# Architecture and Implementation of Database Systems (Summer 2018)

Jens Teubner, DBIS Group jens.teubner@cs.tu-dortmund.de

Summer 2018

## Part VI

## Query Optimization

## Finding the "Best" Query Plan



- We already saw that there may be more than one way to answer a given query.
  - Which one of the join operators should we pick? With which parameters (block size, buffer allocation, ...)?
- The task of finding the best execution plan is, in fact, the **holy grail** of any database implementation.

#### Plan Generation Process



- Parser: syntactical/semantical analysis
- Rewriting: optimizations independent of the current database state (table sizes, availability of indexes, etc.)
- Optimizer: optimizations that rely on a cost model and information about the current database state
- The resulting **plan** is then evaluated by the system's **execution engine**.

## Impact on Performance

Finding the right plan can dramatically impact performance.

```
SELECT L.L_PARTKEY, L.L_QUANTITY, L.L_EXTENDEDPRICE
FROM LINEITEM L, ORDERS O, CUSTOMER C
WHERE L.L_ORDERKEY = O.O_ORDERKEY
AND O.O_CUSTKEY = C.C_CUSTKEY
AND C.C_NAME = 'IBM Corp.'
```

In terms of execution times, these differences can easily mean "seconds versus days."

#### The SQL Parser

- Besides some analyses regarding the syntactical and semantical correctness of the input query, the parser creates an **internal** representation of the input query.
- This representation still resembles the original query:

■ Each SELECT-FROM-WHERE clause is translated into a **query block**.

SELECT proj-list

FROM 
$$R_1$$
,  $R_2$ , ...,  $R_n$ 

WHERE predicate-list

GROUP BY groupby-list

HAVING having-list

 $T_{proj-list}$ 
 $\sigma_{having-list}$ 
 $\sigma_{prodicate-list}$ 
 $\sigma_{predicate-list}$ 
 $\sigma_{predicate-list}$ 

 $\blacksquare$  Each  $R_i$  can be a base relation or another query block.

## Finding the "Best" Execution Plan

The parser output is fed into a **rewrite engine** which, again, yields a tree of query blocks.

It is then the **optimizer's** task to come up with the optimal **execution plan** for the given query.

Essentially, the optimizer

- 1 enumerates all possible execution plans,
- **2** determines the **quality** (cost) of each plan, then
- **3 chooses** the best one as the final execution plan.

Before we can do so, we need to answer the question

■ What is a "good" execution plan at all?



#### Cost Metrics

Database systems judge the quality of an execution plan based on a number of **cost factors**, *e.g.*,

- the number of **disk I/Os** required to evaluate the plan,
- the plan's CPU cost,
- the overall response time observable by the user as well as the total execution time.

A cost-based optimizer tries to **anticipate** these costs and find the cheapest plan before actually running it.

- All of the above factors depend on one critical piece of information: the size of (intermediate) query results.
- Database systems, therefore, spend considerable effort into accurate result size estimates.

#### Result Size Estimation

Consider a query block corresponding to a simple SFW query Q.



We can estimate the result size of Q based on

- the size of the input tables,  $|R_1|, \ldots, |R_n|$ , and
- the **selectivity** sel(p) of the predicate *predicate-list*:

$$|Q| \approx |R_1| \cdot |R_2| \cdots |R_n| \cdot sel(predicate-list)$$
.

#### Table Cardinalities

If not coming from another query block, the size |R| of an input table R is available in the DBMS's **system catalogs**. *E.g.*, IBM DB2:

| <pre>db2 =&gt; SELECT TABNAME, CARD, NPAGES db2 (cont.) =&gt; FROM SYSCAT.TABLES db2 (cont.) =&gt; WHERE TABSCHEMA = 'TPCH';</pre> |           |        |  |  |
|------------------------------------------------------------------------------------------------------------------------------------|-----------|--------|--|--|
| TABNAME                                                                                                                            | CARD      | NPAGES |  |  |
| ORDERS                                                                                                                             | 1500000   | 44331  |  |  |
| CUSTOMER                                                                                                                           | 150000    | 6747   |  |  |
| NATION                                                                                                                             | 25        | 2      |  |  |
| REGION                                                                                                                             | 5         | 1      |  |  |
| PART                                                                                                                               | 200000    | 7578   |  |  |
| SUPPLIER                                                                                                                           | 10000     | 406    |  |  |
| PARTSUPP                                                                                                                           | 800000    | 31679  |  |  |
| LINEITEM                                                                                                                           | 6001215   | 207888 |  |  |
| 8 record(s)                                                                                                                        | selected. |        |  |  |

## **Estimating Selectivities**

To estimate the selectivity of a predicate, we look at its structure.

$$column = value$$

$$sel(\cdot) = \begin{cases} 1/|I| & \text{if there is an index } I \text{ on } column \\ 1/10 & \text{otherwise} \end{cases}$$

 $column_1 = column_2$ 

$$sel(\cdot) = \begin{cases} \frac{1}{\max\{|I_1|, |I_2|\}} & \text{if there are indexes on } \mathbf{both} \text{ cols.} \\ \frac{1}{|I_k|} & \text{if there is an index only on col. } k \\ \frac{1}{10} & \text{otherwise} \end{cases}$$

$$p_1 \text{ AND } p_2$$
 $sel(\cdot) = sel(p_1) \cdot sel(p_2)$ 

$$p_1 \text{ OR } p_2$$
  
 $sel(\cdot) = sel(p_1) + sel(p_2) - sel(p_1) \cdot sel(p_2)$ 

## Improving Selectivity Estimation

The selectivity rules we saw make a fair amount of assumptions:

- **uniform distribution** of data values within a column,
- independence between individual predicates.

Since these assumptions aren't generally met, systems try to improve selectivity estimation by gathering **data statistics**.

■ These statistics are collected offline and stored in the system catalog.

```
    □ IBM DB2: RUNSTATS ON TABLE ...
```

■ The most popular type of statistics are **histograms**.

## 

```
SELECT SEQNO, COLVALUE, VALCOUNT
FROM SYSCAT.COLDIST
WHERE TABNAME = 'LINEITEM'
AND COLNAME = 'L_EXTENDEDPRICE'
AND TYPE = 'Q';
```

| SEQNO | COLVALUE          | VALCOUNT |
|-------|-------------------|----------|
|       |                   |          |
| 1     | +000000000996.01  | 3001     |
| 2     | +0000000004513.26 | 315064   |
| 3     | +0000000007367.60 | 633128   |
| 4     | +0000000011861.82 | 948192   |
| 5     | +0000000015921.28 | 1263256  |
| 6     | +0000000019922.76 | 1578320  |
| 7     | +0000000024103.20 | 1896384  |
| 8     | +0000000027733.58 | 2211448  |
| 9     | +0000000031961.80 | 2526512  |
| 10    | +0000000035584.72 | 2841576  |
| 11    | +0000000039772.92 | 3159640  |
| 12    | +0000000043395.75 | 3474704  |
| 13    | +0000000047013.98 | 3789768  |
|       | :                 |          |

SYSCAT. COLDIST also contains information like

- the n most frequent values (and their frequency),
- the number of distinct values in each histogram bucket.

Histograms may even be manipulated **manually** to tweak the query optimizer.

## Join Optimization

- We've now translated the query into a graph of **query blocks**.
  - Query blocks essentially are a multi-way Cartesian product with a number of selection predicates on top.
- We can estimate the **cost** of a given **execution plan**.
  - Use result size estimates in combination with the cost for individual join algorithms in the previous chapter.

We are now ready to **enumerate** all possible execution plans, *e.g.*, all possible **3-way** join combinations for a query block.



## How Many Such Combinations Are There?

- A join over n+1 relations  $R_1, \ldots, R_{n+1}$  requires n binary joins.
- Its **root-level operator** joins sub-plans of k and n k 1 join operators  $(0 \le k \le n 1)$ :



Let  $C_i$  be the **number of possibilities** to construct a binary tree of i inner nodes (join operators):

$$C_n = \sum_{k=0}^{n-1} C_k \cdot C_{n-k-1}$$
.

#### Catalan Numbers

This recurrence relation is satisfied by **Catalan numbers**:

$$C_n = \sum_{k=0}^{n-1} C_k \cdot C_{n-k-1} = \frac{(2n)!}{(n+1)!n!}$$
,

describing the number of ordered binary trees with n + 1 leaves.

For **each** of these trees, we can **permute** the input relations  $R_1, \ldots, R_{n+1}$ , leading to

$$\frac{(2n)!}{(n+1)!n!} \cdot (n+1)! = \frac{(2n)!}{n!}$$

possibilities to evaluate an (n+1)-way join.

## Search Space

The resulting search space is **enormous**:

| number of relations <i>n</i> | $C_{n-1}$ | join trees     |
|------------------------------|-----------|----------------|
| 2                            | 1         | 2              |
| 3                            | 2         | 12             |
| 4                            | 5         | 120            |
| 5                            | 14        | 1,680          |
| 6                            | 42        | 30,240         |
| 7                            | 132       | 665,280        |
| 8                            | 429       | 17,297,280     |
| 10                           | 4,862     | 17,643,225,600 |

And we haven't yet even considered the use of k different join algorithms (yielding another factor of  $k^{(n-1)}$ )!

## **Dynamic Programming**

The traditional approach to master this search space is the use of **dynamic programming**.

#### Idea:

- Find the cheapest plan for an n-way join in n passes.
- In each pass k, find the best plans for all k-relation **sub-queries**.
- **Construct** the plans in pass k from best i-relation and (k-i)-relation sub-plans found in **earlier passes**  $(1 \le i < k)$ .

#### **Assumption:**

■ To find the optimal **global plan**, it is sufficient to only consider the optimal plans of its **sub-queries**.

## Example: Four-Way Join

Pass 1 (best 1-relation plans)

Find the best **access path** to each of the  $R_i$  individually (considers index scans, full table scans).

Pass 2 (best 2-relation plans)

For each **pair** of tables  $R_i$  and  $R_j$ , determine the best order to join  $R_i$  and  $R_j$  ( $R_i \bowtie R_j$  or  $R_i \bowtie R_i$ ?):

$$optPlan(\{R_i, R_j\}) \leftarrow best of R_i \bowtie R_j and R_j \bowtie R_i$$
.

 $\rightarrow$  12 plans to consider.

Pass 3 (best 3-relation plans)

For each **triple** of tables  $R_i$ ,  $R_j$ , and  $R_k$ , determine the best three-table join plan, using sub-plans obtained so far:

$$optPlan(\{R_i, R_j, R_k\}) \leftarrow best of R_i \bowtie optPlan(\{R_j, R_k\}),$$
  
 $optPlan(\{R_j, R_k\}) \bowtie R_i, R_j \bowtie optPlan(\{R_i, R_k\}), \dots$ 

 $\rightarrow$  24 plans to consider.

## Example (cont.)

#### Pass 4 (best 4-relation plan)

For each set of **four** tables  $R_i$ ,  $R_j$ ,  $R_k$ , and  $R_l$ , determine the best four-table join plan, using sub-plans obtained so far:

```
optPlan(\{R_i, R_j, R_k, R_l\}) \leftarrow best of R_i \bowtie optPlan(\{R_j, R_k, R_l\}),

optPlan(\{R_j, R_k, R_l\}) \bowtie R_i, R_j \bowtie optPlan(\{R_i, R_k, R_l\}), ...,

optPlan(\{R_i, R_j\}) \bowtie optPlan(\{R_k, R_l\}), ...
```

- $\rightarrow$  14 plans to consider.
- Overall, we looked at only **50** (sub-)plans (instead of the possible 120 four-way join plans;  $\nearrow$  slide 218).
- All decisions required the evaluation of **simple** sub-plans only (no need to re-evaluate the interior of *optPlan*(·)).

## Dynamic Programming Algorithm

```
1 Function: find_join_tree_dp (q(R_1, ..., R_n))
2 for i = 1 to n do
optPlan(\{R_i\}) \leftarrow access\_plans(R_i);
4 prune_plans (optPlan(\{R_i\}));
5 for i = 2 to n do
       foreach S \subseteq \{R_1, \ldots, R_n\} such that |S| = i do
           optPlan(S) \leftarrow \emptyset;
          foreach O \subset S do
               optPlan(S) \leftarrow optPlan(S) \cup
                     possible_joins (optPlan(O), optPlan(S \setminus O));
           prune_plans (optPlan(S));
12 return optPlan(\{R_1,\ldots,R_n\}):
```

- $possible\_joins(R, S)$  enumerates the possible joins between R and S (nested loops join, merge join, etc.).
- prune\_plans (set) discards all but the best plan from set.

## Dynamic Programming—Discussion

- find\_join\_tree\_dp() draws its advantage from filtering plan candidates early in the process.
  - In our example on slide 220, pruning in Pass 2 reduced the search space by a factor of 2, and another factor of 6 in Pass 3.
- Some **heuristics** can be used to prune even more plans:
  - Try to avoid Cartesian products.
  - Produce left-deep plans only (see next slides).
- Such heuristics can be used as a handle to balance plan quality and optimizer runtime.
  - **□ DB2 UDB:** SET CURRENT QUERY OPTIMIZATION = n

## Left/Right-Deep vs. Bushy Join Trees

The algorithm on slide 222 explores all possible shapes a join tree could take:



Actual systems often prefer **left-deep** join trees. 15

- The **inner** relation is always a **base relation**.
- Allows the use of index nested loops join.
- Easier to implement in a **pipelined** fashion.

<sup>&</sup>lt;sup>15</sup>The seminal **System R** prototype, *e.g.*, considered only left-deep plans.

- XPath evaluation over relationally encoded XML data<sup>16</sup>
- *n*-way self-join with a range predicate.



<sup>&</sup>lt;sup>16</sup> A Grust *et al.* Accelerating XPath Evaluation in Any RDBMS. *TODS 2004*. http://www.pathfinder-xquery.org/

#### Join Order Makes a Difference

Contrast the execution plans for a 8- and a 9-step path.



left-deep join tree

bushy join tree

■ DB2's optimizer essentially gave up in the face of 9+ joins.

## Joining Many Relations

Dynamic programming still has **exponential** resource requirements:

- time complexity:  $\mathcal{O}(3^n)$
- space complexity:  $\mathcal{O}(2^n)$

This may still be to expensive

- for joins involving many relations ( $\sim$  10–20 and more),
- for simple queries over well-indexed data (where the right plan choice should be easy to make).

The greedy join enumeration algorithm jumps into this gap.

## **Greedy Join Enumeration**

```
Function: find_join_tree_greedy (q(R_1, ..., R_n))

worklist \leftarrow \varnothing;

for i = 1 to n do

worklist \leftarrow worklist \cup best_access_plan (R_i);

for i = n downto 2 do

// worklist = \{P_1, ..., P_i\}

find P_j, P_k \in worklist and \bowtie... such that cost(P_j \bowtie... P_k) is minimal;

worklist \leftarrow worklist \setminus \{P_j, P_k\} \cup \{(P_j \bowtie... P_k)\};

// worklist = \{P_1\}

return single plan left in worklist;
```

- In each iteration, choose the cheapest join that can be made over the remaining sub-plans.
- Observe that find\_join\_tree\_greedy () operates similar to finding the optimum binary tree for Huffman coding.

#### Discussion

#### **Greedy join enumeration:**

- The greedy algorithm has  $\mathcal{O}(n^3)$  time complexity.
  - The loop has  $\mathcal{O}(n)$  iterations.
  - Each iteration looks at all remaining pairs of plans in worklist. An  $\mathcal{O}(n^2)$  task.

#### Other join enumeration techniques:

- Randomized algorithms: randomly rewrite the join tree one rewrite at a time; use hill-climbing or simulated annealing strategy to find optimal plan.
- Genetic algorithms: explore plan space by combining plans ("creating offspring") and altering some plans randomly ("mutations").

## Physical Plan Properties

#### Consider the query

```
SELECT O.O_ORDERKEY, L.L_EXTENDEDPRICE
FROM ORDERS O, LINEITEM L
WHERE O.O_ORDERKEY = L.L_ORDERKEY
```

where table ORDERS is indexed with a **clustered index** OK\_IDX on column O\_ORDERKEY.

Possible table access plans are:

```
    ORDERS
    full table scan: estimated I/Os: N<sub>ORDERS</sub>
    index scan: estimated I/Os: N<sub>OK_IDX</sub> + N<sub>ORDERS</sub>
    LINEITEM
    full table scan: estimated I/Os: N<sub>LINEITEM</sub>
```

Since the **full table scan** is the cheapest access method for both tables, our join algorithms will select them as the best 1-relation plans in Pass  $1.^{17}$ 

To **join** the two scan outputs, we now have the choices

- nested loops join,
- hash join, or
- sort both inputs, then use merge join.

Hash join or sort-merge join are probably the preferable candidates here, incurring a cost of  $\approx 2(N_{\text{ORDERS}} + N_{\text{LINEITEM}})$ .

 $\rightarrow$  overall cost:  $N_{\text{ORDERS}} + N_{\text{LINEITEM}} + 2(N_{\text{ORDERS}} + N_{\text{LINEITEM}})$ .

<sup>&</sup>lt;sup>17</sup>Dynamic programming and the greedy algorithm happen to do the same in this example.

#### A Better Plan

It is easy to see, however, that there is a better way to evaluate the query:

- Use an index scan to access ORDERS. This guarantees that the scan output is already in O\_ORDERKEY order.
- Then only sort LINEITEM and
- **3** join using **merge join**.
- $\rightarrow$  overall cost:  $\underbrace{\left(N_{\text{OK\_IDX}} + N_{\text{ORDERS}}\right)}_{1.} + \underbrace{3 \cdot N_{\text{LINEITEM}}}_{2./3.}$

Although more expensive as a standalone table access plan, the use of the index pays off in the overall plan.

## Interesting Orders

- The advantage of the index-based access to ORDERS is that it provides beneficial physical properties.
- Optimizers, therefore, keep track of such properties by annotating candidate plans.
- System R introduced the concept of interesting orders, determined by
  - ORDER BY or GROUP BY clauses in the input query, or
  - join attributes of subsequent joins (~ merge join).
- In prune\_plans (), retain
  - the cheapest "unordered" plan and
  - the cheapest plan for each interesting order.

## Query Rewriting

Join optimization essentially takes a set of relations and a set of join predicates to find the best join order.

By **rewriting** query graphs beforehand, we can improve the effectiveness of this procedure.

The **query rewriter** applies (heuristic) rules, without looking into the actual database state (no information about cardinalities, indexes, etc.). In particular, it

- rewrites predicates and
- unnests queries.

## Predicate Simplification

#### Example: rewrite

```
SELECT *
FROM LINEITEM L
WHERE L.L_TAX * 100 < 5
```

into

```
SELECT *
FROM LINEITEM L
WHERE L.L_TAX < 0.05
```

■ Predicate simplification may enable the use of **indexes** and simplify the detection of opportunities for join algorithms.

#### Additional Join Predicates

Implicit join predicates as in

```
SELECT *
FROM A, B, C
WHERE A.a = B.b AND B.b = C.c
```

can be turned into explicit ones:

```
SELECT *
FROM A, B, C
WHERE A.a = B.b AND B.b = C.c
AND A.a = C.c
```

This enables plans like

$$(A \bowtie C) \bowtie B$$
.

 $((A \bowtie C)$  would have been a Cartesian product before.)

### **Nested Queries**

SQL provides a number of ways to write **nested queries**.

■ **Uncorrelated** sub-query:

```
SELECT *

FROM ORDERS O

WHERE O_CUSTKEY IN (SELECT C_CUSTKEY

FROM CUSTOMER

WHERE C_NAME = 'IBM Corp.')
```

Correlated sub-query:

```
SELECT *

FROM ORDERS O

WHERE O.O_CUSTKEY IN

(SELECT C.C_CUSTKEY

FROM CUSTOMER C

WHERE C.C_ACCTBAL < O.O_TOTALPRICE)
```

## Query Unnesting

- Taking query nesting literally might be **expensive**.
  - An uncorrelated query, *e.g.*, need not be re-evaluated for every tuple in the outer query.
- Oftentimes, sub-queries are only used as a syntactical way to express a join (or a semi-join).
- The query rewriter tries to detect such situations and make the join explicit.
- This way, the sub-query can become part of the regular join order optimization.

→ Won Kim. On Optimizing an SQL-like Nested Query. ACM TODS, vol. 7, no. 3, September 1982.

## Summary

#### Query Parser

Translates input query into (SFW-like) query blocks.

#### Rewriter

Logical (database state-independent) optimizations; predicate simplification; query unnesting.

#### (Join) Optimization

Find "best" query execution plan based on a **cost model** (considering I/O cost, CPU cost, . . . ); data statistics (histograms); dynamic programming, greedy join enumeration; physical plan properties (interesting orders).

Database optimizers still are true pieces of art...

## "Picasso" Plan Diagrams



Naveen Reddy and Jayant Haritsa. Analyzing Plan Diagrams of Database Query Optimizers. VLDB 2005.

## "Picasso" Plan Diagrams



#### Download Picasso at

http://dsl.serc.iisc.ernet.in/projects/PICASSO/index.html.