
Data Processing on Modern Hardware

Jens Teubner, TU Dortmund, DBIS Group

jens.teubner@cs.tu-dortmund.de

Summer 2016

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 1

Part IV

Vectorization

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 145

Hardware Parallelism

Pipelining is one technique to leverage available hardware parallelism.

chip die

Task 1 Task 2 Task 3

Separate chip regions for individual tasks execute independently.

Advantage: Use parallelism, but maintain sequential execution

semantics at front-end (here: assembly instruction stream).

We discussed problems around hazards in the previous chapter.

VLSI technology limits the degree up to which pipelining is feasible.

(↗H. Kaeslin. Digital Integrated Circuit Design. Cambridge Univ. Press.).

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 146

Hardware Parallelism

Chip area can as well be used for other types of parallelism:

Task 3

Task 2

Task 1
in1

in2

in3

out1

out2

out3

Computer systems typically use identical hardware circuits, but their

function may be controlled by different instruction streams si :

PU

PU

PU
in1

in2

in3

out1

out2

out3

s1 s2 s3

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 147

Special Instances (MIMD)

� Do you know an example of this architecture?

PU

PU

PU
in1

in2

in3

out1

out2

out3

s1 s2 s3

This is your multi-core CPU!

Also called MIMD: Multiple Instructions, Multiple Data

(Single-core is SISD: Single Instruction, Single Data.)

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 148

Special Instances (SIMD)

Most modern processors also include a SIMD unit:

PU

PU

PU
in1

in2

in3

out1

out2

out3

s1

Execute same assembly instruction on a set of values.

Also called vector unit; vector processors are entire systems built

on that idea.

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 149

SIMD Programming Model

The processing model is typically based on SIMD registers or vectors:

+ + +

a1 a2 · · · an

b1 b2 · · · bn

a1 + b1 a2 + b2 · · · an + bn

Typical values (e.g., x86-64):

128 bit-wide registers (xmm0 through xmm15).

Usable as 16× 8 bit, 8× 16 bit, 4× 32 bit, or 2× 64 bit.

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 150

SIMD Programming Model

Much of a processor’s control logic depends on the number of

in-flight instructions and/or the number of registers, but not on the

size of registers.

→ scheduling, register renaming, dependency tracking, . . .

SIMD instructions make independence explicit.

→ No data hazards within a vector instruction.

→ Check for data hazards only between vectors.

→ data parallelism

Parallel execution promises n-fold performance advantage.

→ (Not quite achievable in practice, however.)

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 151

Coding for SIMD

How can I make use of SIMD instructions as a programmer?

1 Auto-Vectorization

Some compiler automatically detect opportunities to use SIMD.

Approach rather limited; don’t rely on it.

Advantage: platform independent

2 Compiler Attributes

Use __attribute__((vector_size (...))) annotations to

state your intentions.

Advantage: platform independent

(Compiler will generate non-SIMD code if the platform does

not support it.)

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 152

/*
* Auto vectorization example (tried with gcc 4.3.4)
*/

#include <stdlib.h>
#include <stdio.h>

int
main (int argc, char **argv)
{

int a[256], b[256], c[256];

for (unsigned int i = 0; i < 256; i++)
{

a[i] = i + 1;
b[i] = 100 * (i + 1);

}

for (unsigned int i = 0; i < 256; i++)
c[i] = a[i] + b[i];

printf ("c = [%i, %i, %i, %i]\n",
c[0], c[1], c[2], c[3]);

return EXIT_SUCCESS;
}

Resulting assembly code (gcc 4.3.4, x86-64):

loop:

movdqu (%r8,%rcx), %xmm0 ; load a and b

addl $1, %esi

movdqu (%r9,%rcx), %xmm1 ; into SIMD registers

paddd %xmm1, %xmm0 ; parallel add

movdqa %xmm0, (%rax,%rcx) ; write result to memory

addq $16, %rcx ; loop (increment by

cmpl %r11d, %esi ; SIMD length of 16 bytes)

jb loop

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 154

/* Use attributes to trigger vectorization */
#include <stdlib.h>
#include <stdio.h>

typedef int v4si __attribute__((vector_size (16)));

union int_vec {
int val[4];
v4si vec;

};
typedef union int_vec int_vec;

int
main (int argc, char **argv)
{

int_vec a, b, c;

a.val[0] = 1; a.val[1] = 2; a.val[2] = 3; a.val[3] = 4;
b.val[0] = 100; b.val[1] = 200; b.val[2] = 300; b.val[3] = 400;

c.vec = a.vec + b.vec;

printf ("c = [%i, %i, %i, %i]\n",
c.val[0], c.val[1], c.val[2], c.val[3]);

return EXIT_SUCCESS;
}

Resulting assembly code (gcc, x86-64):

movl $1, -16(%rbp) ; assign constants

movl $2, -12(%rbp) ; and write them

movl $3, -8(%rbp) ; to memory

movl $4, -4(%rbp)

movl $100, -32(%rbp)

movl $200, -28(%rbp)

movl $300, -24(%rbp)

movl $400, -20(%rbp)

movdqa -32(%rbp), %xmm0 ; load b into SIMD register xmm0

paddd -16(%rbp), %xmm0 ; SIMD xmm0 = xmm0 + a

movdqa %xmm0, -48(%rbp) ; write SIMD xmm0 back to memory

movl -40(%rbp), %ecx ; load c into scalar

movl -44(%rbp), %edx ; registers (from memory)

movl -48(%rbp), %esi

movl -36(%rbp), %r8d

Data transfers scalar↔ SIMD go through memory.

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 156

Coding for SIMD

3 Use C Compiler Intrinsics

Invoke SIMD instructions directly via compiler macros.

Programmer has good control over instructions generated.

Code no longer portable to different architecture.

Benefit (over hand-written assembly): compiler manages

register allocation.

Risk: If not done carefully, automatic glue code (casts, etc.)

may make code inefficient.

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 157

/*
* Invoke SIMD instructions explicitly via intrinsics.
*/

#include <stdlib.h>
#include <stdio.h>

#include <xmmintrin.h>

int
main (int argc, char **argv)
{

int a[4], b[4], c[4];
__m128i x, y;

a[0] = 1; a[1] = 2; a[2] = 3; a[3] = 4;
b[0] = 100; b[1] = 200; b[2] = 300; b[3] = 400;

x = _mm_loadu_si128 ((__m128i *) a);
y = _mm_loadu_si128 ((__m128i *) b);

x = _mm_add_epi32 (x, y);

_mm_storeu_si128 ((__m128i *) c, x);

printf ("c = [%i, %i, %i, %i]\n", c[0], c[1], c[2], c[3]);

return EXIT_SUCCESS;
}

Resulting assembly code (gcc, x86-64):

movdqu -16(%rbp), %xmm1 ; _mm_loadu_si128()

movdqu -32(%rbp), %xmm0 ; _mm_loadu_si128()

paddd %xmm0, %xmm1 ; _mm_add_epi32()

movdqu %xmm1, -48(%rbp) ; _mm_storeu_si128()

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 159

SIMD and Databases: Scan-Based Tasks

SIMD functionality naturally fits a number of scan-based database tasks:

arithmetics

SELECT price + tax AS net_price

FROM orders

This is what the code examples on the previous slides did.

aggregation

SELECT COUNT(*)

FROM lineitem

WHERE price > 42

� How can this be done efficiently?

Similar: SUM(·), MAX(·), MIN(·), . . .

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 160

SIMD and Databases: Scan-Based Tasks

Selection queries are a slightly more tricky:

There are no branching primitives for SIMD registers.

→ What would their semantics be anyhow?

Moving data between SIMD and scalar registers is quite expensive.

→ Either go through memory, move one data item at a time, or

extract sign mask from SIMD registers.

Thus:

Use SIMD to generate bit vector; interpret it in scalar mode.

� If we can count with SIMD, why can’t we play the j += (· · ·) trick?

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 161

Decompression

Column decompression (↗ slides 120ff.) is a good candidate for SIMD

optimization.

Use case: n-bit fixed-width frame of reference compression;

phase 1 (ignore exception values).

→ no branching, no data dependence

With 128-bit SIMD registers (9-bit compression):

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

v13 v12 v11 v10 v9 v8 v7 v6 v5 v4 v3 v2 v1 v0

v3 v2 v1 v0

? ? ?

↗Willhalm et al. SIMD-Scan: Ultra Fast in-Memory Table Scan using on-Chip

Vector Processing Units. VLDB 2009.

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 162

Decompression—Step 1: Copy Values

Step 1: Bring data into proper 32-bit words:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

v13 v12 v11 v10 v9 v8 v7 v6 v5 v4 v3 v2 v1 v0

v3 v2 v1 v0

FF FF 4 3 FF FF 3 2 FF FF 2 1 FF FF 1 0

shuffle mask

Use shuffle instructions to move bytes within SIMD registers.

__m128i out = _mm_shuffle_epi8 (in, shufmask);

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 163

Decompression—Step 2: Establish Same Bit Alignment

Step 2: Make all four words identically bit-aligned:

3 bits 2 bits 1 bits 0 bits

v3 v2 v1 v0

3 bits 3 bits 3 bits 3 bits

v3 v2 v1 v0

shift 0 bits shift 1 bits shift 2 bits shift 3 bits

�
SIMD shift instructions do not support variable shift amounts!

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 164

Decompression—Step 3: Shift and Mask

Step 3: Word-align data and mask out invalid bits:

v3 v2 v1 v0

v3 v2 v1 v0

v3 v2 v1 v0

__m128i shifted = _mm_srli_epi32 (in, 3);

__m128i result = _mm_and_si128 (shifted, maskval);

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 165

Decompression Performance

 For the bit alignment (i.e. extracting and storing) step discussed

in Section 4.1.3, we realized the independent 32-bit SIMD shift

operation (i.e. four different shift amounts for each DW) by using

32-bit SIMD integer multiplication. The idea is that multiplying a

value by “2d” results in 1-bit shift to the left. So to shift left an

operand by �-bit, the second operand (multiplicand) has to be 2X.

After shifting all values so that they have the same number of

preceding (invalid) bits �, a single 32-bit SIMD shift instruction

is used to shift all DWs by � so that all values are align at the

beginning. Hence, this implementation realizes an independent

shift (to the right) by only two SIMD instructions. After that, the

invalid bits are masked out by using a single 128-bit SIMD AND

instruction with an appropriate mask operand. Finally, the

decompressed values are stored back in the memory by using a

single 128-bit SIMD store instruction.

 It should be noted that our implementation has many other

alternatives for bit alignment. Each alternative has its own

speedup advantage but is applicable to specific compression-bit

case. Integer multiplication is the mostly used implementation and

delivers near-best speedup. If only two distinct shift amounts are

required, like in 4-bit and 6-bit compression cases, it is beneficial

to use a shift instruction and a blend instruction to realize the

same concept. With this technique, more care is needed in the

proceeding 8/16-bit SIMD shuffle instruction to arrange the

values in the correct order. It is also worth noting that a 128-bit

SIMD compare instruction with a bit mask can be used for 1-bit

compression to spread the value of a bit to all bits in the same byte

(i.e. extend the bit to the byte level). Hence, a single comparison

can therefore be used to expand the values. We have also

evaluated other implementations using division, addition, shuffle,

and logic SIMD instructions to realize the same concept and work

on 2, 4, 8, and even 16 compressed values at a time. However,

these implementations are slower and we list them only for the

sake of completeness. Also, not all SIMD architectures support all

of the assumed instructions so that they need to be implemented

differently. The alternatives that turned out to be the fastest are the

ones that we have described in detail here and in Section 2.

 For table scan search with predicated discussed in Section 4.2,

we used two 8/16/32-bit SIMD integer compare instructions to

build up the search result. One additional 128-bit SIMD AND

instruction is used to format the search result as all 1s or 0s to

simplify the index or bit-vector generation. Using the 128-bit

SIMD move/mask instruction, the SIMD result can be converted

efficiently to a scalar mask �, which can be written to a bitvector.

Alternatively, the scalar result can be used to generate the indexes

of the search results. This can be implemented efficiently by

maintaining a SIMD register with the current indexes and using

8/16/32-bit SIMD shuffle instructions for storing the result. In this

case, the scalar mask � can be used as an index for a look-up

table holding possible shuffle masks.

 We integrated our approach into SAP® Netweaver® Business

Warehouse Accelerator (BWA) [17]. SAP® Netweaver® BWA is

an appliance-like solution co-developed by SAP and Intel. The

software indexes selected information to create a highly

compressed index structure that loads to the memory whenever

users request the data. The accelerator uses high-performance

aggregation techniques to process queries entirely in memory, and

then delivers results back to the SAP® Netweaver® BW for

output to users.

6. EXPERIME�TS
 For our evaluation, the SAP® Netweaver® BWA engine was

modified in a way that either the standard or the vectorized table

scan method can be used. In order to present realistic results, we

did deep (production like) integration on the engine level without

the need for further data copies or data transformations during

query runtime. Furthermore, the engine implements two versions

of the full table scan; the first method only decompresses the table

column, while the second method integrates search predicate

handling into the scan without unpacking the data in advance. For

both versions we implemented a SSE version based on our

approach.

 We implemented the evaluation experiments on a single server

equipped with two Intel® Xeon® Processors X5560 (2.8GHz),

each having four processing cores and 8MB last level cache. The

server was equipped with 24GB of RAM and the operating system

was SuSE* Linux* Enterprise Edition 10, Service Pack 2.

 For each compression-bit case (determined by Equation 1), 1B-

records were decompressed 10 times for each implementation and

the running time was recorded. The performance of the

decompression routine is mostly data-independent and varies only

with the used compression-bit case.

 Figure 11 depicts the median query time for each bit case using

different implementations of the decompression routine. There, it

clearly seen that the existing table scan method is already

optimized for performance by minimizing the cache miss rate and

massively unrolling the code loops, which allows the pre-

computation of shift arguments and masks. As a reference point,

we also included the results for a variant without loop-unrolling

that shows a significantly higher latency.

 Figure 11: Time to decompress 1B integers

 Also in Figure 11, it should be noted that the performance gain

is significant as we test against a fully optimized system

implementation (over years). In this implementation, the high

performance of the full table scan is considered to be one of the

main values of the system. We achieve performance

improvements on top of that using our prototype implementation,

which demonstrates that our approach is indeed promising.

 The speedup of the SIMD implementation for the value

decompression, against the highly optimized scalar version, is

0

200

400

600

800

1000

1200

1400

1600
Q
u
e
ry
 t
im
e
 [
m
s
]

Compression-bit Case

unoptimized scalar optimized scalar vectorized

S
o
u
rc
e
:
W
ill
h
a
lm
e
t
a
l.
S
IM
D
-S
c
a
n
:
U
lt
ra
F
a
st
in
-M
e
m
o
ry
T
a
b
le

S
c
a
n
u
si
n
g
o
n
-C
h
ip
V
e
c
to
r
P
ro
c
e
ss
in
g
U
n
it
s.
V
L
D
B
2
0
0
9
.

Time to decompress 1 billion integers (Xeon X5560, 2.8 GHz).

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 166

Comments

Some SIMD instructions require hard-coded parameters.

Thus: Expand code explicitly for all possible values of n.

→ There are at most 32 of them.

→ Fits with operator specialization in column-oriented DBMSs

↗ slide 54

Loading constants into SIMD registers can be relatively expensive

(and the number of registers limited).

→ One register for shuffle mask and one register to shift data

(step 2) is enough.

For larger n, a compressed word may span more than 4 bytes.

→ Additional tricks needed (shift and blend).

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 167

Vectorized Predicate Handling

Sometimes it may be sufficient to decompress only partially.

E.g., search queries vi < c :

v3 v2 v1 v0

c c c c

Only shuffle and mask (but don’t shift).

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 168

Vectorized Predicate Handling: Performance

shown in Figure 12. The performance improvement is generally

higher for the bit cases up to 8 bits, where 8 values can be

processed in parallel in one SSE register. There, the average

speedup factor is 1.58 over all bit cases.

Figure 12. Speedup for decompression by vectorization

 The speedup of the SIMD implementation for searching a

value (full-table scan) in 1B records is shown in Figure 13. The

experimental test-set for bit case � consists of the natural numbers

modulo 2XYB. Again, the measurements were performed 10 times

on a test program executing the search routine as described in

Section 4.2, and the median of the 10 runs was used for

computing the speedup. For the lower bit-compression cases, the

search result is very large for a single search-value (e.g. if 2 bits

are used, a quarter of our test data set is returned). For bit cases 27

onwards, special care is needed to handle compressed values that

span across 5 Bytes as shown in Figure 7. As a result, this

reduces the performance advantage to the extent that for bit case

31, the vectorized implementation was slower than the scalar

version. However, the average speedup factor of a full-table scan

is still 2.16. In practice, the SIMD implementation is only used in

bit cases where it is faster than its scalar counterpart, which is the

dominant scenario.

Figure 13. Speedup of full-table scan by vectorization

 If the result of a full table scan is returned as a bit-vector, the

running time is independent of the number of hits. However in

case a list of indexes is returned, the running time increases for

large results as storing the results cannot fully exploit the benefit

of storing vector instructions. The best speedup is therefore

achieved for very selective queries as graphed in Figure 14, which

displays the Speedup vs. Selectivity. Again 1B entries were

processed 10 times and the median was recorded. Each point in

the graph displays the average speed-up over all bit cases. The

overall speedup average is 1.63.

Figure 14. Speedup of full-table scan by selectivity

 In real world scenarios, and according to our experience at SAP,

the compression bits used to compact database columns are

mainly in the range of 8 to 16 bits. Figure 15 shows the practical

distribution of the compression bit cases against the running time

contribution of the table scan routines for a typical customer

scenario. Taking this distribution into account, the (weighted)

speedup factor for a full-table scan is 2.45 over all bit cases.

Figure 15: Running time distribution for customer workload

 Finally, we executed the vectorized search in parallel on

different processor cores to verify its scalability. Figure 16 shows

that the vectorized search scales almost linearly up to eight cores

that are installed on the evaluation system. The memory

bandwidth leaves sufficient headroom for future processors with

0.0

0.5

1.0

1.5

2.0

2.5

3.0

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

S
p
e
e
d
u
p
 S
S
E
 v
s
.
S
c
a
la
r

Compression-bit case

0.0

0.5

1.0

1.5

2.0

2.5

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

S
p
e
e
d
u
p
 S
S
E
 v
s
.
S
c
a
la
r
c
o
d
e

Compression-bit Case

0.0

0.5

1.0

1.5

2.0

2.5

100% 90% 80% 70% 60% 50% 40% 30% 20% 10%

S
p
e
e
d
u
p
 S
S
E
 v
s
.
S
c
a
la
r
C
o
d
e

Selectivity

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33

C
o
n
tr
ib
u
ti
o
n
 t
o
 R
u
n
n
in
g
 T
im
e

Compression-bit Case

S
o
u
rc
e
:
W
ill
h
a
lm
e
t
a
l.
S
IM
D
-S
c
a
n
:
U
lt
ra
F
a
st
in
-M
e
m
o
ry
T
a
b
le

S
c
a
n
u
si
n
g
o
n
-C
h
ip
V
e
c
to
r
P
ro
c
e
ss
in
g
U
n
it
s.
V
L
D
B
2
0
0
9
.

Speedup versus optimized scalar implementation.

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 169

Use Case: Tree Search

Another SIMD application: in-memory tree lookups.

Base case: binary tree, scalar implementation:

for (unsigned int i = 0; i < n_items; i++) {

k = 1; /* tree[1] is root node */

for (unsigned int lvl = 0; lvl < height; lvl++)

k = 2 * k + (item[i] <= tree[k]);

result[i] = data[k];

}

Represent binary tree as array tree[·] such that children of n are at

positions 2n and 2n + 1.

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 170

Vectorizing Tree Search

� Can we vectorize the outer loop?

(i.e., find matches for four input items in parallel)

Iterations of the outer loop are independent.

There is no branch in the loop body.

�
Many SIMD implementations do not support scatter/gather!

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 171

Vectorizing Tree Search

� Can we vectorize the inner loop?

Data dependency between loop iterations (variable k).

Intuitively: Cannot navigate multiple steps at a time, since first

navigation steps are not (yet) known.

But:

Could speculatively navigate levels ahead.

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 172

“Speculative” Tree Navigation

Idea: Do comparisons for two levels in parallel.

1

2

4

8 9

5

10 11

3

6

12 13

7

14 15

?

? ?

?

? ?

E.g.,

1 Compare with nodes 1, 2, and 3 in parallel.

2 Follow link to node 6 and compare with nodes 6, 12, and 13.

3

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 173

SIMD Blocking

Pack tree sub-regions into SIMD registers.

1

2

4

8 9

5

10 11

3

6

12 13

7

14 15

; Re-arrange data in memory for this.

↗ Kim et al. FAST: Fast Architecture Sensitive Tree Search on Modern CPUs

and GPUs. SIGMOD 2010.

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 174

SIMD and Scalar Registers

E.g., search key 59:
41

23

11

2 19

31

29 37

61

47

43 53

73

67 79

41 23 61

59 59 59

1 · · · 1 1 · · · 1 0 · · · 0
SIMD cmp

00001100 scalar register
movemask

→ SIMD to compare, scalar to navigate, movemask in-between.

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 175

Tree Navigation

Use scalar movemask result as index in lookup table:

pipelining, and interleave the memory access and computation for
different queries. For example, while crossing cache line blocks,
we issue a prefetch for the next cache line block to be accessed (for
a specific query), and subsequently perform comparison operations
for the other query(ies). After performing the comparison for all
the remaining queries, we access the cache line (the same address
we issued prefetch for earlier). With adequate amount of gap, the
cache line would have been brought into the cache by the prefetch,
thereby hiding memory latency. This process ensures complete
utilization of the compute units. Although modern GPUs provide
large number of threads to hide the memory access latency, the re-
sultant memory access and instruction dependency still expose the
latency, which is overcome using our layout and software pipelin-
ing schemes (Section 5.2).

In order to minimize the incurred latency during search opera-
tion, we want to increase dP (in order to reduce the number of TLB
misses) and increase dL (to reduce the number of accessed cache
lines). The only way to increase both is to reduce the element size
(E). For in-memory databases, the number of tuples is typically
less than the range of 32-bit numbers (232), and hence the keys can
be represented using 32 bits (4-byte) integers. We assume 4-byte
keys and 4-byte rid’s for algorithm description in the next section,
and provide algorithms for representing longer and variable length
keys using 4-bytes in Section 6. 32-bit keys also map well to SIMD
on modern architectures (CPU and GPU), with native instruction
support for 32-bit elements in each SIMD lane.

5. CPU SEARCH VS. GPU SEARCH
We describe in detail the complete search algorithm on CPUs and

GPUs We discuss various parameters used for our index tree layout
and the SIMDified search code, along with a detailed analysis of
performance and efficiency comparison on the two architectures.

5.1 CPU Implementation
Today’s CPUs like the Intel Core i7 have multiple cores, each

with a 128-bit SIMD (SSE) computational unit. Each SSE instruc-
tion can operate simultaneously on four 32-bit data elements. E
equals four bytes for this section. As far as exploiting SIMD is
concerned, there are multiple ways to perform searches:
(a) Searching one key, and using the SSE instructions to speedup
the search.
(b) Searching two keys, using two SIMD lanes per search.
(c) Searching four keys, one per SIMD lane.

Both options (b) and (c) would require gathering elements from
different locations. Since modern CPUs do not support an efficient
implementation of gather, the overhead of implementing these in-
structions using the current set of instructions subsumes any benefit
of using SIMD. Hence we choose option (a) for CPUs, and set dK
= 2 levels. The cache line size is 64 bytes, implying dL = 4 lev-
els. The page size used for our experimentation is 2MB (dL = 19),
although smaller pages (4KB, dL = 10) are also available.

5.1.1 Building the Tree
Given a sorted input of tuples (Ti, i∈ (1..N), each having 4-byte

(key, rid)), we layout the index tree (T') by collecting the keys
from the relevant tuples and laying them out next to each other. We
set dN = #log2(N)$. In case N is not a power of two, we still build
the perfect binary tree, and assume keys for tuples at index greater
than N to be equal to the largest key (or largest possible number),
denoted as keyL . We iterate over nodes of the tree to be created
(using index k initialized to 0). With current CPUs lacking gather
support, we layout the tree by:
(a) computing the index (say j) of the next key to be loaded from

61

7347

23

3111

41

3729192 79675343

Child Index = 2

Child Index = 3

000
100
010
110
001
101
011
111

Lookup
Index

0
N/A

1
2

N/A
N/A
N/A

3
Child
Index

Lookup Table

Search Key = 59

1

1 0

1

1 1

Key value in the
tree node

mask bit value:
set to 1

if keyq > keynode

Use mask
value as

index

Figure 2: Example of SIMD(SSE) tree search and the lookup table.

the input tuples.
(b) loading in the key : key′ ← T j .key (if j>N , key′← keyL).
(c) T'k = key′, k++.

This process is repeated till the complete tree is constructed (i.e.
k = (2dN -1)). The tree construction can be parallelized by dividing
the output equally amongst the available cores, and each core com-
puting/writing the relevant part of the output. We exploit SIMD for
step (a) by computing the index for NK (= 3) keys within the SIMD
level block simultaneously. We use appropriate SSE instructions
and achieve around 2X SIMD scaling as compared to the scalar
code. Steps (b) and (c) are still performed using scalar instructions.

For input sizes that fit in the LLC, tree construction is compute
bound, with around 20 ops5 per element, for a total construction
time of 20·2dN ops per core. For N = 2M, the total time is around
40M cycles per core, assuming the CPU can execute 1 instruction
per cycle. When the input is too large to fit into the LLC, the tree
construction needs to read data from memory, with the initial loads
reading complete cache lines but only extracting out the relevant
4 bytes. To compute the total bandwidth required, let’s start with
the leaf nodes of T'. There are a total of 2dN −1 leaf nodes. The
indices for the nodes would be the set of even indices – 0, 2, and
so on. Each cache line holds eight (key, rid) tuples of which four
tuples have even indices. Hence populating four of the leaf nodes
of T' requires reading one cache line, amounting to L/4 bytes per
node. For the level above the leaf nodes, only two leaf nodes can
be populated per cache line, leading to L/2 bytes per node. There
are 2dN −2 such nodes. For all the remaining nodes (2dN −2-1), a
complete cache line per node is read. Since there is no reuse of
the cache lines, the total amount of required bandwidth (analyti-
cally) would be 2dN −1L/4 + 2dN −2L/2 + (2dN −2-1)L ∼ (L/2)2dN

bytes, equal to 32(2dN) bytes for CPUs. Depending on the avail-
able bandwidth, this may be compute/bandwidth bound. Assuming
reasonable bandwidth (>1.6-bytes/cycle/core), our index tree con-
struction is compute bound. For N as large as 64M tuples, the
run-time is around 1.2 billion cycles (for a single core), which is
less than a 0.1 seconds on the Core i7. With such fast build times,
we can support updates to the tuples by buffering the updates and
processing them in a batch followed by a rebuild of the index tree.

5.1.2 Traversing the Tree
Given a search key (keyq), we now describe our SIMD friendly

tree traversal algorithm. For a range query ([keyq1, keyq2]), keyq
← keyq1. We begin by splatting keyq into a vector register (i.e.,
replicating keyq for each SIMD lane), denoted by Vkeyq. We start
the search by loading 3 elements from the start of the tree into the
register Vtree. At the start of a page, page_offset ← 0.
Step 1: Vtree ← sse_load(T' + page_offset).
This is followed by the vector comparison of the two registers to
set a mask register.

51 op implies 1 operation or 1 executed instruction.

343

Image source: Kim et al. FAST: Fast Architecture Sensitive Tree Search on Modern CPUs

and GPUs. SIGMOD 2010.

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 176

Hierarchical Blocking

Blocking is a good idea also beyond SIMD.

15
7 23

3 11 19 27

0 2

2925211713951

4 6 8 10 12 14 16 18 20 22 24 26 28 30

0
1 2

3 6 9 12

15 16

141311108754

17 18 19 20 21 22 23 24 25 26 27 28 29 30

(a)

(b)

SIMD Blocking

Cache line Blocking

Page Blocking

Key1,
Rid1

Keyn,
Ridn

....

....

..

..
..

. .

.
.

Index Tree
(Only Keys)

Node Array
(Keys + Rids)

Key2,
Rid2

...
(c)

dP

dN

dL

Depth of SIMD Blocking

dK

dK
dL Depth of Cache Line Blocking
dP Depth of Page Blocking
dN Depth of Index Tree

Figure 1: (a) Node indices (=memory locations) of the binary tree (b) Rearranged nodes with SIMD blocking (c) Index tree blocked in three-level
hierarchy – first-level page blocking, second-level cache line blocking, third-level SIMD blocking.

E : Key size (in bytes).
K : SIMD width (in bytes).
L : Cache line size (in bytes).
C : Last level cache size (in bytes).
P : Memory page size (in bytes).
N : Total Number of input keys.
NK : Number of keys that can fit into a SIMD register.
NL : Number of keys that can fit into a cache line.
NP : Number of keys that can fit into a memory page.
dK : Tree depth of SIMD blocking.
dL : Tree depth of cache line blocking.
dP : Tree depth of page blocking.
dN : Tree depth of Index Tree.

In order to simplify the computation, the parameters NP , NL and
NK are set to be equal to the number of nodes in complete binary
sub-trees of appropriate depths3. For example, NP is assigned to be
equal to 2dP -1, such that E(2dP -1) ≤ P and E(2dP +1-1) > P . Sim-
ilarly, NL = 2dL -1 and NK = 2dK -1. Consider Figure 1 where we
let NL= 31, dL = 5 and dK = 2. Figure 1(a) shows the indices of the
nodes of the binary tree, with the root being the key corresponding
to the 15th tuple, and its two children being the keys corresponding
to the 7th and 23rd tuples respectively, and so on for the remaining
tree. Traditionally, the tree is laid out in a breadth-first fashion in
memory, starting from the root node.

For our hierarchical blocking, we start with the root of the binary
tree and consider the sub-tree with NP elements. The first NK
elements are laid out in a breadth-first fashion. Thus, in Figure 1(b),
the first three elements are laid out, starting from position 0. Each
of the (NK + 1) children sub-trees (of depth dK) are further laid
out in the same fashion, one after another. This corresponds to the
sub-trees (of depth 2) at positions 3, 6, 9 and 12 in Figure 1(b). This
process is carried out for all sub-trees that are completely within the
first dL levels from the root. In case a sub-tree being considered
does not completely lie within the first dL levels (i.e. when dL %
dK != 0), the appropriate number of levels (dL % dK) are chosen,
and the elements laid out as described above. In Figure 1(b), since
the 16 sub-trees at depth 4 can only accommodate depth one sub-
trees within the first five (dL) levels, we lay them out contiguously
in memory, from positions 15 to 30.

After having considered the first dL levels, each of the (NL +1)
children sub-trees are laid out as described above. This is repre-
sented with the red colored sub-trees in Figure 1(c). This process is
carried out until the first dP levels of the tree are rearranged and laid
out in memory (the top green triangle). We continue the same rear-
rangement with the sub-trees at the next level and terminate when
all the nodes in the tree have been rearranged to the appropriate po-
sitions. For e.g., Fig. 1(c) shows the rearranged binary tree, with
the nodes corresponding to the keys stored in the sorted list of (key,

3By definition, tree with one node has a depth of one.

rid) tuples. Our framework for architecture optimized tree layout
preserves the structure of the binary tree, but lays it out in a fashion
optimized for efficient searches, as explained in the next section.

4.3 Compute and Bandwidth Analysis
We first analyze the memory access pattern with our hierarchi-

cally blocked index tree structure, and then discuss the instruction
overhead required for traversing the restructured tree. Let dN de-
note the depth of the index tree. Consider Figure 1(c). Assuming a
cold cache and TLB, the comparison to the root leads to a memory
page access and a TLB miss, and say a latency of lP cycles. The
appropriate cache line is fetched from the main memory into the
cache, incurring a further latency of say lL cycles. We then access
the necessary elements for the next dL levels (elements within the
top red triangle in the figure). The subsequent access incurs a cache
miss, and a latency of lL cycles. At an average, #dP /dL$ cache
lines will be accessed within the first page (the top green triangle).
Therefore, the total incurred latency for any memory page would
be (lP + #dP /dL$lL) cycles. Going to the bottom of the complete
index tree would require #dN /dP $ page accesses, for an average
incurred latency of #dN /dP $(lP + #dP /dL $lL) cycles 4.

To take into account the caching and TLB effect, say dC out of
the dN levels fit in the last level cache. Modern processors have
a reasonable size TLB, but with a random query distribution, it is
reasonable to assume just the entry for the top page to be in the
page table during the execution of a random search. Therefore, the
average incurred latency will be (1-dC /dN)(#dN /dP $#dP /dL$lL)
+ lP (#dN /dP $-1) cycles (ignoring minimal latency of accessing
cache lines from the cache). The resultant external memory band-
width will be L(1-dC /dN)(#dN /dP $#dP /dL$) bytes.

As for the computational overhead, our blocking structure in-
volves computation of the starting address of the appropriate SIMD
chunk, cache line, page block once we cross the appropriate bound-
ary. For each crossed boundary, the computation is simply an accu-
mulated scale-shift operation (multiply-add followed by add) due to
the linear address translation scheme. For example, when crossing
the cache line block, we need to multiply the relative child index
from the cache line with the size of each cache line and add it to
the starting address of that level of sub-trees.

For a given element key size (E), the number of accessed cache
lines (and memory pages) is provably minimized by the hierarchi-
cal tree structure. However, while performing a single search per
core, the compute units still do not perform any computation while
waiting for the memory requests to return, thereby under utilizing
the compute resource. In order to perform useful computation dur-
ing the memory accesses, we advocate performing multiple search
queries simultaneously on a single core/thread. We use software

4Assuming a depth of dP for the bottom most page of the index tree. For a
smaller depth, replace dP /dL with d′

P /dL for the last page, where d′
P is the

sub-tree depth for the last page.

342

Image source: Kim et al. FAST: Fast Architecture Sensitive Tree Search on Modern CPUs

and GPUs. SIGMOD 2010.

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 177

SIMD Tree Search: Performance

Platform Peak GFlops Peak BW Total Frequency
Core i7 103.0 30 12.8

GTX 280 933.3 141.7 39

Table 1: Peak compute (GFlops), bandwidth (GB/sec), and total fre-
quency (Cores * GHz) on the Core i7 and the GTX 280.

Figure 6: Normalized search time with various architectural opti-
mization techniques (lower is faster). The fastest reported performance
on CPUs [28] and GPUs [2] is also shown (for comparison).

(core count · frequency) of the two platforms are shown in Table 1.
We generate 32-bit (key, rid) tuples, with both keys and rids gen-
erated randomly. The tuples are sorted based on the key value and
we vary the number of tuples from 64K to 64M6. The search keys
are also 32-bit wide, and generated uniformly at random. Random
search keys exercise the worst case for index tree search with no
coherence between tree traversals of subsequent queries.

We first show the impact of various architecture techniques on
search performance for both CPUs and GPUs and compare search
performance with the best reported number on each architecture.
Then, we compare the throughput of CPU search and GPU search
and analyze the performance bottlenecks for each architecture.

5.3.1 Impact of Various Optimizations
Figure 6 shows the normalized search time, measured in cycles

per query on CPUs and GPUs by applying optimization techniques
one by one. We first show the default search when no optimiza-
tion technique is applied and a simple binary search is used. Then,
we incrementally apply page blocking, cache line blocking, SIMD
blocking, and software pipelining with prefetch. The label of “+SW
Pipelining” shows the final relative search time when all optimiza-
tion techniques are applied. We report our timings on the two ex-
treme cases – small trees (with 64K keys) and large trees (with 64M
keys). The relative performance for intermediate tree sizes fall in
between the two analyzed cases, and are not reported.

For CPU search, the benefit of each architecture technique is
more noticeable for large trees than small trees because large trees
are more latency bound. First, we observe that search gets 33%
faster with page blocking, which translates to around 1.5X speedup
in throughput. Adding cache line blocking on top of page blocking
results in an overall speedup of 2.2X. This reduction of search time
comes from reducing the average TLB misses and LLC misses sig-
nificantly – especially when traversing the lower levels of the tree.
However, page blocking and cache line blocking do not help small
trees because there are no TLB and cache misses in the first place;
in fact, cache line blocking results in a slight increase of instruc-
tions with extra address computations. Once the impact of latency
is reduced, SIMD blocking exploits data-level parallelism and pro-
vides an additional 20% – 30% gain for both small and large trees.

664M is the max. number of tuples that fit in GTX 280 memory of 1GB.

Figure 7: Comparison between the CPU search and the GPU search.
”CPU-BW” shows the throughput projection when CPU search be-
comes memory bandwidth bound

Finally, the software pipelining technique with prefetch relaxes the
impact of instruction dependency and further hides cache misses.

Our final search performance is 4.8X faster for large trees and
2.5X faster for small trees than the best reported numbers [28]. As
shown in Figure 6, our scalar performance with page and cache line
blocking outperforms the best reported SIMD search by around
1.6X. This emphasizes the fact that SIMD is only beneficial once
the search algorithm is compute bound, and not bound by various
other architectural latencies. Applications that are latency bound
do not exploit the additional compute resources provided by SIMD
instructions. Also note that our comparison numbers are based on a
single-thread execution (for fair comparison with the best reported
CPU number). When we execute independent search queries on
multiple cores, we achieve near-linear speedup (3.9X on 4-cores).
The default GPU search (Fig. 6) executes one independent binary
search per SIMD lane, for a total of 32 searches for SIMD execu-
tion. Unlike CPU search, GPU search is less sensitive to blocking
for latency. We do not report the number for cache line blocking
since the cache line size is not disclosed. While the default GPU
search suffers from gathering 32 tree elements, SIMD blocking al-
lows reading data from contiguous memory locations thus remov-
ing the overhead of gather. Since the overhead of gather is more sig-
nificant for large trees, our GPU search obtains 1.7X performance
improvement for large trees, and 1.4X improvement for small trees
with SIMD blocking. Our GPU implementation is compute bound.

5.3.2 CPU search VS. GPU search
We compare the performance of search optimized for CPU and

GPU architectures. Figure 7 shows the throughput of search with
various tree sizes from 64K keys to 64M keys. When the tree fits
in the LLC, CPUs outperform GPUs by around 2X. This result
matches well with analytically computed performance difference.
As described in the previous subsections, our optimized search re-
quires 4 ops per level per query for both CPUs and GPUs. Since
GPUs take 4 cycles per op, they consume 4X more cycles per op
as compared to the CPU. On the other hand, GPUs have 3X more
total frequency than CPUs (Table 1). On small trees, CPUs are not
bound by memory latency and can operate on the maximum in-
struction throughput rate. Unlike GPUs, CPUs can issue multiple
instructions per cycle and we observe an IPC of around 1.5. There-
fore, the total throughout ratio evaluates to around (1.5*4/3) ∼2X
in the favor of CPUs.

As the tree size grows, CPUs suffer from TLB/LLC misses and
get lower instruction throughput rate. The dotted line, labeled “CPU-
BW” shows the throughput projection when CPU search becomes
memory bandwidth bound. This projection shows that CPUs are
compute bound on small trees and become closer to bandwidth
bound on large trees. GPUs provide 4.6X higher memory band-
width than CPUs and are far from bandwidth bound. In the next

346

Source: Kim et al. FAST: Fast Architecture Sensitive Tree Search on Modern CPUs and

GPUs. SIGMOD 2010.

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 178

	Vectorization
	Hardware Parallelism
	SIMD

	SIMD: Vectorized Execution
	Coding for SIMD
	SIMD for Database Tasks

	Use Case: Decompression
	Decompression Step-By-Step
	Performance
	Predicates

	Use Case: Tree Search
	"Speculative" Tree Navigation
	SIMD Blocking
	Hierarchical Blocking

