Data Warehousing

Jens Teubner, TU Dortmund
jens.teubner@cs.tu-dortmund.de

Winter 2014/15

© Jens Teubner - Data Warehousing - Winter 2014/15 1

PartV

Implementing a Data Warehouse

Engine

© Jens Teubner - Data Warehousing - Winter 2014/15

89

Star schema in a relational database:
m Facttable: each entry holds a set of foreign keys
= These point to dimension tables

Conceptually, a star query
joins the fact table to a number of dimension tables,
restricts the number of tuples (to obtain a “dice”), and
aggregates/groups according to some grouping criterion.

fact
dim; >
'—=x_— 5 — GRPBY

dimz 7

© Jens Teubner - Data Warehousing - Winter 2014/15

Expressed as relational algebra, this would look like

GRPBY

|
g
%
/ o~
X
X -7

dim4

dim3

© Jens Teubner - Data Warehousing - Winter 2014/15 91

Pushing down selection criteria (o) may be more efficient:

GRPBY

k
M/ \0
I><1/ \a di||’n4
N |
0'/ \a dim,

I I
fact dimy

(|T d|m3

© Jens Teubner - Data Warehousing - Winter 2014/15 92

Problems:

m Facttable is huge.
= Joins will become expensive.

Good join implementations: cost(R X S) |R| + |S|.

However,
m we’d have plenty of time to pre-compute (partial) results.

Idea:
u build materialized views over (partial) results.

© Jens Teubner - Data Warehousing - Winter 2014/15 93

Materialized Views

“Regular” view:

CREATE VIEW sales_loc (date_key, city, state, qty) AS
SELECT f.date_key, loc.city, loc.state, f.qty
FROM sales_fact AS f, location_dim AS loc
WHERE f.loc_key = loc.loc_key

— “Register” a query under some name (here: sales_loc)
— View will be accessible for querying like a real table

— View result will be computed on the fly
(One execution technique can be to expand a referenced view to its
definition and execute the resulting, larger query.)

— Mostly a convenience feature, plus some advantages for access
control, maybe also query cost estimation

© Jens Teubner - Data Warehousing - Winter 2014/15 94

Materialized Views

Many systems offer a mechanism to persist the view result instead.
— Update on modifications, access, or manually.
Such materialized views are pre-computed queries.

E.g.,1BM DB2:

CREATE TABLE table-name (attlist) AS (
select-from-where block

)
DATA INITIALLY DEFERRED REFRESH data refresh options

+ Pre-computed information may speed up querying.
— Materialization requires space
— Increases update cost (less a problem for data warehouses)

© Jens Teubner - Data Warehousing - Winter 2014/15 95

Which Views Should We Create?

Which materialized views should we create?
— Views may be as large as fact table, so space is an issue.

Insight:

= Views may be helpful for query evaluation even when they
contain a superset of the required information.

—» Can refine filter criteria when querying the view
— Can aggregate fine grain — coarse grain

© Jens Teubner - Data Warehousing - Winter 2014/15 96

Materialized Views: Cost <> Benefit (Example)

Example:
m Fact table with three dimensions: part, supplier, customer

grouping attributes # rows = ~19 M rows storage
part, supplier, customer 6M needed

part, customer 6M m Could save 12 M rows
part, supplier 0.8M by not storing
supplier, customer 6M (part, customer) and
part 0.2M (supplier, customer);
supplier 0.01M no harm to query
customer 0.1M performance.

- (none) 1

© Jens Teubner - Data Warehousing - Winter 2014/15

Derivability

Can a materialized view V be used to answer a query Q?

Assumption:
= Vand Q are both star queries

Sufficient conditions:
m Selection predicates in Q subsumed by those in V.
= GROUP BY attributes in Q subsumed by those in V.
m Aggregation functions in Q compatible with those of V.
m Alltables referenced in V must also be referenced in Q.

© Jens Teubner - Data Warehousing - Winter 2014/15

Derivability: Predicates

Problem:
= Predicate subsumption not decidable for arbitrary predicates.

Thus:
m Restrict to only simple predicates:

attribute op constant .

m Convert predicates to disjunctive normal form.

Example:
= query predicate pq : year = 2008 A quarter = 4
m view predicate py : year = 2008
—» py subsumes pg; can use VtoanswerQ v

© Jens Teubner - Data Warehousing - Winter 2014/15 99

Derivability: GROUP BY Lattice

part >< supplier customer
part, supplier part, customer supplier, customer

part, supplier, customer

m Arrow V— V': V' can be derived from V.

m Example: Create only Vpart, supptier @Nd Vsupplier, customer
— Can still group by {part}, {supplier}, {customer}, and {}.

© Jens Teubner - Data Warehousing - Winter 2014/15 100

Derivability: GROUP BY Lattice—Notes

For independent dimension attributes, the lattice becomes a
hypercube

—» nindependent dimensions ~ 2" views.

Known hierarchies simplify the lattice N
—» Can group by week, given a grouping by day year
. . week T
— Can group by month, given a grouping by day; month
can group by year, given a grouping by month 7

© Jens Teubner - Data Warehousing - Winter 2014/15

101

Derivability: Aggregate Functions

Aggregate functions have different behaviors:

= “additive”: f(X1 UX3) = f(f(X1), f(X2)) and f~! exists.
— e.g.,sum(aq,02,a3) = sum(sum(aq,ay),sum(az)) and
sum(az) = sum(as,az,a3) — sum(aq,as)
= “semi-additive”: same, but f~' does not exist.
— e.g., min(ay,a,,a3) = min(min(aq,az), min(az))

= “additive computable:” f(X) = ' (f1(X), F2(X), ..., Fk(X)) where f;
are (semi-)additive functions.
— e.g.,avg(X) = sum(X)/count(X)

= “others:” e.g., median computation

© Jens Teubner - Data Warehousing - Winter 2014/15 102

Derivability: Aggregate Functions

Behavior of aggregate functions determines
= whether a query Q can be answered based on a view V
m whether updates in the base table can be propagated to V
—» view maintenance

In practice:
* When a GROUP BY clause is specified, the following considerations
apply:
— The supported column functions are SUM, COUNT, COUNT_BIG and
GROUPING (without DISTINCT). The select list must contain a

[| COUNT(*) or COUNT_BIG(*) column. If the materialized query table
query
. . select list contains SUM(X), where X is a nullable argument, the
materialized query table must also have COUNT(X) in its select list.
q ueries t h at can be d efl ne d These column functions cannot be part of any expressions.

A HAVING clause is not allowed.
If in a multiple partition database partition group, the distribution
key must be a subset of the GROUP BY items.
moe. g .y I B M D BZ (eXCG rpt) — * The materialized query table must not contain duplicate rows, and the
following restrictions specific to this uniqueness requirement apply,
depending upon whether or not a GROUP BY clause is specified.

as materialized views.

© Jens Teubner - Data Warehousing - Winter 2014/15 103

Derivability: Set of Relations

All tables T referenced by V must also be referenced by Q (and joined
using the same join predicate).

Problem:

m Joins are not lossless if they are not equi-joins along a foreign
key relationship.

~ “Information Systems”, lossless/lossy decomposition

m If joins are lossless, not all tables of V must be referenced in Q

© Jens Teubner - Data Warehousing - Winter 2014/15 104

Which Materialized Views Should We Create?

Strategy:
Create view with GROUP BY at finest grain needed.

Repeatedly create new view that yields maximum benefit.
Stop when storage budget is exceeded.

Input: Workload description
E.g., DB2 Design Advisor db2advis

= Input: workload with queries and DML statements

= Output: Recommendation for indexes and materialized views
(“materialized query tables, MQTs” in DB2 speak)

© Jens Teubner - Data Warehousing - Winter 2014/15

105

Indices

Alighter-weight form of pre-computed data are indices.

Generally speaking, an index provides a lookup mechanism
attribute value(s) — record identifier(s) ,

where a record identifier or rid encodes the physical location of a
matching tuple.

E.g., B-tree index: search key

Raee | ow parsof
LN o~ (pageno,slotno)

-
~ ~

© Jens Teubner - Data Warehousing - Winter 2014/15 106

Index Lookup Cost

Searching records by value incurs
Traverse index using the search key

Fetch tuples from data pages.

Step Fl incurs about one I/0 per search.
— Inner nodes are usually cached.
— For small tables, even the full index might fit into the cache.

Step F requires about one I/0 per result tuple.
— Following rid pointers results in quasi-random 1/0.

(If the result set is large, the system might also decide to sort the list
of qualifying rids first to improve disk access pattern.)

© Jens Teubner - Data Warehousing - Winter 2014/15 107

Index Usage Scenarios

Two typical ways of using an index are:
Point or range conditions in the query
— E.g., SELECT - - - WHERE attr = constant
Join processing
— Index nested loops join:

1 Function: index_nljoin (R, S, p)

2 foreach recordr € Rdo
3 | accessindexusingrand p and append
matching tuples to result;

© Jens Teubner - Data Warehousing - Winter 2014/15 108

Indexes and Star Queries

Strategy 1: Index on value columns of dimension tables

1. For each dimension table D;:
a. Use index to find matching dimension table rows d; ;.
b. Fetch those d;; to obtain key columns of D;.
c. Collect a list of fact table rids that reference those
dimension keys.
QX How?

2. Intersect lists of fact table rids.
3. Fetch remaining fact table rows, group, and aggregate.

© Jens Teubner - Data Warehousing - Winter 2014/15

Indexes and Star Queries

® How could star queries benefit from indexes?

Strategy 2: Index on primary key of dimension tables

1. Scan fact table
2. For each fact table row f:
a. Fetch corresponding dimension table row d.

b. Check “slice and dice” conditions on d;
skip to next fact table row if predicate not met.
c. Repeat 2.a for each dimension table.

3. Group and aggregate all remaining fact table rows.

© Jens Teubner - Data Warehousing - Winter 2014/15

Indexes and Star Queries

S Problems and advantages of Strategy 1?
+ Fetch only relevant fact table rows (good for selective queries).
- ‘Index — fetch — index — intersect — fetch’ is cumbersome. *

— List intersection is expensive.

1. Again, lists may be large, intersection small.
2. Lists are generally not sorted.

© Jens Teubner - Data Warehousing - Winter 2014/15 111

Index-Only Queries

Problem * can be reduced with a “trick”:

m Create an index that contains value and key column of the
dimension table.

— No fetch needed to obtain dimension key.

m Such indexes allow for index-only querying.
— Acess only index, but not data pages of a table.

E.g.,

CREATE INDEX Quarterindex
ON DateDimension (Quarter, DateKey)

— Will only use Quarter as a search criterion (but not DateKey).

© Jens Teubner - Data Warehousing - Winter 2014/15 112

Index-Only Queries

4 IBM DB2:

= Include columns in index, yet do not make them a search key.

CREATE INDEX IndexName
ON TableName (coly, cols, ..., col,)
INCLUDE (colq, colp, ...)

(In UNIQUE indexes, it makes a difference whether a column is part of the
search key or not. This is the only situation where the INCLUDE clause is
allowed in DB2.)

© Jens Teubner - Data Warehousing - Winter 2014/15 113

Indexes and Star Queries

X Problems and advantages of Strategy 2?

+ For small dimension tables, all indexes might fit into memory.
—» Onthe other hand, indexes might not be worth it; can
simply build a hash table on the fly.

— Fact table is large - many index accesses.
— Individually, each dimension predicate may have low selectivity.

E.g., four dimensions, each restricted with 10 % selectivity:

— Overall selectivity as low as 0.01 %.
— Butas manyas 10 %/1 %/... of fact table tuples pass
individual dimension filters (and fact table is huge).

Together, dimension predicates may still be highly selective.

e Costis independent of predicate selecitivites.

© Jens Teubner - Data Warehousing - Winter 2014/15 114

Hub Star Join

X What do you think about this query plan?

~- Join dimension tables first, then fact table as last relation.

GR1|9BY

N/M\U
N

o fact

N/ \0 dir|n4
0/ \a l

dim1 d|m2

© Jens Teubner - Data Warehousing - Winter 2014/15 115

Hub Star Join

Joins between dimension tables are effectively Cartesian products.

GRPBY

|
X/M\O'
x/ \a falct
x/ \a dir|n4
O'/ \O' |
I I

dim1 d|m2

dim3

— Clearly won’t work if (filtered) dimension tables are large.

© Jens Teubner - Data Warehousing - Winter 2014/15 116

Hub Star Join

Idea:
GRPl’BY
/INLJ -
sales
/ \
I
/ \ date

I
product store

m Cartesian product approximates the set of foreign key values
relevant in the fact table.

m Join Cartesian product with fact table using index nested loops
join (multi-column index on foreign keys).

© Jens Teubner - Data Warehousing - Winter 2014/15 117

Hub Star Join

Advantages:
+ Fetch only relevant fact table rows.

+ No intersection needed.
+ No sorting or duplicate removal needed.

Down Sides:

— Cartesian product overestimates foreign key combinations in
the fact table.

— Many key combinations won’t exist in the fact table.
— Many unnecessary index probes.
Overall:
= Hub Join works well if Cartesian product is small.

© Jens Teubner - Data Warehousing - Winter 2014/15

Zigzag Join

cartesian product of dimension keys

multi-column index on aroma_sales

© Jens Teubner - Data Warehousing - Winter 2014/15

prodkey | classkey | perkey N]u'ot:ke' d”i'm pe,r,,
1 1 1 >

1 1 k] L-____>
1 1 [1 -~

1 1 Fggfn"ﬁ 3

1 1 2 1 1

1 2 i 2 1 2

1 2 3 4= S e L e | e

[2 5 Y28 A —— —

1 2 3 pi kn /00 e 1

1] 7 a pped /S | ...

1 3 1Y J/ = L=l e

1 3 3

1 3 5

1 3 3

1 k] 1

2 1 1

2 1 3

2 1 5 —— & probes

—— makch

119

Hash join is one of the classical join algorithms.

To compute R X S,
Build a hash table on the “outer” join relation S. } Build Phase

Scan the “inner” relation R and

probe into the hash table for each tupler € R. }Jom Phase

1 Function: hash_join (R, S)

// Build Phase
2 foreach tuple s € Sdo
3 | insertsinto hash table H ;

// Join Phase
4 foreach tupler € Rdo
5 |_ probe H and append matching tuples to result ;

© Jens Teubner - Data Warehousing - Winter 2014/15 120

hash table

b S
IT / b, \ ‘
g —>h/: {:\/w— g
; : : o
\ / l
by
™M build (2 probe

v O(N) (approx.)
v Easy to parallelize

© Jens Teubner - Data Warehousing - Winter 2014/15 121

Implementing Star Join Using Hash Joins

GRPBY
|
HSJOIN
/ ~
o HSJOIN
| ~
Books o — HSJOIN
| ~
Time tlf / Sales
Cities

u (Hopefully) dimension subsets are small enough
— Hash table(s) fit into memory.

= Here, hash joins effectively act like a filter.

© Jens Teubner - Data Warehousing - Winter 2014/15 122

Implementing Star Join Using Hash Joins

Problems:

m Which of the filter predicates is most restrictive? — Tough
optimizer task!

m A lot of processing time is invested in tuples that are eventually
discarded.

m This strategy will have real trouble as soon as not all hash
tables fit into memory.

© Jens Teubner - Data Warehousing - Winter 2014/15 123

Hash-Based Filters

GRPBY
R
-~ HSJOIN
/’// / //’//\
o T HSJOIN
1 | \/ / \
' Books | o HSJOIN
o | ™~
Time o FILTER
| I
Cities Sales
11284/Salads [Cooking |
[o][
11930 Tropical Food [Cooking | | 474|ltalian Cooking|Cooking |
[o][

— Use compact bit vector to pre-filter data.

© Jens Teubner - Data Warehousing - Winter 2014/15 A

Hash-Based Filters

m Size of bit vector is independent of dimension tuple size.
— And bit vector is much smaller than dimension tuples.

= Filtering may lead to false positives, however.
— Must still do hash join in the end.

= Key benefit: Discard tuples early.

Nice side effect:

m In practice, will do pre-filtering according to all dimensions
involved.

— Can re-arrange filters according to actual(!) selectivity.

© Jens Teubner - Data Warehousing - Winter 2014/15

Bloom Filters

Bloom filters can improve filter efficiency.

Idea:
u Create (empty) bit field B with m bits.
m Choose k independent hash functions.
m For every dim. tuple, set k bits in B, according to hashed key
values.

(1284, Salads, Cooking)
(1930, Tropical Food, Cooking)

IRERERENNEEERER NI NEEN(NNENEREIINEER
T2 12 T2

(1735, Gone With the Wind, Fiction)

m To probe a fact tuple, check k bit positions
— Discard tuple if any of these bits is 0.

© Jens Teubner - Data Warehousing - Winter 2014/15 126

Bloom Filters

Parameters:
= Number of bitsin B: m
— Typically measured in “bits per stored entry”
= Number of hash functions: k

—» Optimal: about 0.7 times number of bits per entry.
—» Too many hash functions may lead to high CPU load!

Example:
= 10 bits per stored entry lead to a filter accuracy of about 1 %.

© Jens Teubner - Data Warehousing - Winter 2014/15 127

Example: MS SQL Server

Microsoft SQL Server uses hash-based pre-filtering since version

2008.
(5 Y

nfol DL_cs
Hash Join ' \

2

© Jens Teubner - Data Warehousing - Winter 2014/15

Hash Join

Dimension Filter
1 SK_D2=
'D2_03'

Dimension

Join Reduction
Info 2

D1_os
oot
LI

D1 05
o167

Dioe D2
Di g5 DIl 4

Join Reduction Processing

D281
02 2
D203 3
0208 4
ozta 5

Rewsetafter
: = join reduction

kS Rowsetbefore
i jeinreduction

128

Join Indices

A variant of pre-computed data (similar to materialized views) are
joinindices.
Example: Cities X Sales RID lists
u Type 1: join key — ({ridcities } , {ridsates })
(Record ids from Cities and Sales that contain given join key value.)
m Type 2: ridcities — {ridsates }
(Record ids from Sales that match given record in Cities.)

m Type 3: dim value — {ridsgies}
(Record ids from Sales that join with Cities tuples that have given
dimension value.)

(Conventional B*-trees are often value — {rid} mappings; cf.
slide 106.)

© Jens Teubner - Data Warehousing - Winter 2014/15 129

Example: Cities X Sales Join Index

6371 Arlington VA 372 6371 95638
cz 6590 Boston MA sz 372 6590 95638 39
c3 7882 Miami FL s3 1930 6371 95638 21

cs 7372 Springfield MA s4, 2204 6371 95638 29
. . . . ss 2204 6590 95638 13
ss 1930 7372 95638 9
s; 372 7882 65748 53

© Jens Teubner - Data Warehousing - Winter 2014/15 130

Star Join with Join Indices

GRPBY
|
rid list FETCH
intersection
/ \SG les
IXSCAN IXSCAN IXSCAN

Cities/Sales Time/Sales Books/Sales

For each of the dimensions, find matching Sales rids.
Intersect rid lists to determine relevant Sales.

© Jens Teubner - Data Warehousing - Winter 2014/15 131

Star Join with Join Indices

The strategy makes rid list intersection a critical operation.

— Rid lists may or may not be sorted.
— Efficient implementation is (still) active research topic.

Down side:
m Rid list sorted only for (per-dimension) point lookups.

Challenge:
m Efficient rid listimplementation.

© Jens Teubner - Data Warehousing - Winter 2014/15 132

Bitmap Indices

Idea: Create bit vector for each possible column value.

Example: Relation that holds information about students:

[StudNo | Name | Program_
1234 John Smith Bachelor
2345 Marc Johnson Master
3456 Rob Mercer Bachelor
4567 Dave Miller PhD
5678 Chuck Myers Master

Program Index

(WS¢ | PhD | Dipl |
0 0

O O OoOOoo

0
0
1
0

- O O -

bit vector

© Jens Teubner - Data Warehousing - Winter 2014/15 133

Query Processing with Bitmap Indexes

Benefit of bitmap indexes:

m Boolean query operations (and, or, etc.) can be performed
directly on bit vectors.

SELECT - --
FROM Cities
WHERE State = ‘MA’
AND (City = ‘Boston’ OR City = ‘Springfield’)

1
Bma A (BBoston \ BSpringfield)

m Bit operations are well-supported by modern computing
hardware (' SIMD).

© Jens Teubner - Data Warehousing - Winter 2014/15 134

Equality vs. Range Encoding

Alternative encoding for ordered domains:

Students

Semester Index

(StudNo | Name | Semester |
1234 John Smith 3 1 1 1 0 O
2345 Marc Johnson 2 1T 1 0 0 O
3456 Rob Mercer 4 11 1 1 0
4567 Dave Miller 1 1 0 0 0 O

(set Bg,[k] = 1 for all c; smaller or equal than the attribute value a[k]).

D Why would this be useful?
Range predicates can be evaluated more efficiently:

ci > alk] > ¢ (—Bg[K]) A Bg K] -

(but equality predicates become more expensive).

© Jens Teubner - Data Warehousing - Winter 2014/15 135

Data Warehousing Example

Index: D4.brand -> {RID}

r

D4.brand D4.group

Computers
Computers
Handheld
Handheld
Mobile
Mobile

L

Index: D4.group -> {RID}

~lO|lOO|lO|OC|O
pueliq yQ :xepu| dewg

Hand

o|lo|lo|o|=~|~ Eiil o|lof—~|O|O|~
o|O|=|=~|O|O Iiil o|jlo|lo|o|—~|O
~|~|Oo|lOo|O|O| o|~|O|~|O|O
H
&
J

Y~
dnoub Qg xepu| dewyg

© Jens Teubner - Data Warehousing - Winter 2014/15 136

Query Processing: Example

Sales in group ‘Computers’ for brands ‘Dell’, ‘Lenovo’?

o

SELECT SUM (F.price) im fm Fl
FROM D4 15 o 5 ;Z
WHERE group= 'Computer' 0 0 1 0 &
AND (brand='Dell’ 1 0 0 0 g
OR brand='Lenovo') 0 0 ! 0 s

()] 0 0 1 2

e J B BB

—» Calculate bit-wise operation

BCom A (BDell \ BLen)

to find matching records.

olo|lo|o|=|=
o|o|=|~|O|O
dnosb 4 :xepu| dewyg

© Jens Teubner - Data Warehousing - Winter 2014/15 137

Bitmap Indices for Star Joins

Bitmap indices are useful to implement join indices.

Here: Type 2 index for Cities X Sales

Cities

I— e —

6371 Arlington VA
c2 6590 Boston MA
c3 7882 Miami FL
cs 7372 Springfield MA

BKID | CtylD | DayID

Sz
S3
S4
Ss
Se
S7

372
372
1930
2204
2204
1930
372

— One bit vector per RID in Cities.
— Length of bit vector = length of fact table (Sales).

© Jens Teubner - Data Warehousing - Winter 2014/15

6371
6590
6371
6371
6590
7372
7882

95638
95638
95638
95638
95638
95638
65748

1
0
1
1
0
0
0

g
3

OO—\OO—\OE

138

Bitmap Indices for Star Joins

Similarly: Type 3 index State — {Sales.rid}

Cities

Sales

- =—umm
BIDTOID [DayD [Sold §f VA WA FLT

6371 Arlington
cz 6590 Boston
c3 7882 Miami
c. 7372 Springfield

—» One bit vector per City value in Cities.
— Length of bit vector = length of fact table (Sales).

VA
MA
FL
MA

Sz
S3
Sy
Ss
Se
S7

© Jens Teubner - Data Warehousing - Winter 2014/15

372

372
1930
2204
2204
1930
372

6371
6590
6371
6371
6590
7372
7882

95638
95638
95638
95638
95638
95638
65748

OO0 O0O—-==—-0-

oO—-=-00-0

000000

139

Space Consumption

For a column with n distinct values, n bit vectors are required to
build a bitmap index.

For a table wit N rows, this leads to a space consumption of
N - n bits

for the full bitmap index.

This suggests the use of bitmap indexes for low-cardinality
attributes.

— e.g., product categories, sales regions, etc.

For comparison: A 4-byte integer column needs N - 32 bits.
—+ Forn < 32, a bitmap index is more compact.

© Jens Teubner - Data Warehousing - Winter 2014/15

Reducing Space Consumption

For larger n, space consumption can be reduced by
alternative bit vector representations or
compression.

Both may be a space/performance trade-off.

Decomposed Bitmap Indexes:
m Express all attribute values v as a linear combination

V=Vo+ C1 Vi+CiCoVo+---+Cq---Cx Vi (C1,...,Ck constants).
~—~ —~—~ —————

= Create a separate bitmap index for each variable v;.

© Jens Teubner - Data Warehousing - Winter 2014/15

Decomposed Bitmap Indexes

Example: Index column with domain [0, ..., 999].
m Regular bitmap index would require 1000 bit vectors.
m Decomposition (c1 = ¢, = 10):

v =1vq + 10v; + 100v3 .

= Need to create 3 bitmap indexes now, each for 10 different
values
— 30 bit vectors now instead of 1000.

m However, need to read 3 bit vectors now (and and them) to
answer point query.

© Jens Teubner - Data Warehousing - Winter 2014/15 142

Decomposed Bitmap Indexes

8., N5.. Ne.. No.. Mo Ns.. Qe.. Ne.. Mo
* Query: 0 0 0 0 0 0 0 0 1 0
a=576=5*100+| |9 0 0 0 0 0 0 0 0 1
T*10+6*1 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0
* RIDs:
B35 A 0 0 0 0 0 0 1 0 0 0
B A
Bl 8., N5.. Ne.. Ne.. No.. Ne.. §e.. Me., [5.. W5, |
vi 6 0 0 0 0 0 0 0 0 0 1
[0010..0] 0 0 0 0 0 0 0 0 0 1
=>RID3, ... 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0 0
0 998
1 999 5., W5 Ns.. Mo, Ne.. No.. Qo.. Ns.. Ne.. Ns.. |
0 0 0 0 0 0 0 0 0 1
2 576 0 0 0 0 0 0 0 0 0 1
3 578 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0 0
1000 | 976 0 0 0 0 0 0 0 0 0 1

© Jens Teubner - Data Warehousing - Winter 2014/15 143

Space/Performance Trade-Offs

Setting c; parameters allows to trade space and performance:

10

Time-Qptimal Index -e—-
Space-Optimal Index -&--
All Index W+

Tirme (Expacted Number of Bitmap Scans)

0 200 400 500
Space {Number of Bilmaps)

source: Chee-Yong Chan and Yannis loannidis. Bitmap Index Design and
Evaluation. SIGMOD 1998.

© Jens Teubner - Data Warehousing - Winter 2014/15 144

Compression

Orthogonal to bitmap decomposition: Use compression.

m E.g., straightforward equality encoding for a column with
cardinality n: 1/n of all entries will be 0.

S Which compression algorithm would you choose?

© Jens Teubner - Data Warehousing - Winter 2014/15 145

Compression

Problem: Complexity of (de)compression <> simplicity of bit
operations.

m Extraction and manipulation of individual bits during
(de)compression can be expensive.

m Likely, this would off-set any efficiency gained from logical
operations on large CPU words.

Thus:
m Use (rather simple) run-length encoding,
m but respect system word size in compression scheme.

/" Wu, Otoo, and Shoshani. Optimizing Bitmap Indices with Efficient
Compression. TODS, vol. 31(1). March 2006.

© Jens Teubner - Data Warehousing - Winter 2014/15 146

Word-Aligned Hybrid (WAH) Compression

Compress into a sequence of 32-bit words:
ENEEEEEEEEEEEEEEEEEEEREEEEEEREEN

Bit [l tells whether this is a fill word or a literal word.

» Fillword (= 1):

= Bit[[tells whether to fill with 1s or Os.
= Remaining 30 [l bits indicate the number of fill bits.

—» This is the number of 31-bit blocks with only 1s or Os.
— e.g.,]lll = 3: represents 93 1s/0s.

m Literal word (lll = 0):
= Copy 31 M bits directly into the result.

© Jens Teubner - Data Warehousing - Winter 2014/15 147

WAH: Effectiveness of Compression

WAH is good to counter the space explosion for high-cardinality
attributes.
= At most 2 words per ‘1’ bit in the data set
~~ At most ~ 2 - N words for table with N rows, even for large n
(assuming a bitmap that uses equality encoding).

2 PSR [¢
. ‘,f;ﬁ“‘ o
o P o
3 S N
g /' /’9’ :
[} Ry =
= 1 , ."’ el ™
o @/ 7 . ® L %)
] R [m]
= ARG
E JA g - |(_)
g_ 0,' * BT e bt e Al -
v e 3
% IIA#‘I‘ o -
5 08 4o 5
2 lg‘,% -©- random é
" :_l;f e f=2 =
N + =3 g
[be — =
Ay z=1 5
. - z=2 o
0.255 = — . (2]
10 10 10 10

cardinarlity of attribute

© Jens Teubner - Data Warehousing - Winter 2014/15

WAH: Effectiveness of Compression

4
)
e@
2t W ®q
-
[c"""*
_— o B E
o 1 [Pl R
] d"a- *++++++++H++++H+++++++++’+ o}
a; 0.5 '-‘»‘e-‘*nnuunnnnmnnnnuuunuumnunﬂﬂ“n
o $+o0
= o0
0
[
N
® 0.2f f
®
@ -©- random
01} ¢ e =2
! ot f=3
@ cme f=4
0.05 . +
10° 107 10* 10° 10°
cardinarlity of attribute
(b) n. = 108

u If (almost) all values are distinct, additional bookkeeping may
need some more space (~ 4 - 108 bits for cardinality 108).

© Jens Teubner - Data Warehousing - Winter 2014/15 149

Bitmap Indexes in Oracle 8

Index Size

25

L NPT PEEPE L T ——Bitmap

-------- B-tree

Size (Mbytes)

1000 +

I
T
o
o
=

10000
40000
100000
250000 +
500000
1000000

Cardinality

© Jens Teubner - Data Warehousing - Winter 2014/15 150

Encoding <+ Sparseness/Attribute Cardinality

The most space-efficient bitmap representation depends on the
number of distinct values (i.e., the sparseness of the bitmap).
m low attribute cardinality (dense bitmap)
—» can use un-compressed bitmap
WAH compression won’t help much (but also won’t hurt
much)
= medium attribute cardinality
— use (WAH-)compressed bitmap

= high attribute cardinality (many distinct values; sparse bitmap)
— Encode “bitmap” as list of bit positions

In addition, compressed bitmaps may be a good choice for data with
clustered content (this is true for many real-world data).

© Jens Teubner - Data Warehousing - Winter 2014/15

	Implementing a Data Warehouse Engine

