Data Processing on Modern Hardware

Jens Teubner, TU Dortmund, DBIS Group

jens.teubner@cs.tu-dortmund.de

Summer 2016

© Jens Teubner - Data Processing on Modern Hardware - Summer 2016

Part VI

Graphics Processors (GPUs)

| adopted some of this material from a slide set of René Miiller
(now with IBM Research).

© Jens Teubner - Data Processing on Modern Hardware - Summer 2016

Processor Technology

While general-purpose CPUs increasingly feature “multi-media”
functionality,

~rich programmable
SIMD Instructions memory shaders
model
CPUs > < GPUs
el streaming general-purpose /O
parallelism instructions

graphics processors become increasingly general-purpose.

© Jens Teubner - Data Processing on Modern Hardware - Summer 2016

Graphics Pipeline

L °
[J
[J (] (]
connectivity information
Geometry &
i Transform & S
App AP Front-End|-Yertices Lighti I Primitive Rasterization
ighting
Assembly
Fragments
Fragment
Raster & :
Frame Buffer o) Coloring &
perations
Texture
Scissor
Alpha
Stencil Test
Depth

© Jens Teubner - Data Processing on Modern Hardware - Summer 2016

Graphics Processors

Some tasks in the pipeline lend themselves to in-hardware processing.

m Embarrassingly parallel
m Few and fairly simple operations
m Hardly need to worry about caches, coherency, etc.

Early cards did the end of the pipeline in hardware; today's cards can do
much more.

© Jens Teubner - Data Processing on Modern Hardware - Summer 2016

Toward Programmable GPUs

The programmability of GPUs has improved dramatically.
hard-coded fix-function pipeline
customization through parameters

programmable shaders

m vertex shader

B geometry shader

m fragment shader (fragment: pixel)
| “general-purpose” GPUs (GPGPUs)

Today: C-like languages (e.g., CUDA, OpenCL)

© Jens Teubner - Data Processing on Modern Hardware - Summer 2016

General-Purpose GPUs (GPGPUs)

Original GPU design based on graphics pipeline not flexible enough.
— geometry shaders idle for pixel-heavy workloads and vice versa
— unified model with general-purpose cores

Thus: Design inspired by CPUs, but different

AUl AN =S
Control %l:“:“:“:“:“:“:l
i EEEEEE ==

== 5

5) o o
Calhe =) o o o e
== 5

5 0 o o

CPU GPU

Rationale: Optimize for throughput, not for latency.

© Jens Teubner - Data Processing on Modern Hardware - Summer 2016

CPUs vs. GPUs

CPU: task parallelism GPU: data parallelism
m relatively heavyweight threads m lightweight threads
m 10s of threads on 10s of cores m 10,000s of threads on 100s of
cores
m each thread managed explicitly m threads scheduled in batches
m threads run different code m all threads run same code

— SPMD, single program,
multiple data

© Jens Teubner - Data Processing on Modern Hardware - Summer 2016

Threads on a GPU

To handle 10,000s of threads efficiently, keep things simple.

m Don't try to reduce latency, but hide it.

— Large thread pool rather than caches
(This idea is similar to SMT in commodity CPUs “slide 134.)

m Assume data parallelism and restrict synchronization.

— Threads and small groups of threads use local memories.
— Synchronization only within those groups (more later).

m Hardware thread scheduling (simple, in-order).
— Schedule threads in batches (~ “warps").

© Jens Teubner - Data Processing on Modern Hardware - Summer 2016

OpenCL Computation Model

Host Device (GPU)
copy data

m Host system and co-processor

Kernel 1 (GPU is only one possible
CO-processor.)
sync g% m Host triggers
— m data copying

5 host <+ co-processor,
m invocations of compute
kernels.

m Host interface: command queue.

‘wait” work ‘_‘waitH work

© Jens Teubner - Data Processing on Modern Hardware - Summer 2016

Processing Model: (Massive) Data Parallelism

A traditional loop

for (1=0; i<nitems; i++)
do_something (i) ;

becomes a data parallel kernel invocation in OpenCL (~ map):

status = clEnqueueNDRangeKernel (
commandQueue,
do_something kernel, ..., &nitems, ...);

__kernel void do_something kernel (...) {
int i=get_global_id (0);

*

© Jens Teubner - Data Processing on Modern Hardware - Summer 2016

Kernel Invocation

Idea: Invoke kernel for each point in a problem domain
B e.g., 1024 x 1024 image, one kernel invocation per pixel;
— 1,048,576 kernel invocations (“work items").

m Don't worry (too much) about task — core assignment or number of
threads created; runtime does it for you.

m Problem domain can be 1-, 2-, or 3-dimensional.

m Can pass global parameters to all work item executions.

m Kernel must figure out work item by calling get_global_id ().

© Jens Teubner - Data Processing on Modern Hardware - Summer 2016

Compute Kernels

OpenCL defines a C99-like language for compute kernels.
m Compiled at runtime to particular core type.
m Additional set of built-in functions:

m Context (e.g., get_global_id ()); synchronization.
m Fast implementations for special math routines.

__kernel void square (__global float *in,
__global float *out)
{
int i=get_global_id (0);

out[i] =in[i] *in[i];

© Jens Teubner - Data Processing on Modern Hardware - Summer 2016

Work ltems and Work Groups

Work items may be grouped into work groups.
m Work groups «~ scheduling batches.

m Synchronization between work items only within work groups.

m There is a device-dependent limit on the number of work items per
work group (can be determined via clGetDeviceInfo ()).

m Specify items per group when queuing the kernel invocation.

m All work groups must have same size (within one invocation).

E.g., Problem space: 800 x 600 items (2-dimensional problem).
— Could choose 40 x 6, 2 x 300, 80 x 5, ... work groups.

© Jens Teubner - Data Processing on Modern Hardware - Summer 2016

Example: NVIDIA GPUs

NIVIDA GTX 280

i

FE

Processor Processor,

Texture
Cores

Texture

Buffer

I o
|
" P) . Pr r
fl DeeeR Texture Texture fe==n
1 Cores. Cores

|5 5
B

source: www.hardwaresecrets.com

10 Thread Processing Clusters

10 x 3 Streaming Multiprocessors

10 x 3 x 8 Scalar Processor Cores
— More like ALUs ("slide 245)

Each Multiprocessor:

m 16k 32-bit registers

m 16 kB shared memory

m up to 1024 threads
(may be limited by registers
and/or memory)

© Jens Teubner - Data Processing on Modern Hardware - Summer 2016

Inside a Streaming Multiprocessor

8 Scalar Processors (Thread Processors)
m single-precision floating point

SP || SP m 32-bit and 64-bit integer
m 2 Special Function Units
SP || SP .
m sin, cos, log, exp
SP || SP m Double Precision unit
sp || sp m 16 kB Shared Memory
SFU||SFU m Each Streaming Multiprocessor: up to 1,024 threads.
DP m GTX 280: 30 Streaming Multiprocessors
— 30,720 concurrent threads (!)
shared
memory

© Jens Teubner - Data Processing on Modern Hardware - Summer 2016

Inside a Streaming Multiprocessor: nVidia Fermi

m 32 “cores” (thread processors) per
streaming multiprocessor (SM)

m but fewer SMs per GPU: 16
(vs. 30 in GT200 architecture)

m 512 “cores’ total

m “cores” now double-precision-capable

HEREEERREEEEEERE

Source: nVidia Fermi White Paper

© Jens Teubner - Data Processing on Modern Hardware - Summer 2016

Scheduling in Batches

m In SM threads are scheduled in m For memory access warps are
units of 32, called warps. split into half-warps consisting
m Warp: Set of 32 parallel of 16 threads
threads that start together at m Warps are scheduled with
the same program address. zero-overhead

m Scoreboard is used to track
which warps are ready to
execute

m GTX 280: 32 warps per
multiprocessor (1024 threads)

i b , m newer cards: 48 warps per
warp (dt. Kett- oder Langsfaden) multiprocessor (1536 threads)

© Jens Teubner - Data Processing on Modern Hardware - Summer 2016

SPMD /SIMT Processing

| SIMT instruction scheduler |
1

Lerrrer ettty

|warp 0 instruction @addr 15|

DAARARARARAARRAARARAARAARARARAAAL

Lererrrere ety

| warp 1 instruction @addr 8 |

DARRRARRR AN RN

Lerrrer ety

| warp 2 instruction @addr 4 |

time

UUARARARARRARRARRARA AN RARAAA

NI NN

|warp 0 instruction @addr 16|

DAARARARARAARRAARARAARAARARARAAAL

Lerrrererer ettty

| warp 1 instruction @addr 9

o JUWHIIIWWII Y

m SIMT: Single Instruction,
Multiple Threads

m All threads execute the same
instruction.

m Threads are split into warps by
increasing thread IDs (warp 0
contains thread 0).

m At each time step scheduler
selects warp ready to execute
(i.e., all its data are available)

m nVidia Fermi: dual issue; issue
two warps at once?

“no dual issue for double-precision instr.

© Jens Teubner - Data Processing on Modern Hardware - Summer 2016

GPU Scheduling: Fine-Grained Multithreading

GPUs implement fine-grained multithreading

instr. stream 17

instr. stream 2 J

instr. stream 3

suun
T jeuonouny —

time

But:
m Scheduling decisions here affect entire warps.
m GPUs have more functional units (scalar processors).

m Functional units cannot be scheduled arbitrarily
The above illustration is somewhat misleading in that regard.

© Jens Teubner - Data Processing on Modern Hardware - Summer 2016

Warps and Latency Hiding

Some runtime characteristics:
m Issuing a warp instruction takes 4 cycles (8 scalar processors).
m Register write-read latency: 24 cycles.

m Global (off-chip) memory access: ~ 400 cycles.

Threads are executed in-order.
— Hide latencies by executing other warps when one is paused.

— Need enough warps to fully hide latency.

Eg.,
m Need 24/4 = 6 warps to hide register dependency latency.

m Need 400/4 = 100 instructions to hide memory access latency. If
every 8th instruction is a memory access, 100/8 ~ 13 warps would
be enough.

© Jens Teubner - Data Processing on Modern Hardware - Summer 2016

Resource Limits

Ideally: 32 warps per multiprocessor (1024 threads)

But: Various resource limits

m limited number of 32-bit registers per multiprocessor
E.g.: 11 registers per thread, 256 threads/items per work group.
CUDA compute capability 1.1: 8,192 registers per multiprocessor.
— max. 2 work groups per multiprocessor (3 x 256 x 11 > 8192)

m 48 kB shared memory per multiprocessor (compute cap. 2.0)
E.g.: 12kB per work group
— max. 4 work groups per multiprocessor

m 8 work groups per multiprocessor; max. 512 work items per work
group

m Additional constraints: branch divergence, memory coalescing.

Occupancy calculation (and choice of work group size) is complicated!

© Jens Teubner - Data Processing on Modern Hardware - Summer 2016

Work Groups (NVIDIA: “Blocks™)

Work Groups (on NVIDIA GTX 280):
m Work group can contain up to 512 threads

m A work group is scheduled to exactly one SM
m Central round-robin distribution
m Remember: Synchronization and collaboration through shared
memory only within work group
m Each SM can execute up to 8 work groups

m Actual number depends on register and shared memory usage
m Combined shared memory usage of all work groups < 16 kB

Characteristics of one particular piece of hardware, not part
of the OpenCL specification!

© Jens Teubner - Data Processing on Modern Hardware - Summer 2016

Executing a Warp Instruction

Within a warp, all threads execute same instructions.
— What if the code contains branches?

if (1 <42)
then_branch () ;
else
else_branch () ;

m If one thread enters the branch, all threads have to execute it.

— Effect of branch execution discarded if necessary.
~ Predicated execution ("slide 106).

m This effect is called branch divergence.
m Worst case: all 32 threads take a different code path.
— Threads are effectively executed sequentially.

© Jens Teubner - Data Processing on Modern Hardware - Summer 2016

OpenCL Memory Model

compute device

private || private private || private
memory || memory memory || memory
il i il i
work work work work
item 1 item 2 item 1 item 2
compute unit 1 compute unit 2
! !
’ local memory ‘ ’ local memory ‘

’ global memory ‘

’ host memory ‘

© Jens Teubner - Data Processing on Modern Hardware - Summer 2016

OpenCL <« Cuda

NVIDIA/Cuda uses a slightly different terminology:

OpenCL Cuda
private memory registers
local memory shared memory
global memory global memory

on-chip
on-chip
off-chip

On-chip memory is significantly faster than off-chip memory.

© Jens Teubner - Data Processing on Modern Hardware - Summer 2016

Memory Access Cost (Global Memory; NVIDIA)

Like in CPU-based systems, GPUs access global memory in chunks
(32-bit, 64-bit, or 128-bit segments).

— Most efficient if accesses by threads in a half-warp coalesce.

E.g., NVIDIA cards with compute capability 1.0 and 1.1:

m Coalesced access — 1 memory transaction

L bl lelalelalalalalalolalalolaledl T 1T -
memory
HENENENENNNENN

m Misaligned — 16 memory transactions (2 if comp. capability > 1.2)

half-warp |

L LI Glalalalalalalalalalalalalaladal | [[-
memory

half_Warplllll/|/|/|/|/|/|/|/|/|/|/|/|/|/|

© Jens Teubner - Data Processing on Modern Hardware - Summer 2016

Coalescing Example

Example to demonstrate coalescing effect:

__kernel void

copy (__global unsigned int *din,
__global unsigned int *dout,
const unsigned int offset)

int i=get_global_id (0);
dout [i] =din[i + offset];

@ Strided access causes similar problems!

© Jens Teubner - Data Processing on Modern Hardware - Summer 2016

Shared Memory (NVIDIA)

Shared memory (OpenCL: “local memory”):

m fast on-chip memory (few cycles latency) :ant 0
ank 1
m throughput: 38—44 GB/s per multiprocessor(!) ——
m partitioned into 16 banks Bank 3
Bank 4
— 16 threads (1 half-warp) can access shared =
. . . Bank 5
memory simultaneously if and only if they
. Bank 6
all access a different bank.
— Otherwise a banking conflict will occur. Bank 7

m Conflicting accesses are serialized

— (potentially significant) performance

impact

© Jens Teubner - Data Processing on Modern Hardware - Summer 2016

Bank Conflicts to Shared Memory

stride width: 1 word

Thread 0 Bank 0 Thread 0 Bank 0
Thread 1 Bank 1 Thread 1 Bank 1
Thread 2 Bank 2 Thread 2 Bank 2
Thread 3 Bank 3 Thread 3 Bank 3
Thread 4 Bank 4 Thread 4 Bank 4
Thread 5 Bank 5 Thread 5 Bank 5
Thread 6 Bank 6 Thread 6 Bank 6
Thread 7 Bank 7 Thread 7 Bank 7
Thread 8 Bank 8 Thread 8 Bank 8
Thread 9 Bank 9 Thread 9 Bank 9
Thread 10 Bank 10 Thread 10 Bank 10
Thread 11 Bank 11 Thread 11 Bank 11
Thread 12 Bank 12 Thread 12 Bank 12
Thread 13 Bank 13 Thread 13 Bank 13
Thread 14 Bank 14 Thread 14 Bank 14
Thread 15 Bank 15 Thread 15 Bank 15
— no bank conflicts — no bank conflicts

© Jens Teubner - Data Processing on Modern Hardware - Summer 2016

Bank Conflicts to Shared Memory (cont.)

stride width: 2 words stride width: 4 words
Thread 0 Bank 0 Thread 0 Bank 0
Thread 1 Bank 1 Thread 1 Bank 1
Thread 2 Bank 2 Thread 2 Bank 2
Thread 3 Bank 3 Thread 3 Bank 3
Thread 4 Bank 4 Thread 4 Bank 4
Thread 5 Bank 5 Thread 5 Bank 5
Thread 6 Bank 6 Thread 6 Bank 6
Thread 7 Bank 7 Thread 7 Bank 7
Thread 8 Bank 8 Thread 8 Bank 8
Thread 9 Bank 9 Thread 9 Bank 9
Thread 10 Bank 10 Thread 10 Bank 10
Thread 11 Bank 11 Thread 11 Bank 11
Thread 12 Bank 12 Thread 12 Bank 12
Thread 13 Bank 13 Thread 13 Bank 13
Thread 14 Bank 14 Thread 14 Bank 14
Thread 15 Bank 15 Thread 15 Bank 15
— 2-way bank conflicts — 4-way bank conflicts

© Jens Teubner - Data Processing on Modern Hardware - Summer 2016

Exception: Broadcast Reads

Thread 0 Bank 0

Thread 1 Bank 1

Thread 2 Bank 2

Thread 3 Bank 3

Thread 4 Bank 4

Thread 5 Bank 5

Broadcast reads do not lead to a Thread 6 Bank 6
bank conflict. Thread 7 Bank 7
m All threads must read the same Vhireesl & e

d Thread 9 Bank 9

word. Thread 10 Bank 10
Thread 11 Bank 11

Thread 12 Bank 12

Thread 13 Bank 13

Thread 14 Bank 14

Thread 15 Bank 15

© Jens Teubner - Data Processing on Modern Hardware - Summer 2016

Thread Synchronization

Threads may use built-in functions to synchronize within work groups.

m barrier (flags) Block until all threads in the group have reached
the barrier. Also enforces memory ordering.

m mem_fence (flags) Enforce memory ordering: all memory
operations are committed before thread continues.

for (unsigned int i=0; i<mn; i++)
{
do_something () ;

barrier (CLK_LOCAL_MEM_FENCE) ;

If barrier occurs in a branch, same branch must be taken by all
threads in the group (danger: deadlocks or unpredictable results).

© Jens Teubner - Data Processing on Modern Hardware - Summer 2016

Synchronization Across Work Groups

To synchronize across work groups,

m use in-order command queue and queue multiple kernel invocations
from the host side

— Can also queue markers and barriers to the command queue.
or
m use OpenCL event mechanism.

— Can also synchronize host <+ device and kernel executions in
multiple command queues.

To wait on host side until all queued commands have been completed,
use clFinish (command queue).

© Jens Teubner - Data Processing on Modern Hardware - Summer 2016

To summarize,

m GPUs provide high degrees of parallelism that can be programmed
using a high-level language.

But:

m GPUs are not simply “multi-core processors.”

m Unleashing their performance requires significant efforts and great
care for details.

Also note that

m GPUs provide lots of Giga-FLOPS.
— But rather few applications really need raw GFLOPS.

© Jens Teubner - Data Processing on Modern Hardware - Summer 2016

	Graphics Processors (GPUs)
	Technology Trends: CPUs and GPUs
	Earlier Graphics Processors

	Today: General-Purpose GPUs
	Throughput vs. Latency
	CPUs vs. GPUs
	OpenCL Computation Model
	Example: NVIDIA GPUs
	Memory Access Cost
	Thread Synchronization

