Data Processing on Modern Hardware

Jens Teubner, TU Dortmund, DBIS Group

jens.teubner@cs.tu-dortmund.de

Summer 2016

© Jens Teubner - Data Processing on Modern Hardware - Summer 2016

Part V

Execution on Multiple Cores

© Jens Teubner - Data Processing on Modern Hardware - Summer 2016

Example: Star Joins

Task: run parallel instances of the query (* introduction)
dimension

SELEC1 SUM(lo_revenue)

FROM part, lineorder

WHERE p_partkey = lo_partkey
AND p_category <= 5

fact table

¥ To implement X use either
SN m a hash join or
o lineorder . .
‘ m an index nested loops join.
part

© Jens Teubner - Data Processing on Modern Hardware - Summer 2016

Execution on “Independent” CPU Cores

Co-run independent instances on different CPU cores.

HJ alone

I 1+

HJ -+ INLJ

INLJ alone
[INLJ + HJ

INLJ + INLJ

60 % 40% 20% 0%
performance degradation

Concurrent queries may seriously affect each other’s performance.

© Jens Teubner - Data Processing on Modern Hardware - Summer 2016

Shared Caches

In Intel Core 2 Quad systems, two cores share an L2 Cache:

CPU CPU CPU CPU
T T T T
| L1 Cache | | L1 Cache | | L1 Cache | | L1 Cache |
L2 Cache L2 Cache
))

| main memory |

What we saw was cache pollution.

— How can we avoid this cache pollution?

© Jens Teubner - Data Processing on Modern Hardware - Summer 2016

Cache Sensitivity

Dependence on cache sizes for some TPC-H queries:

(a) L2 Miss Rate
Q1 Q5 VQ8 = Q18 +Q20 < Q21

50%

40% 1 /’
30% |

20% | ﬁ: \
10% gy —— b
0% b—8—8— 55 —o—s—=

4MB 3.5MB 3MB 2.5MB 2MB 1.5MB 1MB 512KB
L2 Cache Size

(b) CPI
w®,Q1 Q5 VQ8 AQ18 Q20 < Q21

45
4
315
3 v
25
2
15
1
0.5 T T T T T T T 1
4MB 3.5MB 3MB 2.5MB 2MB 1.5MB 1MB 512KB

L2 Cache Size

Some queries are more sensitive to cache sizes than others.

m cache sensitive: hash joins

m cache insensitive: index nested loops joins; hash joins with very

small or very large hash table

© Jens Teubner - Data Processing on Modern Hardware - Summer 2016

Locality Strength

This behavior is related to the locality strength of execution plans:
Strong Locality
small data structure; reused very frequently
m e.g., small hash table
Moderate Locality
frequently reused data structure; data structure = cache size
m e.g., moderate-sized hash table
Weak Locality

data not reused frequently or data structure > cache size
m e.g., large hash table; index lookups

© Jens Teubner - Data Processing on Modern Hardware - Summer 2016

Execution Plan Characteristics

Locality effects how caches are used:

strong moderate weak
large large
large small

cache pollution

amount of cachie used small
amount of cache needed small

Plans with weak locality have most severe impact on co-running queries.

Impact of co-runner on query:
strong moderate weak

strong low moderate high
moderate moderate high high
weak low low low

Data Processing on Modern Hardware - Summer 2016

© Jens Teubner -

Experiments: Locality Strength

Index Join to Index Join —+—

Index Join to Hash Join ---x---

Hash Join to Index Join ---%---

Hash Join to Hash Join &

Index Join to Index Join (bitmap scan) — -

60% T T T T T T T T T T T T T T
/x\ - X ~
0, - / N - e S~ -
50% SN Ty
X B

40% [/ TR .

Performance Degradation

04 08 11 15 19 23 3 34 41 53 7.1 89 104123153186
Hash Table Size (MB)

Source: Lee et al. MCC-DB: Minimizing Cache Conflicts
in Multi-core Processors for Databases. VLDB 2009.

© Jens Teubner - Data Processing on Modern Hardware - Summer 2016

Locality-Aware Scheduling

An optimizer could use knowledge about localities to schedule queries.
m Estimate locality during query analysis.

m Index nested loops join — weak locality
m Hash join:

hash table < cache size — strong locality
hash table =~ cache size — moderate locality
hash table > cache size — weak locality

m Co-schedule queries to minimize (the impact of) cache pollution.

% Which queries should be co-scheduled, which ones not?
m Only run weak-locality queries next to weak-locality queries.
— They cause high pollution, but are not affected by pollution.

m Try to co-schedule queries with small hash tables.

(© Jens Teubner - Data Processing on Modern Hardware - Summer 2016

Experiments: Locality-Aware Scheduling

PostgreSQL; 4 queries (different p_categorys); for each query: 2 x hash
join plan, 2 x INLJ plan; impact reported for hash joins:

hash table size
0% 0.78 MB 2.26 MB 410 MB 8.92 MB
’]

-10%

-20% t

-30% 7

performance impact

-40% 1

Source: Lee et al. VLDB 2009.

-50 %

[] default scheduling [] locality-aware scheduling

© Jens Teubner - Data Processing on Modern Hardware - Summer 2016

Cache Pollution

Weak-locality plans cause cache pollution, because they use much cache
space even though they do not strictly need it.

By partitioning the cache we could reduce pollution with little impact on
the weak-locality plan.

| moderate-locality plan | | weak-locality plan |

shared cache !

But:

m Cache allocation controlled by hardware.

© Jens Teubner - Data Processing on Modern Hardware - Summer 2016

Cache Organization

Remember how caches are organized:

m The physical address of a memory block determines the cache set
into which it could be loaded.

kS

N

byte address

tag | setindex | offset

ES

block address ———!

Thus,

m We can influence hardware behavior by the choice of physical
memory allocation.

© Jens Teubner - Data Processing on Modern Hardware - Summer 2016

Page Coloring

The address <> cache set relationship inspired the idea of page colors.
m Each memory page is assigned a color.®
m Pages that map to the same cache sets get the same color.

cache set
\
cache

memory page
< memory

Q How many colors are there in a typical system?

®Memory is organized in pages. A typical page size is 4 kB.

© Jens Teubner - Data Processing on Modern Hardware - Summer 2016

Page Coloring

m By using memory only of certain colors, we can effectively restrict
the cache region that a query plan uses.

Note that
m Applications (usually) have no control over physical memory.

m Memory allocation and virtual <+ physical mapping are handled by
the operating system.

m We need OS support to achieve our desired cache partitioning.

© Jens Teubner - Data Processing on Modern Hardware - Summer 2016

MCC-DB: Kernel-Assisted Cache Sharing

MCC-DB (“Minimizing Cache Conflicts"):
m Modified Linux 2.6.20 kernel

m Support for 32 page colors (4 MB L2 Cache: 128 kB per color)
m Color specification file for each process (may be modified by
application at any time)

m Modified instance of PostgreSQL
m Four colors for regular buffer pool

% Implications on buffer pool size (16 GB main memory)?

m For strong- and moderate-locality queries, allocate colors as
needed (i.e., as estimated by query optimizer)

© Jens Teubner - Data Processing on Modern Hardware - Summer 2016

Moderate-locality hash join and weak-locality co-runner (INLJ):

50 %
weak locality (INLJ) _
g 0% — T 8
Q]
o : _)
single-threaded execution Q
8 30% 1 ’ S
= 7
c 20% + 8
8 i
N moderate locality (HJ) g
10% 1 3
wn
single-threaded executon
single-thr
0% ¢ 9 ¢ ¢ ¢ ¢
32 24 16 8 4

Colors to Weak-Locality Plan

© Jens Teubner - Data Processing on Modern Hardware - Summer 2016

Moderate-locality hash join and weak-locality co-runner (INLJ):

70 weak locality (INLJ) ——
60+ 0 T N g :
= single-threaded execution §
B 501 moderate locality (HJ) 1 o
o | T Q
£ 40 ¢ i . s
= single-threaded execution =
c 4+
S 307 T
5 g
3 20+ I3
x o
] 5
10 | Lg
0 | | | |

32 24 16 8 4
Colors to Weak-Locality Plan

© Jens Teubner - Data Processing on Modern Hardware - Summer 2016

Experiments: MCC-DB

PostgreSQL; 4 queries (different p_categorys); for each query: 2 x hash
join plan, 2 x INLJ plan; impact reported for hash joins:

hash table size
0.78 MB 2.26 MB 410 MB 8.92 MB

0%

-10%

-20% t

-30% 7

performance impact

-40% 1

Source: Lee et al. VLDB 2009.

-50 %

[] default [locality-aware [] page coloring

© Jens Teubner - Data Processing on Modern Hardware - Summer 2016

Building a Shared-Memory Multiprocessor

What the programmer likes to think of. ..

’CPU core‘ ’CPU core‘ ’CPU core‘ ’ CPU core‘
| [[|

[
’ shared main-memory ‘

Q> Scalability? Moore’s Law?

© Jens Teubner - Data Processing on Modern Hardware - Summer 2016

Centralized Shared-Memory Multiprocessor

Caches help mitigate the bandwidth bottleneck(s).

’CPU core‘ ’CPU core‘ ’CPU core‘ ’ CPU core‘
[[[[

private private private private
cache cache cache cache

| | | |

’ shared main-memory ‘

m A shared bus connects CPU cores and memory.
— the shared bus may or may not be shared physically.
m The Intel Core architecture, e.g., implemented this design.

© Jens Teubner - Data Processing on Modern Hardware - Summer 2016

Centralized Shared-Memory Multiprocessor

The shared bus design with caches makes sense:

+ symmetric design; uniform access time for every memory item from
every processor

+ private data gets cached locally
— behavior identical to that of a uniprocessor
? shared data will be replicated to private caches

— Okay for parallel reads.

— But what about writes to the replicated data?

— In fact, we'll want to use memory as a mechanism to
communicate between processors.

The approach does have limitations, too:

— For large core counts, shared bus may still be a (bandwidth)
bottleneck.

(© Jens Teubner - Data Processing on Modern Hardware - Summer 2016

Caches and Shared Memory

Caching/replicating shared data can cause problems:

read x (4)
X = 42 (42) C?P CE,EJ
cacpe cache
=4 x=4
shared main memory }Lx:M
Challenges:

m Need well-defined semantics for such scenarios.
m Must efficiently implement that semantics.

© Jens Teubner - Data Processing on Modern Hardware - Summer 2016

read x (4)
read x (4) 4

Cache Coherence

The desired property (semantics) is cache coherence.
Most importantly:®

Writes to the same location are serialized, two writes to the

same location (by any two processors) are seen in the same order
by all processors.

Note:

m We did not specify which order will be seen by the processors.
— D Why?

5We also demand that a read by processor P will return P’s most recent write,
provided that no other processor has written to the same location meanwhile. Also,

every write must be visible by other processors after some time.
© Jens Teubner - Data Processing on Modern Hardware - Summer 2016

Cache Coherence Protocol

Multiprocessor (or multicore) systems maintain coherence through a
cache coherence protocol.

Idea:

m Know which cache/memory holds the current value of the item.
m Other replicas might be stale.

Two alternatives:
Snooping-Based Coherence

— All processors communicate to agree on item states.
Directory-Based Coherence

— A centralized directory holds information about
state/whereabouts of data items.

© Jens Teubner - Data Processing on Modern Hardware - Summer 2016

Snooping-Based Cache Coherence

Rationale:
m All processors have access to a shared bus.
m Can snoop on the bus to track other processors’' activities.

Use to track the sharing state of each cached item:

Meta data for each cache block:

m (sharing) state

m block identification (tag)

(sharing) tag data
state

X Ignoring Multiprocessors for a moment, which state information
might make sense to keep?

© Jens Teubner - Data Processing on Modern Hardware - Summer 2016

Strategy 1: Write Update Protocol

Idea:
m On every write, propagate the write to every copy.
— Use bus to broadcast writes.’

D Pros/Cons of this strategy?

"The protocol is thus also called write broadcast protocol.

© Jens Teubner - Data Processing on Modern Hardware - Summer 2016

Strategy 2: Write Invalidate Protocol

Idea:

m Before writing an item, invalidate all other copies.

Activity Bus Cache A Cache B Memory
x=4
Areads x cache miss forx x=4 x=4
B reads x cache miss for x x=4 x=4 x=4
A reads x — (cache hit) x=4 x=4 x=4
B writes x invalidate x KA x=42 x =48

A reads x cache miss for x x =42 X =42 X =42

— Caches will re-fetch invalidated items automatically.

m Since the bus is shared, other caches may answer “cache miss”
messages (~ necessary for write-back caches).

8With write-through caches, memory will be updated immediately.

© Jens Teubner - Data Processing on Modern Hardware - Summer 2016

Write Invalidate—Realization

Realization:
m To invalidate, broadcast address on bus.
m All processors continuously snoop on bus:
m /nvalidate message for address held in own cache
— Invalidate own copy

m miss message for address held in own cache

— Reply with own copy (for write-back caches)
— Memory will see this and abort its own read

@ What if two processors try to write at the same time?

© Jens Teubner - Data Processing on Modern Hardware - Summer 2016

Write Invalidate—Tracking Sharing States

Through snooping, can monitor all bus activities by all processors.

— Track sharing state.

Idea:
m Sending an invalidate will make local copy the only one valid.
— Mark local cache line as modified (= exclusive).

m If a local cache line is already modified, writes need not be
announced on the bus (no invalidate message).
m Upon read request by other processor:

— If local cache line has state modified,
answer the request by sending local version.
— Change local cache state to shared.

© Jens Teubner - Data Processing on Modern Hardware - Summer 2016

Write Invalidate—State Machine

Local caches track sharing states using a state machine.

© Co uniprocess_,or
00\0 4 — track dirty

CPU events S
&
&6@
0\,
Q

&

CPU read miss; write back data

shared

put read miss on bus
clean

modified
dirty

read miss; write back data

CPU write miss; put write miss on bus

© Jens Teubner - Data Processing on Modern Hardware - Summer 2016

Write Invalidate—State Machine

Local caches track sharing states using a state machine.

«F COO multiprocessor ’

R ’ — also send invalidate
CPU events @6%
.,&Q/
N\
N ¢
&5 so,/b.
XY

&

CPU read miss; write back data

shared

put read miss on bus
clean

modified

read miss; write back data

ite hit; put invalidate
CPU write miss; put write miss on bus

© Jens Teubner - Data Processing on Modern Hardware - Summer 2016

Write Invalidate—State Machine

Local caches track sharing states using a state machine.

O Co multiprocessor (cont.)
bus events O(\‘o P — react to bus events
CPU events @6%

&
S
N S

&

CPU read miss; write back data

shared

put read miss on bus
clean

modified

read miss; write back data

ite hit; put invalidate
CPU write miss; put write miss on bus

© Jens Teubner - Data Processing on Modern Hardware - Summer 2016

Write Invalidate—Notes

Notes:
m Because of the three states modified, shared, and invalid, the
protocol on the previous slide is also called MSI protocol.
m The Write Invalidate protocol ensures that any valid cache block is
either
m in the shared state in one or more caches or
m in the modified state in exactly one cache.
(Any transition to the modified state invalidates all other copies of
the block; whenever another cache fetches a copy of the block, the
modified state is left.)

m The MSI protocol also ensures that every shared item has also been
written back to memory. <

© Jens Teubner - Data Processing on Modern Hardware - Summer 2016

MSI| Protocol—Extensions

Actual systems often use extensions to the MS/ protocol, e.g.,

MESI (E for exclusive)

m Distinguish between exclusive (but clean) and modified (which
implies that the copy is exclusive).

m Optimizes the (common) case when an item is first read (~
exclusive) then modified (~ modified).

MESIF (F for forward)

m In M(E)SI, if shared items are served by caches (not only by
memory), all caches might answer miss requests.

m MESIF extends the protocol, so at most one shared copy of an item

is marked as forward. Only this cache will respond to misses on the
bus.

m Intel i7 employs the MESIF protocol.

© Jens Teubner - Data Processing on Modern Hardware - Summer 2016

MSI Protocol—Extensions

MOESI (O for owned)

m owned marks an item that might be outdated in memory; the owner
cache is responsible for the item.

m The owner must respond to data requests (since main memory
might be outdated).

m MOES/ allows moving around dirty data between caches.
m The AMD Opteron uses the MOES/ protocol.

m MOESI avoids the need to write every shared cache block back to
memory (~ <).

© Jens Teubner - Data Processing on Modern Hardware - Summer 2016

Limitations of a Shared Bus

Limitations of a shared bus:
m Large core counts — high bandwidth.

m Shared buses cannot satisfy bandwidth demands of modern
multiprocessor systems.

Therefore:
m Distribute memory

m Communicate through interconnection network

Consequence:
= Non-uniform memory access (NUMA) characteristics

© Jens Teubner - Data Processing on Modern Hardware - Summer 2016

Bandwidth Demand

E.g., Intel Xeon E7-8880 v3:
m 2.3 GHz clock rate
m 18 cores per chip (36 threads)

m Up to 8 processors per system

Back-of-the-envelope calculation:
m 1 byte per cycle per core — 331 GB/s

m Data-intensive applications might demand much more!

Shared memory bus?
m Modern bus standards can deliver at most a few ten GB/s.
m Switching very high bandwidths is a challenge.

© Jens Teubner - Data Processing on Modern Hardware - Summer 2016

Distributed Shared Memory

Idea: Distribute memory

— Attach to individual compute nodes

memory k—| CPU CPU k—| memory

interconnect

memoryH CPU CPU Hmemory

© Jens Teubner - Data Processing on Modern Hardware - Summer 2016

Example: 8-Way Intel Nehalem-EX

fvew] [wew] [wew] [wew]
LEE TG e el
X
/o [A.CPU CPU CPU CPU |0
]MéM\ ’MEM‘]MéM\]MéM\

m Interconnect: Intel Quick Path Interconnect (QPI)°
m Memory may be local, one hop away, or two hops away.
— Non-uniform memory access (NUMA)

°The AMD counterpart is HyperTransport.

© Jens Teubner - Data Processing on Modern Hardware - Summer 2016

Distributed Memory and Snooping

Idea:
m Extend snooping to distributed memory.

m Broadcast coherence traffic, send data point-to-point.

% Problem solved?

© Jens Teubner - Data Processing on Modern Hardware - Summer 2016

Snooping-Based Cache Coherency: Scalability

LU
8% o 2%
o
- 5 - Eitmi
6% = 0%
1 2 4 8 16
o 5%
© Processor count
2 4%
= 3%
- Example:
1% Ocean xXxamplie:
20%
0% . - . .
"1 2 4 8 16 18% m Scientific Applications
16%
Processor count
14%
o 1o m " Hennessy &
Barnes S 0%
o 1% 8 Patterson, Sect. |.5
g 1% S 8%
2 6%
3
S 0% 4%
1 2 4 8 16 2%
Processor count 0%
1 2 4 8 16

Processor count

l B Coherence missrate [0 Capacity miss rate ‘

— AMD Opteron is a system that still uses the approach.

© Jens Teubner - Data Processing on Modern Hardware - Summer 2016

Directory-Based Cache Coherence

To avoid all-broadcast coherence protocol:
m Use a directory to keep track of which item is replicated where.

m Direct coherence messages only to those nodes that actually need
them.

Directory:

m Either keep a global directory (~ scalability?).
m Or define a home node for each memory address.
— Home node holds directory for that item.

— Typically: distribute directory along with memory.
Protocol now involves
m directory/-ies (at item home node(s)),
m individual caches (local to processors).

Parties communicate point-to-point (no broadcasts).

© Jens Teubner - Data Processing on Modern Hardware - Summer 2016

Directory-Based Cache Coherence

Messages sent by individual nodes:

Message

Message type Source Destination contents Function of this message

Read miss Local cache Home directory P, A Node P has a read miss at address A;
request data and make P a read sharer.

‘Write miss Local cache Home directory P, A Node P has a write miss at address A;
request data and make P the exclusive owner.

Invalidate Local cache Home directory A Request to send invalidates to all remote caches
that are caching the block at address A.

Invalidate Home directory Remote cache A Invalidate a shared copy of data at address A.

Fetch Home directory Remote cache A Fetch the block at address A and send it to its
home directory; change the state of A in the
remote cache to shared.

Fetch/invalidate Home directory Remote cache A Fetch the block at address A and send it to its
home directory; invalidate the block in the
cache.

Data value reply Home directory Local cache D Return a data value from the home memory.

Data write-back Remote cache Home directory A, D Write-back a data value for address A.

" Hennessy & Patterson, Computer Architecture, 5th edition, page 381.

© Jens Teubner - Data Processing on Modern Hardware - Summer 2016

Directory-Based Coherence—State Machine

Individual caches use a state machine similar to the one on slide 208.

messages from
home directory

CPU events

modified

write miss; send write miss msg

© Jens Teubner - Data Processing on Modern Hardware - Summer 2016

Directory-Based Coherence—State Machine

The directory has its own state machine.

messages from
home directory

CPU events

read miss; fetch; data
value reply; Sharers U = {P}

write miss; invalidate;
Sharers U = {P}; data value reply

© Jens Teubner - Data Processing on Modern Hardware - Summer 2016

Cache Coherence Cost

Experiment:

m Several threads randomly increment elements of an integer array;
Zipfian probability distribution, no synchronization!®.

S 100% same chip
g 80.7]
E 80 1]
~ 601 v 2
0 o ©
k= © v
S 40+ O £ |ao
o % =
g 207 s uL'_)
c 6.6 132 ’—6‘ 5 ’_‘
& oL M m
1 2 2 2 1 2 3 4 5 8 threads

Intel Nehalem EX; 1.87 GHz; 2 CPUs, 8 cores/CPU.

%1n general, this will yield incorrect counter values.

© Jens Teubner - Data Processing on Modern Hardware - Summer 2016

Cache Coherence Cost

Two types of coherence misses:

true sharing miss
— Data shared among processors.
— Often-used mechanism to communicate between threads.

— These misses are unavoidable.

false sharing miss
— Processors use different data items, but the items reside in the
same cache line.
— Items get invalidated /migrated, even though no data is actually
shared.

D How can false sharing misses be avoided?

(© Jens Teubner - Data Processing on Modern Hardware - Summer 2016

NUMA—Non-Uniform Memory Access

@ Distribution makes memory access locality-sensitive.
— Non-Uniform Memory Access (NUMA)

~ Socket 0 Socket 1
Ao |
|l @ : @ 247GB/s 150ns
| S e @ 10.9GB/s 185ns
® ; ©) 10.9GB/s 230ns
i /@' 53GB/s 235ns
2 ®‘:,/ .I e 2 ' Li et al. NUMA-Aware
% % Algorithms: The Case of Data
| R IR S = Shuffling. CIDR 2013
o Socket 2 Socket 3

113 with cross traffic along @).

© Jens Teubner - Data Processing on Modern Hardware - Summer 2016

~—d

input relation

el
=)
j=}
Y
5}
=
E
)
%
o
[
=
e
&
T
f=4
5}
o
<3
=
c
5
=

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

<
>
)
=
o
c
©
(@)
c
B
—_
@)
wn

© Jens Teubner - Data Processing

Resulting Throughput

_ 3001

(@)

3
22504
R4,

S 2004
4+
2 1504+
4+

)

2 1004

(@))]

)

o 501
=
Jr)

0

1 2 4 8 16 32 64
number of threads

© Jens Teubner - Data Processing on Modern Hardware - Summer 2016

NUMA and Bandwidth

Problem: Merging is bandwidth-bound.

— Merge multiple runs (from NUMA regions) at once
(Two-way merging would be more CPU-efficient because of SIMD.)

— Might need more instructions, but brings bandwidth and compute

into balance.

NUMAO | | NUMA1L NUMA2 | | NUMA3

S s \:

buf| | buf|

’
| |
I
1
1
\

. one thread
-7 cache-resident

© Jens Teubner - Data Processing on Modern Hardware - Summer 2016

Throughput With Multi-Way Merging

3004
3
L2501
R4,
§ 200+
2. 1501
5
2 1004
(@)]
)
© 50l
=
-

0

1 2 4 8 16 32 64
number of threads

© Jens Teubner - Data Processing on Modern Hardware - Summer 2016

NUMA Effects in Detalil

Bandwidth:

m Single links have lower bandwidth than memory controllers.

memory

memory

25.6 GB/s]

125.6GB/s 51.2GB/s]

CPU

CPU

12.8 GB/s >< 12.8 GB/s
(bidirectional) (bidirectional)

CPU

CPU

25.6 GB/s]

125.6GB/s 51.2GB/s]

memory

memory

Intel Nehalem EX

memory memory
[51.2GB/s
CPU CPU
AL By
CPU CPU
[51.2GB/s
memory memory

Intel Sandy Bridge EP

© Jens Teubner - Data Processing on Modern Hardware - Summer 2016

Joins Over Data Streams:

current [X]p current
window for / \ window for
Stream R Stream S
WR
Ws
R = s

Task: Find all (r,s) in wg, ws that satisfy p(r, s).

© Jens Teubner - Data Processing on Modern Hardware - Summer 2016

Implementation [Kang et al., ICDE 2003]

% . .
= = ER

1. scan window, 2. insert new tuple, 3. invalidate old

THHHHHHRHHHIH-

R

NUMA-Aware Execution?

© Jens Teubner - Data Processing on Modern Hardware - Summer 2016

CellJoin [Gedik et al., VLDBJ 2009]

=

icore 5

i core 4
i core 3
i core 2

‘core 1

icore 0

=s

replicate rtitign artition replicate
&O andwidth bogt?ene&s P P

® long-distance communication
® centralized coordination and memory

— Parallel, but not NUMA-aware.

© Jens Teubner - Data Processing on Modern Hardware - Summer 2016

Handshake Join ldea

Handshake Join:

window for R

i i i T comparisons
N N N
window for S
input input
stream R stream S

Streams flow by in opposite directions
Compare tuples when they meet

© Jens Teubner - Data Processing on Modern Hardware - Summer 2016

Handshake Join on Many Cores

Data flow representation — parallelization

core 1 core 2 core 3 core 4 core 5

m No bandwidth bottleneck @
m Communication/synchronization stays local @ v

© Jens Teubner - Data Processing on Modern Hardware - Summer 2016

Synchronization

Coordination can now be done autonomously

. Eal b i S
0000008 0-0-0}-5
“core3 cored eores

m no more centralized coordination & v
m Autonomous load balancing

m Lock-free message queues between neighbors

© Jens Teubner - Data Processing on Modern Hardware - Summer 2016

Example: AMD “Magny Cours” (48 cores)

© Jens Teubner - Data Processing on Modern Hardware - Summer 2016

Experiments (AMD Magny Cours, 2.2 GHz)

g 4000 1
g 37501
S 3500t
s 3250t
© 3000 1
7
~
= 2500 t
=
S 2000}
3
£ 1500 ¢
* 1000 1

window size:
—a— 10min
15 min

——

o— CellJoin

4 8 12 16 20 24 28 32 36 40 44

number of processing cores n

© Jens Teubner - Data Processing on Modern Hardware - Summer 2016

Beyond 48 Cores. . . (FPGA-based simulation)

250
’IﬁT 200 1
\% | | i
> 1507 .\I—-\/-
c
(O]
5 .
S 1004 96 % chip
&= utilization
X
3
U 50 T

0 50 100 150 200

number of join cores n

© Jens Teubner - Data Processing on Modern Hardware - Summer 2016

	Execution on Multiple Cores
	Joins on Independent Cores
	Shared Caches
	Cache Sensitivity
	Locality-Aware Scheduling
	Page Coloring

	Multi-Core and Cache Coherency

