
Data Warehousing

Jens Teubner, TU Dortmund
jens.teubner@cs.tu-dortmund.de

Winter 2014/15

© Jens Teubner · Data Warehousing ·Winter 2014/15 1

Part V

Implementing a Data Warehouse
Engine

© Jens Teubner · Data Warehousing ·Winter 2014/15 89

Star Queries

Star schema in a relational database:
Fact table: each entry holds a set of foreign keys
These point to dimension tables

Conceptually, a star query
1 joins the fact table to a number of dimension tables,
2 restricts the number of tuples (to obtain a “dice”), and
3 aggregates/groups according to some grouping criterion.

GRPBYσ1
· · ·

dim2

dim1

fact

© Jens Teubner · Data Warehousing ·Winter 2014/15 90

Star Queries

Expressed as relational algebra, this would look like

GRPBY

σ

1
1

1
1

fact dim1

dim2

dim3

dim4

© Jens Teubner · Data Warehousing ·Winter 2014/15 91

Star Queries

Pushing down selection criteria (σ) may be more efficient:

GRPBY

1
1

1
1

σ

fact

σ

dim1

σ

dim2

σ

dim3

σ

dim4

© Jens Teubner · Data Warehousing ·Winter 2014/15 92

Star Queries

Problems:

Fact table is huge.

Joins will become expensive.

Good join implementations: cost(R 1 S) ∝ |R|+ |S|.

However,
we’d have plenty of time to pre-compute (partial) results.

Idea:
buildmaterialized views over (partial) results.

© Jens Teubner · Data Warehousing ·Winter 2014/15 93

Materialized Views

“Regular” view:

CREATE VIEW sales_loc (date_key, city, state, qty) AS
SELECT f.date_key, loc.city, loc.state, f.qty

FROM sales_fact AS f, location_dim AS loc
WHERE f.loc_key = loc.loc_key

→ “Register” a query under some name (here: sales_loc)
→ View will be accessible for querying like a real table
→ View result will be computed on the fly

(One execution technique can be to expand a referenced view to its
definition and execute the resulting, larger query.)

→ Mostly a convenience feature, plus some advantages for access
control, maybe also query cost estimation

© Jens Teubner · Data Warehousing ·Winter 2014/15 94

Materialized Views

Many systems offer a mechanism to persist the view result instead.
→ Update on modifications, access, or manually.
Suchmaterialized views are pre-computed queries.

E.g., IBM DB2:

CREATE TABLE table-name (attlist) AS (
select-from-where block

)
DATA INITIALLY DEFERRED REFRESH data refresh options

+ Pre-computed information may speed up querying.
– Materialization requires space
– Increases update cost (less a problem for data warehouses)

© Jens Teubner · Data Warehousing ·Winter 2014/15 95

Which Views Should We Create?

Whichmaterialized views should we create?
→ Views may be as large as fact table, so space is an issue.

Insight:
Views may be helpful for query evaluation even when they
contain a superset of the required information.
→ Can refine filter criteria when querying the view
→ Can aggregate fine grain→ coarse grain

© Jens Teubner · Data Warehousing ·Winter 2014/15 96

Materialized Views: Cost↔ Benefit (Example)

Example:
Fact table with three dimensions: part, supplier, customer

grouping attributes # rows

part, supplier, customer 6M
part, customer 6M
part, supplier 0.8M
supplier, customer 6M
part 0.2M
supplier 0.01M
customer 0.1M
– (none) 1

≈19M rows storage
needed
Could save 12M rows
by not storing
⟨part, customer⟩ and
⟨supplier, customer⟩;
no harm to query
performance.

© Jens Teubner · Data Warehousing ·Winter 2014/15 97

Derivability

Can amaterialized view V be used to answer a query Q?

Assumption:
V and Q are both star queries

Sufficient conditions:
Selection predicates in Q subsumed by those in V.
GROUP BY attributes in Q subsumed by those in V.
Aggregation functions in Q compatible with those of V.
All tables referenced in Vmust also be referenced in Q.

© Jens Teubner · Data Warehousing ·Winter 2014/15 98

Derivability: Predicates

Problem:
Predicate subsumption not decidable for arbitrary predicates.

Thus:
Restrict to only simple predicates:

attribute op constant .

Convert predicates to disjunctive normal form.

Example:
query predicate pQ : year = 2008 ∧ quarter = 4
view predicate pV : year = 2008

→ pV subsumes pQ; can use V to answer Q ✓

© Jens Teubner · Data Warehousing ·Winter 2014/15 99

Derivability: GROUP BY Lattice

part, supplier, customer

part, supplier part, customer supplier, customer

part supplier customer

–

Arrow V V′: V′ can be derived from V.

Example: Create only Vpart, supplier and Vsupplier, customer
→ Can still group by {part}, {supplier}, {customer}, and {}.

© Jens Teubner · Data Warehousing ·Winter 2014/15 100

Derivability: GROUP BY Lattice—Notes

For independent dimension attributes, the lattice becomes a
hypercube
→ n independent dimensions; 2n views.

Known hierarchies simplify the lattice

day

week
month

year

–

→ Can group by week, given a grouping by day
→ Can group by month, given a grouping by day;

can group by year, given a grouping by month

© Jens Teubner · Data Warehousing ·Winter 2014/15 101

Derivability: Aggregate Functions

Aggregate functions have different behaviors:

“additive”: f(X1 ∪ X2) = f(f(X1), f(X2)) and f−1 exists.
→ e.g., sum(a1,a2,a3) = sum(sum(a1,a2), sum(a3)) and

sum(a3) = sum(a1,a2,a3)− sum(a1,a2)

“semi-additive”: same, but f−1 does not exist.
→ e.g., min(a1,a2,a3) = min(min(a1,a2),min(a3))

“additive computable:” f(X) = f′(f1(X),F2(X), . . . ,Fk(X))where fi
are (semi-)additive functions.
→ e.g., avg(X) = sum(X)/count(X)

“others:” e.g., median computation

© Jens Teubner · Data Warehousing ·Winter 2014/15 102

Derivability: Aggregate Functions

Behavior of aggregate functions determines
whether a query Q can be answered based on a view V
whether updates in the base table can be propagated to V
→ viewmaintenance

In practice:

Strict (syntactic) rules on
queries that can be defined
as materialized views.
e.g., IBM DB2 (excerpt)→

v NOT SECURED functions if the functions reference a materialized query
table which then references a table that has row or column access control
activated.

v Functions that depend on physical characteristics (for example,
DBPARTITIONNUM, HASHEDVALUE, RID_BIT, RID)

v A ROW CHANGE expression or reference to a ROW CHANGE
TIMESTAMP column of the row

v Table or view references to system objects (Explain tables also should not
be specified)

v Expressions that are a structured type, LOB type (or a distinct type
based on a LOB type), or XML type

v References to a protected table or protected nickname

When DISTRIBUTE BY REPLICATION is specified, the following
restrictions apply:
v The GROUP BY clause is not allowed.
v The materialized query table must only reference a single table; that is, it

cannot include a join.

When REFRESH IMMEDIATE is specified:
v The query must be a subselect, with the exception that UNION ALL is

supported in the input table expression of a GROUP BY.
v The query cannot be recursive.
v The query cannot include:

– References to a nickname
– Functions that are not deterministic
– Scalar fullselects
– Predicates with fullselects
– Special registers and built-in functions that depend on the value of a

special register
– Global variables
– SELECT DISTINCT
– An error tolerant nested-table-expression

v If the FROM clause references more than one table or view, it can only
define an inner join without using the explicit INNER JOIN syntax.

v When a GROUP BY clause is specified, the following considerations
apply:
– The supported column functions are SUM, COUNT, COUNT_BIG and

GROUPING (without DISTINCT). The select list must contain a
COUNT(*) or COUNT_BIG(*) column. If the materialized query table
select list contains SUM(X), where X is a nullable argument, the
materialized query table must also have COUNT(X) in its select list.
These column functions cannot be part of any expressions.

– A HAVING clause is not allowed.
– If in a multiple partition database partition group, the distribution

key must be a subset of the GROUP BY items.
v The materialized query table must not contain duplicate rows, and the

following restrictions specific to this uniqueness requirement apply,
depending upon whether or not a GROUP BY clause is specified.
– When a GROUP BY clause is specified, the following

uniqueness-related restrictions apply:

CREATE TABLE

Statements 713

...

© Jens Teubner · Data Warehousing ·Winter 2014/15 103

Derivability: Set of Relations

All tables T referenced by Vmust also be referenced by Q (and joined
using the same join predicate).

Problem:
Joins are not lossless if they are not equi-joins along a foreign
key relationship.
; “Information Systems”, lossless/lossy decomposition

If joins are lossless, not all tables of Vmust be referenced in Q

© Jens Teubner · Data Warehousing ·Winter 2014/15 104

Which Materialized Views Should We Create?

Strategy:
1 Create view with GROUP BY at finest grain needed.
2 Repeatedly create new view that yieldsmaximum benefit.
3 Stop when storage budget is exceeded.

Input: Workload description

E.g., DB2 Design Advisor db2advis
Input: workloadwith queries and DML statements
Output: Recommendation for indexes andmaterialized views
(“materialized query tables, MQTs” in DB2 speak)

© Jens Teubner · Data Warehousing ·Winter 2014/15 105

Indices

A lighter-weight form of pre-computed data are indices.

Generally speaking, an index provides a lookupmechanism

attribute value(s) 7→ record identifier(s) ,

where a record identifier or rid encodes the physical location of a
matching tuple.

E.g., B-tree index: search key

⟨4
,7

⟩
⟨9
,2

⟩
⟨2
,6

⟩
⟨1
7,
3⟩ …

⟨1
3,
9⟩

⟨7
,4

⟩ pairs of
⟨pageno, slotno⟩

© Jens Teubner · Data Warehousing ·Winter 2014/15 106

Index Lookup Cost

Searching records by value incurs

1 Traverse index using the search key

2 Fetch tuples from data pages.

Step 1 incurs about one I/O per search.
→ Inner nodes are usually cached.
→ For small tables, even the full index might fit into the cache.

Step 2 requires about one I/O per result tuple.
→ Following rid pointers results in quasi-random I/O.

(If the result set is large, the systemmight also decide to sort the list
of qualifying rids first to improve disk access pattern.)

© Jens Teubner · Data Warehousing ·Winter 2014/15 107

Index Usage Scenarios

Two typical ways of using an index are:

1 Point or range conditions in the query
→ E.g., SELECT · · · WHERE attr = constant

2 Join processing

→ Index nested loops join:

1 Function: index_nljoin (R,S,p)
2 foreach record r ∈ R do
3 access index using r and p and append

matching tuples to result;

© Jens Teubner · Data Warehousing ·Winter 2014/15 108

Indexes and Star Queries

Strategy 1: Index on value columns of dimension tables

1. For each dimension table Di:
a. Use index to findmatching dimension table rows di,j.
b. Fetch those di,j to obtain key columns of Di.
c. Collect a list of fact table rids that reference those

dimension keys.
� How?

→ Need index on foreign key column of the fact table for this.

2. Intersect lists of fact table rids.
3. Fetch remaining fact table rows, group, and aggregate.

© Jens Teubner · Data Warehousing ·Winter 2014/15 109

Indexes and Star Queries

� How could star queries benefit from indexes?

Strategy 2: Index on primary key of dimension tables

1. Scan fact table
2. For each fact table row f:

a. Fetch corresponding dimension table row d.
b. Check “slice and dice” conditions on d;

skip to next fact table row if predicate not met.
c. Repeat 2.a for each dimension table.

3. Group and aggregate all remaining fact table rows.

© Jens Teubner · Data Warehousing ·Winter 2014/15 110

Indexes and Star Queries

� Problems and advantages of Strategy 1?

+ Fetch only relevant fact table rows (good for selective queries).

– ‘Index→ fetch→ index→ intersect→ fetch’ is cumbersome. ⋆
– List intersection is expensive.

1. Again, lists may be large, intersection small.
2. Lists are generally not sorted.

© Jens Teubner · Data Warehousing ·Winter 2014/15 111

Index-Only Queries

Problem ⋆ can be reduced with a “trick”:

Create an index that contains value and key column of the
dimension table.
→ No fetch needed to obtain dimension key.

Such indexes allow for index-only querying.
→ Acess only index, but not data pages of a table.

E.g.,

CREATE INDEX QuarterIndex
ON DateDimension (Quarter, DateKey)

→ Will only use Quarter as a search criterion (but not DateKey).

© Jens Teubner · Data Warehousing ·Winter 2014/15 112

Index-Only Queries

I IBM DB2:

Include columns in index, yet do notmake them a search key.

CREATE INDEX IndexName
ON TableName (col1, col2, . . . , coln)

INCLUDE (cola, colb, . . .)

(In UNIQUE indexes, it makes a difference whether a column is part of the
search key or not. This is the only situation where the INCLUDE clause is
allowed in DB2.)

© Jens Teubner · Data Warehousing ·Winter 2014/15 113

Indexes and Star Queries

� Problems and advantages of Strategy 2?

+ For small dimension tables, all indexes might fit into memory.
→ On the other hand, indexes might not be worth it; can

simply build a hash table on the fly.

– Fact table is large→many index accesses.

– Individually, each dimension predicatemay have low selectivity.

E.g., four dimensions, each restricted with 10% selectivity:
→ Overall selectivity as low as 0.01%.
→ But as many as 10%/1%/… of fact table tuples pass

individual dimension filters (and fact table is huge).
Together, dimension predicates may still be highly selective.

• Cost is independent of predicate selecitivites.

© Jens Teubner · Data Warehousing ·Winter 2014/15 114

Hub Star Join

� What do you think about this query plan?

; Join dimension tables first, then fact table as last relation.

GRPBY

1
1

1
1

σ

dim1

σ

dim2

σ

dim3

σ

dim4

σ

fact

© Jens Teubner · Data Warehousing ·Winter 2014/15 115

Hub Star Join

Joins between dimension tables are effectively Cartesian products.

GRPBY

1
×

×

×

σ

dim1

σ

dim2

σ

dim3

σ

dim4

σ

fact

→ Clearly won’t work if (filtered) dimension tables are large.

© Jens Teubner · Data Warehousing ·Winter 2014/15 116

Hub Star Join

Idea:

GRPBY

INLJ

×

×

σ

product

σ

store

σ

date

sales

Prod Key
42
75

Prod Key Store Key
42 101
75 101
42 103
75 103

Prod Key Store Key Date Key
42 101 70
75 101 70
42 103 70
75 103 70
75 103 129...

...
...

Cartesian product approximates the set of foreign key values
relevant in the fact table.
Join Cartesian product with fact table using index nested loops
join (multi-column index on foreign keys).

© Jens Teubner · Data Warehousing ·Winter 2014/15 117

Hub Star Join

Advantages:
+ Fetch only relevant fact table rows.

+ No intersection needed.

+ No sorting or duplicate removal needed.

Down Sides:
– Cartesian product overestimates foreign key combinations in
the fact table.
→ Many key combinations won’t exist in the fact table.
→ Many unnecessary index probes.

Overall:
Hub Join works well if Cartesian product is small.

© Jens Teubner · Data Warehousing ·Winter 2014/15 118

Zigzag Join

© Jens Teubner · Data Warehousing ·Winter 2014/15 119

Hash Join

Hash join is one of the classical join algorithms.

To compute R 1 S,
1 Build PhaseBuild a hash table on the “outer” join relation S.
2

Join Phase
Scan the “inner” relation R and
probe into the hash table for each tuple r ∈ R.

1 Function: hash_join (R,S)
// Build Phase

2 foreach tuple s ∈ S do
3 insert s into hash table H ;

// Join Phase
4 foreach tuple r ∈ R do
5 probe H and append matching tuples to result ;

© Jens Teubner · Data Warehousing ·Winter 2014/15 120

Hash Join

R
sc
an h

b1
b2

...

bk

hash table

...

1⃝ build

S

sc
anh...

2⃝ probe

✓ O
(
N
)
(approx.)

✓ Easy to parallelize

© Jens Teubner · Data Warehousing ·Winter 2014/15 121

Implementing Star Join Using Hash Joins

GRPBY

HSJOIN

σ

Books

HSJOIN

σ

Time

HSJOIN

σ

Cities

Sales

(Hopefully) dimension subsets are small enough
→ Hash table(s) fit into memory.

Here, hash joins effectively act like a filter.

© Jens Teubner · Data Warehousing ·Winter 2014/15 122

Implementing Star Join Using Hash Joins

Problems:
Which of the filter predicates is most restrictive?—Tough
optimizer task!
A lot of processing time is invested in tuples that are eventually
discarded.

This strategy will have real trouble as soon as not all hash
tables fit into memory.

© Jens Teubner · Data Warehousing ·Winter 2014/15 123

Hash-Based Filters

GRPBY

HSJOIN

σ

Books

HSJOIN

σ

Time

HSJOIN

σ

Cities

FILTER

Sales

0

1

0

1 1284 Salads Cooking

1930 Tropical Food Cooking 474 Italian Cooking Cooking

→ Use compact bit vector to pre-filter data.
© Jens Teubner · Data Warehousing ·Winter 2014/15 124

Hash-Based Filters

Size of bit vector is independent of dimension tuple size.
→ And bit vector ismuch smaller than dimension tuples.

Filtering may lead to false positives, however.
→ Must still do hash join in the end.

Key benefit: Discard tuples early.

Nice side effect:
In practice, will do pre-filtering according to all dimensions
involved.
→ Can re-arrange filters according to actual(!) selectivity.

© Jens Teubner · Data Warehousing ·Winter 2014/15 125

Bloom Filters

Bloom filters can improve filter efficiency.

Idea:
Create (empty) bit field B withm bits.
Choose k independent hash functions.
For every dim. tuple, set k bits in B, according to hashed key
values.

⟨1284, Salads, Cooking⟩

1 1 1

⟨1930, Tropical Food, Cooking⟩

1 11

⟨1735, Gone With the Wind, Fiction⟩
? ? ?

To probe a fact tuple, check k bit positions
→ Discard tuple if any of these bits is 0.

© Jens Teubner · Data Warehousing ·Winter 2014/15 126

Bloom Filters

Parameters:
Number of bits in B: m
→ Typically measured in “bits per stored entry”

Number of hash functions: k
→ Optimal: about 0.7 times number of bits per entry.
→ Too many hash functions may lead to high CPU load!

Example:
10 bits per stored entry lead to a filter accuracy of about 1%.

© Jens Teubner · Data Warehousing ·Winter 2014/15 127

Example: MS SQL Server

Microsoft SQL Server uses hash-based pre-filtering since version
2008.

© Jens Teubner · Data Warehousing ·Winter 2014/15 128

Join Indices

A variant of pre-computed data (similar to materialized views) are
join indices.

Example: Cities 1 Sales
Type 1: join key → ⟨{ridCities} , {ridSales}⟩

RID lists

(Record ids from Cities and Sales that contain given join key value.)

Type 2: ridCities → {ridSales}
(Record ids from Sales that match given record in Cities.)

Type 3: dim value → {ridSales}
(Record ids from Sales that join with Cities tuples that have given
dimension value.)

(Conventional B+-trees are often value → {rid}mappings; cf.
slide 106.)

© Jens Teubner · Data Warehousing ·Winter 2014/15 129

Example: Cities 1 Sales Join Index

Cities
rid CtyID City State
c1 6371 Arlington VA
c2 6590 Boston MA
c3 7882 Miami FL
c4 7372 Springfield MA
...

...
...

...

Sales
rid BkID CtyID DayID Sold
s1 372 6371 95638 17
s2 372 6590 95638 39
s3 1930 6371 95638 21
s4 2204 6371 95638 29
s5 2204 6590 95638 13
s6 1930 7372 95638 9
s7 372 7882 65748 53
...

...
...

...
...

© Jens Teubner · Data Warehousing ·Winter 2014/15 130

Star Join with Join Indices

GRPBY

FETCH

∩

IXSCAN

Cities/Sales

IXSCAN

Time/Sales

IXSCAN

Books/Sales

Sales

rid list
intersection

1 For each of the dimensions, find matching Sales rids.
2 Intersect rid lists to determine relevant Sales.

© Jens Teubner · Data Warehousing ·Winter 2014/15 131

Star Join with Join Indices

The strategy makes rid list intersection a critical operation.

→ Rid lists may or may not be sorted.
→ Efficient implementation is (still) active research topic.

Down side:
Rid list sorted only for (per-dimension) point lookups.

Challenge:
Efficient rid list implementation.

© Jens Teubner · Data Warehousing ·Winter 2014/15 132

Bitmap Indices

Idea: Create bit vector for each possible column value.

Example: Relation that holds information about students:

Students
StudNo Name Program
1234 John Smith Bachelor
2345 Marc Johnson Master
3456 Rob Mercer Bachelor
4567 Dave Miller PhD
5678 Chuck Myers Master

Program Index
BSc MSc PhD Dipl
1 0 0 0
0 1 0 0
1 0 0 0
0 0 1 0
0 1 0 0

bit vector

© Jens Teubner · Data Warehousing ·Winter 2014/15 133

Query Processing with Bitmap Indexes

Benefit of bitmap indexes:
Boolean query operations (and, or, etc.) can be performed
directly on bit vectors.

SELECT · · ·
FROM Cities

WHERE State= ‘MA’
AND (City= ‘Boston’ OR City= ‘Springfield’)

↓

BMA ∧
(
BBoston ∨ BSpringfield

)
Bit operations are well-supported by modern computing
hardware (↗SIMD).

© Jens Teubner · Data Warehousing ·Winter 2014/15 134

Equality vs. Range Encoding

Alternative encoding for ordered domains:

Students
StudNo Name Semester
1234 John Smith 3
2345 Marc Johnson 2
3456 Rob Mercer 4
4567 Dave Miller 1

Semester Index
1 2 3 4 5
1 1 1 0 0
1 1 0 0 0
1 1 1 1 0
1 0 0 0 0

(set Bci [k] = 1 for all ci smaller or equal than the attribute value a[k]).

�Whywould this be useful?
Range predicates can be evaluated more efficiently:

ci > a[k] ≥ cj ↔ (¬Bci [k]) ∧ Bcj [k] .

(but equality predicates become more expensive).

© Jens Teubner · Data Warehousing ·Winter 2014/15 135

Data Warehousing Example
Example: Bitmap-Index

0

0

1

0

0

1

BDell

0

0

0

0

1

0

BLen

0

1

0

1

0

0

BSam

1

0

0

0

0

0

BSony

0

0

0

0

1

1

BCom

0

0

1

1

0

0

BHand

1

1

0

0

0

0

BMob

6

5

4

3

2
1
D4.id

MobileSonyXPERIA X15

MobileSamsungi900 OMNIA4

HandheldDellAxim X53

Samsung

Lenovo
Dell
D4.brand

HandheldSGH-i6002

ComputersLenovo T611
ComputersLatitude E64000
D4.groupD4.productRID

Bitm
ap Index: D

4.brand

Bitm
ap Index: D

4.group
Index: D4.brand -> {RID}

Index: D4.group -> {RID}

© Jens Teubner · Data Warehousing ·Winter 2014/15 136

Query Processing: Example

Sales in group ‘Computers’ for brands ‘Dell’, ‘Lenovo’?

SELECT SUM (F.price)
FROM D4

WHERE group = 'Computer'
AND (brand = 'Dell'

OR brand = 'Lenovo')

Example: Bitmap-Index

0

0

1

0

0

1

BDell

0

0

0

0

1

0

BLen

0

1

0

1

0

0

BSam

1

0

0

0

0

0

BSony

0

0

0

0

1

1

BCom

0

0

1

1

0

0

BHand

1

1

0

0

0

0

BMob

B
itm

ap Index: D
4.brand

B
itm

ap Index: D
4.group

SELECT SUM(F.price)
FROM F, D4 WHERE F.D4 = D4.id
AND D4.group = 'Computer'
AND (D4.brand = 'Dell'
OR D4.brand = 'Lenovo')

• In order to find all relevant RIDs of
dimension D4 for that query:
– Calculate B = BCom � (BDell � BLen)
– B indicates RIDs that need to be read

• Query: Sales in group ‘Computers’
for brands ‘Dell’, ‘Lenovo’)

B = [110000] � ([100100] �
[010000]) = [110000]

=> RIDs 0,1 of D4 need to be read

0

0

1

0

0

1

BDell

0

0

0

0

1

0

BLen

0

0

0

0

1

1

BCom
→ Calculate bit-wise operation

BCom ∧ (BDell ∨ BLen)

to find matching records.

Example: Bitmap-Index

0

0

1

0

0

1

BDell

0

0

0

0

1

0

BLen

0

1

0

1

0

0

BSam

1

0

0

0

0

0

BSony

0

0

0

0

1

1

BCom

0

0

1

1

0

0

BHand

1

1

0

0

0

0

BMob

B
itm

ap Index: D
4.brand

B
itm

ap Index: D
4.group

SELECT SUM(F.price)
FROM F, D4 WHERE F.D4 = D4.id
AND D4.group = 'Computer'
AND (D4.brand = 'Dell'
OR D4.brand = 'Lenovo')

• In order to find all relevant RIDs of
dimension D4 for that query:
– Calculate B = BCom � (BDell � BLen)
– B indicates RIDs that need to be read

• Query: Sales in group ‘Computers’
for brands ‘Dell’, ‘Lenovo’)

B = [110000] � ([100100] �
[010000]) = [110000]

=> RIDs 0,1 of D4 need to be read

0

0

1

0

0

1

BDell

0

0

0

0

1

0

BLen

0

0

0

0

1

1

BCom

© Jens Teubner · Data Warehousing ·Winter 2014/15 137

Bitmap Indices for Star Joins

Bitmap indices are useful to implement join indices.

Here: Type 2 index for Cities 1 Sales

Cities
rid CtyID City State
c1 6371 Arlington VA
c2 6590 Boston MA
c3 7882 Miami FL
c4 7372 Springfield MA
...

...
...

...

Sales Idx
rid BkID CtyID DayID Sold c1 c2 · · ·
s1 372 6371 95638 17 1 0 · · ·
s2 372 6590 95638 39 0 1 · · ·
s3 1930 6371 95638 21 1 0 · · ·
s4 2204 6371 95638 29 1 0 · · ·
s5 2204 6590 95638 13 0 1 · · ·
s6 1930 7372 95638 9 0 0 · · ·
s7 372 7882 65748 53 0 0 · · ·
...

...
...

...
...

...
...

. . .

→ One bit vector per RID in Cities.
→ Length of bit vector≡ length of fact table (Sales).

© Jens Teubner · Data Warehousing ·Winter 2014/15 138

Bitmap Indices for Star Joins

Similarly: Type 3 index State → {Sales.rid}

Cities
rid CtyID City State
c1 6371 Arlington VA
c2 6590 Boston MA
c3 7882 Miami FL
c4 7372 Springfield MA
...

...
...

...

Sales Idx
rid BkID CtyID DayID Sold VA MA FL · · ·
s1 372 6371 95638 17 1 0 0 · · ·
s2 372 6590 95638 39 0 1 0 · · ·
s3 1930 6371 95638 21 1 0 0 · · ·
s4 2204 6371 95638 29 1 0 0 · · ·
s5 2204 6590 95638 13 0 1 0 · · ·
s6 1930 7372 95638 9 0 1 0 · · ·
s7 372 7882 65748 53 0 0 1 · · ·
...

...
...

...
...

...
...

. . .

→ One bit vector per City value in Cities.
→ Length of bit vector≡ length of fact table (Sales).

© Jens Teubner · Data Warehousing ·Winter 2014/15 139

Space Consumption

For a column with n distinct values, n bit vectors are required to
build a bitmap index.

For a table wit N rows, this leads to a space consumption of

N · n bits

for the full bitmap index.

This suggests the use of bitmap indexes for low-cardinality
attributes.
→ e.g., product categories, sales regions, etc.

For comparison: A 4-byte integer column needs N · 32 bits.
→ For n ≲ 32, a bitmap index is more compact.

© Jens Teubner · Data Warehousing ·Winter 2014/15 140

Reducing Space Consumption

For larger n, space consumption can be reduced by
1 alternative bit vector representations or
2 compression.

Both may be a space/performance trade-off.

Decomposed Bitmap Indexes:
Express all attribute values v as a linear combination

v = v0+ c1︸︷︷︸ v1+c1c2︸︷︷︸ v2+ · · ·+c1 · · · ck︸ ︷︷ ︸ vk (c1, . . . , ck constants).

Create a separate bitmap index for each variable vi.

© Jens Teubner · Data Warehousing ·Winter 2014/15 141

Decomposed Bitmap Indexes

Example: Index column with domain [0, . . . ,999].
Regular bitmap index would require 1000 bit vectors.
Decomposition (c1 = c2 = 10):

v = 1v1 + 10v2 + 100v3 .

Need to create 3 bitmap indexes now, each for 10 different
values
→ 30 bit vectors now instead of 1000.

However, need to read 3 bit vectors now (and and them) to
answer point query.

© Jens Teubner · Data Warehousing ·Winter 2014/15 142

Decomposed Bitmap IndexesExample: Decomposed Bitmap-Index

0

0
0
0
0
Bv1,0

0

0
0
0
0
Bv1,1

0

0
0
0
0
Bv1,2

0

0
0
0
0
Bv1,3

0

0
0
0
0
Bv1,4

0

0
0
0
0
Bv1,5

1

0
1
0
0
Bv1,6

0

0
0
0
0
Bv1,7

0

1
0
0
1
Bv1,8

0

0
0
1
0
Bv1,9

0

0
0
0
0
Bv2,0

0

0
0
0
0
Bv2,1

0

0
0
0
0
Bv2,2

0

0
0
0
0
Bv2,3

0

0
0
0
0
Bv2,4

0

0
0
0
0
Bv2,5

0

0
0
0
0
Bv2,6

1

1
1
0
0
Bv2,7

0

0
0
0
0
Bv2,8

0

0
0
1
1
Bv2,9

0

0
0
0
0
Bv3,0

0

0
0
0
0
Bv3,1

0

0
0
0
0
Bv3,2

0

0
0
0
0
Bv3,3

0

0
0
0
0
Bv3,4

0

1
1
0
0
Bv3,5

0

0
0
0
0
Bv3,6

0

0
0
0
0
Bv3,7

0

0
0
0
0
Bv3,8

1

0
0
1
1
Bv3,9

a=576=5*100+
7*10+6*1

• Query:

• RIDs:
Bv3,5 �
Bv2,7 �
Bv1,6 =
[0010…0]

=> RID 3, ...

1

0
1
0
0
Bv1,6

1

1
1
0
0
Bv2,7

0

1
1
0
0
Bv3,5

1000

3

2

1

0

RID

976

578

576

999

998

a

© Jens Teubner · Data Warehousing ·Winter 2014/15 143

Space/Performance Trade-Offs

Setting ci parameters allows to trade space and performance:

(c) c = 1000 (c) c = 1000

Figure 9: Comparison of Space-Time Tradeoff of Range- and Equality-Encoded Bitmap Indexes.

with Ij-r and I,+,, respectively. LG, and RG, are defined as
follows:

RG, = TiVLe(lj) - ?‘i?TK(lj+l) x F and

SpUCe(lj+l) - Space(l,)

LGj = Ti77E(lj-1) - Time(lj) x F
SpUCe(lj) - Space(l,-1)

where F = Space(l,,)/Time(lr) is a normalizing factor. The
index Ik E {I3 E S : LG, > 1, RGj < 1) with the maximum
ratio LGk/RGk is the knee index.

Figure 10: Space-Time Tradeoff of Bitmap Indexes, C =
1000.

/

\2

*
=~--~~---~~-~-~------~-..--...----_.._.__..............~~ ~~-_____-___----_-

Figure II: Space-Time Tradeoff of Space-Optimal Bitmap
Indexes, C = 1000.

We now motivate our approximate characterization, which is
based on the results of Theorem 6.1, Figure 10 compares the space-

time tradeoff graphs for three classes of indexes: the class of space-
optimal indexes, the class of time-optimal indexes, and the en-
tire class of indexes, for C = 1000; similar results are obtained
for other values of C. The graph for space-optimal (respectively,
time-optimal) indexes consist of at most [logz(C)l points, where
each point corresponds to an n-component space-optimal (respec-
tively, time-optimal) index, 1 5 n 5 [Zogz(C)l. Note that since
the space-optimal index is generally not unique, each point in the
space-optimal graph shown corresponds to the most time-efficient
index among all equally space-efficient indexes with the same num-
ber of components, Figure 10 shows that the tradeoff graph for
space-optimal indexes provides a good approximation to that for
all indexes. In particular, the set of points on the graph for space-
optimal indexes is a subset of the set of points on the graph for all
indexes.

Figure 11 shows the same space-optimal tradeoff graph as in
Figure 10 but with each point labelled with the number of compo-
nents of the corresponding space-optimal index. We observe that
the knee of the space-time tradeoff graph for the space-optimal in-
dex corresponds to a 2-component index, something that was con-
sistent throughout our experimentation. Hence, we characterize the
knee index as the most time-efficient 2-component space-optimal
index, which is obtained from the following result.

Theorem 7.1 The base of the most time-efficient 2-component space-
optimal index is given by < bz - 6, bl + 6 >, where bl = [q,

bz = I$], and 6 = max{O,
L

b2mb1+J(~+b1)2-4C 1).

We have compared the knee index based on our approximate char-
acterization with that based on the definition for various values of
attribute cardinality; the results show that both knee indexes match
exactly for all the cases that we compared.

8 Time-Optimal Bitmap Index Under Space Constraint

In this section, we consider the following practical optimization
problem (point (B) in Figure 2): Given a constraint on the available
disk space to store an index, say at most M bitmaps (or equiva-
lently, at most MN bits, where N is the number of records), deter-
mine the most time-efficient index. We first present an algorithm
that finds the optimal solution, and then present a more efficient
heuristic approach, which is near-optimal. Both algorithms are
shown in Figure 12. In the,following, let I, denote an n-component
index; and IApace and I:‘,’ denote the n-component space- and
time-optimal indexes, respectively.

361

source: Chee-Yong Chan and Yannis Ioannidis. Bitmap Index Design and
Evaluation. SIGMOD 1998.

© Jens Teubner · Data Warehousing ·Winter 2014/15 144

Compression

Orthogonal to bitmap decomposition: Use compression.
E.g., straightforward equality encoding for a column with
cardinality n: 1/n of all entries will be 0.

� Which compression algorithmwould you choose?

run-length encoding
→ simple, yet effective, e.g., for many successive 0s.

general-purpose compression algorithms (e.g., zip, bzip2)
→ higher compression rates, typically at the expense of higher

(de)compression cost

© Jens Teubner · Data Warehousing ·Winter 2014/15 145

Compression

Problem: Complexity of (de)compression↔ simplicity of bit
operations.

Extraction and manipulation of individual bits during
(de)compression can be expensive.
Likely, this would off-set any efficiency gained from logical
operations on large CPUwords.

Thus:
Use (rather simple) run-length encoding,
but respect systemword size in compression scheme.

↗Wu, Otoo, and Shoshani. Optimizing Bitmap Indices with Efficient
Compression. TODS, vol. 31(1). March 2006.

© Jens Teubner · Data Warehousing ·Winter 2014/15 146

Word-Aligned Hybrid (WAH) Compression

Compress into a sequence of 32-bit words:

Bit tells whether this is a fill word or a literal word.

Fill word (= 1):
Bit tells whether to fill with 1s or 0s.
Remaining 30 bits indicate the number of fill bits.
→ This is the number of 31-bit blockswith only 1s or 0s.
→ e.g., = 3: represents 93 1s/0s.

Literal word (= 0):
Copy 31 bits directly into the result.

© Jens Teubner · Data Warehousing ·Winter 2014/15 147

WAH: Effectiveness of Compression

WAH is good to counter the space explosion for high-cardinality
attributes.

At most 2 words per ‘1’ bit in the data set; At most≈ 2 · N words for table with N rows, even for large n
(assuming a bitmap that uses equality encoding).

Optimizing Bitmap Indices with Efficient Compression • 17

Fig. 7. The expected size of bitmap indices on random data and Markov data with various clus-
tering factors.

of bitmaps have three regular words plus the active word.6 There are a few
bitmaps using two or three words rather than four.7 For a large range of high-
cardinality attributes, say c < N/10, the maximum size of WAH compressed
bitmap indices is about 2N words.

For attributes with a clustering factor f greater than one, the stable plateau
is reduced by a factor close to 1/ f . Another factor that reduces the total size of
the compressed bitmap index is that the cardinality of an attribute is usually
much smaller than N . For attributes with Zipf distribution, the stable plateau
is the same as the uniform random attribute. However, because the actual
cardinality is much less than N , it is very likely that the size of the compressed
bitmap index would be about 2N words. For example, for an attribute with Zipf
distribution with z = 1 and i < 109, among 100 million values, we see about
27 million distinct values, and the index size is about 2.3N words. Clearly,
for Zipf distributions with larger z, we expect to see fewer distinct values and
the index size would be smaller. For example, for z = 2, we see about 14,000
distinct values for nearly any limit on i that is larger than 14,000. In these
cases, the index size is about 2N words. The following proposition summarizes
these observations.

PROPOSITION 4. Let N be the number of rows in a table, and let c be the
cardinality of the attribute to be indexed. Then the total size s of all compressed
bitmaps in an index is such that

(1) it never takes more than 4N words,
(2) if c < N/10, the maximum size of the compressed bitmap index of the at-

tribute is about 2N words,

6Since all active words have the same number of bits, one word is sufficient to store this number.
7The three regular words in the majority of the bitmaps represents a 0-fill, a literal group, and a
0-fill. There are w bitmaps without the first 0-fill and w bitmaps without the last 0-fill. The 2w
bitmaps use three words each. There are also (N%(w − 1)) bitmaps whose 1 bits are in their active
words. In these bitmaps, only one regular word representing a 0-fill is used.

ACM Transactions on Database Systems, Vol. 31, No. 1, March 2006.

S
ou
rc
e:
W
u
et
al
.T
O
D
S
31
(1
),
20
06
.

© Jens Teubner · Data Warehousing ·Winter 2014/15 148

WAH: Effectiveness of Compression
Optimizing Bitmap Indices with Efficient Compression • 17

Fig. 7. The expected size of bitmap indices on random data and Markov data with various clus-
tering factors.

of bitmaps have three regular words plus the active word.6 There are a few
bitmaps using two or three words rather than four.7 For a large range of high-
cardinality attributes, say c < N/10, the maximum size of WAH compressed
bitmap indices is about 2N words.

For attributes with a clustering factor f greater than one, the stable plateau
is reduced by a factor close to 1/ f . Another factor that reduces the total size of
the compressed bitmap index is that the cardinality of an attribute is usually
much smaller than N . For attributes with Zipf distribution, the stable plateau
is the same as the uniform random attribute. However, because the actual
cardinality is much less than N , it is very likely that the size of the compressed
bitmap index would be about 2N words. For example, for an attribute with Zipf
distribution with z = 1 and i < 109, among 100 million values, we see about
27 million distinct values, and the index size is about 2.3N words. Clearly,
for Zipf distributions with larger z, we expect to see fewer distinct values and
the index size would be smaller. For example, for z = 2, we see about 14,000
distinct values for nearly any limit on i that is larger than 14,000. In these
cases, the index size is about 2N words. The following proposition summarizes
these observations.

PROPOSITION 4. Let N be the number of rows in a table, and let c be the
cardinality of the attribute to be indexed. Then the total size s of all compressed
bitmaps in an index is such that

(1) it never takes more than 4N words,
(2) if c < N/10, the maximum size of the compressed bitmap index of the at-

tribute is about 2N words,

6Since all active words have the same number of bits, one word is sufficient to store this number.
7The three regular words in the majority of the bitmaps represents a 0-fill, a literal group, and a
0-fill. There are w bitmaps without the first 0-fill and w bitmaps without the last 0-fill. The 2w
bitmaps use three words each. There are also (N%(w − 1)) bitmaps whose 1 bits are in their active
words. In these bitmaps, only one regular word representing a 0-fill is used.

ACM Transactions on Database Systems, Vol. 31, No. 1, March 2006.

If (almost) all values are distinct, additional bookkeepingmay
need some more space (; 4 · 108 bits for cardinality 108).

© Jens Teubner · Data Warehousing ·Winter 2014/15 149

Bitmap Indexes in Oracle 8

®

Index Size

Index Size

0

5

10

15

20

25

2 4 5 10 25 10
0

10
00

10
00

0

40
00

0

10
00

00

25
00

00

50
00

00

10
00

00
0

Cardinality

Si
ze

 (M
by

te
s)

Bitmap
B-tree

1 Million Rows

© Jens Teubner · Data Warehousing ·Winter 2014/15 150

Encoding↔ Sparseness/Attribute Cardinality

The most space-efficient bitmap representation depends on the
number of distinct values (i.e., the sparseness of the bitmap).

low attribute cardinality (dense bitmap)
→ can use un-compressed bitmap

WAH compression won’t help much (but also won’t hurt
much)

medium attribute cardinality
→ use (WAH-)compressed bitmap

high attribute cardinality (many distinct values; sparse bitmap)
→ Encode “bitmap” as list of bit positions

In addition, compressed bitmaps may be a good choice for data with
clustered content (this is true for many real-world data).

© Jens Teubner · Data Warehousing ·Winter 2014/15 151

	Implementing a Data Warehouse Engine

