
Data Processing on Modern Hardware

Jens Teubner, TU Dortmund, DBIS Group

jens.teubner@cs.tu-dortmund.de

Summer 2016

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 1

Part V

Execution on Multiple Cores

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 179

Example: Star Joins

Task: run parallel instances of the query (↗ introduction)

SELECT SUM(lo_revenue)

FROM

dimension

part, lineorder
fact table

WHERE p_partkey = lo_partkey

AND p_category <= 5

1

σ

part

lineorder

To implement 1 use either

a hash join or

an index nested loops join.

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 180

Execution on “Independent” CPU Cores

Co-run independent instances on different CPU cores.

0 %20 %40 %60 %

performance degradation

HJ alone

HJ + HJ

HJ + INLJ

INLJ alone

INLJ + HJ

INLJ + INLJ

Concurrent queries may seriously affect each other’s performance.
c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 181

Shared Caches

In Intel Core 2 Quad systems, two cores share an L2 Cache:

main memory

L2 Cache L2 Cache

L1 Cache L1 Cache L1 Cache L1 Cache

CPU CPU CPU CPU

What we saw was cache pollution.

→ How can we avoid this cache pollution?

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 182

Cache Sensitivity

Dependence on cache sizes for some TPC-H queries:

1.4 Our Contributions
The contributions of our work are three-fold. First, we

have identified the cache conflict problem of running a DBMS
in multi-core processors. We have also shown that techni-
cal challenges to address this problem are beyond the ability
scope of the DBMS itself. Second, we have made a strong
case for a collaboration between the DBMS and the OS to
achieve the goal of minimizing cache conflicts. We have de-
signed and implemented MCC-DB that effectively breaks the
performance bottleneck in the shared LLC. Finally, we have
evaluated MCC-DB on a modified PostgreSQL and a mod-
ified Linux kernel, and have shown that MCC-DB can re-
duce query execution times by up to 33% for warehouse-style
queries. To our best knowledge, MCC-DB is the first multi-
core cache optimized DBMS system with a well documented
design and performance evaluation. We believe that this hy-
brid system framework can be easily adopted to both com-
mercial and open source databases in practice.

The rest part of this paper is organized as follows. Section
2 discusses the cache conflict problem. Section 3 introduces
our MCC-DB framework. Section 4 presents how to deter-
mine query locality. Section 5 describes MCC-DB without
OS support, while section 6 describes MCC-DB with cache
partitioning support of the OS. Performance evaluation is in
section 7. Section 8 presents related work. We conclude this
paper in the last section.

2. CACHE CONFLICTS ON MULTI-CORES
Increasing the number of processing cores can improve the

inter-query parallelism for DBMS transactions. However,
the limited cache space would be shared by more concur-
rent query executions, which can lead to unnecessary cache
conflicts and cause undesired performance degradations. In
essence, the cache conflict occurs due to three reasons.

1. Different query executions can have very different data
locality strengths, which determine how much a query
can benefit from the allocated cache space.

2. The simple LRU-based cache replacement policy used
in LLC does not consider how a query can really ben-
efit from the cache but only considers how to satisfy a
query’s cache capacity demand.

3. A query execution process has its private data struc-
tures that need to be frequently accessed. However,
such data structures can be replaced by one-time ac-
cessed data structures (weak locality), or by other sim-
ilar data structures due to limited cache capacity.

In order to well understand the problem, we first show the
diverse locality strengths of DBMS queries, then we discuss
the drawback of LRU-based cache replacement in the LLC.

2.1 Diverse Cache Localities of Warehouse-style
Database Queries

In this section, we use TPC-H queries (1GB data set) as
examples of warehouse-style queries to demonstrate the exis-
tence of different locality strengths across various query ex-
ecutions. Our experimental system is a DELL PowerEdge
1900 server, which has two Intel Core2Quad Xeon X5355
2.66GHz CPUs, 16GB FB-DIMM memory, and five 146GB
15,000 RPM SCSI disks. Each Xeon processor has four cores,
and every two cores share a 4MB L2 cache (the LLC). We

Figure 2: The performance of TPC-H queries when
shrinking the L2 cache size.

use RedHat Enterprise Linux Server 5 with the Linux ker-
nel 2.6.20 and EXT3 file system. The DBMS used in our
experiments is the PostgreSQL 8.3.0.

In order to examine how the cache size affects query ex-
ecution performance, we use MCC-DB’s cache partitioning
mechanism (more details in Section 6) to alter the available
L2 cache space allocation for each query execution and ex-
amine the changes of its performance correspondingly. In our
experiments, the allocated L2 cache size is varied from 4MB
to 512KB in the descending order. We measured the perfor-
mance by two metrics, the L2 cache miss rate and the Cycles
Per Instruction (CPI), 3 as shown in Figure 2. The figure
does not show the queries with too short execution times and
Query 9, which has a CPI of 9.66 to 11.83 and a L2 miss rate
of 38.8% to 49.3%.

As shown in Figures 2 (a) and (b), we can find that there
is a strong correlation between the CPI (execution time) of
a query execution and the corresponding L2 cache miss rate.
This indicates that the L2 cache plays a key role in determin-
ing the query execution performance. We can also see that
different query executions show diverse behaviors when we
change the available cache size. We can generally classify the
queries into two groups:

(1) Cache-sensitive queries (Q5, Q8, and Q9) – their
execution times (CPI) are significantly affected by the size
of the allocated L2 cache space. The three queries are all
dominated by multi-way hash joins.

(2) Cache-insensitive queries (Q1, Q18, Q20, and Q21)
– their execution times do not change when we reduce the
cache space. Among them, Q1 is dominated by a sequential
table scan, Q18 is dominated by hash joins, and Q20 and Q21
are dominated by nested sub-query executions.

In essence, cache sensitivity of a query is determined by its
locality strength. Depending on the data access patterns of
operators for evaluating these queries, the queries have the
following three types of locality strengths:

(1) Strong locality – a query has a frequently-reused data
structure whose size is very small compared to the cache size.
Common query types are hash aggregation on a sequential
table scan (e.g. Q1) and hash join with small hash tables (e.g.
Q18). A strong-locality query is cache insensitive as long as
the cache space allocated to it can hold its frequently-reused
data structure. It has the least performance impact on its
co-runners, but it can be affected by the co-runners.

(2) Moderate locality – a query has a frequently-reused

3We use the perfmon tool to examine hardware counters
(available at: http://perfmon2.sourceforge.net/).

Some queries are more sensitive to cache sizes than others.

cache sensitive: hash joins

cache insensitive: index nested loops joins; hash joins with very

small or very large hash table
c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 183

Locality Strength

This behavior is related to the locality strength of execution plans:

Strong Locality

small data structure; reused very frequently

e.g., small hash table

Moderate Locality

frequently reused data structure; data structure ≈ cache size

e.g., moderate-sized hash table

Weak Locality

data not reused frequently or data structure � cache size

e.g., large hash table; index lookups

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 184

Execution Plan Characteristics

Locality effects how caches are used:

strong moderate weak

amount of cache used

cache pollution

small large large

amount of cache needed small large small

Plans with weak locality have most severe impact on co-running queries.

Impact of co-runner on query:

strong moderate weak

strong low moderate high

moderate moderate high high

weak low low low

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 185

Experiments: Locality Strength

4.2.1 Experiments
In order to understand locality strengths and related cache

conflicts of hash join and index join, we use SSB-based syn-
thetic queries to characterize them. These queries involve
only a 2-way join and have no GROUP BY. They have the
following forms:

select sum(LO REVENUE) from PART, LINEORDER
where P PARTKEY = LO PARTKEY
and ((P CATEGORY = ?) or (P CATEGORY = ?) or ...)

We select these queries because a very common pattern
we can see in SSB queries is a join between the PART ta-
ble and the LINEORDER table and then a sum function on
the LO REVENUE column. The selection condition on the
PART table is the logical disjunction of multiple expressions
on the P CATEGORY column. Each expression is a compar-
ison between the column and a constant value, for example
P CATEGORY =′ MGFR#11′. By statistics, this column
has 25 unique values, and each value is corresponding to a
similar number of tuples. Therefore, each expression has an
approximate selectivity of 4%. According to the number of
expressions, we name these queries as PLQ1, ..., and PLQ25.

When using hash join to execute each query, the hash table
is built on the tuples of the PART table. In this experiment,
we use a 2GB and a 4GB SSB data set. For the scale of 2GB,
the hash table size for a single expression is about 392KB. By
increasing the number of expressions in the disjunction clause
from 1 to 25, the hash table size can increase from 392KB to
9.28MB. For the scale of 4GB, the size can further increase
to 18.6MB. When using index join to execute each query, the
PART table is the outer relation that drives index scans on
the LINEORDER table. In this experiment, we examine two
index scan methods: the traditional B+-tree index scan and
the bitmap index scan.

We examine three combinations for the queries: (1) co-
running two hash joins (hash/hash), (2) co-running two index
joins (index/index), and (3) co-running a hash join and an
index join (hash/index). For hash/hash and index/index, we
run two instances of the same query. For hash/index, we first
select query PLQ25, which has the longest execution times for
both hash join and index join, as a common co-runner. Then
for each target query under examination, we run it together
with query PLQ25. In this way, we can ensure that the target
query would not finish earlier than query PLQ25, and the
target query is constantly under the pressure of query PLQ25

during the execution.
We use the execution time of running a target query alone

as the baseline case. Then we run two queries using the afore-
said three combinations to measure the performance degrada-
tions, relative to the baseline cases. Figure 4 shows the results
(we report representative queries considering the graph size).
In this figure, the X-axis values are the hash table sizes of hash
joins for the queries, in the ascending order. For brevity, we
merge experimental results for two data-set configurations in
the same figure. In particular, the queries with hash tables no
larger than 8.9MB are from the 2GB data-set configuration,
and the rest queries are from the 4GB data-set configura-
tion. The Y-axis is the performance degradation relative to
the baseline cases. We made observations as follows. (1)
An index join, using index scan or bitmap index scan, only
has small and stable performance degradations, no matter
whether it co-runs with a hash join or an index join. (2) An
index join can affect its hash join co-runner with a hash ta-

 0%

10%

20%

30%

40%

50%

60%

0.4 0.8 1.1 1.5 1.9 2.3 3 3.4 4.1 5.3 7.1 8.9 10.4 12.3 15.3 18.6

P
er

fo
rm

an
ce

 D
eg

ra
da

tio
n

Hash Table Size (MB)

Index Join to Index Join
Index Join to Hash Join
Hash Join to Index Join
Hash Join to Hash Join

Index Join to Index Join (bitmap scan)

Figure 4: Performance degradations when co-running
hash join and index join.

ble smaller than 12.3MB more significantly than a hash join.
(3) When the hash table size is no larger than 1.1MB, two
hash joins have slight interference with each other. (4) When
the hash table size is between 1.1MB and 12.3MB, the perfor-
mance degradations of hash joins caused by a co-running hash
join are high (>10%). Even higher performance degradations
(over 50%) can be found when the co-runner is an index join.
(5) When the hash table sizes are larger than 12.3MB, the
performance degradations of hash joins are similar to that of
index joins.

4.2.2 Identifying Operator Locality Strengths
Our experiments provide us with a basis to distinguish lo-

cality strengths of the two operators. First, according to our
analysis, index joins have weak localities. Our results confirm
the observations in paper [33] which shows that index joins
with B+-trees or even cache-conscious CSB+-trees [27] suffer
from significant cache thrashing and miss penalty. Second,
the locality strengths of hash joins are dependent on their
hash table sizes (S) and cache sizes (C). Motivated by the
test results, we adopt the following rules to quantitatively
identify the locality strength of a hash join, and classify hash
joins into three categories:

1. If S < C
3

(1.33MB), the hash join has strong locality.

2. If C
3
6 S < 3C, the hash join has moderate locality.

3. If S > 3C (12MB), the hash join has weak locality.

Although intuitively two co-running hash joins both with a
hash table smaller than C

2
should not cause cache contention,

our experiment shows that their performance degradations
are more than 20%. This is because, in practice, other compo-
nents in the database may consume a small amount of cache
as well. Therefore, we add a small slack and use C

3
and 3C

as boundaries to identify the locality strength of a hash join.
Our experiments show that this setting performs pleasantly
well in practice.

Table 1 summarizes performance degradations due to cache
conflicts. There are mostly two kinds of cache conflict de-
grading performance: (1) capacity contention: two moderate-
locality hash joins suffer cache conflict misses due to lim-
ited cache space. (2) cache pollution: an index join or a
weak-locality hash join pollutes the LLC so that a strong-

S
o

u
rc

e:
L

ee
et
a
l.

M
C

C
-D

B
:

M
in

im
iz

in
g

C
a

ch
e

C
o

n
fl

ic
ts

in
M

u
lt

i-
co

re
P

ro
ce

ss
o

rs
fo

r
D

a
ta

b
a

se
s.
V
L
D
B
2
0
0
9

.

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 186

Locality-Aware Scheduling

An optimizer could use knowledge about localities to schedule queries.

Estimate locality during query analysis.

Index nested loops join → weak locality

Hash join:

hash table� cache size → strong locality

hash table ≈ cache size → moderate locality

hash table� cache size → weak locality

Co-schedule queries to minimize (the impact of) cache pollution.

� Which queries should be co-scheduled, which ones not?

Only run weak-locality queries next to weak-locality queries.

→ They cause high pollution, but are not affected by pollution.

Try to co-schedule queries with small hash tables.

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 187

Experiments: Locality-Aware Scheduling

PostgreSQL; 4 queries (different p_categorys); for each query: 2× hash

join plan, 2× INLJ plan; impact reported for hash joins:

0 %

-10 %

-20 %

-30 %

-40 %

-50 %

p
er

fo
rm

a
n

ce
im

p
a

ct

0.78 MB 2.26 MB 4.10 MB 8.92 MB

hash table size

default scheduling locality-aware scheduling

S
o
u
rc
e
:
L
e
e
e
t
a
l.
V
L
D
B
2
0
0
9
.

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 188

Cache Pollution

Weak-locality plans cause cache pollution, because they use much cache

space even though they do not strictly need it.

By partitioning the cache we could reduce pollution with little impact on

the weak-locality plan.

moderate-locality plan weak-locality plan

shared cache

But:

Cache allocation controlled by hardware.

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 189

Cache Organization

Remember how caches are organized:

The physical address of a memory block determines the cache set

into which it could be loaded.

byte address

block address

tag set index offset

Thus,

We can influence hardware behavior by the choice of physical

memory allocation.

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 190

Page Coloring

The address↔ cache set relationship inspired the idea of page colors.

Each memory page is assigned a color.5

Pages that map to the same cache sets get the same color.

cache set

memory page

cache

memory

�How many colors are there in a typical system?

5Memory is organized in pages. A typical page size is 4 kB.
c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 191

Page Coloring

By using memory only of certain colors, we can effectively restrict

the cache region that a query plan uses.

Note that

Applications (usually) have no control over physical memory.

Memory allocation and virtual↔ physical mapping are handled by

the operating system.

We need OS support to achieve our desired cache partitioning.

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 192

MCC-DB: Kernel-Assisted Cache Sharing

MCC-DB (“Minimizing Cache Conflicts”):

Modified Linux 2.6.20 kernel

Support for 32 page colors (4 MB L2 Cache: 128 kB per color)

Color specification file for each process (may be modified by

application at any time)

Modified instance of PostgreSQL

Four colors for regular buffer pool

� Implications on buffer pool size (16 GB main memory)?

For strong- and moderate-locality queries, allocate colors as

needed (i.e., as estimated by query optimizer)

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 193

Experiments

Moderate-locality hash join and weak-locality co-runner (INLJ):

0 %

10 %

20 %

30 %

40 %

50 %

32 24 16 8 4

weak locality (INLJ)

moderate locality (HJ)

single-threaded execution

single-threaded execution

L
2

C
a

ch
e

M
is

s
R

a
te

Colors to Weak-Locality Plan

S
o
u
rc
e
:
L
e
e
e
t
a
l.
V
L
D
B
2
0
0
9
.

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 194

Experiments

Moderate-locality hash join and weak-locality co-runner (INLJ):

0

10

20

30

40

50

60

70

32 24 16 8 4

weak locality (INLJ)

moderate locality (HJ)

single-threaded execution

single-threaded execution

E
xe

cu
ti

o
n

T
im

e
[s

ec
]

Colors to Weak-Locality Plan

S
o
u
rc
e
:
L
e
e
e
t
a
l.
V
L
D
B
2
0
0
9
.

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 195

Experiments: MCC-DB

PostgreSQL; 4 queries (different p_categorys); for each query: 2× hash

join plan, 2× INLJ plan; impact reported for hash joins:

0 %

-10 %

-20 %

-30 %

-40 %

-50 %

p
er

fo
rm

a
n

ce
im

p
a

ct

0.78 MB 2.26 MB 4.10 MB 8.92 MB

hash table size

default locality-aware page coloring

S
o
u
rc
e
:
L
e
e
e
t
a
l.
V
L
D
B
2
0
0
9
.

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 196

Building a Shared-Memory Multiprocessor

What the programmer likes to think of. . .

shared main-memory

CPU core CPU core CPU core CPU core

� Scalability? Moore’s Law?

Moore’s Law, CPU↔memory gap ⇒ bandwidth demand ↗
Increasing parallelism ⇒ bandwidth demand ↗

→ Design cannot meet bandwidth demands (without incurring high

bandwidth).

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 197

Centralized Shared-Memory Multiprocessor

Caches help mitigate the bandwidth bottleneck(s).

shared main-memory

shared cache

private
cache

CPU core

private
cache

CPU core

private
cache

CPU core

private
cache

CPU core

A shared bus connects CPU cores and memory.

→ the shared bus may or may not be shared physically.

The Intel Core architecture, e.g., implemented this design.

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 198

Centralized Shared-Memory Multiprocessor

The shared bus design with caches makes sense:

+ symmetric design; uniform access time for every memory item from

every processor

+ private data gets cached locally

→ behavior identical to that of a uniprocessor

? shared data will be replicated to private caches

→ Okay for parallel reads.

→ But what about writes to the replicated data?

→ In fact, we’ll want to use memory as a mechanism to

communicate between processors.

The approach does have limitations, too:

– For large core counts, shared bus may still be a (bandwidth)

bottleneck.

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 199

Caches and Shared Memory

Caching/replicating shared data can cause problems:

CPU CPU

cache cache

shared main memory x = 4x = 42

read x (4)

x = 4

read x (4)

x = 4

x := 42 (42)

x = 42

read x (4)

x = 4

Challenges:

Need well-defined semantics for such scenarios.

Must efficiently implement that semantics.

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 200

Cache Coherence

The desired property (semantics) is cache coherence.

Most importantly:6

Writes to the same location are serialized; two writes to the

same location (by any two processors) are seen in the same order

by all processors.

Note:

We did not specify which order will be seen by the processors.

→ � Why?

6We also demand that a read by processor P will return P’s most recent write,

provided that no other processor has written to the same location meanwhile. Also,

every write must be visible by other processors after some time.
c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 201

Cache Coherence Protocol

Multiprocessor (or multicore) systems maintain coherence through a

cache coherence protocol.

Idea:

Know which cache/memory holds the current value of the item.

Other replicas might be stale.

Two alternatives:

1 Snooping-Based Coherence

→ All processors communicate to agree on item states.

2 Directory-Based Coherence

→ A centralized directory holds information about

state/whereabouts of data items.

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 202

Snooping-Based Cache Coherence

Rationale:

All processors have access to a shared bus.

Can snoop on the bus to track other processors’ activities.

Use to track the sharing state of each cached item:

(sharing)
state

tag data

Meta data for each cache block:

(sharing) state

block identification (tag)

� Ignoring Multiprocessors for a moment, which state information

might make sense to keep?

valid/invalid — Does the cache line hold data at all?

clean/modified — Modified and not yet written back?

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 203

Strategy 1: Write Update Protocol

Idea:

On every write, propagate the write to every copy.

→ Use bus to broadcast writes.7

� Pros/Cons of this strategy?

Caches become essentially write-through.

→ Requires considerable (bus) bandwidth.

→ Nullifies much of our original motivation.

Can avoid some broadcast writes by tracking sharing state.

→ Watch other processors’ requests by snooping on bus.

→ Only broadcast when item is actually shared.

Actual systems don’t use write update.

7The protocol is thus also called write broadcast protocol.
c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 204

Strategy 2: Write Invalidate Protocol

Idea:

Before writing an item, invalidate all other copies.

Activity Bus Cache A Cache B Memory

x = 4

A reads x cache miss for x x = 4 x = 4

B reads x cache miss for x x = 4 x = 4 x = 4

A reads x – (cache hit) x = 4 x = 4 x = 4

B writes x invalidate x ///////x = 4 x = 42 x = 48

A reads x cache miss for x x = 42 x = 42 x = 42

→ Caches will re-fetch invalidated items automatically.

Since the bus is shared, other caches may answer “cache miss”

messages (; necessary for write-back caches).

8With write-through caches, memory will be updated immediately.
c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 205

Write Invalidate—Realization

Realization:

To invalidate, broadcast address on bus.

All processors continuously snoop on bus:
invalidate message for address held in own cache
→ Invalidate own copy

miss message for address held in own cache
→ Reply with own copy (for write-back caches)

→ Memory will see this and abort its own read

� What if two processors try to write at the same time?

Bus arbitration determines observed write ordering.

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 206

Write Invalidate—Tracking Sharing States

Through snooping, can monitor all bus activities by all processors.

→ Track sharing state.

Idea:

Sending an invalidate will make local copy the only one valid.

→ Mark local cache line as modified (≈ exclusive).

If a local cache line is already modified, writes need not be

announced on the bus (no invalidate message).

Upon read request by other processor:

→ If local cache line has state modified,

answer the request by sending local version.

→ Change local cache state to shared.

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 207

Write Invalidate—State Machine

Local caches track sharing states using a state machine.

invalid

modified shared
cleandirty

invalidate

write
m

iss

CPU
read

m
iss; put read

m
iss on

bus
CPU

writ
e

m
iss

; put writ
e

m
iss

on
bus

writ
e

m
iss

;

writ
e

back
block

CPU read miss; write back data

put read miss on bus

read miss; write back data

CPU write miss; put write miss on bus

CPU write hit; put invalidate on bus

bus events

CPU events

uniprocessor
→ track dirty

multiprocessor
→ also send invalidate
multiprocessor (cont.)
→ react to bus events

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 208

Write Invalidate—State Machine

Local caches track sharing states using a state machine.

invalid

modified shared
cleandirty

invalidate

write
m

iss

CPU
read

m
iss; put read

m
iss on

bus
CPU

writ
e

m
iss

; put writ
e

m
iss

on
bus

writ
e

m
iss

;

writ
e

back
block

CPU read miss; write back data

put read miss on bus

read miss; write back data

CPU write miss; put write miss on bus

CPU write hit; put invalidate on bus

bus events

CPU events

uniprocessor
→ track dirty
multiprocessor

→ also send invalidate

multiprocessor (cont.)
→ react to bus events

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 208

Write Invalidate—State Machine

Local caches track sharing states using a state machine.

invalid

modified shared
cleandirty

invalidate

write
m

iss

CPU
read

m
iss; put read

m
iss on

bus
CPU

writ
e

m
iss

; put writ
e

m
iss

on
bus

writ
e

m
iss

;

writ
e

back
block

CPU read miss; write back data

put read miss on bus

read miss; write back data

CPU write miss; put write miss on bus

CPU write hit; put invalidate on bus

bus events
CPU events

uniprocessor
→ track dirty

multiprocessor
→ also send invalidate

multiprocessor (cont.)
→ react to bus events

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 208

Write Invalidate—Notes

Notes:

Because of the three states modified, shared, and invalid, the

protocol on the previous slide is also called MSI protocol.

The Write Invalidate protocol ensures that any valid cache block is

either

in the shared state in one or more caches or

in the modified state in exactly one cache.
(Any transition to the modified state invalidates all other copies of

the block; whenever another cache fetches a copy of the block, the

modified state is left.)

The MSI protocol also ensures that every shared item has also been

written back to memory. �

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 209

MSI Protocol—Extensions

Actual systems often use extensions to the MSI protocol, e.g.,

MESI (E for exclusive)

Distinguish between exclusive (but clean) and modified (which

implies that the copy is exclusive).

Optimizes the (common) case when an item is first read (;
exclusive) then modified (; modified).

MESIF (F for forward)

In M(E)SI, if shared items are served by caches (not only by

memory), all caches might answer miss requests.

MESIF extends the protocol, so at most one shared copy of an item

is marked as forward. Only this cache will respond to misses on the

bus.

Intel i7 employs the MESIF protocol.

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 210

MSI Protocol—Extensions

MOESI (O for owned)

owned marks an item that might be outdated in memory; the owner

cache is responsible for the item.

The owner must respond to data requests (since main memory

might be outdated).

MOESI allows moving around dirty data between caches.

The AMD Opteron uses the MOESI protocol.

MOESI avoids the need to write every shared cache block back to

memory (; �).

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 211

Limitations of a Shared Bus

Limitations of a shared bus:

Large core counts → high bandwidth.

Shared buses cannot satisfy bandwidth demands of modern

multiprocessor systems.

Therefore:

Distribute memory

Communicate through interconnection network

Consequence:

Non-uniform memory access (NUMA) characteristics

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 212

Bandwidth Demand

E.g., Intel Xeon E7-8880 v3:

2.3 GHz clock rate

18 cores per chip (36 threads)

Up to 8 processors per system

Back-of-the-envelope calculation:

1 byte per cycle per core → 331 GB/s

Data-intensive applications might demand much more!

Shared memory bus?

Modern bus standards can deliver at most a few ten GB/s.

Switching very high bandwidths is a challenge.

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 213

Distributed Shared Memory

Idea: Distribute memory

→ Attach to individual compute nodes

CPUCPU

CPUCPU

interconnect

memorymemory

memorymemory

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 214

Example: 8-Way Intel Nehalem-EX

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

MEM

MEM

MEM

MEM

MEM

MEM

MEM

MEM

I/O

I/O

I/O

I/O

Interconnect: Intel Quick Path Interconnect (QPI)9

Memory may be local, one hop away, or two hops away.

→ Non-uniform memory access (NUMA)

9The AMD counterpart is HyperTransport.
c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 215

Distributed Memory and Snooping

Idea:

Extend snooping to distributed memory.

Broadcast coherence traffic, send data point-to-point.

� Problem solved?

1 Coherence traffic grows with core count.

→ Since it must be broadcast, bandwidth will remain a problem.

2 Acknowledgement messages simulate a shared bus.

→ Must wait for acknowledgement from all caches.

→ Further increases coherence traffic.

→ Waiting for all caches increases latency.

3 No implicit serialization through shared bus.

→ Protocol becomes more complicated; risk of deadlocks.

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 216

Snooping-Based Cache Coherency: ScalabilityI.5 Performance of Scientific Applications on Shared-Memory Multiprocessors ■ I-23

Figure I.8 Data miss rates can vary in nonobvious ways as the processor count is
increased from 1 to 16. The miss rates include both coherence and capacity miss
rates. The compulsory misses in these benchmarks are all very small and are included
in the capacity misses. Most of the misses in these applications are generated by
accesses to data that are potentially shared, although in the applications with larger
miss rates (FFT and Ocean), it is the capacity misses rather than the coherence misses
that comprise the majority of the miss rate. Data are potentially shared if they are
allocated in a portion of the address space used for shared data. In all except Ocean,
the potentially shared data are heavily shared, while in Ocean only the boundaries of
the subgrids are actually shared, although the entire grid is treated as a potentially
shared data object. Of course, since the boundaries change as we increase the pro-
cessor count (for a fixed-size problem), different amounts of the grid become shared.
The anomalous increase in capacity miss rate for Ocean in moving from 1 to 2 proces-
sors arises because of conflict misses in accessing the subgrids. In all cases except
Ocean, the fraction of the cache misses caused by coherence transactions rises when
a fixed-size problem is run on an increasing number of processors. In Ocean, the
coherence misses initially fall as we add processors due to a large number of misses
that are write ownership misses to data that are potentially, but not actually, shared.
As the subgrids begin to fit in the aggregate cache (around 16 processors), this effect
lessens. The single-processor numbers include write upgrade misses, which occur in
this protocol even if the data are not actually shared, since they are in the shared
state. For all these runs, the cache size is 64 KB, two-way set associative, with 32-byte
blocks. Notice that the scale on the y-axis for each benchmark is different, so that the
behavior of the individual benchmarks can be seen clearly.

M
is

s
ra

te

0%

3%

2%

1%

1 2 4

Processor count

FFT

8 16

8%

4%

7%

6%

5%

M
is

s
ra

te

0%

6%
4%
2%

1 2 4

Processor count

Ocean

8 16

16%
18%
20%

8%

14%
12%
10%

M
is

s
ra

te

0%

1%

1 2 4

Processor count

LU

8 16

2%

M
is

s
ra

te

0%
1 2 4

Processor count

Barnes

8 16

1%

Coherence miss rate Capacity miss rate

Example:

Scientific Applications

↗ Hennessy &

Patterson, Sect. I.5

→ AMD Opteron is a system that still uses the approach.

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 217

Directory-Based Cache Coherence

To avoid all-broadcast coherence protocol:

Use a directory to keep track of which item is replicated where.

Direct coherence messages only to those nodes that actually need

them.

Directory:

Either keep a global directory (; scalability?).

Or define a home node for each memory address.

→ Home node holds directory for that item.

→ Typically: distribute directory along with memory.

Protocol now involves

directory/-ies (at item home node(s)),

individual caches (local to processors).

Parties communicate point-to-point (no broadcasts).

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 218

Directory-Based Cache Coherence

Messages sent by individual nodes:

5.4 Distributed Shared-Memory and Directory-Based Coherence ■ 381

each memory block. When the block is shared, each bit of the vector indicates
whether the corresponding processor chip (which is likely a multicore) has a
copy of that block. We can also use the bit vector to keep track of the owner of
the block when the block is in the exclusive state. For efficiency reasons, we also
track the state of each cache block at the individual caches.

The states and transitions for the state machine at each cache are identical to
what we used for the snooping cache, although the actions on a transition are
slightly different. The processes of invalidating and locating an exclusive copy of
a data item are different, since they both involve communication between the
requesting node and the directory and between the directory and one or more
remote nodes. In a snooping protocol, these two steps are combined through the
use of a broadcast to all the nodes.

Before we see the protocol state diagrams, it is useful to examine a catalog
of the message types that may be sent between the processors and the directories
for the purpose of handling misses and maintaining coherence. Figure 5.21 shows
the types of messages sent among nodes. The local node is the node where a
request originates. The home node is the node where the memory location and the

Message type Source Destination
Message
contents Function of this message

Read miss Local cache Home directory P, A Node P has a read miss at address A;
request data and make P a read sharer.

Write miss Local cache Home directory P, A Node P has a write miss at address A;
request data and make P the exclusive owner.

Invalidate Local cache Home directory A Request to send invalidates to all remote caches
that are caching the block at address A.

Invalidate Home directory Remote cache A Invalidate a shared copy of data at address A.

Fetch Home directory Remote cache A Fetch the block at address A and send it to its
home directory; change the state of A in the
remote cache to shared.

Fetch/invalidate Home directory Remote cache A Fetch the block at address A and send it to its
home directory; invalidate the block in the
cache.

Data value reply Home directory Local cache D Return a data value from the home memory.

Data write-back Remote cache Home directory A, D Write-back a data value for address A.

Figure 5.21 The possible messages sent among nodes to maintain coherence, along with the source and desti-
nation node, the contents (where P = requesting node number, A = requested address, and D = data contents),
and the function of the message. The first three messages are requests sent by the local node to the home. The
fourth through sixth messages are messages sent to a remote node by the home when the home needs the data to
satisfy a read or write miss request. Data value replies are used to send a value from the home node back to the
requesting node. Data value write-backs occur for two reasons: when a block is replaced in a cache and must be writ-
ten back to its home memory, and also in reply to fetch or fetch/invalidate messages from the home. Writing back
the data value whenever the block becomes shared simplifies the number of states in the protocol, since any dirty
block must be exclusive and any shared block is always available in the home memory.

↗ Hennessy & Patterson, Computer Architecture, 5th edition, page 381.

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 219

Directory-Based Coherence—State Machine

Individual caches use a state machine similar to the one on slide 208.

invalid

modified shared

invalidate

read
m

iss; send
read

m
iss m

sgwrit
e

m
iss

; se
nd

writ
e

m
iss

m
sg

invalid
ate

;

writ
e

back
block

read miss; write back data

send read miss msg

fetch; write back data

write miss; send write miss msg

write hit; send invalidate msg

messages from
home directory

CPU events

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 220

Directory-Based Coherence—State Machine

The directory has its own state machine.

uncached

exclusive shared

read
m

iss; data
value

reply

Sharers = {P}

writ
e

m
iss

; data
value

re
ply; Share

rs
=
{P
}

writ
e

back; Share
rs
=
{}

read miss; fetch; data
value reply; Sharers ∪ = {P}

write miss; invalidate;
Sharers ∪ = {P}; data value reply

messages from
home directory

CPU events

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 221

Cache Coherence Cost

Experiment:

Several threads randomly increment elements of an integer array;

Zipfian probability distribution, no synchronization10.

6.6 13.2
19.6

80.7

1 2 2 2 1 2 3 4 5 8

sa
m

e
co

re

sa
m

e
ch

ip

o
ff

-c
h

ip

same chip

threadsn
a

n
o

-s
ec

o
n

d
s

/
it

er
a

ti
o

n

0

20

40

60

80

100

Intel Nehalem EX; 1.87GHz; 2 CPUs, 8 cores/CPU.

10In general, this will yield incorrect counter values.
c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 222

Cache Coherence Cost

Two types of coherence misses:

true sharing miss

→ Data shared among processors.

→ Often-used mechanism to communicate between threads.

→ These misses are unavoidable.

false sharing miss

→ Processors use different data items, but the items reside in the

same cache line.

→ Items get invalidated/migrated, even though no data is actually

shared.

� How can false sharing misses be avoided?

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 223

NUMA—Non-Uniform Memory Access

� Distribution makes memory access locality-sensitive.

→ Non-Uniform Memory Access (NUMA)

2-socket 4-socket (a) 8-socket 4-socket (b)

Figure 1: Interconnect topologies for four Intel servers. Blue bars represent memory DIMMs, orange blocks
are processors, and pipes are data interconnects. See Section 2 for details.

another approach that achieves equivalent results (multiple
threads access data that are provided by other threads).

The contributions of this paper are three-fold:

• We demonstrate the importance of revising database al-
gorithms to take into consideration the non-uniform mem-
ory access (NUMA) characteristics of multi-socket systems
having multiple cores.

• We focus on shuffling, a primitive that is used in a vari-
ety of important data management algorithms. We show
that a näıve algorithm can be up to 3 times slower than
a NUMA-aware one that exploits thread binding, NUMA-
aware memory allocation, and thread coordination. This
optimized data shuffling primitive can speed up a state-of-
the-art join algorithm by 8%.

• We show the potential of thread migration instead of data
shuffling for highly asymmetric hardware configurations.
In particular, we show that if the working state of threads
is not large, migrating a thread (moving the computation
to the data) can be up to 2× faster than data shuffling
(moving the data to the computation). We show that
thread migration can speed up parallel aggregation algo-
rithms by up to 25%.

The rest of the document is structured as follows. Section 2
discusses the new breed of NUMA systems. The problem
of data shuffling in NUMA environments is described in
Section 3. Section 4 presents a performance comparison of
various data shuffling algorithms. We discuss related work
in Section 5 and our conclusions in Section 6.

2. NUMA: HARDWARE & OS SUPPORT
Even the most cost-effective database servers today con-

sist of more than one processor socket (e.g., two sockets
for the Facebook Open Compute Platform [21]). Today’s
commercial mid-range and enterprise class servers may con-
tain up to eight processor sockets. Moreover, each socket
accommodates up to ten CPU cores, along with several
memory DIMM modules that are attached to the socket
through different memory channels. An interconnect net-
work among the sockets allows each core to access non-local
memory and maintains the coherency of all caches and mem-
ories. Figure 1 shows different configurations for Intel-based
servers. Though NUMA architectures have been around for
more than two decades, today’s multi-socket processors and
point-to-point interconnect networks (as opposed to shared
buses) make designing high-bandwidth, low-latency solutions
more challenging than ever before. Threads running on dif-
ferent cores but within the same socket have (near-) uni-
form memory access, whereas access to off-socket memory is

Socket 2

M
em

o
ry

Socket 3

M
em

o
ry

Socket 0

M
em

o
ry

Socket 1

M
em

o
ry1

2

3

4

Figure 2: Data access pattern in a 4-socket configu-
ration with 4 QPI links.

slower due to the latencies incurred by the interconnect net-
work. Contention caused by other traffic on the interconnect
can further increase latencies of remote accesses.

Example: 4-socket system with 4 QPI links. Consider
the 4-Socket (b) configuration shown in Figure 1. This
topology is used in a fully populated IBM X Series x3850 X5
system. It contains four 8-core Nehalem-EX X7560 pro-
cessors that are fully connected through six bi-directional
3.2GHz Intel QuickPath Interconnect (QPI) links.

For illustration purposes, we disconnect two QPI links by
removing the two QPI wrapper cards, thus obtaining the 4-
link interconnect depicted in Figure 2. Using socket-local
and socket-remote memory read accesses, we create four
different data flows shown in the figure. Table 1 lists the
measured bandwidth and latency for each flow. Our mea-
surements show that we need at least 12 reader threads per
socket or QPI link to achieve maximum bandwidth. Flow
1 corresponds to a read of the local memory of Socket 0.

The maximum aggregate bandwidth on one socket for this
flow was measured to be 24.7 GB/s using 12 threads and a
sequential read pattern. The latency for data-dependent ran-
dom access 1 is 340 CPU cycles (≈ 150 ns). 2 Adding a hop

1 In a data-dependent access pattern, the memory location
referenced next will be determined by the content of the
memory location that is currently being accessed.

2 The latency numbers are given for data-dependent ran-
dom accesses, where the first word of a cache line is used
to determine the next read location. The latency increases
by 5 cycles if the last word of a cache line is used instead.

bandwidth latency

1© 24.7 GB/s 150 ns

2© 10.9 GB/s 185 ns

3© 10.9 GB/s 230 ns

3©/ 4©11 5.3 GB/s 235 ns

↗ Li et al. NUMA-Aware

Algorithms: The Case of Data

Shuffling. CIDR 2013

11 3© with cross traffic along 4©.
c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 224

Sorting and NUMA

input relation

local sort local sort local sort local sort

merge

local merge

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 225

Resulting Throughput

memory
bottleneck

1 2 4 8 16 32 64
0

50

100

150

200

250

300

number of threads

th
ro

u
g

h
p

u
t

[M
tu

p
le

s/
se

c]

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 226

NUMA and Bandwidth

Problem: Merging is bandwidth-bound.

→ Merge multiple runs (from NUMA regions) at once

(Two-way merging would be more CPU-efficient because of SIMD.)

→ Might need more instructions, but brings bandwidth and compute

into balance.

buf

buf

buf

NUMA3

buf

NUMA2

buf

buf

NUMA1

buf

NUMA0

one thread
cache-resident

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 227

Throughput With Multi-Way Merging

1 2 4 8 16 32 64
0

50

100

150

200

250

300

number of threads

th
ro

u
g

h
p

u
t

[M
tu

p
le

s/
se

c]

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 228

NUMA Effects in Detail

Bandwidth:

Single links have lower bandwidth than memory controllers.

CPUCPU

CPUCPU

12.8 GB/s
(bidirectional)

12.8 GB/s
(bidirectional)

memorymemory

memorymemory

25.6 GB/s25.6 GB/s

25.6 GB/s25.6 GB/s

Intel Nehalem EX

CPUCPU

CPUCPU

16 GB/s
(bidirectional)

16 GB/s
(bidirectional)

memorymemory

memorymemory

51.2 GB/s51.2 GB/s

51.2 GB/s51.2 GB/s

Intel Sandy Bridge EP

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 229

Joins Over Data Streams:

current

window for

Stream R
wR

R

current

window for

Stream S

wS

S

1p

Task: Find all 〈r , s〉 in wR , wS that satisfy p(r , s).

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 230

Implementation [Kang et al., ICDE 2003]

R S

p?

SR

p?

1. scan window, 2. insert new tuple, 3. invalidate old

NUMA-Aware Execution?

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 231

CellJoin [Gedik et al., VLDBJ 2009]

R

1

S

core 0

core 1

core 2

core 3

core 4

core 5

2

3

replicate partition

S
1

R

core 0

core 1

core 2

core 3

core 4

2

3

replicatepartition
1 bandwidth bottlenecks

2 long-distance communication

3 centralized coordination and memory

→ Parallel, but not NUMA-aware.

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 232

Handshake JoinHandshake Join

Handshake Join Idea

Handshake Join:

comparisons

window for R

window for S

input

stream R

input

stream S

Streams flow by in opposite directions

Compare tuples when they meet

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 234

Handshake Join on Many Cores

Data flow representation → parallelization:

core 1 core 2 core 3 core 4 core 5

R

S

No bandwidth bottleneck 1 X

Communication/synchronization stays local 2 X

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 235

Synchronization

Coordination can now be done autonomously

core 1 core 2 core 3 core 4 core 5

R

S

no more centralized coordination 3 X

Autonomous load balancing

Lock-free message queues between neighbors

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 236

Example: AMD “Magny Cours” (48 cores)

0

1

2

3

4

5

6

7

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 237

Experiments (AMD Magny Cours, 2.2 GHz)

4 8 12 16 20 24 28 32 36 40 44

1000
1500

2000

2500

3000

3250

3500

3750

4000

number of processing cores n

th
ro

u
g

h
p

u
t

/
st

re
a

m
(t

u
p

le
s/

se
c)

window size:
10 min
15 min

CellJoin

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 238

Beyond 48 Cores. . . (FPGA-based simulation)

0 50 100 150 200

number of join cores n

50

100

150

200

250

cl
o

ck
fr

eq
u

en
cy

(M
H

z)

96 % chip

utilization

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 239

	Execution on Multiple Cores
	Joins on Independent Cores
	Shared Caches
	Cache Sensitivity
	Locality-Aware Scheduling
	Page Coloring

	Multi-Core and Cache Coherency

