Data Processing on Modern Hardware

Jens Teubner, TU Dortmund, DBIS Group

jens.teubner@cs.tu-dortmund.de

Summer 2016

© Jens Teubner - Data Processing on Modern Hardware - Summer 2016

Part IV

Vectorization

© Jens Teubner - Data Processing on Modern Hardware - Summer 2016

Hardware Parallelism

Pipelining is one technique to leverage available hardware parallelism.

chip die

Task 1 — Task 2 —— Task 3

m Separate chip regions for individual tasks execute independently.

m Advantage: Use parallelism, but maintain sequential execution
semantics at front-end (here: assembly instruction stream).

m We discussed problems around hazards in the previous chapter.

m VLSI technology limits the degree up to which pipelining is feasible.
('H. Kaeslin. Digital Integrated Circuit Design. Cambridge Univ. Press.).

© Jens Teubner - Data Processing on Modern Hardware - Summer 2016

Hardware Parallelism

Chip area can as well be used for other types of parallelism:

inl

ing

in3

{ Task 1 }—>

{ Task 2 }—>

{ Task 3 }4>

outy
outo

outs

Computer systems typically use identical hardware circuits, but their
function may be controlled by different instruction streams s;:

inl

in2

in3

51 S2 S3
|

outy

oo

outs

outs

© Jens Teubner - Data Processing on Modern Hardware - Summer 2016

Special Instances (MIMD)

D Do you know an example of this architecture?

5‘1 S S3
iny oL J outy
Ny ~ outo
in3 N outs

© Jens Teubner - Data Processing on Modern Hardware - Summer 2016

Special Instances (SIMD)

Most modern processors also include a SIMD unit:

S1
ing U out;
ino U — out
in3 U outs

m Execute same assembly instruction on a set of values.

m Also called vector unit; vector processors are entire systems built

on that idea.

© Jens Teubner - Data Processing on Modern Hardware - Summer 2016

SIMD Programming Model

The processing model is typically based on SIMD registers or vectors:

o T .
N E
’ air + by ‘ a» + by ‘ ‘ an + by ‘

Typical values (e.g., x86-64):
m 128 bit-wide registers (xmm0 through xmm15).

m Usable as 16 x 8 bit, 8 x 16 bit, 4 x 32 bit, or 2 x 64 bit.

© Jens Teubner - Data Processing on Modern Hardware - Summer 2016

SIMD Programming Model

m Much of a processor’s control logic depends on the number of
in-flight instructions and/or the number of registers, but not on the
size of registers.

— scheduling, register renaming, dependency tracking, ...

m SIMD instructions make independence explicit.

— No data hazards within a vector instruction.
— Check for data hazards only between vectors.
— data parallelism

m Parallel execution promises n-fold performance advantage.
— (Not quite achievable in practice, however.)

© Jens Teubner - Data Processing on Modern Hardware - Summer 2016

Coding for SIMD

How can | make use of SIMD instructions as a programmer?

Auto-Vectorization

m Some compiler automatically detect opportunities to use SIMD.
m Approach rather limited; don't rely on it.
m Advantage: platform independent

Compiler Attributes

m Use __attribute__((vector_size (...))) annotations to
state your intentions.

m Advantage: platform independent
(Compiler will generate non-SIMD code if the platform does
not support it.)

© Jens Teubner - Data Processing on Modern Hardware - Summer 2016

/*

* Auto vectorization example (tried with gcc 4.3.4)
*/

#include <stdlib.h>

#include <stdio.h>

int
main (int argc, char *xargv)

{
int a[256], b[256], c[256];
for (unsigned int i = 0; i < 256; i++)

ali]
b[il]

i+ 1;
100 * (i + 1);

}

for (unsigned int i = 0; i < 256; i++)
c[i] = a[i]l + b[il;

printf ("c = [%i, %i, %i, %i 1\a",
c[0], cl1], c[2], c[3]);

return EXIT_SUCCESS;

Resulting assembly code (gcc 4.3.4, x86-64):

loop:
movdqu (%r8,%rcx), %xmmO
addl $1, %esi
movdqu (%r9,%rcx), %xmml
paddd %xmml, %xmmO
movdga %xmmO, (%rax,’%rcx)
addq $16, Y%rcx
cmpl %rild, Yesi
jb loop

s

; load a and b

into SIMD registers
parallel add

; write result to memory

loop (increment by
SIMD length of 16 bytes)

© Jens Teubner - Data Processing on Modern Hardware - Summer 2016

/* Use attributes to trigger vectorization */
#include <stdlib.h>
#include <stdio.h>

typedef int vé4si __attribute__((vector_size (16)));

union int_vec {
int vall4];
vdsi vec;

3
typedef union int_vec int_vec;

int

main (int argc, char *xargv)

{
int_vec a, b, c;
a.val[0] = 1; a.vall[l] = 2; a.val[2] = 3; a.val[3] = 4;
b.val[0] = 100; b.val[1] = 200; b.val[2] = 300; b.val[3] = 400;

c.vec = a.vec + b.vec;

printf ("c = [%i, %i, %i, %i 1\n",
c.val[0], c.valll], c.vall[2], c.vall[3]);

return EXIT_SUCCESS;

Resulting assembly code (gcc, x86-64):

movl
movl
movl
movl
movl
movl
movl
movl

movdqga
paddd
movdga

movl
movl
movl
movl

$1, -16(%rbp)
$2, -12(%rbp)
$3, -8(%rbp)
$4, -4(%rbp)
$100, -32(%rbp)
$200, -28(%rbp)
$300, -24(%rbp)
$400, -20(%rbp)

-32(%rbp), %xmmO
-16(%rbp), %xmmO
%xmm0, -48(%rbp)

-40(%rbp), %hecx
-44 (%xbp), %hedx
-48(%rbp), %hesi
-36 (Jirbp), %r8d

s
)

; assign constants

and write them

; to memory

load b into SIMD register xmmO
SIMD xmm0 = xmm0 + a
write SIMD xmmO back to memory

load c into scalar
registers (from memory)

m Data transfers scalar «+» SIMD go through memory.

© Jens Teubner - Data Processing on Modern Hardware - Summer 2016

Coding for SIMD

Use C Compiler Intrinsics
m Invoke SIMD instructions directly via compiler macros.

Programmer has good control over instructions generated.

Code no longer portable to different architecture.

Benefit (over hand-written assembly): compiler manages
register allocation.

m Risk: If not done carefully, automatic glue code (casts, etc.)
may make code inefficient.

© Jens Teubner - Data Processing on Modern Hardware - Summer 2016

/*

* Invoke SIMD instructions explicitly via intrinsics.
*/

#include <stdlib.h>

#include <stdio.h>

#include <xmmintrin.h>

int
main (int argc, char **xargv)
{
int al4], bl[4], cl4];
__ml128i x, y;
al0] = 1; al1] = 2; al2] = 3; al3] = 4;
b[0] = 100; b[1] = 200; b[2] = 300; b[3] = 400;
x = _mm_loadu_sil28 ((__m128i *) a);
y = _mm_loadu_sil28 ((__m128i *) b);
x = _mm_add_epi32 (x, y);

_mm_storeu_sil28 ((__m128i *) c, x);
printf ("c = [%i, %i, %i, %i 1\n", c[0], c[1], c[2], <c[31);

return EXIT_SUCCESS;

Resulting assembly code (gcc, x86-64):

movdqu -16(%rbp), %xmml ; _mm_loadu_si128()

movdqu -32(%rbp), %xmmO ; _mm_loadu_si128()
paddd %xmmO, %xmml ; _mm_add_epi32()
movdqu %xmml, -48(%rbp) ; _mm_storeu_sil128()

© Jens Teubner - Data Processing on Modern Hardware - Summer 2016

SIMD and Databases: Scan-Based Tasks

SIMD functionality naturally fits a number of scan-based database tasks:
m arithmetics
SELECT price + tax AS net_price
FROM orders
This is what the code examples on the previous slides did.
m aggregation
SELECT COUNT (*)

FROM lineitem
WHERE price > 42

Q2 How can this be done efficiently?
Similar: SUM(-), MAX(-), MIN(-), ...

© Jens Teubner - Data Processing on Modern Hardware - Summer 2016

SIMD and Databases: Scan-Based Tasks

Selection queries are a slightly more tricky:
m There are no branching primitives for SIMD registers.
— What would their semantics be anyhow?

m Moving data between SIMD and scalar registers is quite expensive.

— Either go through memory, move one data item at a time, or
extract sign mask from SIMD registers.

Thus:
m Use SIMD to generate bit vector; interpret it in scalar mode.

D If we can count with SIMD, why can’t we play the j+=(--) trick?

© Jens Teubner - Data Processing on Modern Hardware - Summer 2016

Decompression

Column decompression ("slides 120ff.) is a good candidate for SIMD
optimization.
m Use case: n-bit fixed-width frame of reference compression;
phase 1 (ignore exception values).
— no branching, no data dependence

m With 128-bit SIMD registers (9-bit compression):

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
|V13|V12|V11|\10|V9|V8 V7|V6|V5|V4|¥3|V2|V1|V0

$7? $7 $7

*Willhalm et al. SIMD-Scan: Ultra Fast in-Memory Table Scan using on-Chip
Vector Processing Units. VLDB 2009.

(© Jens Teubner - Data Processing on Modern Hardware - Summer 2016

Decompression—Step 1: Copy Values

Step 1: Bring data into proper 32-bit words:

5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

[vig | vz | via [Vao|[vo [[ve | vo || ve|| vd | vi | ¥

V2|V1|V0

w

shuffle mask
\Fr|Fr| 4 | 3 |[Fr[Fr| 3 [2 [FF]FF] 2] 1 [FE|FF] 1] 0]

| v | | v | | v | | v

m Use shuffle instructions to move bytes within SIMD registers.

B __ml128i out = _mm_shuffle_epi8 (in, shufmask);

© Jens Teubner - Data Processing on Modern Hardware - Summer 2016

Decompression—Step 2: Establish Same Bit Alignment

Step 2: Make all four words identically bit-aligned:

\ | vs | | v | | v | | Yo
3 bits 2 bits 1 bits 0 bits

shift O bitsé shift 1 bitsé shift 2 bitsg shift 3 bitsé

[vs]
3 bits 3 bits 3 bits 3 bits

@ SIMD shift instructions do not support variable shift amounts!

© Jens Teubner - Data Processing on Modern Hardware - Summer 2016

Decompression—Step 3: Shift and Mask

Step 3: Word-align data and mask out invalid bits:

| v |

v]
%] 2 [] []

Vi | Vo

5 |

B __ml128i shifted = _mm_srli_epi32 (in, 3);

B __ml28i result = _mm_and_sil28 (shifted, maskval);

© Jens Teubner - Data Processing on Modern Hardware - Summer 2016

Decompression Performance

o
®
'_
1600 - S
1400 R
1200 38
) £
E. 1000 g
2o
Q .
£ 800 , g
= ~7/ 5 D
> 600 e A .2
__‘—-..\ I c £
S 400 {===TTIINAC g é
& ATV 4
200 sa
0o +H—r—r—r—rrr—r v 2
s
N A0 D e D P PR % a
.) £GS
Compression-bit Case -
— — ,)
‘ — — unoptimized scalar =====- optimized scalar —vectonzed‘ B
g2
3 3
wn un

m Time to decompress 1 billion integers (Xeon X5560, 2.8 GHz).

© Jens Teubner - Data Processing on Modern Hardware - Summer 2016

Comments

m Some SIMD instructions require hard-coded parameters.
Thus: Expand code explicitly for all possible values of n.
— There are at most 32 of them.
— Fits with operator specialization in column-oriented DBMSs
" slide 54
m Loading constants into SIMD registers can be relatively expensive
(and the number of registers limited).
— One register for shuffle mask and one register to shift data
(step 2) is enough.
m For larger n, a compressed word may span more than 4 bytes.
— Additional tricks needed (shift and blend).

© Jens Teubner - Data Processing on Modern Hardware - Summer 2016

Vectorized Predicate Handling

Sometimes it may be sufficient to decompress only partially.

E.g., search queries v; < c:

o]]

m Only shuffle and mask (but don’t shift).

© Jens Teubner - Data Processing on Modern Hardware - Summer 2016

Vectorized Predicate Handling: Performance

g
S}

N
o

VLDB 2009.

o
|

<)
|

I
AAEREEEEEEEEERREARR

13 5 7 9 11 13 15 17 19 21 23 25 27 29 31
Compression-bit Case

Speedup SSE vs. Scalar code

o
S
|

Source: Willhalm et al. SIMD-Scan: Ultra Fast in-Memory Table

Scan using on-Chip Vector Processing Units.

m Speedup versus optimized scalar implementation.

© Jens Teubner - D Processing on Modern Hardware - Summer 2016

Use Case: Tree Search

Another SIMD application: in-memory tree lookups.

Base case: binary tree, scalar implementation:

for (unsigned int i=0; i<n_items; i++) {
k=1; /* tree[l] is root node */
for (unsigned int 1lvl=0; lvl<height; 1lvl++)
k=2xk+ (item[i] <=tree[k]);
result[i] =datalk];

m Represent binary tree as array treel[-] such that children of n are at
positions 2n and 2n + 1.

© Jens Teubner - Data Processing on Modern Hardware - Summer 2016

Vectorizing Tree Search

® Can we vectorize the outer loop?
(i.e., find matches for four input items in parallel)

m [terations of the outer loop are independent.

m There is no branch in the loop body.

g% Many SIMD implementations do not support scatter/gather!

© Jens Teubner - Data Processing on Modern Hardware - Summer 2016

Vectorizing Tree Search

@ Can we vectorize the inner loop?

m Data dependency between loop iterations (variable k).
m Intuitively: Cannot navigate multiple steps at a time, since first
navigation steps are not (yet) known.
But:

m Could speculatively navigate levels ahead.

© Jens Teubner - Data Processing on Modern Hardware - Summer 2016

“Speculative” Tree Navigation

Idea: Do comparisons for two levels in parallel.

7/\7

/\ 6/3\7
/\ /\ 4N 5 /N
11 127 13" 14 15

AN AW AN AN WA

E.qg.,
Compare with nodes 1, 2, and 3 in parallel.
Follow link to node 6 and compare with nodes 6, 12, and 13.

© Jens Teubner - Data Processing on Modern Hardware - Summer 2016

SIMD Blocking

Pack tree sub-regions into SIMD registers.

~» Re-arrange data in memory for this.

" Kim et al. FAST: Fast Architecture Sensitive Tree Search on Modern CPUs
and GPUs. SIGMOD 2010.

© Jens Teubner - Data Processing on Modern Hardware - Summer 2016

SIMD and Scalar Registers

E.g., search key 59: e
g Yy AT
::/_2‘_:;’ ____________________ _6_1\::
PN
11 31 47 73
VRN /N / N\ / N\

Al
SIMD cmp
ST T [11T [00] |

ask
| 00001100 | scalar register

movem

— SIMD to compare, scalar to navigate, movemask in-between.

© Jens Teubner - Data Processing on Modern Hardware - Summer 2016

Tree Navigation

Use scalar movemask result as index in lookup table:

Search Key = 59
Key value in the —
tree node . :H* - Use mask Lookup Table

1 value as [000 0
mask bit value index

setto 1 &% mmmmmmmnee- 570 7
if keyq > keynode Child Inde —» [110 5

(47)

VawAY /\ /\ e

2). (1909 (&7 a3 _ 63" je7) @9 Lookup Child

eceosoowoloscronse o - eoltleweoseaod
/ \ /\IChlld Index = 3 Index - Index

Image source: Kim et al. FAST: Fast Architecture Sensitive Tree Search on Modern CPUs
and GPUs. SIGMOD 2010.

© Jens Teubner - Data Processing on Modern Hardware - Summer 2016

Hierarchical Blocking

Blocking is a good idea also beyond SIMD.

1 /\ SIMD Blocking
/' Cache line Blocking
A Page Blocking
aN
dK Depth of SIMD Blocking
Index Tree dL Depth of Cache Line Blocking
(Only Keys) dP Depth of Page Blocking
dN Depth of Index Tree
i . S
Node Array KeyT, Key2 . Keyn,
(Keys + Rids) I_ Rid2 | | Ridn |

Image source: Kim et al. FAST: Fast Architecture Sensitive Tree Search on Modern CPUs
and GPUs. SIGMOD 2010.

© Jens Teubner - Data Processing on Modern Hardware - Summer 2016

SIMD Tree Search: Performance

B Default B + Page Blocking H + Cache line Blocking

m +SIMD m + SW Pipelining @ Best Reported Number

0.8
0.6

]

]

0.2

Normalized Search Time

small tree

large tree small tree large tree

CPU

Source: Kim et al. FAST: Fast Architecture Sensitive Tree Search on Modern CPUs and
GPUs. SIGMOD 2010.

© Jens Teubner - Data Processing on Modern Hardware - Summer 2016

	Vectorization
	Hardware Parallelism
	SIMD

	SIMD: Vectorized Execution
	Coding for SIMD
	SIMD for Database Tasks

	Use Case: Decompression
	Decompression Step-By-Step
	Performance
	Predicates

	Use Case: Tree Search
	"Speculative" Tree Navigation
	SIMD Blocking
	Hierarchical Blocking

