Data Warehousing

Jens Teubner, TU Dortmund jens.teubner@cs.tu-dortmund.de

Winter 2014/15

Part V

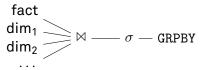
Implementing a Data Warehouse Engine

Star schema in a relational database:

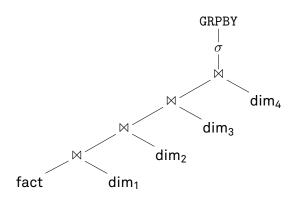
- Fact table: each entry holds a set of foreign keys
- These point to dimension tables

Conceptually, a star query

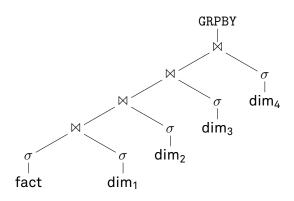
- **I** joins the fact table to a number of dimension tables,
- **restricts** the number of tuples (to obtain a "dice"), and
- **aggregates/groups** according to some grouping criterion.



Expressed as relational algebra, this would look like



Pushing down selection criteria (σ) may be more efficient:



Problems:

- Fact table is huge.
- Joins will become expensive.

Good join implementations: $cost(R \bowtie S) \propto |R| + |S|$.

However,

we'd have plenty of time to pre-compute (partial) results.

Idea:

build materialized views over (partial) results.

Materialized Views

"Regular" view:

```
CREATE VIEW sales_loc (date_key, city, state, qty) AS
SELECT f.date_key, loc.city, loc.state, f.qty
FROM sales_fact AS f, location_dim AS loc
WHERE f.loc_key = loc.loc_key
```

- → "Register" a query under some name (here: sales_loc)
- \rightarrow View will be accessible for querying like a real table
- → View result will be computed on the fly (One execution technique can be to expand a referenced view to its definition and execute the resulting, larger query.)
- → Mostly a convenience feature, plus some advantages for access control, maybe also query cost estimation

Materialized Views

Many systems offer a mechanism to **persist** the view result instead.

ightarrow Update on modifications, access, or manually.

Such materialized views are pre-computed queries.

E.g., IBM DB2:

```
CREATE TABLE table-name (attlist) AS (
    select-from-where block
)
DATA INITIALLY DEFERRED REFRESH data refresh options
```

- + Pre-computed information may speed up querying.
- Materialization requires space
- Increases update cost (less a problem for data warehouses)

Which Views Should We Create?

Which materialized views should we create?

 \rightarrow Views may be as large as fact table, so **space** is an issue.

Insight:

- Views may be helpful for query evaluation even when they contain a superset of the required information.
 - ightarrow Can refine **filter criteria** when querying the view
 - ightarrow Can aggregate fine grain ightarrow coarse grain

Materialized Views: Cost ↔ Benefit (Example)

Example:

Fact table with three dimensions: part, supplier, customer

grouping attributes	# rows
part, supplier, customer	6 M
part, customer	6 M
part, supplier	0.8 M
supplier, customer	6 M
part	0.2 M
supplier	0.01 M
customer	0.1 M
- (none)	1

- ≈ 19 M rows storage needed
- Could save 12 M rows by not storing ⟨part, customer⟩ and ⟨supplier, customer⟩; no harm to query performance.

Derivability

Can a materialized view V be used to answer a query Q?

Assumption:

V and Q are both star queries

Sufficient conditions:

- **Selection predicates** in *Q* subsumed by those in *V*.
- \blacksquare GROUP BY **attributes** in Q subsumed by those in V.
- Aggregation functions in Q compatible with those of V.
- All tables referenced in V must also be referenced in Q.

Derivability: Predicates

Problem:

Predicate subsumption not decidable for arbitrary predicates.

Thus:

■ Restrict to only simple predicates:

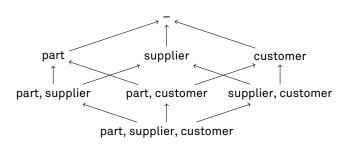
attribute op constant .

Convert predicates to disjunctive normal form.

Example:

- **query predicate** p_Q : $year = 2008 \land quarter = 4$
- view predicate p_V : year = 2008
- $\rightarrow p_V$ subsumes p_Q ; can use V to answer $Q = \sqrt{}$

Derivability: GROUP BY Lattice



- Arrow $V \longrightarrow V'$: V' can be derived from V.
- **Example:** Create only $V_{\text{part, supplier}}$ and $V_{\text{supplier, customer}}$
 - $\rightarrow \mbox{ Can still group by } \{\mbox{part}\}, \{\mbox{supplier}\}, \{\mbox{customer}\}, \mbox{and } \{\}.$

Derivability: GROUP BY Lattice—Notes

For **independent dimension attributes**, the lattice becomes a **hypercube**

 $\rightarrow n$ independent dimensions $\sim 2^n$ views.

Known hierarchies simplify the lattice

- $\,\,
 ightarrow\,$ Can group by week, given a grouping by day
- $\rightarrow\,$ Can group by month, given a grouping by day; can group by year, given a grouping by month

Derivability: Aggregate Functions

Aggregate functions have different behaviors:

- **additive":** $f(X_1 \cup X_2) = f(f(X_1), f(X_2))$ and f^{-1} exists.
 - ightarrow e.g., $sum(a_1,a_2,a_3)=sum(sum(a_1,a_2),sum(a_3))$ and $sum(a_3)=sum(a_1,a_2,a_3)-sum(a_1,a_2)$
- "semi-additive": same, but f^{-1} does not exist.
 - \rightarrow e.g., $min(a_1, a_2, a_3) = min(min(a_1, a_2), min(a_3))$
- **"additive computable:"** $f(X) = f'(f_1(X), F_2(X), \dots, F_k(X))$ where f_i are (semi-)additive functions.
 - \rightarrow e.g., avg(X) = sum(X)/count(X)
- "others:" e.g., median computation

Derivability: Aggregate Functions

Behavior of aggregate functions determines

- whether a query Q can be answered based on a view V
- whether updates in the base table can be propagated to V
 - → view maintenance

In practice:

- Strict (syntactic) rules on queries that can be defined as materialized views.
- lacksquare e.g., IBM DB2 (excerpt) ightarrow

- When a GROUP BY clause is specified, the following considerations apply:
- The supported column functions are SUM, COUNT, COUNT_BIG and GROUPING (without DISTINCT). The select list must contain a COUNT(*) or COUNT_BIG(*) column. If the materialized query table select list contains SUM(X), where X is a nullable argument, the materialized query table must also have COUNT(X) in its select list. These column functions cannot be part of any expressions.
- A HAVING clause is not allowed.
- If in a multiple partition database partition group, the distribution key must be a subset of the GROUP BY items.
- The materialized query table must not contain duplicate rows, and the following restrictions specific to this uniqueness requirement apply, depending upon whether or not a GROUP BY clause is specified.

:

Derivability: Set of Relations

All tables *T* referenced by *V* must also be referenced by *Q* (and joined using the same join predicate).

Problem:

- Joins are not lossless if they are not equi-joins along a foreign key relationship.
 - → "Information Systems", lossless/lossy decomposition
- If joins are lossless, not all tables of V must be referenced in Q

Which Materialized Views Should We Create?

Strategy:

- Create view with GROUP BY at finest grain needed.
- 2 Repeatedly create new view that yields maximum benefit.
- Stop when storage budget is exceeded.

Input: Workload description

E.g., DB2 Design Advisor db2advis

- Input: workload with queries and DML statements
- Output: Recommendation for indexes and materialized views ("materialized query tables, MQTs" in DB2 speak)

Indices

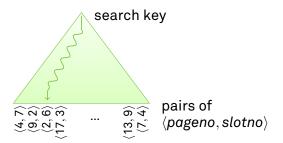
A lighter-weight form of pre-computed data are **indices**.

Generally speaking, an index provides a lookup mechanism

attribute value(s) \mapsto record identifier(s),

where a *record identifier* or *rid* encodes the **physical location** of a matching tuple.

E.g., B-tree index:



Index Lookup Cost

Searching records by value incurs

- Traverse index using the search key
- Fetch tuples from data pages.

Step incurs about one I/O per search.

- ightarrow Inner nodes are usually **cached**.
- ightarrow For small tables, even the full index might fit into the cache.

Step 2 requires about one I/O per result tuple.

→ Following *rid* pointers results in **quasi-random I/O**.
(If the result set is large, the system might also decide to **sort** the list of qualifying *rid*s first to improve disk access pattern.)

Index Usage Scenarios

Two typical ways of using an index are:

- Point or range conditions in the query
 - ightarrow E.g., SELECT \cdots WHERE attr = constant
- Join processing
 - → Index nested loops join:
 - 1 Function: index_nljoin(R, S, p)
 - 2 foreach record $r \in R$ do
 - access index using r and p and append matching tuples to result;

Strategy 1: Index on value columns of dimension tables

- 1. For each **dimension table** D_i :
 - a. Use index to find matching dimension table rows $d_{i,j}$.
 - b. **Fetch** those $d_{i,j}$ to obtain **key columns** of D_i .
 - Collect a list of fact table rids that reference those dimension keys.
 - ♠ How?

- Intersect lists of fact table rids.
- 3. **Fetch** remaining fact table rows, group, and aggregate.

How could star queries benefit from indexes?

Strategy 2: Index on primary key of dimension tables

- 1. Scan fact table
- 2. For each fact table row f:
 - a. **Fetch** corresponding dimension table row d.
 - b. Check "slice and dice" conditions on d;skip to next fact table row if predicate not met.
 - c. Repeat 2.a for each dimension table.
- 3. Group and aggregate all remaining fact table rows.

- Problems and advantages of Strategy 1?
 - + Fetch only **relevant** fact table rows (good for selective queries).
 - 'Index o fetch o index o intersect o fetch' is cumbersome. imes
 - List intersection is expensive.
 - 1. Again, lists may be large, intersection small.
 - 2. Lists are generally **not sorted**.

Index-Only Queries

Problem \star can be reduced with a "trick":

- Create an index that contains value and key column of the dimension table.
 - → No fetch needed to obtain dimension key.
- Such indexes allow for index-only querying.
 - \rightarrow Acess only index, but not data pages of a table.

E.g.,

CREATE INDEX QuarterIndex
ON DateDimension (Quarter, DateKey)

 \rightarrow Will only use Quarter as a **search criterion** (but not DateKey).

Index-Only Queries

ద্네 IBM DB2:

Include columns in index, yet do **not** make them a search key.

```
CREATE INDEX IndexName

ON TableName (col_1, col_2, ..., col_n)

INCLUDE (col_a, col_b, ...)
```

(In UNIQUE indexes, it makes a difference whether a column is part of the search key or not. This is the only situation where the INCLUDE clause is allowed in DB2.)

Problems and advantages of Strategy 2?

- + For small dimension tables, all indexes might fit into memory.
 - → On the other hand, indexes might not be worth it; can simply build a hash table on the fly.
- Fact table is large → many index accesses.
- Individually, each dimension predicate may have low selectivity.

E.g., four dimensions, each restricted with 10 % selectivity:

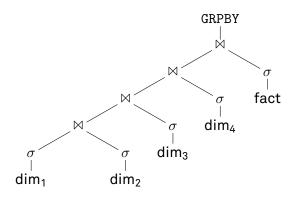
- \rightarrow Overall selectivity as low as 0.01 %.
- → But as many as 10 %/1 %/... of fact table tuples pass individual dimension filters (and fact table is huge).

Together, dimension predicates may still be highly selective.

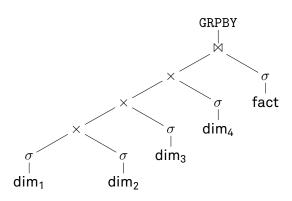
Cost is independent of predicate selecitivites.

What do you think about this query plan?

 \rightarrow Join dimension tables first, then fact table as last relation.

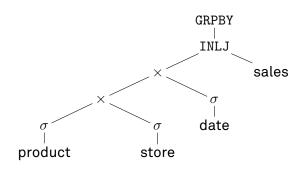


Joins between dimension tables are effectively **Cartesian products**.



ightarrow Clearly won't work if (filtered) dimension tables are large.

Idea:



- Cartesian product approximates the set of foreign key values relevant in the fact table.
- Join Cartesian product with fact table using index nested loops join (multi-column index on foreign keys).

Advantages:

- + Fetch only relevant fact table rows.
- + No intersection needed.
- No sorting or duplicate removal needed.

Down Sides:

- Cartesian product overestimates foreign key combinations in the fact table.
 - ightarrow Many key combinations won't exist in the fact table.
 - → Many unnecessary index probes.

Overall:

Hub Join works well if Cartesian product is small.

Zigzag Join

Hash Join

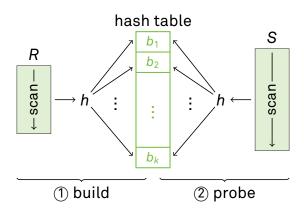
Hash join is one of the classical **join algorithms**.

To compute $R \bowtie S$,

- **Build a hash table** on the "outer" join relation S. Build Phase Scan the "inner" relation R and
- **probe** into the hash table for each tuple $r \in R$.

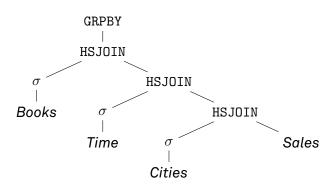
```
1 Function: hash_join(R, S)
 // Build Phase
2 foreach tuple s \in S do
    insert s into hash table H;
 //Join Phase
4 foreach tuple r \in R do
  probe H and append matching tuples to result;
```

Hash Join



- $\checkmark \mathcal{O}(N)$ (approx.)
- √ Easy to parallelize

Implementing Star Join Using Hash Joins



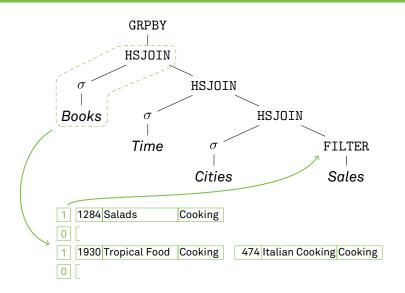
- (Hopefully) dimension subsets are small enough
 - \rightarrow Hash table(s) fit into memory.
- Here, hash joins effectively act like a filter.

Implementing Star Join Using Hash Joins

Problems:

- Which of the filter predicates is most restrictive? Tough optimizer task!
- A lot of processing time is invested in tuples that are eventually discarded.
- This strategy will have real trouble as soon as not all hash tables fit into memory.

Hash-Based Filters



 \rightarrow Use compact bit vector to **pre-filter** data.

Hash-Based Filters

- Size of bit vector is independent of dimension tuple size.
 - \rightarrow And bit vector is **much smaller** than dimension tuples.
- Filtering may lead to false positives, however.
 - \rightarrow Must still do hash join in the end.
- Key benefit: Discard tuples early.

Nice side effect:

- In practice, will do pre-filtering according to all dimensions involved.
 - → Can re-arrange filters according to actual(!) selectivity.

Bloom Filters

Bloom filters can improve filter efficiency.

Idea:

- Create (empty) bit field B with m bits.
- Choose *k* independent hash functions.
- For every dim. tuple, set k bits in B, according to hashed key values.

- To probe a fact tuple, check k bit positions
 - \rightarrow Discard tuple if any of these bits is 0.

Bloom Filters

Parameters:

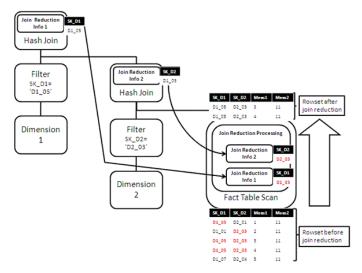
- Number of bits in B: m
 - → Typically measured in "bits per stored entry"
- Number of hash functions: k
 - ightarrow Optimal: about 0.7 times number of bits per entry.
 - ightarrow Too many hash functions may lead to high CPU load!

Example:

10 bits per stored entry lead to a filter accuracy of about 1%.

Example: MS SQL Server

Microsoft SQL Server uses hash-based pre-filtering since version 2008.



Join Indices

A variant of pre-computed data (similar to materialized views) are **join indices**.

Example: Cities ⋈ Sales

RID lists

- Type 1: $join\ key \rightarrow \langle \{rid_{Cities}\}, \{rid_{Sales}\}\rangle$ (Record ids from Cities and Sales that contain given join key value.)
- Type 2: $rid_{Cities} \rightarrow \{rid_{Sales}\}$ (Record ids from Sales that match given record in Cities.)
- Type 3: dim value → {rid_{Sales}} (Record ids from Sales that join with Cities tuples that have given dimension value.)

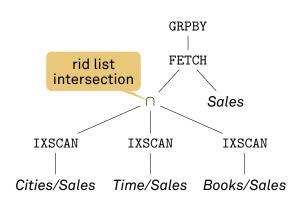
(Conventional B⁺-trees are often $value \rightarrow \{rid\}$ mappings; cf. slide 106.)

Example: *Cities* ⋈ *Sales* Join Index

Cities				
rid	CtyID	City	State	
C ₁	6371	Arlington	VA	
c_2	6590	Boston	MA	
C ₃	7882	Miami	FL	
C ₄	7372	Springfield	MA	
		:	:	

	Sales						
rid	BkID	CtyID	DayID	Sold			
S ₁	372	6371	95638	17			
s_2	372	6590	95638	39			
s_3	1930	6371	95638	21			
S 4	2204	6371	95638	29			
S 5	2204	6590	95638	13			
s_6	1930	7372	95638	9			
S ₇	372	7882	65748	53			
:	:	÷	i	:			

Star Join with Join Indices



- For each of the dimensions, find matching Sales rids.
- 2 Intersect rid lists to determine relevant Sales.

Star Join with Join Indices

The strategy makes rid list intersection a critical operation.

- \rightarrow Rid lists may or may not be **sorted**.
- → Efficient implementation is (still) active research topic.

Down side:

■ Rid list sorted only for (per-dimension) point lookups.

Challenge:

Efficient rid list implementation.

Bitmap Indices

Idea: Create bit vector for each possible column value.

Example: Relation that holds information about students:

Students				
StudNo	Name	Program		
1234	John Smith	Bachelor		
2345	Marc Johnson	Master		
3456	Rob Mercer	Bachelor		
4567	Dave Miller	PhD		
5678	Chuck Myers	Master		

Program Index					
BSc	MSc	PhD	Dipl		
1	0	0	0		
0	1	0	0		
1	0	0	0		
0	0	1	0		
$\setminus 0$	1	0	0		
VK					

bit vector

Query Processing with Bitmap Indexes

Benefit of bitmap indexes:

Boolean query operations (and, or, etc.) can be performed directly on bit vectors.

```
SELECT \cdots
FROM Cities
WHERE State = 'MA'
AND (City = 'Boston' OR City = 'Springfield')

\downarrow
B_{\text{MA}} \wedge \left(B_{\text{Boston}} \vee B_{\text{Springfield}}\right)
```

■ Bit operations are well-supported by modern computing hardware (➤ SIMD).

Equality vs. Range Encoding

Alternative encoding for ordered domains:

Students				
StudNo	Name	Semester		
1234	John Smith	3		
2345	Marc Johnson	2		
3456	Rob Mercer	4		
4567	Dave Miller	1		

Semester Index				
1	2	3	4	5
1	1	1	0	0
1	1	0	0	0
1	1	1	1	0
1	0	0	0	0

(set $B_{c_i}[k] = 1$ for all c_i smaller or equal than the attribute value a[k]).

Why would this be useful?

Range predicates can be evaluated more efficiently:

$$c_i > a[k] \geq c_j \leftrightarrow (\neg B_{c_i}[k]) \land B_{c_i}[k]$$
.

(but equality predicates become more expensive).

Data Warehousing Example

Index: D4.brand -> {RID}

RID	D4.Id	D4.product	D4.brand	D4.group
0	1	Latitude E6400	Dell	Computers
1	2	Lenovo T61	Lenovo	Computers
2	3	SGH-i600	Samsung	Handheld
3	4	Axim X5	Dell	Handheld
4	5	i900 OMNIA	Samsung	Mobile
5	6	XPERIA X1	Sony	Mobile

Index: D4.group -> {RID}

B _{Dell}	B _{Len}	B _{Sam}	B _{Sony}
1	0	0	0
0	1	0	0
0	0	1	0
1	0	0	0
0	0	1	0
0	0	0	1

B _{Com}	B _{Hand}	B _{Mob}
1	0	0
1	0	0
0	1	0
0	1	0
0	0	1
0	0	1

tmap Index: D4.group

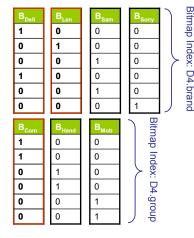
Query Processing: Example

Sales in group 'Computers' for brands 'Dell', 'Lenovo'?

ightarrow Calculate bit-wise operation

$$B_{Com} \wedge (B_{Dell} \vee B_{Len})$$

to find matching records.



Bitmap Indices for Star Joins

Bitmap indices are useful to implement join indices.

Here: Type 2 index for *Cities* \bowtie *Sales*

Cities					
rid	CtyID	City	State		
C ₁	6371	Arlington	VA		
c_2	6590	Boston	MA		
C ₃	7882	Miami	FL		
C ₄	7372	Springfield	MA		
		:			

Sales						ldx	
rid	BkID	CtyID	DayID	Sold	C1	C ₂	
S ₁	372	6371	95638	17	1	0	
s_2	372	6590	95638	39	0	1	
s_3	1930	6371	95638	21	1	0	
S 4	2204	6371	95638	29	1	0	
s_5	2204	6590	95638	13	0	1	
s_6	1930	7372	95638	9	0	0	
S ₇	372	7882	65748	53	0	0	
:	:	:	:	:	:	:	

- \rightarrow One bit vector per RID in Cities.
- \rightarrow Length of bit vector \equiv length of fact table (Sales).

Bitmap Indices for Star Joins

Similarly: Type 3 index $State \rightarrow \{Sales.rid\}$

Cities					
rid	CtyID	City	State		
C ₁	6371	Arlington	VA		
c_2	6590	Boston	MA		
C ₃	7882	Miami	FL		
C ₄	7372	Springfield	MA		
:	:	:	:		

	Sales						ldx				
rid	BkID	CtyID	DayID	Sold		VA	MA	FL			
S ₁	372	6371	95638	17		1	0	0			
s_2	372	6590	95638	39		0	1	0			
s_3	1930	6371	95638	21		1	0	0			
S 4	2204	6371	95638	29		1	0	0			
s_5	2204	6590	95638	13		0	1	0			
s_6	1930	7372	95638	9		0	1	0			
S 7	372	7882	65748	53		0	0	1			
				:							

- \rightarrow One bit vector per *City* value in *Cities*.
- \rightarrow Length of bit vector \equiv length of fact table (Sales).

Space Consumption

For a column with n distinct values, n bit vectors are required to build a bitmap index.

For a table wit N rows, this leads to a **space consumption** of

 $N \cdot n$ bits

for the full bitmap index.

This suggests the use of bitmap indexes for **low-cardinality attributes**.

 \rightarrow e.g., product categories, sales regions, etc.

For comparison: A 4-byte integer column needs $N \cdot 32$ bits.

 \rightarrow For $n \lesssim 32$, a bitmap index is more compact.

Reducing Space Consumption

For larger n, space consumption can be reduced by

- 1 alternative bit vector representations or
- compression.

Both may be a space/performance trade-off.

Decomposed Bitmap Indexes:

Express all attribute values *v* as a **linear combination**

$$v=v_0+\underbrace{c_1}v_1+\underbrace{c_1c_2}v_2+\cdots+\underbrace{c_1\cdots c_k}v_k\quad (c_1,\ldots,c_k \text{ constants}).$$

■ Create a **separate bitmap index** for each variable v_i .

Decomposed Bitmap Indexes

Example: Index column with domain [0, ..., 999].

- Regular bitmap index would require 1000 bit vectors.
- Decomposition ($c_1 = c_2 = 10$):

$$v = 1v_1 + 10v_2 + 100v_3$$
.

- Need to create 3 bitmap indexes now, each for 10 different values
 - \rightarrow 30 bit vectors now instead of 1000.
- However, need to read 3 bit vectors now (and and them) to answer point query.

Decomposed Bitmap Indexes

- Query: a=576=5*100+ 7*10+6*1
- RIDs:

```
B_{v3,5} \land B_{v2,7} \land B_{v1,6} = [0010...0]
```

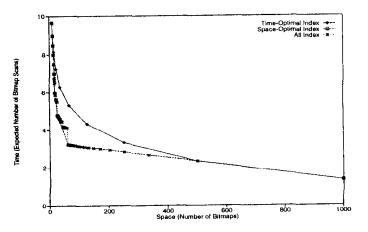
=> RID 3, ...

RID	а			
0	998			
1	999			
2	576			
3	578			
1000	976			

	B _{v1,0}	B _{v1,1}	B _{v1,2}	B _{v1,3}	B _{v1.4}	B _{v1,5}	B _{v1.6}	B _{v1,7}	B _{v1,8}	B _{v1.9}
	0	0	0	0	0	0	0	0	1	0
-	0	0	0	0	0	0	0	0	0	1
	0	0	0	0	0	0	1	0	0	0
	0	0	0	0	0	0	0	0	1	0
	0	0	0	0	0	0	1	0	0	0
	B _{v2.0}	B _{v2,1}	B _{v2,2}	B _{v2,3}	B _{v2,4}	B _{v2.5}	B _{v2.6}	B _{v2,7}	B _{v2,8}	B _{v2.9}
	0	0	0	0	0	0	0	0	0	1
	0	0	0	0	0	0	0	0	0	1
	0	0	0	0	0	0	0	1	0	0
	0	0	0	0	0	0	0	1	0	0
	0	0	0	0	0	0	0	1	0	0
	B _{v3,0}	B _{v3.1}	B _{v3,2}	B _{v3,3}	B _{v3,4}	B _{v3,5}	B _{v3.6}	B _{v3,7}	B _{v3,8}	B _{v3.9}
	0	0	0	0	0	0	0	0	0	1
	0	0	0	0	0	0	0	0	0	1
	0	0	0	0	0	1	0	0	0	0
	0	0	0	0	0	1	0	0	0	0
									<u> </u>	
	0	0	0	0	0	0	0	0	0	1

Space/Performance Trade-Offs

Setting c_i parameters allows to trade space and performance:

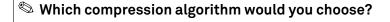


source: Chee-Yong Chan and Yannis Ioannidis. Bitmap Index Design and Evaluation. SIGMOD 1998.

Compression

Orthogonal to bitmap decomposition: Use **compression**.

■ *E.g.*, straightforward equality encoding for a column with cardinality n: 1/n of all entries will be 0.



Compression

Problem: Complexity of (de)compression \leftrightarrow simplicity of bit operations.

- Extraction and manipulation of individual bits during (de)compression can be expensive.
- Likely, this would off-set any efficiency gained from logical operations on large CPU words.

Thus:

- Use (rather simple) run-length encoding,
- but respect system word size in compression scheme.

∠ Wu, Otoo, and Shoshani. Optimizing Bitmap Indices with Efficient Compression. TODS, vol. 31(1). March 2006.

Word-Aligned Hybrid (WAH) Compression

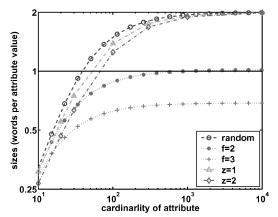
Compress into a sequence of 32-bit words:

- Bit tells whether this is a **fill word** or a **literal word**.
 - Fill word (= 1):
 - Bit tells whether to fill with 1s or 0s.
 - Remaining 30 bits indicate the number of fill bits.
 - \rightarrow This is the number of **31-bit blocks** with only 1s or 0s.
 - \rightarrow e.g., = 3: represents 93 1s/0s.
 - Literal word (= 0):
 - Copy 31 bits directly into the result.

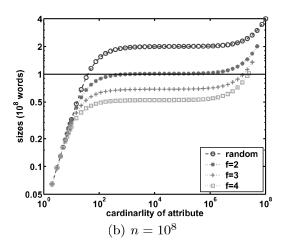
WAH: Effectiveness of Compression

WAH is good to counter the space explosion for **high-cardinality** attributes.

- At most 2 words per '1' bit in the data set
 - At most $\approx 2 \cdot N$ words for table with N rows, even for large n (assuming a bitmap that uses equality encoding).

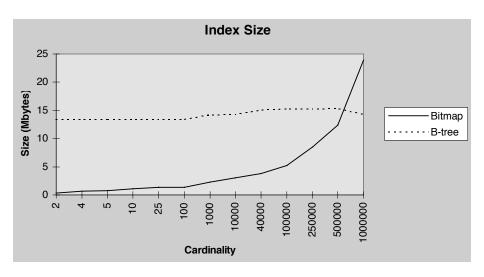


WAH: Effectiveness of Compression



■ If (almost) all values are distinct, additional **bookkeeping** may need some more space ($\sim 4 \cdot 10^8$ bits for cardinality 10^8).

Bitmap Indexes in Oracle 8



Encoding ↔ Sparseness/Attribute Cardinality

The most space-efficient bitmap representation depends on the **number of distinct values** (*i.e.*, the **sparseness** of the bitmap).

- low attribute cardinality (dense bitmap)
 - → can use un-compressed bitmap WAH compression won't help much (but also won't hurt much)
- medium attribute cardinality
 - → use (WAH-)compressed bitmap
- high attribute cardinality (many distinct values; sparse bitmap)
 - → Encode "bitmap" as list of bit positions

In addition, compressed bitmaps may be a good choice for data with **clustered content** (this is true for many real-world data).