
Information Systems

(Informationssysteme)

Jens Teubner, TU Dortmund

jens.teubner@cs.tu-dortmund.de

Summer 2019

c© Jens Teubner · Information Systems · Summer 2019 1

Part IV

Database Design

c© Jens Teubner · Information Systems · Summer 2019 40

Database Design Process

Database systems are very good at handling your data. . .

. . . once your data is in a form that can be digested by the system.

How do we get from a real-world problem to a database schema?

Problem

“mini world”

database
schema

?

1

requirements
analysis

2

conceptual
design

3

logical
design

4

schema
refinement

5

physical
design

1 requirements analysis — Meet with customers, understand their

problem.

2 conceptual design — Develop a high-level model for the data that

should be stored in the database, typically using an ER diagram.

c© Jens Teubner · Information Systems · Summer 2019 41

Database Design Process (cont.)

3 logical design — Convert the conceptual design into the data model

of the chosen DBMS. Result is a conceptual schema (↗ slide 17).

4 schema refinement — Refine obtained conceptual schema, e.g.,

using normalization (see later).

5 physical design — Develop a physical schema that meets the

application’s performance needs.

Note: In practice, you’ll have to re-iterate some or all of these steps

multiple times until you reach a satisfactory design.

c© Jens Teubner · Information Systems · Summer 2019 42

Requirements Analysis

Main Goal: Understand user’s needs.

Meet and discuss with user groups; study existing documentation

and/or applications.

Listen and watch out for real-world entities that should be reflected

in the database and how they relate and interact with each others.

Make sure you understand the user’s needs:

Note down your understanding in a way that you can discuss

with your users (informal notation; prose text).

Re-iterate with users to make sure your understanding matches

the needs of the users.

c© Jens Teubner · Information Systems · Summer 2019 43

Requirements Analysis

“As one of the largest cocktail bars in town, we are really proud

of our large collection of cocktail recipes. For each cocktail

(recipe) we would like to store its name, a short description,

instructions how to make the cocktail, and an information how

long that cocktail is already in our database. Each cocktail

consists of a number of ingredients, which have a name, a short

textual characterization of their flavor, and an information about

the amount of alcohol they contain.

It is also important to know which supplier offers which of the

ingredients (and at which price). Our supplier list contains

addresses and URLs for each supplier. Sometimes, we even know

a direct contact person that belongs to a supplier, including

his/her name, phone number, and email address.”

c© Jens Teubner · Information Systems · Summer 2019 44

Requirements Analysis

Rule of thumb:

Mark subjects in a customer’s description that describe concepts

(or “entities”) that should be stored in the database.

E.g., cocktails (or recipes) and ingredients should be stored in

the database.

Mark verbs that indicate relationships between concepts.

E.g., cocktails consist of ingredients (or: ingredients are

contained in cocktails).

In addition, watch out for attributes that further characterize a

concept/entity.

E.g., name, description, etc. characterize cocktails; name,

flavor, and alcohol percentage characterize ingredients.

c© Jens Teubner · Information Systems · Summer 2019 45

Conceptual Design: ER Model

Conceptual Database Design:

High-level description of data to be stored in database.

Typically uses a rather formalized notation.

→ Typically: Entity-Relationship Model (ER Model) and ER

Diagrams.

→ Clear notation, yet independent of the data model used by the

specific database system.

The ER Model helps to

communicate with users (and verify the model) and

translate into a conceptual schema for the used DBMS.
(We will learn rules how, e.g., an ER Diagram can mechanically be

translated into a relational database schema.)

c© Jens Teubner · Information Systems · Summer 2019 46

ER Model: Entity Sets

An entity is an object in the real world that is distinguishable from

other objects.

An entity set is a collection of similar entities.

We represent an entity set in an ER Diagram as a rectangle.

Cocktails

NameDescription

Since Instructions

An entity is described using a set of attributes.

We use ellipses to represent attributes.

c© Jens Teubner · Information Systems · Summer 2019 47

Attribute Domains

The domain of an attribute describes its possible values.

E.g.,

Name: strings of length 30

Description: strings of length 200

Since: date value greater than Jan 1, 1970

Instructions: strings of length 500

c© Jens Teubner · Information Systems · Summer 2019 48

ER Model: Relationship Sets

A relationship is an association among two (or more) entities.

A relationship set is a collection of similar relationships.

We represent relationship sets as diamonds.

Cocktails

NameDescription

Since

Instructions

Ingredients

Name Flavor

Alcohol

consists of

Quantity

Relationships can carry attributes, too.

c© Jens Teubner · Information Systems · Summer 2019 49

Entities, Relationships, and Sets Thereof

Dry Martini

Paradise

Screwdriver

Vermouth Dry

Gin

Apricot Brandy

Orange Juice

Vodka

1 dash

5 cl

3 cl

1.5 cl

1.5 cl

10 cl

4 cl

Entity

EntityRelationship

Entity Set Relationship Set Entity Set

Cocktails Consists of Ingredients

c© Jens Teubner · Information Systems · Summer 2019 50

More Relationships

Relationships can also associate two entities within the same entity set.

E.g., some ingredients can be substituted by another one (when an

ingredient has run out of stock):

Ingredients

Name Flavor

Alcohol substitutes

And there can be multiple relationship sets between the same entity sets:

Employees Departments

Works In

Manages

c© Jens Teubner · Information Systems · Summer 2019 51

n-Ary Relationships

Relationships can be n-ary:

Professors

Students Courses
takes
exam

c© Jens Teubner · Information Systems · Summer 2019 52

Attributes and Keys

Generally, an entity is uniquely identified by the values of its

attributes.

Sometimes, a subset of attributes is enough to uniquely identify an

entity.

→ e.g., Student ID; SSN; course number + semester; etc.

We call a minimal

� minimal?

set of identifying attributes a key.

We use underlining to mark the (set of) key attributes.

Students

Name Student ID

Studies Since

Street Zip Code

City

c© Jens Teubner · Information Systems · Summer 2019 53

Attributes and Keys

If there is no simple identifying (set of) attribute(s), it is often useful

to introduce an artificial key attribute (e.g., an integer number).

Cocktails

NameDescription

Cocktail ID

Since Instructions

If there are multiple candidate keys, typically one is designated to

be the primary key.
(Having a simple, designated key also eases translation to relational

algebra, which we will look at later.)

c© Jens Teubner · Information Systems · Summer 2019 54

Keys for Relationships?

� What about keys for relationships?

A relationship is uniquely identified by its participating entities.

Attributes of a relationship are only descriptive and must not be

part of any key.

Cocktails

NameCocktail ID

Since

Description

Instructions

Ingredients

Ingr ID Flavor

Name

Alcohol

consists of

Quantity

→ 〈Cocktail ID, Ingr ID〉 must be a key for the ‘Consists Of’

relationship set.

c© Jens Teubner · Information Systems · Summer 2019 55

Participation Constraints

Very often, the participation of entities in a relation set can be further

constrained:

Each cocktail consists of at least one ingredient.

A contact person for a supplier is optional. But there must be at

most one contact person per supplier.

In other words:

In the consists-of relationship set,

each cocktail participates 1..∞ times,

each ingredient participates 0..∞ times.

In the contact-person-for relationship set,

each supplier participates 0..1 times,

each contact person participates 1 time.

c© Jens Teubner · Information Systems · Summer 2019 56

Participation Constraints: (min,max) Notation

Use (min,max) notation to specify such constraints.

→ Specifiy minimum and maximum number of times that each

entity may participate in the relationship set.

Cocktails Ingredientsconsists of
(1, ∗) (0, ∗)

Suppliers
Contact
Persons

contact
person for

(0, 1) (1, 1)

Typically: Use ‘∗’ instead of ‘∞’.

c© Jens Teubner · Information Systems · Summer 2019 57

(min,max) Notation

0, 1, and ∗ are certainly seen most often in ER Diagrams.

But other values can make sense, too.

Students SeminarsParticipates
(0, 2) (5, 15)

� Describe the meaning of these constraints in natural language.

Each student may participate in at most two seminars.

There must be at least five attendees per seminar (otherwise the

seminar will probably not take place). And there can be at most

15 students in any one seminar.

c© Jens Teubner · Information Systems · Summer 2019 58

Alternative Notation

An alternative, often-seen notation is to label relationship sets as either

1 : 1, 1 : N (or N : 1), or N : M.

(min,max) notation:

Cocktails GlassesServed In
(1, 1) (0, ∗)

Alternative:

Cocktails GlassesServed In
N 1

� The semantics “one type of glass can be used for N different

cocktails” is counter-intuitive to that of the (min,max) notation!

c© Jens Teubner · Information Systems · Summer 2019 59

Advanced Concepts: Weak Entities

“Weak entities” are entities that can exist only in combination with

a “strong entity”.

Buildings

Name Building No

Rooms

Size Room No

Located In
(1, ∗) (1, 1)

Since weak entities depend on their “strong” counterpart, they do

not themselves have a unique key.

→ Use key of partner to form a complete key.

→ Here: 〈Building No,Room No〉 together identify a room.

c© Jens Teubner · Information Systems · Summer 2019 60

Advanced Concepts: Generalization/Specialization

Generalization Factor out common characteristics to build a common

“supertype.”

Specialization Derive new, specialized entity sub-types, possibly by

adding new characteristics (such as new attributes).

is-a

Ingredients

Alcoholic
Ingredients

Non-Alcoholic
Ingredients

� There is no real standard notation to express

generalization/specialization.

c© Jens Teubner · Information Systems · Summer 2019 61

ER Model ↔ UML

The Unified Modeling Language (UML) has emerged as a modeling

language for a wide range of design tasks.

In UML, class diagrams are closest to ER Diagrams.

Unlike entity sets in the ER, UML classes can contain methods.

class name

attributes
...

methods
...

Cocktail

+ name

+ inDbSince

+ description

+ instructions

+ printShoppingList()

UML is more intended for (in-memory) application design.

Entities/objects are, therefore, identified via pointers, not through

explicit key attributes.

c© Jens Teubner · Information Systems · Summer 2019 62

UML Associations

UML associations take the role of relationship sets in ER Models.

Class A Class B
cardinality

role name A

association name cardinality

role name B

Often, associations are directed:

Class A Class B
cardinality

role name A

association name cardinality

role name B

→ Can navigate from object to object only in one direction then.

c© Jens Teubner · Information Systems · Summer 2019 63

Cocktails

NameCocktail ID

Since

Description

Instructions

Ingredients

Ingr ID Flavor

Name

Alcohol Suppliers

Supp ID Address

Name

WWW

Contact
Persons

Contact ID Email

Name

Phone

Consists Of

(0, ∗)

(1, ∗)

Supplies
(1, ∗) (1, ∗)

Contact
Person For

(0, 1)

(1, 1)

Remaining question: How can we turn that into a database schema?

c© Jens Teubner · Information Systems · Summer 2019 64

From an ER Diagram to a Relational Schema

Mapping an entity set into a relation is straightforward.

→ Each attribute of the entity set becomes an attribute of the table.

Ingredients

Ingr ID Flavor

Name
Alcohol

↓

Ingredients

IngrID Name Alcohol Flavor
...

...
...

...

c© Jens Teubner · Information Systems · Summer 2019 65

Relations and Keys

Observe that we use the concept of keys also in the relational world.

A minimal set of fields that uniquely identifies a tuple (row) in a

table is called a (candidate) key.

→ In any legal instance of the relation, two distinct tuples cannot

have identical values in all the fields of a key.

→ No subset of the key is a unique identifier for a tuple.

�
The key constraint is a property of the schema. A

column that just happens to contain unique values in

the current table instance is not a key.

Again, among multiple candidate keys, we typically select one

primary key.

c© Jens Teubner · Information Systems · Summer 2019 66

Key Constraints

In database systems, keys can be declared together with the schema of

the table. E.g., in SQL:5

CREATE TABLE Ingredients (IngrID INTEGER NOT NULL,

Name CHAR(30),

Alcohol DECIMAL(3,1),

Flavor CHAR(20),

PRIMARY KEY (IngrID))

The DBMS will enforce such constraints and reject any modifications

that would violate the key constraint.

5Fields marked as NOT NULL cannot be left blank for any row; key columns must be

declared NOT NULL. DECIMAL(m,n) is a decimal number type with m digits total and n

digits after the decimal.
c© Jens Teubner · Information Systems · Summer 2019 67

Relationships in the Relational World

An n-ary relationship in the ER Model is an n-tuple of entities.

That is, the corresponding relationship set can be thought of as the set{
(e1, . . . , en) | e1 ∈ E1, . . . , en ∈ En

}
(ignoring relationship attributes for a moment).

We could use that representation to express relationships in the

relational world:

ConsistsOf

CockID CName Since Descr Instr IngrID IName Alcohol Flavor
...

...
...

...
...

...
...

...
...

Observe that we re-named the ‘Name’ fields, because column names

must be unique within one table.

c© Jens Teubner · Information Systems · Summer 2019 68

Relationships in the Relational World

Such an encoding would incur significant redundancy and storage

overhead.

E.g., every cocktail redundantly appears at least once in the

ConsistsOf relation.

Remember that the ‘Cocktail ID’ already uniquely determines all

remaining cocktail properties:

CockID → CName × Since ×Descr × Instr .

Columns CName, Since, Descr , and Instr can thus safely be omitted in

ConsistsOf .

→ When needed, the information can always be looked up in Cocktails

(with help of the CockID value).

c© Jens Teubner · Information Systems · Summer 2019 69

Relationships in the Relational World

Likewise, we can also omit all non-key columns of Ingredients:

ConsistsOf

CockID IngrID
...

...

Let us now put the relationship attributes back:

ConsistsOf

CockID IngrID Quantity
...

...
...

c© Jens Teubner · Information Systems · Summer 2019 70

Example (and SQL Refresher)

� Assuming Cocktails, Ingredients, and ConsistsOf are stored in an

SQL database, how could we re-construct the original, full

ConsistsOf relation?

SELECT c.CockID, c.Name AS CName, c.Since, c.Descr, c.Instr,

i.IngrID, i.Name AS IName, i.Alcohol, i.Flavor

FROM Cocktails AS c, Ingredients AS i, ConsistsOf AS co

WHERE c.CockID = co.CockID

AND i.IngrID = co.IngrID

c© Jens Teubner · Information Systems · Summer 2019 71

Foreign Keys

Such “lookups” occur very often in relational databases.

The concept is, in fact, a corner stone of relational databases.

Columns CockID and IngrID in ConsistsOf are called foreign keys.

They refer to Cocktails and Ingredients (respectively).

Foreign keys can be declared in SQL, too:

CREATE TABLE ConsistsOf (

CockID INTEGER NOT NULL,

IngrID INTEGER NOT NULL,

FOREIGN KEY (CockID) REFERENCES Cocktails,

FOREIGN KEY (IngrID) REFERENCES Ingredients)

→ Foreign keys refer to the primary key of the respective relation.

c© Jens Teubner · Information Systems · Summer 2019 72

Foreign Keys

Relational database systems use regular, user-accessible attribute

values to reference between tuples.

→ No “pointers” or other internal data structures.

Remember physical data independence:

Tuples can freely be moved to new locations in memory/on disk

without breaking tuple associations.

Foreign key references can always be “followed”6 in both directions.

6SQL is declarative and does not really offer navigation primitives.
c© Jens Teubner · Information Systems · Summer 2019 73

Relationships and Keys

� Which columns form a key in ConsistsOf ?

ConsistsOf

CockID IngrID Quantity
...

...
...

Does ConsistsOf have a key at all?

Remember what we said about keys for relationships?

A relationship is uniquely identified by its participating entities.

Attributes are only descriptive and must not be part of any key.

Thus, CockID and IngrID together form a key:

ConsistsOf

CockID IngrID Quantity
...

...
...

c© Jens Teubner · Information Systems · Summer 2019 74

Participation Constraints

For some relationship sets we know that an entity may appear at most

once in the set:

Suppliers
Contact
Persons

contact
person for

(0, 1) (1, 1)

The respective columns in the resulting relation thus must be keys.

Here:

SuppID is a key candidate in the ContactPersonFor relation.

ContactID is a key candidate in the ContactPersonFor relation.

c© Jens Teubner · Information Systems · Summer 2019 75

Merging Relations

Tables that have the same key can be merged into one:

Cocktails

CockID Name · · ·
...

...
. . .

ServedIn

CockID GlassID
...

...

merge

Cocktails

CockID Name · · · GlassID
...

...
...

...

c© Jens Teubner · Information Systems · Summer 2019 76

Participation Constraints

� Which of the participation constraints in

Cocktails GlassesServed In
(1, 1) (0, ∗)

does the merged relation implement?

Marking CockID in ServedIn as a key ensured the maximum 1

constraint.

By marking GlassID NULL or NOT NULL in the merged relation, we

can specify whether there must be a GlassID for every cocktail

(min = 1) or whether the GlassID is optional (min = 0).

c© Jens Teubner · Information Systems · Summer 2019 77

Merging Relations

For 1 : 1 relationships, there are various options to merge relations:

Suppliers
Contact
Persons

contact
person for

(0, 1) (1, 1)

1 No relations could be merged.

2 ContactPersons could be merged with ContactPersonFor .

3 Suppliers could be merged with ContactPersonFor .

4 All three relations could be merged into one.

c© Jens Teubner · Information Systems · Summer 2019 78

Merging Relations

Suppose we chose option 3 :

Suppliers

SuppID Name Address WWW ContactID
...

...
...

...
...

(where ContactID is a foreign key on the ContactPersons relation).

What if there is no contact person for a given supplier?

In such a case, we’d want to leave the ContactID empty.

This can be done by setting ContactID to null.

c© Jens Teubner · Information Systems · Summer 2019 79

Null Values

Null values play an important role in relational databases.

They are used to model a variety of real-world scenarios:

A value exists (in the real world), but is not known.

→ A supplier might have a WWW URL, but we don’t know it.

No value exists.

→ A supplier might not have a WWW URL.

The attribute is not applicable for this tuple.

→ In a Persons relation, the Semester field only applies to

students.

. . .

Null is a special value, distinct from any other value in the column’s

domain.

→ Null is not the numeric value 0 and not the empty string.

c© Jens Teubner · Information Systems · Summer 2019 80

Behavior of Null Values

In operations and predicates, think of null as “unknown”:

and true unknown false

true true unknown false

unknown unknown unknown false

false false false false

or true unknown false

true true true true

unknown true unknown unknown

false true unknown false

Arithmetic operations with null evaluate to null (null + 42 _ null).

Comparisons with null evaluate to null (Semester < null _ null).

� Exercise to try at home in SQL: Given the “Presidents” database

used in the lecture, find all presidents that are still alive (i.e., their

DEATH_AGE is set to NULL).
c© Jens Teubner · Information Systems · Summer 2019 81

Null Values in SQL

In SQL, null values are expressed using the keyword NULL:

INSERT INTO Suppliers VALUES

(4711, ’Shop Rite’, ’31 Main St’, NULL, NULL)

Null values can be allowed or disallowed for particular columns.

→ See SQL example on slide 67.

→ Key columns must not contain null values.

c© Jens Teubner · Information Systems · Summer 2019 82

Null Values and Participation Constraints

The allowance of null values is another knob to restrict participation

constraints in the relational world.

E.g., ContactPersonFor :

Suppliers
Contact
Persons

contact
person for

� (1, 1)

Column ContactID in relation Suppliers:

NULL (null values allowed) ⇒ � ≡ (0, 1)

NOT NULL (null values disallowed) ⇒ � ≡ (1, 1)

By marking ContactID in Suppliers as a key, we can further constrain

the maximum participation of ContactPersons in the relationship set.

c© Jens Teubner · Information Systems · Summer 2019 83

Translation ER Diagram → Relational Schema

To translate an ER Diagram into a relational schema:

1 Map all entity sets to a relation.

2 Identify a primary key in each resulting relation.

3 Map all relationship sets to a relation.

4 Identify foreign key constraints in all those relations.

5 Refine the resulting schema by merging relations with same key.

Often, there is some degree of freedom in that step.

(Dis)allow null values to reflect participation constraints

Generally, not all participation constraints can losslessly be modeled with

only (foreign) key constraints and constraints on null values.

c© Jens Teubner · Information Systems · Summer 2019 84

	Database Design
	Database Design Process
	Requirements Analysis
	Conceptual Design: ER Model
	Entity Sets
	Relationship Sets
	Attributes and Keys
	Participation Constraints
	Weak Entities, Generalization/Specialization
	ER Model vs. UML

	From an ER Diagram to a Relational Schema
	Relations and Keys
	Relationships in the Relational World
	Foreign Keys
	Participation Constraints
	Merging Relations
	Null Values

