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Abstract Processor manufacturers build increasingly

specialized processors to mitigate the effects of the pow-

er wall in order to deliver improved performance. Cur-

rently, database engines have to be manually optimized

for each processor which is a costly and error prone

process. In this paper, we propose concepts to adapt to

and to exploit the performance enhancements of mod-

ern processors automatically. Our core idea is to cre-

ate processor-specific code variants and to learn a well-

performing code variant for each processor. These code

variants leverage various parallelization strategies and

apply both generic and processor-specific code transfor-

mations. Our experimental results show that the per-

formance of code variants may diverge up to two orders

of magnitude. In order to achieve peak performance, we

generate custom code for each processor. We show that

our approach finds an efficient custom code variant for

multi-core CPUs, GPUs, and MICs.

1 Introduction

Over the last decade, the main memory capacity has

grown into the terabyte scale. Main memory databases
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TU Berlin E-mail: bastian.koecher@tu-berlin.de

Henning Funke
TU Dortmund E-mail: henning.funke@tu-dortmund.de

Steffen Zeuch
DFKI GmbH E-mail: steffen.zeuch@dfki.de

Tilmann Rabl
TU Berlin and DFKI GmbH E-mail: rabl@tu-berlin.de

Volker Markl
TU Berlin and DFKI GmbH E-mail: volker.markl@dfki.de

exploit this trend in order to satisfy the ever-increasing

performance demands. Thus, they store data primarily

in main-memory to eliminate disk IO as the primary

bottleneck [3,19]. As a result, memory access and data

processing have become the new performance bottle-

necks for in-memory data management [35]. Alleviat-

ing these bottlenecks has received significant attention

in the database community and thus CPU and cache-

efficient algorithms [1,5,35], data structures [1,33,49],

and database systems [16,31,47] have been proposed.

Current designs of main-memory database systems

assume that processors are homogeneous, i.e., with mul-

tiple identical processing cores. However, todays hard-

ware vendors break with this paradigm of homogeneous

multi-core processors in order to adhere to the fixed

energy budget per chip [8]. This so-called power wall

forces vendors to explore new processors to overcome

the energy limitations [15]. As a consequence, hardware

vendors integrate heterogeneous processor cores on the

same chip, e.g., combining CPU and GPU cores as in

AMD’s Accelerated Processing Units (APUs). Another

trend is specialization: processors are optimized for cer-

tain tasks, which already have become commodity in

the form of Graphics Processing Units (GPUs), Multiple

Integrated Cores (MICs), or Field-Programmable Gate

Arrays (FPGAs). These accelerators promise large per-

formance improvements because of their additional com-

putational power and memory bandwidth. As a direct

consequence of the power wall, current machines are

built with a set of heterogeneous processors. Thus, from

a processor design perspective, the homogeneous many

core age ends [8,61]. The upcoming heterogeneous many

core age provides an opportunity for database systems

to embrace processor heterogeneity for peak performance.

Previous solutions either focused on generating

highly efficient code for a single processor [40,58] or

allowed database operators to run on multiple proces-
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sors using the same operator code [24,64]. These code

generation approaches were restricted to a single pro-

cessor by generating low-level machine code (e.g., us-

ing LLVM [40]). In contrast, hardware-oblivious ap-

proaches experienced limited performance portability

[51]. As of now, we need to manually adapt the database

system to every new processor (e.g., for Intel’s MIC ar-

chitecture) for peak performance.

The methods we propose in this paper empower

database systems to automatically generate efficient

code for any processor without any a priori hardware

knowledge, thus making database systems fit for the

heterogeneous many-core age. To achieve this goal, we

propose Hawk1, a novel hardware-tailored code genera-

tor, which produces variants of generated code. By exe-

cuting code variants of a compiled query, Hawk adapts

to a wide range of different processors without any man-

ual tuning. Hawk achieves low compilation times and

runs queries on a wide range of processors.

In this paper, we make the following contributions:

1. We present the architecture of Hawk, a hardware-

tailored code generator (cf. Section 3).

2. We introduce pipeline programs, a new form of a

physical query plan. Pipeline programs store oper-

ations and global parameters of a pipeline and are

the basis of our code generation (cf. Section 4).

3. We discuss the dimensions in which Hawk changes

pipeline programs to tailor generated code to a pro-

cessor (cf. Section 5).

4. We explain how Hawk produces target code from

pipeline programs (cf. Section 6).

5. We present a learning strategy which automatically

derives an efficient variant configuration for each

processor. We incorporate the results into an op-

timizer for pipeline programs (cf. Section 7).

6. We show the potential of a database system that

rewrites its code until it runs efficiently on the un-

derlying heterogeneous processors (cf. Section 8).

7. We provide an implementation that leverages

OpenCL as code compilation target to showcase

Hawk’s hardware-tailored code generation.

2 Background

In this section, we provide an overview of heterogeneous

computing. We start by describing the processors that

are currently supported by Hawk. Then, we discuss the

challenge of abstraction from the hardware. Finally, we

explain programming techniques in detail that are nec-

essary to capture the intricacies of each processor.

1 https://github.com/TU-Berlin-DIMA/Hawk-VLDBJ

2.1 Overview of Heterogeneous Processors

Multicore CPUs. CPUs are designed to achieve good

performance for general purpose applications [25]. CPUs

use large cores with complex control logic for features

such as pipelining and out-of-order execution. They use

caches to avoid access latencies to main memory and

make use of multiple-cores to parallelize computations.

Modern CPUs typically consist of up to tens of cores.

Note that for parallelization, one thread is used per

(physical) core. We refer to this one-to-one mapping of

threads to cores as coarse-grained parallelism.

General Purpose GPUs. GPUs are designed for

compute and data-intensive tasks that are highly paral-

lelizable [25]. They consist of hundreds or more of very

simple cores without complex control logic for features

such as pipelining or out-of-order execution of individ-

ual instructions. In contrast to CPUs, GPUs process

threads in blocks and execute them on so called stream-

ing multiprocessors. GPUs leverage different techniques

to improve efficiency compared to CPUs, most notewor-

thy by parallel computation and a memory bandwidth

in the order of several hundred GB/s. Furthermore,

GPUs hide stalls by memory access and costly com-

putations by continuously switching context between

thread blocks (thread block scheduling). Thus, GPUs

hide memory accesses by other computations, instead

of avoiding them like CPUs. Finally, modern GPUs offer

several thousand light-weight cores and for each core,

a number of threads must be spawned to fully exploit

the thread block scheduling. Thus, GPUs need a N:1

mapping of threads to cores (so-called thread oversub-

scription), which we refer to as fine-grained parallelism.

MICs. MICs were designed to accelerate scientific,

engineering, and graphics applications [46]. Their de-

sign is inspired by features of CPUs and GPUs. MICs

consists of simple in-order cores with four hardware

threads and a dedicated vector processing unit which

supports 512-bit vector operations. Furthermore, they

provide a memory bandwidth in the order of several

hundred GB/s and avoid latencies to their memory by

using caches. Overall, MICs provide up to hundreds of

hardware threads. The original MIC (Knights Corner)

is a co-processor connected to the CPU via a PCI-E

bus. However, the new designs (Knights Landing) use

the MIC as a special socket with the same access speed

to memory as a regular CPU.

2.2 Hardware Abstraction without Regret

Programmers typically provide redundant implementa-

tions, i.e., one implementations for each processor, and

work with a variety of APIs, e.g., OpenCL, CUDA,
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__kernel void vecAdd(__global float* A, __global float* B,  __global float* OUT){
  uint64_t ID = get_global_id(0);
  OUT[ID] = A[ID]+B[ID];
}

Fig. 1 Example OpenCL kernel for vector addition.

OpenMP, to leverage heterogeneous processors. This

leads to high implementation effort, code complexity,

and development cost.

The idea of abstraction without regret provides ab-

straction layers that simplify the code without causing a

performance penalty [29]. One example is the LegoBase

system [28], which compiles queries in a high-level lan-

guage (Scala) to low-level languages (e.g., C). This al-

lows to translate queries to optimized code just-in-time.

Translating a general purpose language to co-processors

requires automatic parallelization, which is not feasible

for all programs. However, the problem is tractable for

relational queries, which are the focus of this paper.

We provide an abstraction layer (pipeline programs, cf.

Section 4) that decouples the logic of queries from the

programming concepts of the specific co-processor de-

signs. This enables us to support different processors

within a single code generator.

2.3 Programming Heterogeneous Processors

Next, we introduce the kernel programming model, as

it is the basis for Hawk’s code generation. Then, we

present code transformations needed for programming

heterogeneous processors.

2.3.1 Kernel Programming Model

Popular programming frameworks such as CUDA or

the Open Compute Language (OpenCL) center around

the kernel programming model, which has the goal to

specify highly parallel computations [24].

Kernels are specialized functions which express com-

putations with respect to individual data elements [24].

By launching a kernel with a specific number of threads,

the execution is run in parallel and each thread per-

forms work on its share of the input and writes to

its share of the output. We show a simple OpenCL

kernel for an addition of attributes A and B in Fig-

ure 1. Here, each thread gets its global id from the run-

time and accesses the input and output arrays based on

this id. The kernel programming model maps to differ-

ent types of processors such as Multi-Core CPUs and

GPUs [24]. On CPUs, multiple instances of a kernel for

a range of input elements are spawned, potentially mak-

ing use of SIMD (see coarse-grained parallelism in Sec-

tion 2.1). On GPUs, threads are grouped in blocks and

int* output;
int count=0; /* num result tuples */
for(id=0;id<num_rows;id+=1){
  if(lo_quantity[id] < 25){
    output[count++] = lo_revenue[id];
  }
}

int* output; int count=0; 
bool result_increment;
for(id=0;id<num_rows;id+=1){
  result_increment=(lo_...[id] < 25);
  output[count] = lo_revenue[id];
  count+=result_increment;
}

Branched Evaluation Predicated Evaluation

Fig. 2 Example for branched and predicated evaluation.

Sequential
Memory Access

Coalesced
Memory Access

Thread 0

Thread 1

Thread 2

Thread 0
Thread 1
Thread 2

Fig. 3 Visualizing different memory access strategies.

these blocks are executed on a multi-processor (see fine-

grained parallelism in Section 2.1). However, highly-

tuned algorithms have fundamental differences that are

not covered by current frameworks, such as granularity

of parallelism and the memory access pattern [55].

In this paper, we use OpenCL as a target for our

code generator, because it supports processors with dif-

ferent architectures including CPUs, GPUs, and MICs.

However, all our concepts are also applicable to CUDA

and other parallel programming frameworks.

2.3.2 Code Transformations

Research on heterogeneous processors showed that soft-

ware predication and memory access pattern are the

most impacting code transformations [24,53].

Software Predication. Query predicates are often
evaluated using if statements (e.g., if(x < 10)). If the

selectivity of a predicate is close to 50%, modern proces-

sors run in performance problems due to branch mispre-

diction (CPUs, MICs) or branch divergence penalties

(GPUs). Software predication is a technique to avoid

such penalties. It transforms a control flow in a data

flow by storing the result of a predicate evaluation in a

variable, which we refer to as result increment in this

paper. After writing a database tuple to the output

buffer, the result increment variable is added to the tu-

ple counter of the output buffer. In case the predicate

matched, result increment is one, and the tuple counter

is incremented. Otherwise, if result increment is zero,

the output is overwritten by the next matching tuple.

We illustrate the difference of branched evaluation and

predicated evaluation in Figure 2. In Hawk, the pred-

ication mode is a parameter that specifies whether a

program uses branched or predicated evaluation.

Memory Access Pattern. Different processors pre-

fer different ways of accessing data in memory during
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parallel processing [24,55]. Using sequential access, each

thread processes a continuous chunk of tuples. This ac-

cess pattern is superior on CPUs. In contrast, using co-

alesced memory access, every thread reads a neighbored

location relative to other threads. This access pattern

represents the most efficient access pattern on GPUs.

We illustrate both access patterns in Figure 3.

3 Hawk Architecture

In this section, we provide an overview of Hawk’s ar-

chitecture (cf. Figure 4) and Hawk’s role in the pro-

cess of executing an SQL query. The SQL parser trans-

Query Optimizer

Hawk
Code Generator

SQL Parser

CPU GPU MIC

Fig. 4 Role of
Hawk in DBMS
architecture.

lates queries into relational query

plans. After that, the query opti-

mizer rewrites the query plan by

applying common optimizations

to obtain a query execution plan.

Examples for such optimizations

are predicate push down, join or-

dering, and algorithm selection.

We refer to the process of translat-

ing a database query into a query

execution plan as query transla-

tion. On the next layer, Hawk pro-

vides the code generation back-

end. Thus, Hawk performs query

compilation, which compiles query

execution plans just-in-time into

machine code of a target processor [40].

Hawk’s key feature is the generation of efficient code

for processors of different architectures. Our approach

follows the principles of query compilation [40] as op-

posed to vector-at-a-time processing [6], because query

compilation has the largest potential of applying proces-

sor-specific optimizations. Next, we discuss Hawks ar-

chitecture and its hardware-tailored code generation.

3.1 Overview

In the following, we discuss Hawk’s three-step compi-

lation process: 1) query segmentation, 2) variant op-

timization, and 3) code generation (see Figure 5). In

Table 1, we summarize the notions we introduce in this

paper and that are required to describe this process. In

general, Hawk receives a query plan as input and out-

puts optimized code for the underlying processors. This

process centers around pipelines, i.e., non-blocking data

flows. In particular, all operations in a pipeline are fused

into one operator. The individual steps are as follows.

Query Segmentation. Hawk first segments query

execution plans into pipelines using the produce/con-

Pipeline
Program

Hawk

Code 
Generator

 
Code Variant

Variant
Optimizer

Query
Plan

Intermediate representation
for pipelines

Select Processor-Optimized 
Variant Configuration

Generate code for 
pipeline program

Code variant optimized 
for target processor

Optimized Pipeline
Program

Query
Segmentation

Segment query plan
in pipeline programs

Pipeline program optimized
for target processor

1

2

3

Fig. 5 Core concepts of Hawk and their role in the system.

sume model [40] (Step 1 in Figure 5). During this

step, Hawk creates for each pipeline a pipeline program,

which is the intermediate representation for a pipeline.

A pipeline program consists of simple operations such

as loop, filter, and hash probe and establishes the start

point for optimization and target code generation.

Variant Optimizer. The initial pipeline program

represents a hardware-oblivious blue print as a start-

ing point for processor-specific optimizations. Based on

that, Hawk produces hardware-tailored code by apply-

ing modifications to the pipeline programs. A modifi-

cation is a change to a pipeline program, which con-

serves its semantic but changes the generated code (e.g.,

memory access pattern). A variant configuration cap-

tures all modifications of a pipeline program and thus

provides a value for each supported modification. The

set of all modifications defines the code generated by

Hawk. The variant optimizer selects an efficient vari-

ant configuration for each pipeline program on a target

processor (Step 2 in Figure 5). Note that Hawk au-

tomatically determines a variant configuration for each

target processor without the need for manual tuning.

In sum, Hawk applies the modifications specified in the

variant configuration to the input pipeline program and

returns an optimized pipeline program.

Code Generator. The code generator takes the

optimized pipeline program as an input and produces

the target code (Step 3 in Figure 5). We refer to the

compilation result as code variant.

3.2 Overview of Hawk’s Code Generation

We now discuss the modifications supported by Hawk

and the code generation steps required for creating code

variants in Section 3.2.1 and 3.2.2, respectively.
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Term Description

pipeline a non-blocking data flow

pipeline program
intermediate representation for
a pipeline, consists of operations
such as loop, filter, and probe

modification
a change to a pipeline pro-
gram, conserves the semantic
but changes the generated code

variant configuration
provides value for each sup-
ported modification, defines the
generated code

code variant
compilation result of a pipeline
program

Table 1 Summary of important terms.

3.2.1 Dimensions of Code Modifications

Hawk captures hardware properties in a generic way.

To this end, we structure modifications to pipeline pro-

grams in two dimensions: parallelization strategies and

code transformations.

Parallelization Strategy. The parallelization strat-

egy defines how parallelism is implemented in a pipeline

program. The optimal strategy depends on the pro-

cessor and has a strong impact on performance (cf.

Section 5.1). Thus, a hardware-tailored code generator

needs to cope with different parallelization strategies.

Code Transformations. Optimizing code for cer-

tain processors usually involves many low-level code

transformations. For example, Hawk needs to decide

on the optimal memory access pattern, the predication

mode, and the hash table implementation [50]. There-

fore, a hardware-tailored code generator should be flex-

ible enough to apply a certain subset of code transfor-

mations to the generated code (cf. Section 5.2).

We discuss how Hawk applies various modifications

to pipeline programs in Section 5. Furthermore, we de-

scribe how we keep modifications freely composable.

For example, the parallelization strategy should not de-

pend on the hash tables or memory access pattern used.

3.2.2 Code Variant Generation

Hawk generates code variants from pipeline programs,

which allows Hawk to adapt to different heterogeneous

processors. The code generation of a pipeline program

proceeds in two steps: transformation and code gener-

ation. At first, Hawk inspects the variant configuration

from the optimizer to determine which modifications

need to be applied to the pipeline program. We illus-

trate this process in Figure 6.

In the transformation step, Hawk executes a sequence

of transformation passes (Step 1 in Figure 6), where

each pass reflects one modification to the pipeline pro-

gram. These passes can adjust the pipeline program

Pipeline
Program

Optimized
Pipeline
Program

Code
Variant

(Kernels)

Code 
Generation

Transfor-
mators

LOOP(...)
FILTER(...)
ARITHMETIC(...)
PROJECT(...)
 

exec_strategy=multi_pass
mem_access=coalesced
num_threads=50,000
LOOP(...)
FILTER(..., predication)
ARITHMETIC(...)
PROJECT(..., predication)

filter_kernel{
  /*filter*/
}
project_kernel{
   /*arithmetic 
   and project*/
}

1 2

Fig. 6 Code Variant Generation.

in two ways. First, they set the global parameters of

the pipeline program (e.g., the parallelization strategy).

Second, they (re-)configure individual pipeline opera-

tions (e.g., set the hash table).

In the code generation step, we instantiate the se-

lected parallelization strategy, which serves as a frag-

ment assembler (Step 2 in Figure 6). The fragment

assembler traverses the pipeline program and calls the

code generator for each pipeline operation to obtain

code fragments. These code fragments are combined by

the fragment assembler, which generates one or more

kernels depending on the parallelization strategy. We

discuss target code generation in detail in Section 6.

Note that our code generation algorithm allows Hawk

to freely combine modifications in the same pipeline

program. For example, it is possible to generate a vari-

ant that uses coalesced memory access, software pred-

ication, with a fine-grained multi-pass parallelization

strategy. Thus, it represents a flexible mechanism, which

keeps the possible modifications freely composable.

4 Intermediate Representation

In this section, we introduce pipeline programs, Hawk’s

novel intermediate representation. Pipeline programs

define the semantics of a pipeline and serves as a ba-

sis for query transformation and code generation. By

transforming a pipeline program, Hawk generates dif-

ferent code variants, which is the key requirement for

a hardware-tailored code generator. First, we discuss

the general design of pipeline operations, which are the

building blocks of pipeline programs. Second, we pro-

vide an overview of the pipeline operations supported in

Hawk. Third, we show how Hawk translates relational

operators to pipeline programs.

4.1 Design of Pipeline Operations

The generated code of pipeline operations depends on

their parameter settings. In Hawk, pipeline operations

accept two categories of parameters:
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1. Regular parameters: These parameters encode

the semantics of the operation, such as the table

scanned or the filter predicates applied. We format

these parameters italic.

2. Code generation modes: These parameters de-

fine which code variant is generated by the opera-

tion, such as the hash table implementation used.

We format these parameters bold.

Hawk currently uses the following code generation modes,

which are sufficient to cover all code transformations

supported (cf. Section 3.2.1). Note that, a change of the

code generation mode modifies the target code without

affecting the semantic.

1. Predication Mode m: This parameter defines how

filter conditions are evaluated, either by using an

if-statement or by using software predication.

2. Hash Table h: This parameter defines the hash ta-

ble implementation used. Hawk supports hash ta-

bles based on linear probing and Cuckoo hashing.

3. Hash Table Parameters p: This parameter defines

specific parameters of a hash table, e.g., Cuckoo

hashing requires the number of hash functions used.

4. Element Access Offset o: This parameter defines an

offset relative to the current tuple position. It is re-

quired for transformations such as loop unrolling.

Furthermore, pipeline programs contain global parame-

ters in addition to pipeline operations. These parame-

ters are related to the whole pipeline program, such as

the parallelization strategy or the number of threads.

In the next sections, we define pipeline operations as

a central building block (cf. Section 4.2) and code gen-

eration rules for relational operators (cf. Section 4.3).

4.2 Overview of Pipeline Operations

In the following, we provide an overview of available

pipeline operations for pipeline programs in Hawk.

LOOP(T ; step, s, e). LOOP iterates over all input tu-

ples of a table T and makes them available for follow-

ing operations using a loop increment of step, and a

loop start index s and end index e. Note that every

valid pipeline program needs to have at least one LOOP

statement as first operation. Consecutive LOOP opera-

tions in the same pipeline program result in nested for

loops in the generated code. For instance, two LOOP

operations perform a nested loop join.

PROJECT(A; m, o). PROJECT materializes tuples to

the output relation projecting attributes of attribute

set A. Thus, no operation may succeed a PROJECT

operation in a valid pipeline program. The code gener-

ation needs to take two parameters into account: the

predication mode m and the element access offset o.

The predication mode is needed because the code for

materializing the result depends on it (cf. Section 6.2.1).

FILTER(Fσ; m, o). FILTER selects input tuples that

fulfill condition Fσ and passes them to the next opera-

tion. For code generation, FILTER requires a predica-

tion mode m and an element access offset o.

HASH PUT(A; h, p). HASH PUT inserts tuples into

a hash table for attribute set A using hash table h

with parameters p. Note that HASH PUT is a pipeline

breaking primitive. Thus, the next operation in the

pipeline program must be a PROJECT operation, which

writes the result and ends the pipeline program.

HASH PROBE(A, fprobe, Fσ; h, p, m, o). The

HASH PROBE performs a lookup for each input tuple

in a hash table for attribute set A and passes match-

ing tuples to the next operator. In case the query pro-

vides an (optional) arbitrary filter condition Fσ, the

HASH PROBE passes only tuples to the next opera-

tor that meet the condition. In general, HASH PROBE

evaluates join conditions of the form fprobe ∧Fσ. fprobe
is a conjunction of equal or unequal expressions ap-

plied during the lookup in the hash table and Fσ is

an arbitrary filter condition. Fσ is required to correctly

support semi joins with multiple join conditions. Con-

secutive HASH PROBE operations will be nested into

each other. In case the build attribute is not guaran-

teed to be unique, the HASH PROBE will loop over all

matching entries of the hash table for the current tuple.

The HASH PROBE uses hash table h with parameters

p, predication mode m, and element access offset o.

ARITHMETIC(f ; o). ARITHMETIC performs a com-

putation f : A × B → C of attributes A, B, C us-

ing element access offset o. Note that we perform more

complex computations by consecutive ARITHMETIC

operations, which refer to attributes computed earlier

in the pipeline program.

HASH AGGREGATE(G,F ; h, p, m, o). The

HASH AGGREGATE performs an aggregation with

grouping attributes G using the aggregation expression

F = (f1, f2, · · · , fn). Each fi consists of an aggregation

function on an atomic attribute reference. Thus, Hawk

needs to compute arithmetic expressions by ARITH-

METIC operations that precede the aggregation. The

generated code uses hash table h with parameters p,

predication mode m, and element access offset o.

AGGREGATE(F ; m, o). The AGGREGATE opera-

tion handles the special case of non-grouping aggre-

gations, where Hawk directly aggregates into a local

variable instead of a hash table. AGGREGATE eval-

uates the aggregation expression F = (f1, f2, · · · , fn).

The generated code depends on the predication mode

m and element access offset o.
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Build 
Pipelines

Probe 
Pipeline

select x, sum(q)
from T1, T2, T3

where T1.x=5 
  and T2.y>1
  and T3.z<3
  and T1.a=T3.b
  and T2.c=T3.d
group by x; 

Example
Query

σy>1 σz<3

σx=5

  Γx,
sum(q)

T1

T2 T3

⋈c=d

⋈a=b

Fig. 7 Example for produce/consume model. We segment
the query plan into three pipelines, two for building join hash
tables, and one for probing both join hash tables.

4.3 Translating Relational Algebra to Pipeline Programs

Next, we show how Hawk translates relational database

operations into pipeline programs. We build on the pro-

duce/consume model for code generation [40], as it fuses

all operations in the same pipeline. Each operator pro-

vides a produce and a consume function. The produce

function traverses the query plan top down from the

root operator and creates a new pipeline for every pipe-

line breaking operator. If produce reaches a scan, it

calls the consume function of succeeding operators bot-

tom up and generates the code for each operator in the

current pipeline. After that, we generate the code for

the next pipeline. Thus, the produce functions essen-

tially segment the query plan into pipelines, whereas

the consume functions fill the pipelines with operators

and generate the code. We illustrate the query segmen-

tation of a query into pipelines in Figure 7. The query

contains two hash joins, which results in a new pipeline

for each hash table build and one probe pipeline.

In the following, we present the translation of each

relational operator into pipeline programs by Hawk.

Scan(T , Fσ). The scan operator iterates over all tuples

of a table T and passes all tuples, which fulfill the se-

lection condition Fσ, to the next operator. Therefore,

Hawk first inserts a LOOP operation into the pipeline

program, followed by a FILTER operation:

LOOP(T ; step=1, s=0, e=numTuples(T ))

FILTER(Fσ; m=branched, o=0)

The scan is a non-pipeline breaking operation, which

continues the pipeline by notifying it’s parent operator.

Projection(A). Projections either reference attributes

or contain computational expressions (X+Y). Let K ⊆
A be the subset of attribute references from A and let

F ⊆ A be expressions from A (A = K ∪ F ). If F is

not empty, we generate for each f ∈ F a set of ALGE-

BRA operations to compute expression f , assuming f

is computable by arithmetic operations f1 · · · fn:

ARITHMETIC(f1; o=0) .. ARITHMETIC(fn; o=0)

We denote the set of atomic attribute references to

computed attributes by F ′. After Hawk processed all

computational expressions F , it generates the final

PROJECT, consisting of the attributes from K and F ′:

PROJECT(K ∪ F ′; m=branched, o=0)

Join(T1, T2, Fσ). We consider two implementations

for joins, i.e., the nested-loop join, which is capable of

handling any join conditions, and the hash join.

Nested-loop join. Hawk implements a nested-loop

join by traversing the left and right sub-trees. Each

scan operator adds its LOOP operation to the pipeline

program, which creates a nested loop for each scan in

the plan. Then, Hawk adds a FILTER operation that

evaluates the join condition Fσ.

LOOP(T1; step=1, s=0, e=numTuples(T1))

LOOP(T2; step=1, s=0, e=numTuples(T2))

FILTER(Fσ; m, o=0)

Hash join. Next, we present the translation scheme

for hash joins, which consist of two phases: build and

probe. In the build phase, Hawk creates a hash table

on the intermediate result of the left sub-tree. Thus,

a hash join first introduces a new pipeline program

Pbuild. After that, Hawk traverses the left sub-tree down

(using the produce function) to add all operations of

the left sub-tree to the pipeline program Pbuild. Then,

Hawk adds the HASH PUT and PROJECT operations

to Pbuild, compiles, and executes Pbuild. Note that at-

tribute set J contains all attributes required by the

probe pipeline program, which is passed to PROJECT:

HASH PUT(A; h, p)

PROJECT(J ; m=branched, o=0)

In the probe phase, Hawk traverses the right-subtree

and adds operations to the current pipeline program

(Pprobe). Then, Hawk adds the HASH PROBE to Pprobe:

HASH PROBE(A, fprobe, Fσ; h, p, m, o)

As the probe is a not a pipeline breaker, Hawk calls the

consume function of the parent operator, which adds

it’s operations to the current pipeline program.

Aggregation(G,F ). Hawk handles aggregations with

grouping attributes G using the aggregation expression

F = (f1, f2, · · · , fn) as follows. Each fi is either an ag-

gregation function on a single attribute (e.g., SUM(A)),

or it contains an expression (e.g., SUM(A+B)). In case

of an expression, Hawk adds ARITHMETIC operations

to the pipeline program in the same way as in the re-

lational projection. If G is not empty, Hawk adds the

hash aggregate operation to the pipeline program:

HASH AGGREGATE(G,F ; ...)
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Table 2 Pipeline programs created for example query plan
from Figure 7. Each pipeline program belongs to one pipeline.

Build Pipeline 1 Build Pipeline 2 Probe Pipeline
LOOP(T1, ..) LOOP(T2, ..) LOOP(T3, ..)
FILTER(x=5, ..) FILTER(y>1, ..) FILTER(z<3, ..)
HASH PUT(a, ..) HASH PUT(b, ..) HASH PROBE(a=c, ..)
PROJECT(a, x, ..) PROJECT(b, ..) HASH PROBE(b=d, ..)

HASH AGGREGATE(x,
sum(q), ..)

In case G is empty, Hawk uses the more efficient oper-

ation for non-grouped aggregation, because it directly

aggregates into a local variable instead of a hash table:

AGGREGATE(F ; m, o)

Example. We illustrate the translation process in Hawk

using the query in Figure 7 and show the pipeline pro-

grams produced in Table 2. The query contains two

hash joins, leading to a query plan with three pipeline

programs. The build pipeline programs iterate over their

input tables (T1 and T2), apply their filters, insert the

matching keys into a hash table, and materialize the

result on the required attributes. The probe pipeline

program iterates over table T3, applies it’s filter, probes

the hash tables, and performs the aggregation.

5 Dimensions of Code Modifications

In Section 4, we discussed Hawk’s intermediate repre-

sentation – pipeline programs. In this section, we dis-

cuss the code modifications which are needed by a hard-

ware-tailored code generator to produce efficient code.

We also explain how Hawk transforms pipeline pro-

grams to produce hardware-tailored target code. We
classify code modifications in two dimensions. We first

discuss parallelization strategies in Section 5.1 and then

explain several code transformations in Section 5.2.

5.1 Parallelization Strategies

One of the major parameters of pipeline programs is

the parallelization strategy, which defines how we par-

allelize query execution. Efficient code generation for

heterogeneous processors needs to trade-off two basic

design dimensions: the degree of parallelism and syn-

chronization overhead. As discussed in Section 2.1, dif-

ferent processors require different parallelization. CPUs

require coarse-grained parallelism, i.e., spawning one

thread per processor core. Co-processors such as GPUs

require fine-grained parallelism (i.e., ten thousand and

more threads) to exploit all available SIMD lanes in

a streaming multi-processor and having enough thread

blocks to hide memory latencies.

In the following, we discuss parallelization strategies

that reflect different degrees of parallelism and synchro-

nization cost. We differentiate between single-pass and

multi-pass strategies, which reflect the number of times

we need to read the input data. Single-pass strategies

read data once but require synchronization. Multi-pass

strategies avoid synchronization by incrementally build-

ing a data structure that contains unique write posi-

tions for all threads.

The parallelization strategy depends on the type of

pipeline program. As a last step, a pipeline program

either projects output tuples to a temporary relation

(projection pipeline) or aggregates tuples (aggregation

pipeline). Next, we present parallelization strategies for

projection pipelines and aggregation pipelines.

5.1.1 Projection Pipelines

A projection pipeline is a pipeline program that materi-

alizes result tuples into an output buffer (i.e., does not

perform aggregations). We show a simple query that

creates a single projection pipeline in Listing 1. It con-

sists of one filter predicate and projects three attributes.

In the following, we show how a projection pipeline is

implemented on CPU and GPUs/MICs.

Listing 1 Projection Query 1.

s e l e c t l o l inenumber , l o quant i ty ,
l o r evenue

from l i n e o r d e r where l o quant i ty <25;

Single-Pass Strategy. On CPUs, it is common to

generate a single for-loop per pipeline [40]. This loop

processes all input tuples and writes result tuples to the

output buffers.. This single-pass strategy parallelizes

query processing by concurrently executing the same

pipeline on different chunks of the input relation [34].

Since one thread per core is launched, the single-pass

strategy uses coarse-grained parallelism.

Multi-Pass Strategy. On processors with many

light-weight cores (e.g., GPUs or MICs), the coarse-

grained parallelization used by the single-pass strategy

cannot utilize all cores (cf. Section 2.1). In this case, we

apply a multi-pass strategy to achieve fine-grained par-

allelism. Algorithms that use fine-grained parallelism

avoid latching at all cost and are typically multi-pass

strategies, consisting of three phases [21,20]. In the first

phase, the operator is executed and all matching tuples

are marked in a flag array. In the second phase, per-

thread write positions are computed using an exclu-

sive prefix sum. Finally, the operator is executed again,

but this time, the threads can utilize globally unique

write positions to write their result. In Hawk, we im-

plement this three-step processing technique in pipeline



Generating Custom Code for Efficient Query Execution on Heterogeneous Processors 9

Table 3 Impact of parallelization strategies on Projection
Query 2 (cf. Listing 2). We show execution times in seconds.

Parallelization Strategies CPU dGPU MIC

Single-Pass Strategy 0.05 3.12 0.56
Multi-Pass Strategy 0.14 0.02 0.18

Parallel
Filter

Kernel

.. ..

Input 
Columns

Result 
Columns

Parallel
Project
Kernel

Flag 
Array

Write 
Positions

Prefix 
Sum

Fig. 8 Fine-grained parallelism. We generate two kernels that
are executed massively parallel.

Listing 2 Projection Query 2.

select lo_linenumber , lo_quantity ,

lo_revenue

from lineorder where lo_quantity <25 and
lo_discount <=3 and lo_discount >=1 and
lo_revenue >4900000;

programs as follows. We generate two kernels, a filter

and a projection kernel. In the first step, the filter kernel

performs all operations that reduce the number of result

tuples. These are essentially filter and hash probes (e.g.,

to conduct joins). All matching tuples are marked in a

flag array. The second step computes the write positions

for each thread by performing a prefix sum on the flag

array. In the third step, the projection kernel repeats

the hash probes to obtain the payload of matching join

tuples. The projection kernel also performs arithmetic

instructions and writes the result to the computed write

positions. We illustrate this algorithm in Figure 8.

We illustrate the trade-off between the single-pass

and the multi-pass strategy in Table 3, where we exe-

cute Projection Query 2 (cf. Listing 2) with the single-

pass and the multi-pass strategy on different proces-

sors. We describe our detailed experimental setup in

Section 8.1. The single-pass strategy outperforms the

multi-pass strategy on CPUs by a factor of 2.8. The

multi-pass strategy outperforms the single-pass strat-

egy on a GPU by a factor of 148 and on a MIC by a

factor of 3.19.

5.1.2 Aggregation Pipelines

An aggregation pipeline is a pipeline where the last op-

erator is an aggregation operator. In this case, we ma-

terialize the result in a hash table and, therefore, we

do not need to compute write positions in an output

buffer. Depending on the number of result groups, we

use different aggregation strategies.

Aggregate in
Local Hash Tables

Aggregate in 
Global Hash Table

..

..

Result 
Columns

Input 
Columns

Thread 
Group 1

Thread 
Group 2

Thread 
Group N

..

Fig. 9 Local hash table parallelization strategy for aggre-
gation pipelines. For each of the N hash tables, M threads
perform the aggregation.

Local Hash Table Aggregation. If we expect

few result groups, we perform the aggregation in two

steps [27,59]. First, we pre-aggregate the result in par-

allel in multiple local hash tables. Second, we merge

the local hash tables into a global result hash table. We

call this local aggregation and illustrate the principle

in Figure 9. For each of the N hash tables, M threads

perform the aggregation. The number of hash tables

and threads per hash table are thus important tuning

parameters (cf. Section 9). We synchronize concurrent

operations on the aggregates using OpenCL’s atomics.

Global Hash Table Aggregation. If we expect

many result groups, we aggregate into a single global

hash table [27,59]. In this case, synchronization over-

head is small and cost for merging large partial results

high. We refer to this as global aggregation, which is

a special case of local aggregation with a single local

hash table. Thus, we only need to tune the number of

threads per hash table.

Parallelism. We implement coarse-grained paral-

lelism by using the local hash table aggregation with

one thread per hash table. Furthermore, we set the

number of hash tables to the number of OpenCL com-

pute units (e.g., the number of CPU cores). Each thread

group is responsible for one hash table. Thus, if we

increase the number of threads per thread group, we

achieve fine-grained parallelism.

5.2 Code Transformations

In this section, we discuss how Hawk captures different

hardware (and query) properties at the level of tradi-

tional code transformations. Hawk considers exchang-

ing the memory access pattern, the predication mode,

and the hash table implementation.

Adjusting the memory access pattern. The op-

timal memory access pattern is processor dependent [24,

55]. We show the performance impact of the memory

access pattern in Table 4. On a CPU, sequential ac-

cess outperforms coalesced memory access by a factor
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Table 4 Impact of memory access pattern on Projection
Query 2 (cf. Listing 2). We show execution times in seconds.

Access Pattern CPU dGPU MIC

Sequential 0.14 0.04 0.18
Coalesced 0.22 0.02 0.18

memory_access=coalesced

LOOP(lineorder, ...)
FILTER(lo_quantity < 25, ...)
AGGREGATE(lo_revenue, ...)

memory_access=sequential

LOOP(lineorder, ...)
FILTER(lo_quantity < 25, ...)
AGGREGATE(lo_revenue, ...)

int thread_id = get_thread_id();
start=start_idx(thread_id, num_rows);
end=end_idx(thread_id,  num_rows);
for(id=start;id<end;id+=1)
  if(lo_quantity[id] < 25)
    sum += lo_revenue[id];

int thread_id = get_thread_id();
for(id=thread_id;id<num_rows;
        id+=num_threads)
  if(lo_quantity[id] < 25)
    sum += lo_revenue[id];

Pipeline Program

Memory Access
Optimizer

Generated Code

Fig. 10 Effect of memory access pattern on generated code.

LOOP(lineorder, ...)
FILTER(lo_quantity < 25, predicated)
AGGREGATE(lo_revenue, predicated)

LOOP(lineorder, ...)
FILTER(lo_quantity < 25, branched)
AGGREGATE(lo_revenue, branched)

for(id=0;id<num_rows;id+=1){
  if(lo_quantity[id] < 25){
    sum += lo_revenue[id];
  }
}

bool val;
for(id=0;id<num_rows;id+=1){
  val=(lo_quantity[id] < 25);
  sum += (val*lo_revenue[id]);
}

Pipeline Program

Software
Predication

Generated Code

Fig. 11 Applying software predication to a pipeline program.

of 1.6. On a GPU, coalesced memory access outper-

forms sequential memory access by a factor of 1.8. On

a MIC, we measure no significant difference between ac-

cess patterns. In Hawk, we rewrite the memory access

pattern in a pipeline program by setting the memory

access property. We show the impact on the generated

code in Figure 10.

Applying software predication. Software predi-

cation is a common technique to avoid branch mispre-

diction penalties [11,53]. To support predication, each

pipeline operation has a flag that determines whether

code with branching (if statements) or with predication

should be generated. In the predicated mode, the result

of predicate evaluations is stored in a result value. This

value is either added to the variable storing the result

size (projection pipeline) or multiplied to the input val-

ues before an aggregation (aggregation pipeline). We

illustrate the principle in Figure 11, where we apply

predication to a simple aggregation pipeline. Note that

all pipeline operations have to be in the same predica-

tion mode. Otherwise, an AGGREGATE or PROJECT

operation after a FILTER operation would incorrectly

LOOP(...)
HASH_PUT(attr1,
 linear_probing)

LOOP(...)
HASH_PROBE(attr1,
 linear_probing)

Build Pipeline

Probe Pipeline

LOOP(...)
HASH_PUT(attr1,
 cuckoo, num_hash=4)

LOOP(...)
HASH_PROBE(attr1,
 cuckoo, num_hash=4)

Build Pipeline

Probe Pipeline

Data Structure
Optimization

Fig. 12 Exchanging hash table implementations.

include filtered out tuples in the result computation.

This is because the code templates of these operations

depend on the predication mode (cf. Section 6.4).

Selecting hash table implementations. Besides

a well-selected parallelization strategy, high performance

implementations require optimized data structures. A

prominent example in the database context are hash

tables. In particular, different implementations are op-

timal for different data and query characteristics [50].

The Hawk code generator allows us to select the hash

table implementation on a per-query basis.

In Hawk, we set the hash table implementation us-

ing a transformation pass during the transformation

step of code generation (cf. Section 3.2.2). The trans-

formation pass iterates over the pipeline program and

configures each HASH PUT and each HASH PROBE

operation with a hash table and its parameters, as we

illustrate in Figure 12. For example, we exchange the

collision resolution strategy by using Cuckoo hashing

instead of linear probing (e.g., because we expect a

sparse data distribution and want to achieve a high fill

factor [50]). Cuckoo hashing uses n hash functions that

provide for each key n possible insertion locations in

the hash table. Thus, Cuckoo hashing avoids situations

where a large number of entries of the hash table need to

be inspected during a probe. However, Cuckoo hashing

might require expensive rehashing if the insertion of a

key fails. Note that we can also change the parametriza-

tion of a hash table, e.g., we can set the number of hash

functions of Cuckoo hashing to tune performance.

The important constraint that has to be satisfied is

that the build and probe pipeline operations need to

work with the same hash table and same parametriza-

tion. This introduces a dependency between pipeline

programs. Thus, the query processor needs to ensure

that corresponding HASH PUT and HASH PROBE op-

erations use the same data structure.

Other optimizations. We can also apply more

complex code transformations, such as loop unrolling

or vectorization in Hawk. We exemplary show how loop

unrolling can be supported by pipeline programs in Fig-

ure 13. Loop unrolling affects the original pipeline pro-

gram beyond the choice of code generation parameters.
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LOOP(lineorder, step=2, ...)
FILTER(lo_quantity < 25, offset=0)
AGGREGATE(lo_revenue, offset=0)
FILTER(lo_quantity < 25, offset=1)
AGGREGATE(lo_revenue, offset=1)

LOOP(lineorder, step=1, ...)
FILTER(lo_quantity < 25, offset=0)
AGGREGATE(lo_revenue, offset=0)

for(id=0;id<num_rows;id+=1)
  if(lo_quantity[id] < 25){
    sum += lo_revenue[id];
}

for(id=0;id+1<num_rows;id+=2){
  if(lo_quantity[id+0] < 25)
    sum += lo_revenue[id+0];
  if(lo_quantity[id+1] < 25)
    sum += lo_revenue[id+1];
} /*process left over tuples*/

Pipeline Program

Loop 
Unrolling

Generated Code

Fig. 13 Applying loop unrolling to a pipeline program.

Table 5 Query compilation times in milliseconds of a simple
Projection Query (cf. Listing 2).

HyPer Hawk (OpenCL)
CPU CPU MIC GPU GPU

(Intel) (AMD) (Intel) (Nvidia) (AMD)
13 25.2 39.3 96.7 81.5 55.2

However, loop unrolling does not limit the combinations

with other modifications.

In sum, a pipeline program is a highly flexible repre-

sentation, which stores low-level code transformations

that are hard to represent in a physical query plan.

6 Target Code Generation

In the previous section, we discussed different ways

of how Hawk modifies pipeline programs to produce

hardware-tailored code. In this section, we discuss the

target code generation of Hawk for pipeline programs.

We outline why we use OpenCL as target language and

discuss how Hawk generates kernels by fragment gener-

ation and assembly. Then, we discuss how the code gen-

erator can be extended by new data structures and al-

gorithms and present implementation details of Hawk.

6.1 Target Code: OpenCL Kernel

The drawback of generating high-level code is usually

high compilation time [30,40]. By compiling pipeline

programs to OpenCL kernels, Hawk benefits from the

JIT compilation capabilities and the performance porta-

bility of OpenCL. The latter allows Hawk to run any

code variant on any OpenCL-capable processor.

In Table 5, we show query compilation times for a

simple query (cf. Listing 2) for compiling OpenCL ker-

nels for an Intel CPU, an AMD CPU, an Intel MIC,

a NVIDIA GPU, and an AMD GPU. As reference, we

also show the compilation time of HyPer [40] (v0.5-222-

g04766a1), a state-of-the-art system for query compi-

lation. Compiling OpenCL kernels for CPUs is in the

same order of magnitude (slower by a factor of 2 to 3

for Intel and AMD OpenCL SDKs) as the LLVM IR

query compilation used by HyPer [40]. Furthermore,

we observe that compilation for GPUs and MICs is up

to a factor of 4.3 to 7.4 slower compared to LLVM IR

query compilation. The compilation times are consis-

tently below 100ms. Thus, we conclude that query com-

pilation using OpenCL is sufficiently efficient for com-

piling database queries to support interactive querying

on GPUs and MICs. Note that the OpenCL compi-

lation times can be further reduced. For example, we

could disable certain optimization passes and trading

off runtime and optimization time, similar to optimiza-

tion levels in some commercial database engines.

6.2 Fragment Generation and Assembly

We now discuss how we generate code for projection

and aggregation pipelines from pipeline programs. The

code generation follows a two step approach: fragment

generation, followed by fragment assembly.

6.2.1 Fragment Generation

A code fragment (in short fragment) consists of six

segments: host variable declarations, host initialization

code, host cleanup code, kernel variable declarations,

kernel code top, and kernel code bottom. These fine-

grained separations allow us to route fragments into

different kernels. Each pipeline operation produces a

fragment that implements its semantic. We retrieve the

fragment for each pipeline operation to create all frag-

ments. Each operation can generate code for any part

in the target source code, e.g., body of the for-loop,

declarations, or cleanup operations. Furthermore, the

fragment produced by a pipeline operation depends on

the code generation modes. These modes are special

parameters, which define the code variant generated by

the operation, but do not change the semantic. Code

generation modes enable Hawk to adapt the fragment

LOOP(...)
FILTER(...)
ARITHMETIC(...)
PROJECT(...)

Parallel Filter
Kernel

Parallel Project
Kernel

Serial
Kernel

Single-Pass Strategy Multi-Pass Strategy 

Fig. 14 Supporting multiple parallelization strategies. Each
strategy acts as a fragment assembler for a pipeline pro-
gram. A fragment assembler combines code fragments of each
pipeline operation into one or more kernels.
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__kernel serial_kernel(
  int num_tuples, 
  const int* a,
  const int* b,
  int* out_b){
  /* variable definitions */
  int i;
  int write_pos=0;
  for(int i=0;i<num_tuples;
  ++i){
    if(a[i]<5){
      out_b[write_pos]=b[i];
      write_pos++;
    }
  }
}

              LOOP(t, ...)
variable definitions: int i;
kernel top: 
  for(i=0;i<num_tuples;++i){
kernel bottom: }

            FILTER(a<5, ...)
variable definitions: -
kernel top: if(a[i]<5){
kernel bottom:}

            PROJECT(b, ...)
variable definitions: 
   int write_pos=0;
kernel top: 
   out_b[write_pos]=b[i];
kernel bottom: -

Pipeline Program & Generated 
Code Fragments

Generated Kernel 
by Single-Pass Strategy

Fragment 
Assembly

__kernel filter_kernel(int num_tuples, int* flags const int* a){
  int i;  /* variable definitions */
  parallel_for(int i=0;i<num_tuples; ++i){
    if(a[i]<5){
      flags[i]=1;
    }
  }
}
__kernel projection_kernel(int num_tuples, int* flags, int* prefix_sum, 
  const int* a, const int* b, int* out_b){
  int i,write_pos=0;  /* variable definitions */
  parallel_for(int i=0;i<num_tuples; ++i){
    if(flags[i]){
      write_pos=prefix_sum[i]; /* extract write position from prefix sum */
      out_b[write_pos]=b[i];
    }}
}

Generated Kernels 
by Multi-Pass Strategy

Fragment 
Assembly

Single-Pass 
Strategy

Multi-Pass 
Strategy

Fig. 15 Example for fragment generation and fragment assembly: Each pipeline operation generates fragments, which are
then assembled to kernels. The single-pass strategy generates one kernel that includes all operations from the fragments. The
multi-pass strategy generates a filter and a projection kernel which include different fragments.

by re-parameterizing the pipeline operations or global

parameters of the pipeline program. Using this code

generation approach, it is straightforward to create code

variants of a pipeline program to adapt to the underly-

ing hardware (cf. Section 6.4).

6.2.2 Fragment Assembly

We combine fragments by assembling them into a sin-

gle fragment. Note that this fragment assembly is es-

sentially a string concatenation of code segments. Our

guiding idea is as follows. We provide a fragment assem-

bler for pipeline-programs for each parallelization strat-

egy. Each fragment assembler knows how many kernels
are required for the strategy. The fragment assembler

assigns the fragments, depending on the pipeline oper-

ation, to one or more kernels. We illustrate this process

in Figure 14. For the single-pass strategy, all fragments

belong to the same kernel. In contrast, the multi-pass

strategy routes fragments from different pipeline opera-

tions to different kernels. Thus, a fragment can be part

of multiple kernels, e.g., LOOP or HASH PROBE.

For each kernel used by the parallelization strategy,

the fragment assembler combines all fragments assigned

to the kernel to a result fragment. We create the final

kernel from this result fragment. Note that Hawk’s code

generator is conceptionally not limited to OpenCL ker-

nels. Thus, Hawk could also produce code for frame-

works such as CUDA. Since we implement paralleliza-

tion strategies as fragment assemblers, we can apply dif-

ferent strategies to pipeline programs. Our design keeps

the parallelization strategies composable with any other

modification on the pipeline program.

6.3 Example: Fragment Generation and Assembly

We now present an example that illustrates the code

generation process. Consider the query select b from t

where a<5, which will result in a pipeline program with

three operations: LOOP, FILTER, and PROJECT. We

show the generated fragments of the pipeline operations

in Figure 15. The generated fragments can add code to

two parts of the kernel: the variable declaration and

initialization code block, and the for-loop. Code can be

inserted into a for-loop at two positions: at the top po-

sition we insert the actual code; at the bottom position

we insert closing brackets and perform operations after

an iteration, e.g., increasing counters. Generated code

of succeeding operations is nested inside the brackets of

previous operations. For example, the final projection

is nested in the generated code of the filter operation.

6.4 Fragment Generation and Assembly Algorithms

We now introduce algorithms for fragment generation.

We show pseudo code for each algorithm and highlight

generated code by surrounding it with angle brackets

and by coloring the background ( <generated code> ).

We also highlight entry points for code templates of

succeeding pipeline operations ( <entry point> ).

Loop. The LOOP operation generates code that it-

erates over every input tuple of a table in parallel. We

can either iterate sequentially or interleaved over the

tuples, which leads to sequential or coalesced memory

access (cf. Listing 3). In case of sequential access, we

compute the start and end offset of the partition that

each thread processes. In case of coalesced access, each

thread starts the iteration on its unique thread identi-

fier and advances by adding the number of threads to

the loop variable id.
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Listing 3 Loop Fragment Generation:
LOOP(table, memory access pattern).

<thr_id = get_thread_id ()>

i f (memory_access_pattern == SEQUENTIAL){
<start=start_idx(thr_id ,num_rows)>

<end=end_idx(thr_id ,num_rows)>

< for(id=start;id <end;id+=1){>

<insert code of next operation>

<}>

} else i f (memory_access_pattern == COALESCED)
{

< for(id=thr_id;id <num_rows;id
+= num_threads){>

<insert code of next operation>

<}>

}

Listing 4 Filter Fragment Generation:
FILTER(condition, predication mode).

i f (predication_mode == BRANCHED){

< i f (condition){>

<insert code of next operation>

<}>

} else i f (predication_mode == PREDICATED){

<result_increment =( condition)>

<insert code of next operation>

}

Generated Code: <code>

Filter. The FILTER operation generates code that

evaluates a selection predicate. It either generates an

if-statement (no predication) or stores the result of the

predicate evaluation in the variable result increment

(predication), as we illustrate in Listing 4.

Project. The PROJECT operation generates code

that copies the values of each projected attribute and

writes them to the write position write pos in the pro-

jection attribute’s output array (cf. Listing 5). The gen-

erated code depends on the predication mode. If pred-

ication is disabled, we know the tuple passed all previ-

ous filters. Thus, we increment the write position after

writing the tuple into the output buffer. If predication

is enabled, we always write the result tuple but add

the variable result increment to write pos. If the tuple

passed all previous filters, result increment is one and

the write position is advanced by one row. In case the

tuple did not match all filters, result increment is zero

and the write position is not changed, which discards

the current tuple.

Hash. The HASH PUT and HASH PROBE opera-

tions generate code that insert/lookup tuples into/from

a certain hash table (cf. Listing 6). HASH PROBE first

probes the hash table using attributes A and then ap-

plies the generic filter condition F to the joined tuple.

Listing 5 Project Fragment Generation:
PROJECT(proj attributes, predication mode).

<declare variable write_pos=0>

for(attribute in proj_attributes){

<copy value of attribute to result

column at position write_pos >

}

i f (predication_mode == BRANCHED){

<write_pos++>

} else i f (predication_mode == PREDICATED){
<write_pos += result_increment >

}

Listing 6 Join Fragment Generation:
HASH BUILD(attr, hash table) and
HASH PROBE(attr, hash table).

HASH_PUT(A;h,p){

/* declare and init ht in host code */

<ht = createHashTable(A, h,p);>

/* inside the for loop for each tuple t */

<ht.insert(πA(t));>

<insert code of next operation>

}

HASH_PROBE(A, f, F; h,p){

/* get hash table of previous pipeline */

<ht = getHashTable(A,h,p);>

/* inside the for -loop for each tuple t */

<res = ht.lookup(t.A, f);>

< i f (res.match && F(t,res.payload)){>

<tuple t‘=res.payload;>

<insert code of next operation>

<}>

}

Listing 7 Aggregate Fragment Generation:
AGGREGATE(attr, SUM, predication mode).

<declare variable aggregate=0>

i f (predication_mode == BRANCHED){
<aggregate +=attr[id]>

} else i f (predication_mode == PREDICATED){

<aggregate +=( attr[id]* result_increment)>

}

Generated Code: <code>

The code of consecutive HASH PROBE operations is

nested into each other. We omit the detailed code for

the sake of brevity.

Aggregate. The AGGREGATE operation gener-

ates code that computes the aggregates. The generated

code depends on the predication mode. If predication is

disabled, we evaluate the aggregate expression without

any changes. In case of enabled predication, we need

to take special care to not include a filtered out tu-

ple in the aggregation. Therefore, we need to ensure

that the aggregate is not changed in case the variable

result increment is zero. In case of count or sum aggre-

gation functions, we multiply the tuple value with the
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result increment before applying the aggregation func-

tion (cf. Listing 7). This way, the aggregate remains

unchanged if and only if result increment is zero.

6.5 Extending Hawk’s Code Generator

We now discuss how we can extend the code generator

to support new data structures and algorithms.

6.5.1 Support for Different Data Structures

For each supported data structure, Hawk’s code gen-

erator first requires the code templates for initializing,

accessing, and modifying the data structure. These code

templates may also be generated at run-time, e.g., to

adapt the hash function depending on the data prop-

erties. Second, we need to add a new operation for the

pipeline program if required, e.g., an index scan. The

operations of pipeline programs encapsulate the code

generation for different data structures. For example,

the HASH PUT operation generates code for the hash

table specified in its parameter. This variability allows

Hawk to select different hash table implementations de-

pending on certain data characteristics [50]. For exam-

ple, to add a robin hood hash table, we need to ex-

tend the existing HASH PUT and HASH PROBE op-

erations by the respective code templates.

6.5.2 Support for Different Algorithms

Adding a new algorithm to Hawk starts by extending

the code generator with its required data structure (if

not present). Then, the algorithm needs to be registered

to the code generator. We either add a new pipeline op-

eration or include the algorithm in an existing pipeline

operation. Finally, we provide the respective code tem-

plates. For example, we can extend Hawk with the scan

of Zhou and Ross [65], which uses SIMD instructions to

check the predicate of multiple tuples at once. To sup-

port this SIMD scan in Hawk, we need to add a new

code generation mode to the FILTER operation. The

mode parameter allows Hawk to select either the scalar

or the SIMD code template. Furthermore, the code tem-

plate for the SIMD scan has to be added to the FILTER

operation. The same procedure applies for SIMD sup-

port for other operations supported by Hawk.

6.6 Hawk Implementation Details

We implemented Hawk as a prototype that targets col-

umn-oriented main-memory database engines. We show

the viability of our approaches on the example of Co-

GaDB [9,10], as it fulfills our requirements and resulted

in the smallest integration effort for us. Note that there

is no inherent limitation to apply our concepts to other

in-memory database systems. The main changes to the

database engine consists of the extension of the query

plan interface by the produce/consume code generation

along with our proposed approach for code variant gen-

eration. Furthermore, the execution engine has to be

replaced by a run-time for the compiled queries.

Hawk dictionary compresses strings and rewrites com-

parisons on strings to comparisons on dictionary com-

pressed keys if possible. Hawk keeps only dictionary

compressed keys in co-processor memory to reduce the

memory footprint. In Hawk, we do not consider exe-

cuting multiple queries in parallel. We studied the chal-

lenges of query concurrency in another publication [10].

Hawk supports all pipeline operations discussed in

Section 4.1, which allows for producing code for se-

lections, projections, joins, and aggregations. Aggrega-

tions are currently limited to distributive and algebraic

aggregation functions (e.g., holistic aggregation func-

tions such as the median are currently not supported).

6.7 Applying Hawk’s Concepts to other Systems

Next, we discuss how the concepts of Hawk can be

transferred to other database systems. In general, there

are two fundamental ways of executing a query: query

interpretation [1,6] and query compilation [30,40].

Other interpretation-based systems. Query in-

terpretation calls a particular function for every oper-

ator in a query execution plan. Pipeline programs and

our concepts are applicable for individual operators as

well. In this case, we create for every relational operator

a pipeline program and use Hawk’s concepts to produce

optimized code variants for every target processor for

each operator. These operators can either consume the

whole input, i.e., implementing bulk processing (e.g.,

MonetDB), or parts of the input, i.e., implementing

vector-at-a-time processing (e.g., VectorWise). Thus,

Hawk’s concepts integrate with most processing models

of main-memory databases [1].

Other compilation-based systems. Pipeline pro-

grams and our concepts for code variant generation can

be applied to other compilation-based database systems

as well. The developer first needs to integrate pipeline

programs as intermediate layer between query plans

and code generation. Second, the code generator needs

to use pipeline programs as the source of compilation.

As a result, all concepts of Hawk become applicable.
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Other code generation targets. Hawk leverages

OpenCL as code compilation target to showcase it’s

hardware-tailored code generation. However, Hawk is

not limited to OpenCL, as pipeline programs allow us to

abstract from programming languages. In fact, Hawk is

also capable of generating code for C, and in earlier ver-

sions of the prototype, we also supported CUDA. Fur-

thermore, we experimented with code generation based

on the LLVM framework [32]. In particular, the gener-

ated fragments of LLVM’s intermediate representation

could be combined using LLVM’s inliner. Thus, Hawk’s

architecture supports code generation based on code

templates (e.g., C, CUDA, OpenCL) and based on in-

termediate representations of a compiler (e.g., LLVM).

7 Optimizing Pipeline Programs

Hawk is able to generate a large number of code vari-

ants to adapt to different processors. We refer to the set

of all variant configurations as variant space. The size

of the variant space is the cross product of all possi-

ble parameter values for each modification supported.

We discretize numeric parameters such as the number

of threads and the number of work groups to not un-

necessarily bloat the number of variant configurations.

However, Hawk still faces a large variant search space.

Exploring the entire search space is very expensive for

two reasons. First, Hawk pays query compilation cost

for each generated code variant. Second, the execution

time of some code variants may be significantly slower

than the optimal code variant. In particular, if Hawk

explores code variants that are very slow on a certain

processor (e.g., a serial implementation on a GPU), the

impact on performance can be significant.

In this section, we discuss how Hawk automatically

finds a fast-performing variant configuration for each

processor for a given query workload.

7.1 Navigating the Optimization Space

Hawk explores the search space for a processor offline

by executing a workload of representative test queries.

Hawk compiles code variants of each query and explores

which modifications are most efficient on a particular

processor. We present our strategy in Algorithm 1.

Core algorithm. Initially, we have no knowledge

about the performance behavior of the processor. We

start from a base configuration (Line 1), which we ini-

tialize with the first parameter value in each variant

dimension. In the following, we change one parameter

at a time (Line 4–10) and select the parameter value

with the best performance (Line 11–14). We perform

Algorithm 1 Learning an efficient variant configura-

tion for a processor.
Input: dimensions of modifications: D = {D1, · · · , Dn}
Input: workload of k queries: W = {Q1, · · · , Qk}
Output: variant configuration v

1: v = (v1, · · · , vn) ∈ D1 × · · · ×Dn

2: for (iter = 0; iter < q; iter + +) do

3: last variant=v
4: for Di ∈ D do

5: execution time=∞
6: best dimension value=∅
7: for d ∈ Di do

8: v′ = v;
9: v′i = d;

10: execution time′ = executeQueries(W, v′);
11: if execution time′<execution time then

12: execution time=execution time′;
13: best dimension value=d;
14: end if
15: end for

16: /* Update configuration v in-place */
17: vi =best dimension value;
18: end for

19: if v ==last variant then

20: return v;
21: end if

22: end for

23: return v

this step for every variant dimension (e.g., paralleliza-

tion strategy or memory access pattern). The best pa-

rameter values are stored in the variant configuration

(Line 16–17, see Section 3.1).

Handling performance dependencies. Note that

different modifications may influence each other. For

example, depending on the number of threads, a differ-

ent number of work groups is optimal. This means that

a previously optimal parameter value of a modification

may be sub-optimal in the new configuration. To make

sure that our algorithm finds a fast performing vari-

ant configuration, we repeat the core of the algorithm

(Line 4–18) iteratively. Note the update to v in Line

17 with the best found dimension value. This makes

sure that the outer loop (Line 2) continues with the

best found variant configuration from the previous it-

eration. The algorithm terminates in case we have not

found any faster variant configuration (Line 3, 19–21)

or reach a maximum number of iterations q (Line 2).

Complexity. Let Di be a modification of all sup-

ported modifications D. Let |Di| be number of parame-

ter values available for modification Di and n the num-

ber of modifications supported. Then, our learning al-

gorithm has a search complexity of O(|D1| + |D2| +

· · · + |Dn|) per iteration. Note that a naive algorithm

that explores all variant configurations in the variant

space has a complexity of O(|D1| · |D2| · ... · |Dn|).
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7.2 Reducing Variant Optimization Time

As the variant exploration requires Hawk to execute

code variants, very slow code variants increase explo-

ration time significantly. In Hawk, we reduce the ex-

ploration time by applying early termination, feature

ordering, and nested modifications.

Early Termination: Our learning strategy gains

knowledge over the entire variant space. We can termi-

nate the search early, if we reach a local optimum during

an iteration. This early termination reduces exploration

time, but we may not reach the global optimum.

Feature Ordering: If we take the most impacting

modifications into account, we can further accelerate

the search in the variant space. In this case, we explore

the parameter values of the most critical modifications

first to find an efficiently performing code variant faster.

In our experiments, we identified the following critical

modifications: the parallelization strategy, the number

of threads, and the memory access pattern. Different

modifications can potentially influence each others per-

formance (e.g., number of threads and number of work

groups). Thus, the convergence rate of our search algo-

rithm depends on the order in which we explore mod-

ifications. By optimizing the dimension order, we also

improve the convergence rate of the search algorithm.

In our evaluation, our search algorithm usually termi-

nated after 3 iterations.

Handling nested modifications: Some modifi-

cations introduce additional nested modifications that

Hawk needs to apply to a pipeline program. For ex-

ample, the local hash table aggregation introduces the

number of work groups as additional modification to

a pipeline program. The global hash table aggregation

does not require this parameter. Thus, it would un-

necessarily prolong the search if we always include a

nested modification. Therefore, Hawk explores nested

modifications (e.g., number of work groups) only if the

respective parent modification uses a particular param-

eter value (e.g., local aggregation).

7.3 Building a Heuristic Query Optimizer

Hawk builds a heuristic optimizer using the learned

variant configurations. However, Hawk learns variant

configurations for a representative query workload. Thus,

the resulting variant configuration is a heuristic that

performs well for a workload. While the heuristic de-

livers good performance for the given queries, it may

become sub-optimal for different query-dependent pa-

rameters. To avoid high overhead during query process-

ing, we execute the learning algorithm before query pro-

cessing starts. Thus, Hawk uses the best found variant

configuration (heuristic) of a processor to produce a

custom code variant as discussed in Section 3.1.

Optimizing for a particular processor. Differ-

ent models of the same processor type may require a

custom variant configuration. For example, on GPUs

the optimal number of threads or the efficiency of syn-

chronization depends on the particular processor. Thus,

Hawk learns for each specific processor model a custom

variant configuration to achieve peak performance.

Considering Query Dependencies

Parameters such as the predication mode are also query-

dependent [53] (i.e., the optimal parameter depends on

query characteristics). Thus, we discuss how Hawk can

support query-dependent tuning. The variant configu-

rations optimized for each target processor serve as a

starting point for further tuning. We introduce a set

of heuristics that trigger a rewrite of the pipeline pro-

gram if a certain condition is met. Such heuristic-based

rewrites set a query-dependent modification to another

parameter value (e.g., number of threads or predica-

tion mode), if we expect a performance improvement

(i.e., anticipated by known cost models). We discuss

two examples for heuristic-based rewrites on pipeline

programs in the following: Adjusting the predication

mode and choosing the hash table implementation.

Software Predication. The common wisdom for

software predication is that it is particularly efficient

for selections with a selectivity around 50% [11,53]. In

pipeline programs, selections are represented by FIL-

TER operations. Thus, Hawk can use classic selectivity

estimation to predict whether the FILTER operations

selectivity is close to 50% and switch to software pred-

ication or branched evaluation accordingly.

Hash Table Selection. Richter and others eval-

uated many different hash table implementations for

various workloads [50]. One of their key results was a

classification under which circumstances which hash ta-

ble implementation is optimal. Hawk can exploit the

results of such studies to derive a set of heuristic-based

rewrites for a particular query.

8 Evaluation

In this section, we show our experimental setup and

design, present our results on hardware adaption, and

discuss the implications of these results.

8.1 Experimental Setup

In our evaluation, we use two machines that have sev-

eral heterogeneous processors installed. In total, we con-
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Table 6 Processors used in evaluation.

Processor Short Architecture Vendor
A10-7850K (CPU) CPU Kaveri AMD
A10-7850K (GPU) iGPU CGN 1.1 AMD

Tesla K40M dGPU Kepler Nvidia
Xeon Phi 7120 MIC Knights Corner Intel

sider four different processor types with varying archi-

tectures: a CPU, an integrated GPU (iGPU), a dedi-

cated GPU (dGPU), and a MIC, as shown in Table 6.

All machines run Ubuntu 16.04 LTS (64bit). Depend-

ing on the processor’s vendor, we have to use a certain

OpenCL SDK and driver to compile and run our ker-

nels. For CPU and iGPU from AMD, we use the AMD

APP SDK version 3.0. For the MIC, we use the In-

tel OpenCL SDK Version 4.5.0.8. For the dGPU from

Nvidia, we use the CUDA SDK version 8.

In the experiments using processors with dedicated

main memory, we cache all input data before running

the code variants to avoid biased observations because

of PCIe transfers. Our goal is to evaluate the perfor-

mance of queries on heterogeneous processors, rather

than bottlenecks in current interconnects. The intercon-

nect bottleneck is reduced by two factors. First, query

compilation uses memory bandwidth more efficiently by

keeping intermediate results on the coprocessor. This

reduction in data movement among processors dimin-

ishes the impact of bandwidth bottlenecks [18]. Second,

many modern coprocessors access CPU main memory

with the same bandwidth as regular CPUs (e.g., Xeon

Phi Knights Landing or when CPU and GPU are con-

nected via NVLink). We run each code variant of a

pipeline program five times and report the mean and

the standard deviation. We prune the variant space

if we detect a very slow code variant (execution time

greater than one second) to keep the run-time of the

benchmark in a reasonable time frame. The rationale

behind the pruning is that a code variant that is or-

ders of magnitude slower than other code variants is

not a candidate for the optimal code variant. Repeating

measurements to obtain a reliable average unnecessarily

prolongs the benchmark’s run-time. Since we measure a

hot system, we exclude the possibility of measurement

artifacts by accessing uncached data.

We use the Star Schema Benchmark [41] and the

TPC-H Benchmark [7] dataset to run our experiments.

We use Scale Factor 1 for the experiments including a

full exploration of all code variants. With larger scale

factors, inefficient code variants would not finish in rea-

sonable time. As OpenCL does not provide any mecha-

nism to abort a kernel, we have to wait until the kernel

finishes. For all other experiments, we use a scale fac-

Listing 8 Grouped Aggregation Query 1

select lo_shipmode , sum(lo_quantity) from

lineorder group by lo_shipmode;

Listing 9 Grouped Aggregation Query 2

select lo_partkey , sum(lo_quantity) from

lineorder group by lo_partkey;

tor of 10. The main memory of the iGPU usable by

OpenCL is limited to 2.2GB and thus, we can not use

a larger scale factor.

8.2 Experimental Design

We now present our evaluation workload and the code

variants we generate for our test queries.

8.2.1 Queries

All SQL queries can be split in a series of projection

and aggregation pipelines. Thus, we evaluate our ap-

proaches for code variant generation and optimiza-

tion on simple queries representing a single pipeline.

These queries allow for unbiased observation of hard-

ware adaption using pipeline programs. Additionally,

we validate the results on complex benchmark queries.

Projection Pipelines. We take as representatives

for projection pipelines one query with 50 % selectivity

(Projection Query 1, cf. Listing 1) and one filter query

with very high selectivity (<0.01 %, Projection Query

2, cf. Listing 2). While Projection Query 1 is read and

write intensive, Projection Query 2 is read intensive.

Aggregation Pipelines. As representatives for ag-

gregation pipelines, we use one query with few result

groups (Aggregation Query 1, cf. Listing 8) and one

query with many result groups, e.g., several hundred

thousand (Aggregation Query 2, cf. Listing 9). The first

query is common for the final group by in an OLAP

query. The second query is common in sub-queries us-

ing a group by. Having so many groups, Aggregation

Query 2 is bound by memory latency.

TPC-H Q1 and SSB Q4.1. We perform a full

code variant exploration for TPC-H Q1 and SSB Q4.1.

The TPC-H query is a compute intensive query. It con-

sists of a single pipeline with a FILTER, several ALGE-

BRA operations and a grouped aggregation with multi-

ple aggregation functions. The SSB query is a join dom-

inated query (four joins), consisting of four projection

pipelines and one aggregation pipeline. The projection

pipelines build the hash tables, whereas the aggregation

pipeline probes each hash table.
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Other Queries. We also evaluate the performance

of other Star Schema Benchmark and TPC-H queries.

Due to current implementation restrictions of our pro-

totype system (e.g., a missing LIKE operator), we limit

the evaluation queries to a representative subset. The

star schema benchmark showcases a data warehouse

workload, where one central fact table is connected to

four dimensions tables [41]. The query consists of four

query groups, which vary in the number of joins in-

volved in the queries. We selected Query Groups 1, 3,

and 4 as representants, where Query Group 1 has the

lowest join intensity and Query Group 4 has the high-

est join intensity. The TPC-H benchmark loosens the

assumptions of the star schema benchmark (e.g., using

one centralized table) and provides more computational

intensive queries. We select a subset of queries (Q1, Q4,

Q5, Q6, Q7, Q19) that cover challenging aspects [7]. Q1

and Q4 are representatives for queries with heavy ag-

gregation. Q5, Q7, Q19 run into parallelization bottle-

necks. Additionally, Q1 and Q19 compute many tempo-

rary values prior to aggregation. Q4, Q5, and Q7 have

problems with data locality (i.e., correlations between

the orders and lineitem table) [7].

8.2.2 Variant Space of Generated Code Variants

We now discuss the variant space for our experiments.

The total number of code variants multiply with each

new variant dimension. We encode the number of code

variants in brackets [x variants]. For all pipeline types,

we vary the memory access pattern (sequential and co-

alesced) and the predication mode (branched predicate

evaluation and software predication) [2x2 variants].

Projection Pipelines. For projection pipelines, we

additionally vary the parallelization strategy (single pass

for coarse-grained parallelism and multi pass for fine-

grained parallelism) [2 variants]. For the single-pass strat-

egy, we set the number of parallel running pipelines to

the number of maximal compute units of the OpenCL

device [1 variant]. We change the memory access pat-

tern and the predication mode [2x2 variants]. Thus, we

generate 4 variants which use the single-pass strategy.

The multi-pass strategy uses a multiplier (1, 8, 64, 256,

1024, 16384, 65536) that is multiplied with the num-

ber of maximal compute units of the OpenCL device to

calculate the number of threads [7 variants]. We choose

as multipliers powers of two, which allows for a con-

vergence with a logarithmic number of steps in order

to find the right order of magnitude. We generate 28

variants that use the multi-pass strategy. In total, we

generate 32 variants for a projection pipeline.

Aggregation Pipelines. For aggregation pipelines,

we additionally vary the aggregation parallelization strat-

egy, the hash table implementation, and the hash func-

tion. For the hash table implementation, we vary be-

tween linear probing and Cuckoo hashing [2 variants].

The hash function is either Murmur hashing or Multiply-

Shift hashing [2 variants]. For the parallelization strat-

egy, we vary between local and global aggregation. In

case of a local aggregation, we optimize the number of

hash tables (1, 8, 64, 256, 1024, 16384, 65536) as a mul-

tiplier of the number of maximal compute units of the

OpenCL device to test different levels of thread over-

subscription. We also optimize the number of threads

per hash table (16, 32, 64, 128, 256, 512, 1024) to find

the best configuration between high parallelism and

synchronization overhead [7x7 variants]. In case of global

aggregation, we optimize the number of threads per

hash table, which configurations are identical to lo-

cal aggregation [7 variants]. We generate [2x2x2x2x7x7

variants] for the local aggregation and [2x2x2x2x7 vari-

ants] for the global aggregation. In total, we generate

896 code variants for an aggregation pipeline.

8.3 Results

We validate our concepts as follows. First, we evalu-

ate kernel compilation times for all generated kernels.

Second, we evaluate all code variants on representative

queries: two projection queries, two aggregation queries,

TPC-H Query 1, and SSB Query 4.1. We determine

the optimal code variant of a pipeline program by per-

forming a full search. This means that we generate all

possible code variants for a pipeline and execute them

multiple times. The in average fastest code variant is

reported in the plots as CPU, iGPU, dGPU, and MIC

optimized. Furthermore, we evaluate our learning strat-

egy for automatic hardware adaption. We report the

learned variant configurations and the query execution

times on different processors.

8.3.1 Compilation Times

In Figure 16, we show for each of our evaluation queries

and processors the compilation time of all code variants

in a box plot. The boxes include 50 % of the observa-

tions, whereas the upper and lower whiskers mark a 99

% confidence interval. As shown, all compilation times

for kernels for the projection query are below 70ms for

CPU, iGPU, and dGPU, and below 100 ms for the MIC

processor. For the aggregation query, we observe that

except for the MIC processor, kernel compilation times

are either 100ms, or below. As we need to generate

more code for aggregation pipelines compared to pro-

jection pipelines, the compilation time increases.
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Fig. 16 Compilation times for all generated kernel variants for each processor and query pipeline. Most kernels can be compiled
in less than 100ms, which allows for fast query compilation.

# Pipeline Programs 1 2 3 4 5
Compilation Time in ms 40 85 145 192 238

Table 7 Kernel compilation times depending on number of
pipeline programs produced for a query.

Compiling TPC-H Query 1 takes longer compared

to the aggregation queries. This is because the TPC-H

query results in a larger kernel due to many additional

computations. We observe 66ms on the CPU, 113ms on

the iGPU, 216ms on the dGPU and 4.9s on the MIC.

Compiling SSB Query 4.3 is even more time intensive,

as we have to compile four projection and one aggrega-

tion pipelines. We observe 245ms on the CPU, 380ms

on the iGPU, 818ms on the dGPU and 1.8s on the MIC.

Note that we can compile multiple pipelines in parallel

to reduce the compilation time.

Compiling for the MIC is very expensive and may

take longer than a second, even for a single pipeline.

However, this is the only processor where we observed

this behavior. We repeated our experiments on other

machines using NVIDIA GPUs and Intel CPUs, and

measured similar kernel compilation times reported here

for CPU, iGPU, and dGPU. Thus, we assume that the

high compilation time for the MIC is an implementa-

tion artifact, which we expect will be resolved in future

versions of the Intel OpenCL SDK.

Impact of query complexity. In general, the que-

ry compilation time depends on the number of pipeline

programs produced during segmentation of a query plan.

The number of pipeline programs depends on the num-

ber of joins and aggregations involved in the query plan.

A query consists of at least one pipeline program. Each

join and aggregation computation in the query plan in-

crements the number of pipeline programs (including

semi joins produced by IN or EXISTS clauses). We per-

form a simple microbenchmark, where we measure the

compilation time of all generated kernels depending on

the number of pipeline programs. We show the result

in Table 7. As expected, the compilation time grows

linearly with the number of pipeline programs.

Table 8 Execution times (in seconds) of code variants opti-
mized for CPU, iGPU, dGPU, and MIC for different queries,
executed on all processors.

exec.
opt.
CPU

opt.
iGPU

opt.
dGPU

opt.
MIC

Learned

Proj.
Q1

CPU 0.04 1.0 1.2 0.14 0.04
iGPU 4.7 0.06 0.06 0.25 0.06
dGPU 6.9 0.03 0.03 0.06 0.03
MIC 0.48 0.16 0.25 0.15 0.27

Proj.
Q2

CPU 0.05 0.58 0.61 0.69 0.05
iGPU 4.4 0.04 0.04 0.04 0.04
dGPU 3.8 0.01 0.01 0.01 0.01
MIC 0.24 0.17 0.10 0.10 0.14

Agg.
Q1

CPU 0.02 0.40 0.61 0.19 0.03
iGPU 19.4 0.03 0.04 0.19 0.03
dGPU 11.2 0.02 0.01 0.08 0.01
MIC 0.6 0.19 0.19 0.03 0.08

Agg.
Q2

CPU 0.40 0.71 0.70 0.65 0.43
iGPU 14.9 0.16 0.16 0.18 0.16
dGPU 8.3 0.09 0.09 0.11 0.10
MIC 2.5 0.11 0.11 0.11 0.12

TPC-H
Q1

CPU 0.10 2.07 2.06 0.95 0.11
iGPU 51.1 0.32 0.81 2.35 0.32
dGPU 22.6 0.17 0.16 1.5 0.15
MIC 1.2 3.09 3.09 0.20 0.23

SSB
Q4.1

CPU 0.09 0.8 0.77 0.57 0.10
iGPU 16.1 0.10 0.10 0.52 0.13
dGPU 7.0 0.04 0.03 0.3 0.05
MIC 0.8 0.21 0.39 0.10 0.20

8.3.2 Full Code Variant Exploration

We show the run-time of all code variants optimized for

a particular processor and query. We show these code

variants for the following queries: the projection queries

(Listing 1 and 2), the aggregation queries (Listing 8

and 9), TPC-H Query 1, and SSB Query 4.3.

Observations Projection Query 1. We show in

Table 8, Projection Query 1 that the CPU-optimized

code variant outperforms the code variants optimized

for the iGPU, dGPU, and MIC by a factor of 25, 30, and

3.5, respectively. However, we see that the same imple-

mentation performs more slowly compared to optimized

code variants on the iGPU, dGPU, and MIC by a factor

of up to 81, 237, and 3.1, respectively. The large perfor-

mance difference between CPU and the other processors

is mainly due to the parallelization strategy: CPUs pre-

fer the single-pass strategy using coarse-grained paral-

lelism, whereas GPUs, and MICs prefer the multi-pass

strategy using fined-grained parallelism. On the iGPU,

we observe that the code variant optimized for iGPU

outperforms the code variant optimized for MIC by a
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Table 9 Code variant exploration times for SSB Q4.1 on SF1.
Our learning strategy outperforms the backtracking search by
up to two orders of magnitude.

Processor Backtracking Feature-Wise Factor
(in seconds) (in seconds) Improved

CPU 197,139 479 411
iGPU 78,388 1,219 64.3
dGPU 52,897 1,036 51
MIC 177,914 3,390 52.5

factor of 4.3. For the dGPU optimized code variant on

the iGPU, we observe that the performance is equal to

the iGPU optimized code variant. The main difference

among the code variants optimized for iGPU, dGPU,

and MIC is in the optimal number of threads. Further-

more, the MIC prefers sequential memory access, simi-

lar to CPUs, whereas the GPU prefers coalesced mem-

ory access. Our learning strategy found a configuration

that performs closely to the optimal variant on CPU,

iGPU and dGPU. On the MIC, the found variant is by

a factor of 1.8 slower than the optimum.

Observations Projection Query 2. In Table 8,

Projection Query 2, we make the same basic obser-

vation for Projection Query 2 (very high selectivity,

<0.001 %) as for Projection Query 1 (50 % selectivity).

The CPU-optimized code variant outperforms code vari-

ants optimized for iGPU, dGPU, and MIC by a factor

of 12, 12, and 14, respectively. On the other processors,

the CPU-optimized code variant is slower by a factor

of 118, 345, 2.4 on the iGPU, dGPU, and MIC, respec-

tively. Our learning strategy found a configuration that

performs closely to the optimal code variant on CPU,

iGPU, dGPU, and MIC.

Observations Aggregation Query 1. We show

in Table 8, Aggregation Query 1 that on the CPU the

CPU-optimized code variant outperforms code variants

optimized for iGPU, dGPU, and MIC by a factor of

16, 24.4, and 7.6, respectively. However, we see that

the same implementation performs significantly slower

compared to optimized variants on the iGPU, dGPU,

and MIC by a factor of up to 606, 861, and 24, respec-

tively. We also see significant differences between the

code variants optimized for iGPU, dGPU, and MIC:

On the iGPU, the iGPU-optimized code variant outper-

forms the code variants optimized for dGPU and MIC

by a factor of 1.2 and 6, respectively. On the dGPU, the

dGPU-optimized code variant outperforms code vari-

ants optimized for iGPU and MIC by a factor of 1.2 and

6. On the MIC, the MIC-optimized code variant out-

performs code variants optimized for iGPU and dGPU

by a factor of 7.6 and 7.6, respectively. Our learning

strategy found a configuration that performs closely to

the optimal code variant on CPU, iGPU and dGPU.

On the MIC, the found code variant is by a factor of

3.4 slower than the optimal code variant.

Observations Aggregation Query 2. We make

the same basic observation as for Aggregation Query 1

(cf. Table 8): On the CPU, the CPU-optimized code

variant outperforms code variants optimized for iGPU,

dGPU, and MIC by a factor of 1.7, 1.7, and 1.6, respec-

tively. The same CPU-optimized code variant is signif-

icantly slower compared to code variants optimized for

iGPU, dGPU, and MIC by a factor of up to 94, 94, and

23. Note that for this query, the optimal code variant

of iGPU and dGPU is the same, thus we will report

numbers only once (GPU). On the GPUs, the GPU-

optimized code variant outperforms the MIC by a factor

of 1.1 (iGPU) and 1.2 (dGPU). On the MIC, the MIC-

optimized code variant achieves the same performance

as the GPU-optimized code variant. Our learning strat-

egy found a configuration that performs closely to the

optimal code variant on CPU, iGPU, dGPU and MIC.

Observations on Complex Queries. We show

that the variant exploration has the same impact on

more complex queries. We present the result of the vari-

ant exploration for two OLAP queries: TPC-H Q1 and

SSB Q4.1 (cf. Table 8). For every processor, we ob-

serve similar factors between the optimal code variant

and the other code variants. On the MIC, we observed a

high variance of execution time for some code variants.

8.3.3 Optimization Time

We now investigate how long the variant exploration

itself takes. We show in Table 9 the time to explore

the best code variant for SSB Query 4.1. We compare

backtracking (executing every possible code variant and

choosing the fastest) with our learning strategy. We ob-

serve that our strategy improves the search time by up

to a factor of 411. While the longest exploration took

more than two days, our strategy finished within an

hour. Thus, we can run our calibration benchmarks of-

fline (e.g., as part of the database installation process).

8.3.4 Hardware Adaption on Full Queries

In this experiment, we evaluate Hawk and our learning

algorithm on complex benchmark queries. To this end,

we investigate whether our results carry over to real-

world workloads using a representative subset of the

star schema and TPC-H benchmarks (cf. Section 8.2.1).

First, we derive efficient variant configurations for each

evaluation processor. Second, we measure performance

to assess the efficiency of our variant configurations.

Learned Variant Configurations. We derive pro-

cessor-specific optimizers using our learning strategy
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Table 10 Per processor variant configurations identified by the variant learning strategy for the SSB and TPC-H workload.

Modifications Learned Optimizers
cpu-o dgpu-o mic-o

Parallelization Strategy (Projection) single-pass multi-pass multi-pass
Parallelization Strategy (Aggregation) local hash table local hash table local hash table

Memory Access Pattern sequential coalesced coalesced
Hash Table Implementation linear probing Cuckoo hashing Cuckoo hashing

Predication Mode (Query Dependent) branched branched branched
Thread Multiplier (Projection) 1 16384 65536

Thread Multiplier (Aggregation) 1 1 1
Work Group Size (Aggregation) 256 1024 64

from Section 7. We explore the same variant space as

the full exploration, which we discuss in Section 8.2.2.

As training workload, we use the Query Groups 1, 3,

and 4 of the Star Schema Benchmark and Queries 5,

6, 7 from the TPC-H benchmark. In this experiment,

we use a scale factor of 10 for both benchmarks. We

show the learned variant configurations optimized for

the CPU (cpu-o), for the dGPU (dgpu-o), and for the

MIC (mic-o) in Table 10.

The learning strategy correctly identifies that for

projection pipelines, CPUs prefer single-pass strategies

with coarse-grained parallelism, whereas the GPUs and

the MIC prefer multi-pass strategies with fine-grained

parallelism. For aggregation pipelines, the CPU, GPU,

and MIC prefer local hash table aggregation. The learn-

ing strategy also found that the CPU prefers sequential

memory access, whereas the GPUs and MIC prefer co-

alesced memory access. The preferred aggregation hash

table for CPUs is linear probing, whereas the GPUs

and the MIC are more efficient when using Cuckoo

hashing. For the query workload, the learning strategy

found that the evaluation using if-statements outper-

forms code variants that use software predication.

We implement the number of threads as a multiplier

of the number of OpenCL compute units (“cores”), as

the multiplier quantifies the degree of over-subscription

required for a processor. CPUs prefer no over-subscrip-

tion (one thread per core), whereas the GPUs and the

MIC need a large multiplier (over-subscription) to have

enough thread blocks ready to hide memory access la-

tencies. Additionally, we need to specify the work group

size for aggregation pipelines, which also strongly dif-

fers between the different processors.

Performance. We execute for each query a code

variant optimized for CPU, dGPU, and MIC and mea-

sure the execution times on CPU, dGPU, and MIC

without compilation times. Note that each code vari-

ant is optimized for a complete workload (cpu-o, dgpu-

o, and mic-o). We call these variants per-workload code

variants. We include measurements of a per-query op-

timized code variant for each query (q-o) to show ad-

ditional optimization potential compared to the per-

workload code variants. We show the results in Ta-

ble 11 and include measurements of HyPer (v0.5-222-

g04766a1) with the same queries on the same dataset

on the CPU.2 We observe that the code generated by

Hawk on a CPU is in the same order of magnitude as

an optimized state-of-the-art query compiler.

Most queries are executed faster when we use the

per-workload code variant of the target processor. On

the CPU, the performance of a CPU-optimized code

variants outperforms GPU and MIC-optimized variants

by up to a factor of 5.5 (SSB Query 3.4). On the GPU,

the GPU-optimized code variant outperforms the other

per-workload code variants by up to a factor of 9 (SSB

Query 3.2). On the MIC, the MIC-optimized code vari-

ant outperforms the other per-workload code variants

by up to a factor of 1.12 (SSB Query 3.2). The reason

for this low factor is that GPU code variants are typi-

cally also fast on a MIC (but not the other way around).

However, we can still improve the performance with a

custom code variant for the MIC. We occasionally ob-

serve a better performance of another code variant for

some queries, such as TPC-H Q5 and Q6 for the CPU.

The reason for this is that a code variant optimized

for several queries may be sub-optimal for a particular

query. We conclude that we achieve the best perfor-

mance when we use a processor-tailored code variant.

If we additionally tune the code variant to a par-

ticular query, we observe for our workload speedups on

the CPU by up to a factor of 1.02, on the GPU by up

to a factor of 27 (TPC-H Query 5), and on the MIC by

up to a factor of 1.43 (SSB Query 3.2). The per-query

code variants differ mainly in the thread multipliers, as

different degrees of parallelism are optimal for different

queries on GPU and MIC. Additionally, some queries

are faster with enabled predication or prefer global in-

stead of local hash table aggregation specific queries,

such as TPC-H Q5 on GPUs and MICs. We conclude

that the optimal code variant is query-dependent.

2 Note that this comparison is not intended to be an end-
to-end measurement of system performance.
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Table 11 Execution times in seconds of variants optimized for CPU (cpu-o), dGPU (dgpu-o), and MIC (mic-o) for selected
queries of the star schema and TPC-H benchmark (Scale Factor 10), executed on a CPU, a dGPU, and a MIC processor.

HyPer Executed on CPU Executed on dGPU Executed on MIC
(CPU) cpu-o dgpu-o mic-o per-q cpu-o dgpu-o mic-o per-q cpu-o dgpu-o mic-o per-q

Q1.1 0.149 0.186 0.441 0.342 0.189 0.067 0.015 0.015 0.015 0.055 0.062 0.057 0.057
Q1.2 0.099 0.113 0.271 0.272 0.114 0.052 0.047 0.047 0.013 0.046 0.061 0.060 0.064
Q1.3 0.092 0.111 0.250 0.248 0.109 0.052 0.022 0.023 0.013 0.047 0.056 0.049 0.051
Q3.2 0.200 0.210 2.258 0.885 0.206 56.70 0.191 1.724 0.138 5.021 0.247 0.221 0.155
Q3.3 0.146 0.115 1.467 0.610 0.114 53.54 0.073 0.472 0.052 3.781 0.140 0.140 0.114
Q3.4 0.146 0.111 1.468 0.615 0.114 53.65 0.073 0.471 0.053 3.795 0.132 0.128 0.109
Q4.1 0.654 0.567 2.186 1.559 0.567 77.70 0.743 5.188 0.250 11.15 0.423 0.397 0.417
Q4.2 0.588 0.444 1.758 1.272 0.450 78.04 0.523 1.704 0.111 8.552 0.341 0.322 0.351
Q4.3 0.316 0.195 2.421 1.073 0.212 58.72 0.764 4.816 0.286 4.709 0.435 0.415 0.343

Q1 0.423 1.428 19.40 10.85 0.995 287.7 2.131 14.50 0.880 15.38 1.220 1.240 1.210
Q4 0.524 0.791 3.680 1.629 0.675 75.51 0.124 9.406 0.074 7.707 0.339 1.043 0.347
Q5 0.857 0.934 5.105 4.095 1.033 73.57 7.091 10.61 0.261 10.87 0.905 0.907 0.838
Q6 0.147 0.185 0.257 0.258 0.195 0.063 0.009 0.009 0.011 0.033 0.037 0.036 0.036
Q7 0.611 1.293 5.539 2.255 1.097 72.82 5.008 21.15 0.800 11.44 1.080 7.051 1.020
Q19 0.756 0.205 0.420 0.330 0.198 1.509 0.029 1.494 0.029 0.219 0.155 0.200 0.142

Summary. In all of our experiments, we observed

that our strategy reliably identified the correct param-

eters for all hardware-dependent modifications, such

as the parallelization strategy (single-pass strategy for

CPU, multi-pass strategy for coprocessors). Further-

more, the optimal code variant is query dependent, e.g.,

number of threads, predication mode [53], and hash ta-

ble implementation [50]. This is reflected in Table 11,

were we contrast the performance of variant configura-

tions tuned for each query and for the complete work-

load. The query dependencies can be handled by using

our heuristics or by adding a run-time optimizer that

performs per-query variant optimization, similar to the

work of Raducanu [53] and Zeuch [62]. For processors

of the same category, the optimal code variant mainly

differs in the number of threads and threads per block.

8.4 Discussion

In our experiments, we observed that most compila-

tion times for single pipelines are very fast (< 100 ms).

OpenCL could compile even complex queries in several

hundred milliseconds, if we disregard vendor-specific ar-

tifacts. We conclude that efficient query compilation

is possible using OpenCL. Thus, Hawk allows for in-

teractive querying despite using query compilation.

Furthermore, we observe large performance differences

among code variants optimized for a CPU, a GPU, and

a MIC by up to two orders of magnitude. Thus, we con-

clude that a hardware-tailored code generator is able to

achieve high performance gains. This is because it can

optimize for various processors of different architectures

with previously unknown performance behavior without

any manual tuning. The diversity of the optimized code

variants shows that we need to support the modifica-

tions discussed. Finally, we showed that our learning

strategy detected all major preferences of all proces-

sors. Our strategy derived efficient per-processor code

variants without having to explore all code variants.

9 Related Work

In this section, we discuss related work on query com-

pilation, data processing on heterogeneous processors,

and automatic optimization of variants.

9.1 Query Compilation

Query compilation goes back to System R [13]. With
the upcoming of main-memory databases, query compi-

lation received new attention as reducing main-memory

traffic and executed CPU instructions became increas-

ingly important. Rao and others generated query-specific

code using the just-in-time compilation capabilities of

Java [48]. Krikellas and others used a template-based

code generation approach to compile queries to C code,

which was then compiled by a C compiler to machine

code [30]. Neumann introduced the produce/consume

model, which provides a systematic way to generate

code that allows for data-centric query processing by

fusing all operators in an operator pipeline. Addition-

ally, Neumann proposed to generate LLVM IR code in-

stead of C code to achieve low compilation times [40].

The key difference between the produce/consume model

and Hawk is that the produce/consume model gener-

ates code directly for each operator. In contrast, Hawk

extends the produce/consume model to create a pipeline

program for each pipeline in the query plan. These

pipeline programs serve as basis for generating code
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variants, which is not supported by the original pro-

duce/consume model without extensions. Leis and oth-

ers proposed the morsel framework, which introduces

NUMA-aware parallelization of compiled pipelines [34].

Sompolski and others carefully studied vectorized

and compiled execution [56]. They observe that compi-

lation is not always superior to vectorization and con-

clude that compilation should always be combined with

block-wise query processing. Dees and Sanders com-

piled the 22 TPC-H queries by hand to C code and

showed large performance potentials for query compi-

lation [14]. Nagel and others investigated query com-

pilation in the context of language-integrated queries

in managed run-times [39]. Amad and others devel-

oped DBToaster, which uses code generation to compile

view maintenance queries to efficient machine code [2].

Query compilation also found its way into commercial

products such as Hekaton [17] and Impala [57].

Weld is a run-time that efficiently executes data-

intensive applications [42]. The key idea is to compile

code to a common intermediate representation. Weld

removes data movement between functions in a work-

flow and generates efficient parallel code for CPUs. In

contrast to Hawk, Weld cannot generate custom code

for different heterogeneous processors. However, Welds

code-generation backend can be enriched by the code

variant generation concepts introduced in this paper to

efficiently support GPUs and MICs.

9.2 Query Compilation for CPUs and GPUs

Wu and others proposed Kernel Weaver, a compiler

framework that can automatically fuse the kernels of

relational operators and kernels of other domains [58].

In contrast to kernel weaver, Hawk uses our concept of

parallelization strategies to generate a minimal number

of kernels. We see Kernel Fusion as a complementary

building block. Another key difference is that Kernel

Weaver targets GPUs only, whereas Hawk executes ef-

ficiently on CPUs, GPUs, and MICs.

A new line of research called abstraction without re-

gret focuses on writing database systems in a high-level

language [29]. The LegoBase system uses generative

programming to generate efficient low-level C code for a

database implementation in a high-level language [28].

Shaikhha and others further refine this principle in

DBLAB [54] by introducing a stack of multiple Do-

main Specific Languages (DSLs) that differ in the levels

of abstraction. In DBLAB, high-level code is progres-

sively lowered to low-level code by compiling code in

multiple stages, where each stage compiles to a DSL of

lower abstraction level, until the final code is generated.

The key difference to Hawk is that Hawk uses a in-

termediate representation designed to capture all major

modifications required to generate code variants for dif-

ferent heterogeneous processors. Thus, Hawk provides

an abstraction layer for a variety of coprocessor designs

to benefit the evaluation of relational query languages.

Finally, Hawk automatically derives an efficient code

variant for a processor with unknown performance char-

acteristics. Thus, the concepts of Hawk are complemen-

tary to the vision of abstraction without regret.

Pirk and others propose Voodoo, a framework which

consists of an intermediate algebra representation based

on vectors and a code generator for OpenCL [45]. Based

on the algebra, Voodoo is capable of generating code for

different processors, including CPUs and GPUs. Hawk’s

pipeline programs are more high level and allow for

modifications not easily expressible in a more low-level

representation such as the Voodoo Algebra. In partic-

ular, Hawk applies different parallelization strategies

(e.g., multi-pass strategy), hash table implementations,

and memory access patterns. Voodoo is better suited

for the task of vectorizing code and focuses on more

low-level optimizations. Pipeline programs and Voodoo

algebra can complement each other as consecutive in-

termediate representations in a query compiler, which

also benefits the vision of abstraction without regret.

As another key difference to Voodoo, Hawk has shown

its capability of producing and automatically deriving

processor-optimized code variants.

In summary, existing query compilation approaches

generate efficient code for a single processor. Hawk is

the first hardware-tailored code generator that produces

code variants to run efficiently on different processors.

9.3 Compilers

Brown and others developed Delight, a framework that

allows to build, compile, and execute DSLs which en-

able users to program at a high-abstraction level [12].

The key idea is to compile domain-specific languages

to a common intermediate representation. From the in-

termediate representation, Delight generates code for

CPUs and GPUs. However, Delight does not optimize

for heterogeneous processors to the degree Hawk does,

e.g., changing parallelization strategies. The concepts

of Delight and Hawk complement each other.

Dandelion is a general purpose compiler based on

.NET LINQ that compiles data-parallel programs to

multiple heterogeneous processors, such as CPUs, GPUs,

and FPGAs and automatically distributes data process-

ing on different processors, be it in a single machine or a

cluster [52]. While Dandelion uses cross compilation to
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support GPUs, Hawk profits from the functional porta-

bility of OpenCL. This allows Hawk to run code on any

OpenCL-capable processor and to generate code for dif-

ferent processors using the same code generator.

9.4 Databases on Heterogeneous Hardware

Balkesen and others studied efficient hash joins [4] and

sort-merge joins on multi-core CPUs [5]. He and oth-

ers developed efficient algorithms for joins [20,22] and

other relational operators [21] on GPUs. He and others

also studied efficient co-processing on APUs [23]. Pirk

and others studied common database operations on the

Intel Xeon Phi (MIC) [44]. Jha and others investigated

hash joins on the Intel Xeon Phi [26].

Paul and others investigated the effect of pipelin-

ing between multiple GPU kernels using the channel

mechanism provided by OpenCL 2.0 pipes [43]. Mer-

aji and others implemented support for GPU accelera-

tion into DB2 with BLU acceleration and observed sig-

nificant performance gains using GPUs for query pro-

cessing [36]. Karnagel and others analyzed hash-based

grouping and aggregation on GPUs [27]. This work was

the basis for Hawk’s parallelization strategies for grouped

aggregation. Müller and others studied database query

processing on FPGAs [38] and developed Glacier, a

query compiler that generates logic circuits for queries

to accelerate stream processing [37]. Many database

prototypes were developed to study query processing on

GPUs, such as GDB [21], GPUDB [60], OmniDB [64],

Ocelot [24], CoGaDB [10], and HeteroDB [63].

Heimel and others showed the feasibility of building

a database engine in OpenCL, which allows to run a
database engine with the same operator code base on

any OpenCL-capable processor [24]. The core differ-

ence between Ocelot and Hawk is that Ocelot facilitates

the same operator implementations for each processor.

Ocelot only modifies the memory access pattern using

explicit knowledge about the processor to use sequen-

tial access on CPUs and coalesced access on GPUs. In

contrast, Hawk supports more code modifications (e.g.,

parallelization strategy and predication mode), auto-

matically derives custom per-processor variant configu-

rations, and supports operator fusion.

9.5 Variant Optimization

Raducanu and others propose Micro Adaptivity, a frame-

work that provides alternative function implementa-

tions called flavors (equivalent to our term code vari-

ant) [53]. Micro Adaptivity exploits the vector-at-a-

time processing model and can exchange a flavor at

each function call, which allows for finding the best

implementation for a certain query and data distribu-

tion. Rosenfeld and others showed for selection and ag-

gregation operations that many operator variants can

be generated and that different code transformations

are optimal for a particular processor [51]. Zeuch and

others exploit performance counters of modern CPUs

for progressive optimization. They introduce cost mod-

els for cache accesses and branch mispredictions and

derive selectivities of predicates at query run-time to

re-optimize predicate evaluation orders [62]. The tech-

niques for variant optimization from Raducanu [53],

Rosenfeld [51], and Zeuch [62] are orthogonal to the

code variant generation in this paper.

10 Summary

In this paper, we describe a hardware-tailored code gen-

erator that customizes code for a wide range of het-

erogeneous processors. Through hardware-tailored im-

plementations, our code generator produces fast code

without manual tuning for a specific processor.

Our key findings are as follows. Our abstraction of

pipeline programs allows us to flexibly produce code

variants while keeping a clean interface and a main-

tainable code base. Code variants optimized for a par-

ticular processor can result in performance differences

of up to two orders of magnitude on the same proces-

sor. Therefore, it is crucial to optimize the database

system to each processor. Consequently, we proposed a

learning strategy that automatically derives an efficient

variant configuration for a processor. Based on this al-

gorithm, we derived efficient variant configurations for

three common processors. Finally, we incorporated the

variant configurations into a heuristic query optimizer.
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