizes

larger than 2MB can saturate the PCIe bandwidth. The computation

does not become a bottleneck for the examined scale factors. With a

block size of 4MB and scale factor 300, the size of intermediate data

in GPU global memory is only 473MB. Therefore, we expect the

approach to scale to even larger databases with linear performance.

8.9 Experiment 6: End-to-End Performance

To make a comparison to other database systems, we execute the

TPC-H queries with different database systems and measure end-

to-end performance. We compare MonetDB5 Dec2016-SP3 exe-

cuted on CPUs, and CoGaDB 0.41 and HorseQC executed on GPUs.

Both competitors feature an operator-at-a-time approach. We per-

form the measurements with warm caches. MonetDB runs on a

workstation-class system with an Intel Xeon E5-1607 CPU and

32GB RAM. CoGaDB and HorseQC run on the GTX970. The re-

sults are shown in Figure 22.

Observations. For the supported queries, HorseQC is up to 5.8x

faster than CoGaDB. While CoGaDB uses GPU global memory as

a cache for frequently used columns, HorseQC does not cache

data between queries. This shows that HorseQC uses memory and

interconnects more efficiently. For Q6 there is no improvement,

because query execution is PCIe bound.

HorseQC has lower execution times than MonetDB by factors

of up to 26.9x. Despite moving data through the PCIe bottleneck,

the additional bandwidth resources of GPU global memory offer

an acceleration. For Q19 MonetDB has a lower execution time than



Q1 Q4 Q5 Q6 Q7 Q9 Q13 Q17 Q18 Q19 Q21

0

1

2

e
x
e
c
u
t
i
o
n
t
i
m
e
s

MonetDB

CoGaDB

HorseQC

Figure 22: End-to-end performance of TPC-H queries.

HorseQC. This shows that for queries with a low complexity, it is

more effective to process data directly than moving it over PCIe.

9 DISCUSSION

In the previous experiments, we evaluated our new approaches to

query compilation on coprocessors. Across all experiments, wewere

able to show improvements of query compilation over operator-at-

a-time processing. Operator-at-a-time has a low memory efficiency

due to large materialization volumes and repetitive operations. The

approach therefore cannot utilize the memory systems surrounding

the coprocessor efficiently.

While naive compilation techniques increase the memory ef-

ficiency, reductions and prefix sums split operator pipelines into

multiple passes. In this way, the approach inherits the drawbacks of

operator-at-a-time. This becomes visible because kernel execution

times frequently exceed PCIe transfer times.

The paper shows a query compilation technique that merges the

operators of a pipeline into one compound kernel. When combined

with efficient reduction techniques, the compound kernel achieves

substantial advantages over other processing approaches. With up-

coming OpenCAPI and NVLink interconnects, these improvements

to GPU-local processing are essential to benefit from increased

bandwidth of the new hardware. In the evaluation setting, the PCIe

bandwidth can be saturated for all SSB queries. For the TPC-H

benchmark, the approach improves over operator-at-a-time and

naive compilation, but saturates PCIe only 8 out of 11 queries. We

conclude that the compound kernel works particularly well with

star join queries.

10 MORE RELATEDWORK

Combining multiple kernels for query processing on GPUs has

been used in related work. Wu et al. [32] analyze query plans to

automatically fuse kernels with matching I/O data. Li et al. [19] use

pre-fabricated kernels that recombine several operators.

Our approach to pipeline the computation of write positions

produces data this is not strictly ordered but still contains locality.

Such partially ordered data has been examined in the context of

the Diag-Join by Helmer et al. [13].

Query compilation can be applied in higher-level languages for

programmability [17] or in lower-level languages for low com-

pilation times [23]. Similarly, on GPUs lower-level PTX or SPIR

code may be used or higher-level languages may help to abstract

hardware details.

With the end of frequency scaling, it has become increasingly im-

portant to exploit hardware parallelism. Power et al. [27] show that

especially integrated GPUs can achieve better processing efficiency

than CPUs.

In related work, two ways to compute single-pass prefix scans

have been proposed. They are similar to local resolution, global

propagation with different approaches to pipeline global propa-

gation. First, in [34], Yan et al. serialize the computation of local

prefix sums with memory barriers. Second, Merrill et al. [22] pro-

pose a dynamic look-back mechanism that recomputes unavail-

able partial sums. In contrast, we use atomic operations to avoid

re-computations of long pipelines and to facilitate out-of-order

execution.

11 SUMMARY

In this paper, we show query processing techniques that help to

balance the data movement cost and the compute throughput on

GPU-style coprocessors. We measure the data transfer volumes

in different scalable processing approaches to assess bandwidth

bottlenecks. While naive scalable execution techniques are lim-

ited by PCIe bandwidth, batch processing is limited by GPU-local

throughput. To address the bottleneck, we propose micro execution

models that benefit from on-chip pipelining. Naive query com-

pilation techniques allow simple code generation but inherit the

memory-intensity of operator-at-a-time. We introduce compound

kernels that merge several pipeline phases into one efficient kernel.

ACKNOWLEDGEMENTS

This work was supported by the DFG, Collaborative Research Cen-

ter SFB 876, A2, DFG Priority Program "Scalable Data Manage-

ment for Future Hardware" (MA4662-1, MA4662-5, and TE111/2-

1), the German Ministry for Education and Research as BBDC

(01IS14013A), and EU project SAGE (671500).

REFERENCES

[1] Transaction Processing Performance Council. TPC Benchmark H. 2012.

[2] M.-C. Albutiu, A. Kemper, and T. Neumann. Massively Parallel Sort-Merge Joins

in Main Memory Multi-Core Database Systems. PVLDB, 5(10):1064–1075, 2012.
[3] G. E. Blelloch. Prefix Sums and Their Applications. Technical report, Carnegie

Mellon University, 1990.

[4] P. Boncz, T. Neumann, and O. Erling. Tpc-h analyzed: Hidden messages and

lessons learned from an influential benchmark. In Technology Conference on
Performance Evaluation and Benchmarking, pages 61–76. Springer, 2013.

[5] S. Breß et al. Generating custom code for efficient query execution on heteroge-

neous processors. CoRR, abs/1709.00700, 2017.
[6] S. Breß, H. Funke, and J. Teubner. Robust Query Processing in Co-Processor-

accelerated Databases. In SIGMOD, 2016.
[7] I. J. Egielski, J. Huang, and E. Z. Zhang. Massive Atomics for Massive Parallelism

on GPUs. ACM SIGPLAN Notices, 49(11):93–103, 2015.
[8] S. Geffner, D. Agrawal, A. El Abbadi, and T. Smith. Relative Prefix Sums: An

Efficient Approach for Querying Dynamic OLAPData Cubes. InData Engineering,
1999. Proceedings., 15th International Conference on, pages 328–335. IEEE, 1999.

[9] C. Gregg and K. Hazelwood. Where Is the Data? Why You Cannot Debate CPU

vs. GPU Performance Without the Answer. In ISPASS, pages 134–144. IEEE, 2011.
[10] D. Harris. A Taxonomy of Parallel Prefix Networks. In Asilomar Conference on

Signals, Systems and Computers, volume 2, pages 2213–2217. IEEE, 2003.

[11] B. He, M. Lu, K. Yang, R. Fang, N. K. Govindaraju, Q. Luo, and P. V. Sander.

Relational Query Coprocessing on Graphics Processors. Transactions on Database
Systems, 34(4):21, 2009.

[12] M. Heimel, M. Saecker, H. Pirk, S. Manegold, and V. Markl. Hardware-Oblivious

Parallelism for In-Memory Column-Stores. PVLDB, 6(9):709–720, 2013.
[13] S. Helmer, T. Westmann, and G. Moerkotte. Diag-Join: An Opportunistic Join

Algorithm for 1: N Relationships. 2004.



[14] W. D. Hillis and G. L. Steele Jr. Data Parallel Algorithms. Communications of the
ACM, 29(12):1170–1183, 1986.

[15] T. Karnagel, D. Habich, and W. Lehner. Adaptive Work Placement for Query

Processing on Heterogeneous Computing Resources. PVLDB, 10(7):733–744,
2017.

[16] T. Karnagel, R. Mueller, and G. M. Lohman. Optimizing GPU-Accelerated Group-

By and Aggregation. In ADMS@ VLDB, pages 13–24, 2015.
[17] Y. Klonatos, C. Koch, T. Rompf, and H. Chafi. Building Efficient Query Engines

in a High-Level Language. PVLDB, 7(10):853–864, 2014.
[18] V. Leis, P. Boncz, A. Kemper, and T. Neumann. Morsel-Driven Parallelism: A

NUMA-Aware Query Evaluation Framework for the Many-Core Age. In SIGMOD,
pages 743–754. ACM, 2014.

[19] J. Li, H.-W. Tseng, C. Lin, Y. Papakonstantinou, and S. Swanson. HippogriffDB:

Balancing I/O and GPU Bandwidth in Big Data Analytics. PVLDB, 9(14):1647–
1658, 2016.

[20] P. Menon, T. C. Mowry, A. Pavlo, G. Angulo, J. Arulraj, H. Lin, J. Lin, L. Ma,

T. Mowry, M. Perron, et al. Relaxed operator fusion for in-memory databases:

Making compilation, vectorization, and prefetching work together at last. Pro-
ceedings of the VLDB Endowment, 11(1), 2017.

[21] D. Merrill. CUB v1.7.0: CUDA Unbound, a Library of Warp-Wide, Block-Wide,

and Device-Wide GPU Parallel Primitives, 2017.

[22] D. Merrill and M. Garland. Single-Pass Parallel Prefix Scan with Decoupled

Look-Back. Technical report, NVIDIA Corporation, 2016.

[23] T. Neumann. Efficiently Compiling Efficient Query Plans for Modern Hardware.

PVLDB, 4(9):539–550, 2011.
[24] P. O’Neil, E. O’Neil, X. Chen, and S. Revilak. The Star Schema Benchmark

and Augmented Fact Table Indexing. In Technology Conference on Performance
Evaluation and Benchmarking, pages 237–252. Springer, 2009.

[25] J. Paul, J. He, and B. He. GPL: A GPU-Based Pipelined Query Processing Engine.

In SIGMOD, pages 1935–1950. ACM, 2016.

[26] H. Pirk, O. Moll, M. Zaharia, and S. Madden. Voodoo - A Vector Algebra for

Portable Database Performance on Modern Hardware. PVLDB, 9(14):1707–1718,
2016.

[27] J. Power, Y. Li, M. D. Hill, J. M. Patel, and D. A. Wood. Toward GPUs Being

Mainstream in Analytic Processing: An Initial Argument Using Simple Scan-

Aggregate Queries. In Proceedings of the 11th International Workshop on Data
Management on New Hardware, page 11. ACM, 2015.

[28] S. Sengupta, M. Harris, and M. Garland. Efficient Parallel Scan Algorithms for

GPUs. NVIDIA, Santa Clara, CA, Tech. Rep. NVR-2008-003, (1):1–17, 2008.
[29] S. Sengupta, M. Harris, Y. Zhang, and J. D. Owens. Scan Primitives for GPU

Computing. In Graphics hardware, volume 2007, pages 97–106, 2007.

[30] J. Sompolski, M. Zukowski, and P. Boncz. Vectorization vs. Compilation in Query

Execution. In DaMoN, pages 33–40. ACM, 2011.

[31] M. Wahib and N. Maruyama. Scalable kernel fusion for memory-bound GPU

applications. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, pages 191–202. IEEE Press, 2014.

[32] H. Wu, G. Diamos, S. Cadambi, and S. Yalamanchili. Kernel Weaver: AUtomati-

cally Fusing Database Primitives for Efficient GPU Computation. In International
Symposium on Microarchitecture, pages 107–118. IEEE, 2012.

[33] H. Wu, G. Diamos, J. Wang, S. Cadambi, S. Yalamanchili, and S. Chakradhar.

Optimizing Data Warehousing Applications for GPUS Using Kernel Fusion/Fis-

sion. In Parallel and Distributed Processing Symposium Workshops & PhD Forum
(IPDPSW), 2012 IEEE 26th International, pages 2433–2442. IEEE, 2012.

[34] S. Yan, G. Long, and Y. Zhang. StreamScan: Fast Scan Algorithms for GPUs

Without Global Barrier Synchronization. In SIGPLAN Notices, volume 48, pages

229–238. ACM, 2013.

[35] Y. Ye, K. A. Ross, and N. Vesdapunt. Scalable Aggregation onMulticore Processors.

In DaMoN, pages 1–9. ACM, 2011.

[36] Y. Yuan, R. Lee, and X. Zhang. The Yin and Yang of Processing Data Warehousing

Queries on GPU Devices. PVLDB, 6(10):817–828, 2013.
[37] K. Zhang, F. Chen, X. Ding, Y. Huai, R. Lee, T. Luo, K. Wang, Y. Yuan, and

X. Zhang. Hetero-DB: Next Generation High-Performance Database Systems

by Best Utilizing Heterogeneous Computing and Storage Resources. Journal of
Computer Science and Technology, 30(4):657–678, 2015.

[38] M. Zukowski, P. A. Boncz, N. Nes, and S. Héman. MonetDB/X100-A DBMS In

The CPU Cache. IEEE Data Eng. Bull., 28(2):17–22, 2005.

A BASELINE EXPERIMENT

We executed Query 3.1 from the star schema benchmark (SSB) [24]

and profiled several metrics with the nvprof 2.0.28 tool. As hard-
ware, we used an NVIDIA GTX970 with 146GB/s memory band-

width (measured using device to device memcpy) in a host system

with 16GB/s bidirectional PCIe bandwidth. As execution environ-

ment, we used the operator-at-a-time engine CoGaDB. CoGaDB

works on full columns, therefore we chose a database with scale

factor 10. This is a favorable case for a PCIe-attached system like

CoGaDB: all intermediate results remain small enough to be kept in

GPU global memory (4GB). Here and in all later configurations, we

assume that input data resides in main-memory before query exe-

cution; results have to be moved back to main-memory afterwards.

Between operators, CoGaDB keeps intermediate data in GPU global

memory. We profiled the following metrics for the kernels and data

transfer operations used to execute the query.

dram_read_transactions: Number of 32 byte read transac-

tions between DRAM and L2 cache. The read metric indicates data

volumes moved for kernel input and indirect reads (e.g. accessing

input columns and probing).

dram_write_transactions: Number of 32 byte write transac-

tions between DRAM and L2 cache. Write transactions include

kernel output and indirect writes respectively (e.g. writing columns

and scatter).

PCIe Transfers: Data transfer volumes between host and co-

processor through the PCIe bus. Transfers are profiled for each

direction individually.

B SSB QUERY 3.1

We used Query 3.1 from the star schema benchmark several times

to analyze the data movement performed by different processing

approaches. We show the SQL code for the query in Figure 23.

select c_nation, s_nation, d_year, sum(lo_revenue)
as revenue from customer, lineorder, supplier, date

where lo_custkey = c_custkey
and lo_suppkey = s_suppkey
and lo_orderdate = d_datekey
and c_region = 'ASIA' and s_region = 'ASIA'
and d_year >= 1992 and d_year <= 1997

group by c_nation, s_nation, d_year
order by d_year asc, revenue desc

Figure 23: SSB Query 3.1.

C LOCAL RESOLUTION MECHANISMS

In this section, we show how different local resolution algorithms

can be integrated with the atomic reduction of global propagation.

Flexibly choosing local resolution algorithms enables us to tune

reductions to the hardware and to realize regular as well as irreg-

ular data-parallel reductions. By embedding all local resolution

techniques in one kernel with atomic global propagation all de-

scribed operations remain fully pipelined. In the following, we first

describe two regular data-parallel reductions with different thread

group granularities for hardware tunability. Then we show how

segmented reductions are embedded as pre-aggregation step for

grouping.

Work-Efficient Reduction. Blelloch introduced an algorithm for

work-efficient parallel reductions [3] that was adapted by Sen-

gupta et al. [29] to GPUs with scratchpad memory. We illustrate a

reduction of 8 values by 4 threads in Figure 24, which is inspired by

the illustrations in [10]. The algorithmworks in a tree-like structure

that reduces 8 values to 4 in the first step, 4 values to 2 in the second



1

8

...
...

A

B

C

Figure 24: Work-efficient reduction of 8 values.

and 2 to 1 respectively. Between each step, a synchronization barrier

ensures that all results are ready. This produces one pre-aggregate

per workgroup, which is passed to global propagation for atomic

reduction. This is shown Figure 15 (a).

SIMD Reduction. The approach of Sengupta et al. [28] exploits

the scheduling granularity of a GPU to reduce synchronization

overhead. On GPU hardware, instructions are issued in groups

of 32/64 threads
5
in a SIMD fashion. By matching the reduction

size with the instruction width, synchronization barriers become

unnecessary within the reduction. This introduces an additional

level of thread groups: E.g. a workgroup of 128 threads executes 4

reductions of 32 values each. Local resolution, global propagation

adapts to this, by entering global propagation for each of the 4

pre-aggregates. This is illustrated in Figure 15 (b).

Segmented Reduction. Segmented reductions compute reductions

of continuous segments within a sequence. They can be imple-

mented as data-parallel algorithms on scratchpad memory with

work-efficient reductions and SIMD reductions. This makes it pos-

sible to execute grouped pre-reductions in scratchpad memory. A

similar approach PLAT [35] aggregates frequent grouping keys in

a table local to each CPU core. For query compilation on GPUs the

explicit control over scratchpad memory opens up a new design

space for pipelined grouped aggregation algorithms. We implement

a simple sort-merge-like approach that operates within CTAs on

scratchpad memory:

sort_by_keys(keys, values);
reduce_segments(keys, values, head_flags);
if(head_flags[thread_idx])

atomic_hash_reduce(ht, keys, values);

Additional to the reduced sequence, the segmented reduction

outputs head flags. The head flags indicate the positions with fin-

ished pre-aggregates of a segment. Triggered by the head flags,

threads enter global propagation and insert the pre-aggregates into

a global hash table. This may happen in an irregular pattern as

illustrated in Figure 15 (c).

5
These thread groups are called wavefronts (64 threads) on AMD hardware and warps

(32 threads) on NVIDIA hardware.

D REDUCTION IMPLEMENTATIONS

We characterize three micro execution models according to the

way they implement parallel reductions. Pipelined and Resolution
implement reductions in the generated code;Multi-passmakes calls

to library functions. While Pipelined implements reductions only

with global atomic operations, Resolution uses an additional local

resolution step. E.g. for technique C3, Resolution first performs a

local sort, followed by a segmented reduce, and then aggregates

the resulting pre-aggregates in a global hash table. We show the

respective reduction implementations for each technique in Table

4. The implementations for global reduction and sorting operations

use the boost::compute 1.61 library.

E KERNEL CODE

In Figure 25, we show the simplified code of a kernel that processes

a simple query (Figure 16). The kernel includes a prefix sum com-

putation, which allows to integrate both predicate evaluation and

projection into one kernel. The code performs four steps:

(1) Evaluate predicates to count the number of results.

(2) Resolve local dependencies using CTA_prefix_sum.
(3) Resolve global dependencies using atomic_add and share

the global offset to each CTA thread to compute a write

position.

(4) Compute projection and write the result.

void pipeline_kernel(__global int glob_sum, ...) {
//1. predicate evaluation
int num_out = 0;
num_out += (lo_quantity[tid] >= 25-x

&& lo_quantity[tid] <= 25+x);
//2. local resolution
int local_offset = cta_prfx(num_out);
//3. global propagation
__shared int glob_offset[num_CTA];
if(lid == CTA_limit) {

glob_offset[CTA_idx] =
atomic_add(&glob_sum, loc_offset);

}
int write_pos = loc_offset + glob_offset[CTA_idx]);
//4. projection
revenue[write_pos] =

lo_extprice[tid]*lo_discount[tid]+lo_tax[tid];
}

Figure 25: Generated pipeline kernel for selection projection

query containing the computation of global write positions.

select sum(lo_extendedprice), lo_orderkey % x
from lineorder
group by lo_orderkey % x

Figure 26: Query 2 is a grouped aggregation of all lineorder
tuples with x different groups.



0 0.5 1

0

20

40

GTX970

0 0.5 1

0

20

40

60

GTX770

0 0.5 1

0

20

40

selectivity

k
e
r
n
e
l
e
x
e
c
u
t
i
o
n
t
i
m
e
m
s

RX480

0 0.5 1

0

200

400

A10

Multi-pass (B1) Pipelined (B2)

Resolution:WE (B3) Resolution:SIMD (B3)

PCIe transfer Memory bound

Figure 27: Performance of single tuple aggregation Query 2

across all coprocessors.

F MODIFICATIONS TO TPC-H QUERIES

As our prototype implementation has a limited scope, we need to

change some of the TPC-H queries. In particular, we currently do

not support "like" expressions and anti joins. Note that there is no
inherent limitation of supporting these features in future versions.

We kept seven TPC-H queries (1, 4, 5, 6, 7, 18, 19) unchanged and

modified four TPC-H queries (9, 13, 17, 21). Our modifications only

marginally impact the performance of the queries. The changes are

as follows:

Q9: We replaced the "like" expression "p_name like ’%green%’"

with a filter on the primary key p_partkey.

Q13: We removed the "like" expression "o_comment not like

’%special%requests%’".

Q17: We manually unnested the query.

Q21: We replaced the "not exists" expression on the second

subquery with an "exists" expression because we do not support

anti joins at the moment.

G ADDITIONAL EXPERIMENTS

G.1 Single Tuple Aggregation

In this experiment, we evaluate the effect of pipelining single tuple

aggregations. We modify Query 1 (shown in Figure 16) by adding

an aggregation of the projected attribute revenue to a single sum.

We compareOperator-at-a-time,Multi-pass and the pipelined tech-
nique Resolution. Figure 27 shows the results of Experiment 2 on

all coprocessors. The experiment results confirm the basic obser-

vation that Resolution increases throughput overMulti-pass. The
approach allows to saturate the PCIe bandwidth for all selectivi-

ties. Comparing the results of the GTX970 and the GTX770, we

observe that atomic operations have gained performance on the

newer Maxwell hardware architecture of the GTX970. However,

compared to the results from Experiment 1, there is a clear differ-

ence in the performance of atomic operations. We attribute this

to the reuse of the atomic aggregate value which is necessary for

prefix sums but not required for aggregations.

G.2 Star Schema Benchmark

In Table 3, we show the performance of our micro execution model

Resolution:WE for the star schema benchmark queries across all

coprocessors. We executed the queries on a database with scale fac-

tor 10 for the GTX970, GTX770, and RX480 and with scale factor 5

on the A10 due to the limited memory capacity of 2 GB. We add the

measured throughput and memory bandwidth usage for each query.

The results confirm the observation from the previous experiment.

On the GTX970, the compute throughput consistently exceeds PCIe

bandwidth, which allows a full utilization. On the other coproces-

sors, however, the throughput for some queries falls behind PCIe.

Deeper investigation revealed that less-selective queries spend a

substantial part of the time for computing the global propagation

step of grouped aggregation. Improving the local resolution algo-

rithm to use the full scratchpad memory space may benefit these

cases.



GTX970 GTX770 RX480 A10 APU (SF5)

Query time thr.put memory time thr.put memory time thr.put memory time thr.put memory

ms GB/s GB/s ms GB/s GB/s ms GB/s GB/s ms GB/s GB/s

ssb11 7.20 133.33 116.58 8.14 117.97 103.15 31.79 30.19 26.40 61.94 7.75 7.61

ssb12 5.96 161.00 106.41 6.97 137.66 90.98 26.13 36.73 24.27 50.58 9.49 7.01

ssb13 5.93 161.95 106.67 6.67 143.82 94.73 27.81 34.52 22.74 51.75 9.27 6.85

ssb21 28.10 34.50 71.71 56.48 17.17 35.69 78.65 12.33 25.63 142.75 3.40 7.66

ssb23 19.31 50.06 77.04 37.62 25.68 39.53 60.80 15.89 24.46 112.94 4.28 7.11

ssb31 47.30 20.37 72.69 111.18 8.67 30.93 136.02 7.08 25.28 195.95 2.46 9.26

ssb32 21.20 45.45 38.52 39.89 24.16 20.48 84.29 11.43 9.69 101.53 4.75 4.17

ssb33 15.41 62.53 34.62 31.36 30.73 17.01 37.41 25.76 14.26 88.79 5.43 3.11

ssb34 13.56 71.06 38.31 29.26 32.93 17.75 30.67 31.42 16.94 82.35 5.85 3.32

ssb41 50.92 28.54 59.21 81.03 17.93 37.21 73.51 19.77 41.02 223.49 3.25 7.34

ssb42 33.10 43.97 61.01 59.26 24.55 34.07 97.69 14.90 20.67 151.85 4.79 7.30

ssb43 22.53 64.38 52.53 41.32 35.11 28.64 78.63 18.45 15.05 110.01 6.59 6.01

Table 3: Performance metrics of star schema benchmark queries across all coprocessors (scale factor 10, except for A10).

Operation Local Resolution

scratchpad

(32-1024 elements)

Global Propagation

global memory

(all elements)

Pipeline

Breaker

Materialization

Volume

ID

Aligned [global prefix sum] yes full �⋒ A1

Write none atomic prefix sum no none ⋒ A2

prefix sum atomic prefix sum no none A3

Single Tuple [global reduce] yes filtered �⋒ B1

Aggregation none atomic reduce no none ⋒ B2

reduce atomic reduce no none B3

Grouped [glob. sort, glob. reduce segments] yes filtered �⋒ C1

Aggregation none atomic hash reduce no none ⋒ C2

sort, reduce seg. atomic hash reduce no none C3

�⋒ Multi-pass
Accepting pipeline breakers

⋒ Pipelined
Easiest way to fully pipeline

Resolution
Best scratchpad usage

Table 4: Reduction techniques, that were introduced in this paper. HorseQC uses local resolution, global propagation to inte-

grate reductions into fully pipelined kernels.


	Abstract
	1 Introduction
	2 Macro Execution Model
	2.1 Run-To-Finish (Not Scalable)
	2.2 Kernel-At-A-Time
	2.3 Batch Processing

	3 Micro Execution Model
	4 Data-Parallel Query Compilation
	4.1 Fusion Operators
	4.2 Micro-Level Pipeline Layout
	4.3 Instancing Relational Code Templates
	4.4 Memory Access and Limitations

	5 Processing Pipelines in One Pass
	5.1 Pipelining Data-Parallel Reductions
	5.2 Code Generation for Compound Kernels
	5.3 Memory Access and Limitations

	6 Efficient Pipelined Reductions
	6.1 Local Resolution, Global Propagation

	7 DBMS Integration
	8 Evaluation
	8.1 Processing Techniques
	8.2 Baselines
	8.3 System Configuration
	8.4 Experiment 1: Pipelined Prefix Sum
	8.5 Experiment 2: Pipelined Group By
	8.6 Experiment 3: Star Schema Benchmark
	8.7 Experiment 4: TPC-H Queries
	8.8 Experiment 5: Scalability
	8.9 Experiment 6: End-to-End Performance

	9 Discussion
	10 More Related Work
	11 Summary
	References
	A Baseline Experiment
	B SSB Query 3.1
	C Local Resolution Mechanisms
	D Reduction Implementations
	E Kernel Code
	F Modifications to TPC-H Queries
	G Additional Experiments
	G.1 Single Tuple Aggregation
	G.2 Star Schema Benchmark


