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Part VII

FPGAs for Data Processing
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Motivation

Modern hardware features a number of “speed-up tricks”:

caches,

instruction scheduling (out-of-order exec., branch prediction, . . . ),

parallelism (SIMD, multi-core),

throughput-oriented designs (GPUs).

Combining these “tricks” is essentially an economic choice:

→ chip space ≡ eee
→ chip space ↔ component selection ↔ workload
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Another Constraint: Power

Can use transistors for either logic or caches.
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cessor-performance scaling faces new 
challenges (see Table 1) precluding 
use of energy-inefficient microarchi-
tecture innovations developed over the 
past two decades. Further, chip archi-
tects must face these challenges with 
an ongoing industry expectation of a 
30x performance increase in the next 
decade and 1,000x increase by 2030 
(see Table 2). 

As the transistor scales, supply 
voltage scales down, and the thresh-
old voltage of the transistor (when 
the transistor starts conducting) also 
scales down. But the transistor is not 
a perfect switch, leaking some small 
amount of current when turned off, 
increasing exponentially with reduc-
tion in the threshold voltage. In ad-
dition, the exponentially increasing 
transistor-integration capacity exacer-
bates the effect; as a result, a substan-
tial portion of power consumption is 
due to leakage. To keep leakage under 
control, the threshold voltage cannot 
be lowered further and, indeed, must 
increase, reducing transistor perfor-
mance.10 

As transistors have reached atomic 
dimensions, lithography and variabil-
ity pose further scaling challenges, af-
fecting supply-voltage scaling.11 With 
limited supply-voltage scaling, energy 
and power reduction is limited, ad-
versely affecting further integration 
of transistors. Therefore, transistor-
integration capacity will continue with 
scaling, though with limited perfor-
mance and power benefit. The chal-
lenge for chip architects is to use this 
integration capacity to continue to im-
prove performance. 

Package power/total energy con-
sumption limits number of logic tran-
sistors. If chip architects simply add 
more cores as transistor-integration 
capacity becomes available and oper-
ate the chips at the highest frequen-
cy the transistors and designs can 
achieve, then the power consumption 
of the chips would be prohibitive (see 
Figure 7). Chip architects must limit 
frequency and number of cores to keep 
power within reasonable bounds, but 
doing so severely limits improvement 
in microprocessor performance. 

Consider the transistor-integration 
capacity affordable in a given power 
envelope for reasonable die size. For 
regular desktop applications the pow-

er envelope is around 65 watts, and 
the die size is around 100mm2. Figure 
8 outlines a simple analysis for 45nm 
process technology node; the x-axis is 
the number of logic transistors inte-
grated on the die, and the two y-axes 
are the amount of cache that would fit 
and the power the die would consume. 
As the number of logic transistors on 
the die increases (x-axis), the size of the 
cache decreases, and power dissipa-
tion increases. This analysis assumes 
average activity factor for logic and 

cache observed in today’s micropro-
cessors. If the die integrates no logic at 
all, then the entire die could be popu-
lated with about 16MB of cache and 
consume less than 10 watts of power, 
since caches consume less power than 
logic (Case A). On the other hand, if it 
integrates no cache at all, then it could 
integrate 75 million transistors for log-
ic, consuming almost 90 watts of pow-
er (Case B). For 65 watts, the die could 
integrate 50 million transistors for 
logic and about 6MB of cache (Case C). 

Traditional wisdom suggests investing maximum transistors in the 90% case, with 
the goal of using precious transistors to increase single-thread performance that can 
be applied broadly. In the new scaling regime typified by slow transistor performance 
and energy improvement, it often makes no sense to add transistors to a single core 
as energy efficiency suffers. Using additional transistors to build more cores produces 
a limited benefit—increased performance for applications with thread parallelism. 
In this world, 90/10 optimization no longer applies. Instead, optimizing with an 
accelerator for a 10% case, then another for a different 10% case, then another 10% 
case can often produce a system with better overall energy efficiency and performance. 
We call this “10×10 optimization,”14 as the goal is to attack performance as a set of 
10% optimization opportunities—a different way of thinking about transistor cost, 
operating the chip with 10% of the transistors active—90% inactive, but a different 10% 
at each point in time. 

Historically, transistors on a chip were expensive due to the associated design  
effort, validation and testing, and ultimately manufacturing cost. But 20 generations  
of Moore’s Law and advances in design and validation have shifted the balance. 
Building systems where the 10% of the transistors that can operate within the energy 
budget are configured optimally (an accelerator well-suited to the application) may  
well be the right solution. The choice of 10 cases is illustrative, and a 5×5, 7×7, 10×10,  
or 12×12 architecture might be appropriate for a particular design. 

Death of  
90/10 Optimization,  
Rise of  
10×10 Optimization

Figure 8. Transistor integration capacity at a fixed power envelope. 
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→ Power consumptions limits amount of logic that can be put on chip.
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Heterogeneous Hardware
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This design point matches the dual-
core microprocessor on 45nm technol-
ogy (Core2 Duo), integrating two cores 
of 25 million transistors each and 6MB 
of cache in a die area of about 100mm2. 

If this analysis is performed for fu-
ture technologies, assuming (our best 
estimates) modest frequency increase 
15% per generation, 5% reduction in 
supply voltage, and 25% reduction of 

capacitance, then the results will be 
as they appear in Table 1. Note that 
over the next 10 years we expect in-
creased total transistor count, follow-
ing Moore’s Law, but logic transistors 
increase by only 3x and cache transis-
tors increase more than 10x. Apply-
ing Pollack’s Rule, a single processor 
core with 150 million transistors will 
provide only about 2.5x microarchitec-
ture performance improvement over 
today’s 25-million-transistor core, 
well shy of our 30x goal, while 80MB of 
cache is probably more than enough 
for the cores (see Table 3). 

The reality of a finite (essentially 
fixed) energy budget for a microproces-
sor must produce a qualitative shift in 
how chip architects think about archi-
tecture and implementation. First, en-
ergy-efficiency is a key metric for these 
designs. Second, energy-proportional 
computing must be the ultimate goal 
for both hardware architecture and 
software-application design. While 
this ambition is noted in macro-scale 
computing in large-scale data cen-
ters,5 the idea of micro-scale energy-
proportional computing in micropro-
cessors is even more challenging. For 
microprocessors operating within a 
finite energy budget, energy efficiency 
corresponds directly to higher perfor-
mance, so the quest for extreme energy 
efficiency is the ultimate driver for per-
formance. 

In the following sections, we out-
line key challenges and sketch poten-
tial approaches. In many cases, the 
challenges are well known and the 
subject of significant research over 
many years. In all cases, they remain 
critical but daunting for the future of 
microprocessor performance: 

Organizing the logic: Multiple cores 
and customization. The historic mea-
sure of microprocessor capability is 
the single-thread performance of a 
traditional core. Many researchers 
have observed that single-thread per-
formance has already leveled off, with 
only modest increases expected in the 
coming decades. Multiple cores and 
customization will be the major driv-
ers for future microprocessor perfor-
mance (total chip performance). Mul-
tiple cores can increase computational 
throughput (such as a 1x–4x increase 
could result from four cores), and cus-
tomization can reduce execution la-

Figure 9. Three scenarios for integrating 150-million logic transistors into cores. 
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Figure 10. A system-on-a-chip from Texas Instruments. 
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Field-Programmable Gate Arrays

Field-Programmable Gate Arrays (FPGAs) are yet-another point in

the design space.

“Programmable hardware.”

Make (some) design decisions after chip fabrication.

Promises of FPGA technology:

; Build application-/workload-specific circuit.

; Spend chip space only on functionality that you really need.

; Tune for throughput, latency, energy consumption, . . .

; Overcome limits of general-purpose hardware with regard to task at

hand (e.g., I/O limits).
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Field-Programmable Gate Arrays

An array of logic gates

Functionality fully

programmable

Re-programmable after

deployment (“in the field”)

→ “programmable hardware”

FPGAs can be configured to implement any logic circuit.

Complexity bound by available chip space.

→ Obviously, the effective chip space is less than in

custom-fabricated chips (ASICs).
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Field-Programmable Gate Arrays

FPGAs are not instruction set processors.

→ Cannot run (sequential) programs.

One could build an instruction set processor using an FPGA.

→ Bad idea. FPGA ≈ 14× slower than equivalent ASIC.

→ If you want an instruction set processor, buy an instruction set

processor.

Instead:

Create arbitrary logic circuits.

Hardware description language (HDL).
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Basic FPGA Architecture
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Signal Routing

programmable
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bundle of lines
programmable
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cell

programmable
switch with
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Configurable Logic Block (CLB)
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Programming FPGAs

Programming is usually done using a hardware description language.

E.g., VHDL12, Verilog

High-level circuit description

Circuit description is compiled into a bitstream, then loaded into SRAM

cells on the FPGA:

VHDL synthesis map place & route FPGA

netlist bitstream

12VHSIC Hardware Description language
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Example: VHDL

HDLs enable programming language-like descriptions of hardware circuits.

architecture Behavioral of compare is

begin

process (A, B)

begin

if ( A = B ) then

C <= ’1’;

else

C <= ’0’;

end if;

end process;

end Behavioral;

VHDL can be synthesized, but also executed in software (simulation).
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Real-World Hardware

CPU 0 CPU 1

Simplified Virtex-5

XC5VFXxxxT floor plan

Frequently used high-level

components are provided in

discrete silicon

BlockRAM (BRAM): set of

blocks that each store up

36 kbits of data

DSP48 slices: 25x18-bit

multipliers followed by a 48-bit

accumulator

CPU: two full embedded

PowerPC 440 cores
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Development Board with Virtex-5 FPGA

source: Xilinx Inc., ML50x Evaluation Platform. User Guide.

Virtex-5

XC5VLX110T

Lookup Tables (LUTs) 69,120

Block RAM (kbit) 5,328

DSP48 Slices 64

PowerPC Cores 0

max. clock speed ≈ 450 MHz

release year 2006

� Low-level speed of configurable gates is slower than in

custom-fabricated chips (clock frequencies: ∼ 100 MHz).

→ Compensate with efficient circuit for problem at hand.
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State Machines

The key asset of FPGAs is their inherent parallelism.

Chip areas naturally operate independently and in parallel.

For example, consider finite-state automata.

q0 q1 q2 q3 q4

a

*

b c d

*

→ non-deterministic automaton for .*abc.*d
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State Machines

�How would you implement an automaton in software?

Problems with state machine implementations in software:

In non-deterministic automata, several states can be active at a

time, which requires iterative execution on sequential hardware.

Deterministic automata avoid this problem at the expense of a

significantly higher state count.
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State Machines in Hardware

Automata can be translated mechanically into hardware circuits.

each state → flip-flop

(A flip-flop holds a single bit of information. Just the right amount to keep

the ‘active’/‘not active’ information.)

transitions:

→ signals (“wires”) between states

conditioned on current input symbol (; ‘and’ gate)

multiple sources for one flip-flop input → ‘or’ gate.
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State Machines in Hardware

q0 q1 q2 q3 q4

a

*

b c d

*
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Use Case: XML Projection

Example:

for $i in //regions//item

return <item>

{ $i/name }

<num-categories>

{ count ($i/incategory) }

</num-categories>

</item>

Projection paths:

{ //regions//item,

//regions//item/name #

keep descendants

,

//regions//item/incategory }

Challenge: Avoid explicit synthesis for each query.
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Advantage: FPGA System Integration

Here: In-network filtering

server XML FPGA
filtered XML

client

In general: FPGA in the data path.

disk → CPU

memory → CPU

. . .
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XPath → Finite State Automata

Automaton for //a/b/c//d:

q0 q1 q2 q3 q4

a

*

b c d

*

In hardware: (see also earlier slides)

tag

decod.

a

d

XML

FF

q0

FF

q1

FF

q2

FF

q3

FF

q4
or and

a

and

b

and

c

or and

d

root()/desc:: a/child:: b/child:: c/desc:: d
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Compilation to Hardware

/a//b

a

*

b

FPGA

XPath Hardware FSM bitstream

� several hours!
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Skeleton Automaton

Separate the difficult parts from the latency-critical

. . .

⊥

a

*

b

�

�

FPGA

XPath

spec.

. . .

�

�

�

�

�

�

skeleton

user query

/a//b

. . .

⊥

a

*

b

configuration param.

static part (off-line)

dynamic part (runtime)
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Skeleton Automaton

Thus: Build skeleton automaton that can be parameterized to

implement any projection query.

XML

parser

skeleton

segment

seg1

. . .
skeleton

segment

segn

seria-

lizer

RAM

XML filtered

XML

“cooked XML”

skeleton automaton (NFA)

Intuitively:

Runtime-configuration determines presence of * .
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Pipelining

seg0 seg1 seg2 seg3 seg4 seg5start

input stream

seg0 seg1 seg2 seg3 seg4 seg5start

input str.

pipeline registers

→ Side effect: Can support self and descendant-or-self axes.
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Scalability
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Application Speedup
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↗ Jens Teubner, Louis Woods, and Chongling Nie. Skeleton Automata for

FPGAs: Reconfiguring without Reconstructing. SIGMOD 2012.
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