
Data Processing on Modern Hardware

Jens Teubner, TU Dortmund, DBIS Group

jens.teubner@cs.tu-dortmund.de

Summer 2016

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 1

Part VII

FPGAs for Data Processing

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 274

Motivation

Modern hardware features a number of “speed-up tricks”:

caches,

instruction scheduling (out-of-order exec., branch prediction, . . .),

parallelism (SIMD, multi-core),

throughput-oriented designs (GPUs).

Combining these “tricks” is essentially an economic choice:

→ chip space ≡ eee
→ chip space ↔ component selection ↔ workload

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 275

Another Constraint: Power

Can use transistors for either logic or caches.

contributed articles

may 2011 | vol. 54 | no. 5 | communications of the acm 71

cessor-performance scaling faces new
challenges (see Table 1) precluding
use of energy-inefficient microarchi-
tecture innovations developed over the
past two decades. Further, chip archi-
tects must face these challenges with
an ongoing industry expectation of a
30x performance increase in the next
decade and 1,000x increase by 2030
(see Table 2).

As the transistor scales, supply
voltage scales down, and the thresh-
old voltage of the transistor (when
the transistor starts conducting) also
scales down. But the transistor is not
a perfect switch, leaking some small
amount of current when turned off,
increasing exponentially with reduc-
tion in the threshold voltage. In ad-
dition, the exponentially increasing
transistor-integration capacity exacer-
bates the effect; as a result, a substan-
tial portion of power consumption is
due to leakage. To keep leakage under
control, the threshold voltage cannot
be lowered further and, indeed, must
increase, reducing transistor perfor-
mance.10

As transistors have reached atomic
dimensions, lithography and variabil-
ity pose further scaling challenges, af-
fecting supply-voltage scaling.11 With
limited supply-voltage scaling, energy
and power reduction is limited, ad-
versely affecting further integration
of transistors. Therefore, transistor-
integration capacity will continue with
scaling, though with limited perfor-
mance and power benefit. The chal-
lenge for chip architects is to use this
integration capacity to continue to im-
prove performance.

Package power/total energy con-
sumption limits number of logic tran-
sistors. If chip architects simply add
more cores as transistor-integration
capacity becomes available and oper-
ate the chips at the highest frequen-
cy the transistors and designs can
achieve, then the power consumption
of the chips would be prohibitive (see
Figure 7). Chip architects must limit
frequency and number of cores to keep
power within reasonable bounds, but
doing so severely limits improvement
in microprocessor performance.

Consider the transistor-integration
capacity affordable in a given power
envelope for reasonable die size. For
regular desktop applications the pow-

er envelope is around 65 watts, and
the die size is around 100mm2. Figure
8 outlines a simple analysis for 45nm
process technology node; the x-axis is
the number of logic transistors inte-
grated on the die, and the two y-axes
are the amount of cache that would fit
and the power the die would consume.
As the number of logic transistors on
the die increases (x-axis), the size of the
cache decreases, and power dissipa-
tion increases. This analysis assumes
average activity factor for logic and

cache observed in today’s micropro-
cessors. If the die integrates no logic at
all, then the entire die could be popu-
lated with about 16MB of cache and
consume less than 10 watts of power,
since caches consume less power than
logic (Case A). On the other hand, if it
integrates no cache at all, then it could
integrate 75 million transistors for log-
ic, consuming almost 90 watts of pow-
er (Case B). For 65 watts, the die could
integrate 50 million transistors for
logic and about 6MB of cache (Case C).

Traditional wisdom suggests investing maximum transistors in the 90% case, with
the goal of using precious transistors to increase single-thread performance that can
be applied broadly. In the new scaling regime typified by slow transistor performance
and energy improvement, it often makes no sense to add transistors to a single core
as energy efficiency suffers. Using additional transistors to build more cores produces
a limited benefit—increased performance for applications with thread parallelism.
In this world, 90/10 optimization no longer applies. Instead, optimizing with an
accelerator for a 10% case, then another for a different 10% case, then another 10%
case can often produce a system with better overall energy efficiency and performance.
We call this “10×10 optimization,”14 as the goal is to attack performance as a set of
10% optimization opportunities—a different way of thinking about transistor cost,
operating the chip with 10% of the transistors active—90% inactive, but a different 10%
at each point in time.

Historically, transistors on a chip were expensive due to the associated design
effort, validation and testing, and ultimately manufacturing cost. But 20 generations
of Moore’s Law and advances in design and validation have shifted the balance.
Building systems where the 10% of the transistors that can operate within the energy
budget are configured optimally (an accelerator well-suited to the application) may
well be the right solution. The choice of 10 cases is illustrative, and a 5×5, 7×7, 10×10,
or 12×12 architecture might be appropriate for a particular design.

Death of
90/10 Optimization,
Rise of
10×10 Optimization

Figure 8. Transistor integration capacity at a fixed power envelope.

Case B

Case A, 0 Logic, 8W

Case A, 16MB of Cache

Case C
50MT Logic
6MB Cache

Power Dissipation

Cache Size

100

80

60

40

20

0

18

16

14

12

10

8

6

4

2

0

0 20 40 60 80

To
ta

l P
ow

er
 (

W
at

ts
)

Logic Transistors (Millions)

2008, 45nm, 100mm2

C
ac

h
e

(M
B

)

S
o
u
rc
e
:
B
o
rk
a
r
a
n
d
C
h
ie
n
.
T
h
e
F
u
tu
re
o
f
M
ic
ro
p
ro
c
e
ss
o
rs
.
C
A
C
M
2
0
1
1
.

→ Power consumptions limits amount of logic that can be put on chip.

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 276

Heterogeneous Hardware

72 communications of the acm | May 2011 | vol. 54 | no. 5

contributed articles

This design point matches the dual-
core microprocessor on 45nm technol-
ogy (Core2 Duo), integrating two cores
of 25 million transistors each and 6MB
of cache in a die area of about 100mm2.

If this analysis is performed for fu-
ture technologies, assuming (our best
estimates) modest frequency increase
15% per generation, 5% reduction in
supply voltage, and 25% reduction of

capacitance, then the results will be
as they appear in Table 1. Note that
over the next 10 years we expect in-
creased total transistor count, follow-
ing Moore’s Law, but logic transistors
increase by only 3x and cache transis-
tors increase more than 10x. Apply-
ing Pollack’s Rule, a single processor
core with 150 million transistors will
provide only about 2.5x microarchitec-
ture performance improvement over
today’s 25-million-transistor core,
well shy of our 30x goal, while 80MB of
cache is probably more than enough
for the cores (see Table 3).

The reality of a finite (essentially
fixed) energy budget for a microproces-
sor must produce a qualitative shift in
how chip architects think about archi-
tecture and implementation. First, en-
ergy-efficiency is a key metric for these
designs. Second, energy-proportional
computing must be the ultimate goal
for both hardware architecture and
software-application design. While
this ambition is noted in macro-scale
computing in large-scale data cen-
ters,5 the idea of micro-scale energy-
proportional computing in micropro-
cessors is even more challenging. For
microprocessors operating within a
finite energy budget, energy efficiency
corresponds directly to higher perfor-
mance, so the quest for extreme energy
efficiency is the ultimate driver for per-
formance.

In the following sections, we out-
line key challenges and sketch poten-
tial approaches. In many cases, the
challenges are well known and the
subject of significant research over
many years. In all cases, they remain
critical but daunting for the future of
microprocessor performance:

Organizing the logic: Multiple cores
and customization. The historic mea-
sure of microprocessor capability is
the single-thread performance of a
traditional core. Many researchers
have observed that single-thread per-
formance has already leveled off, with
only modest increases expected in the
coming decades. Multiple cores and
customization will be the major driv-
ers for future microprocessor perfor-
mance (total chip performance). Mul-
tiple cores can increase computational
throughput (such as a 1x–4x increase
could result from four cores), and cus-
tomization can reduce execution la-

Figure 9. Three scenarios for integrating 150-million logic transistors into cores.

(a) (b) (c)

Large-Core
25 MT

2

43

5 6

Large-Core Homogeneous

Large-core
throughput

1

Small-core
throughput

Total
throughput

6

Small-Core Homogeneous

Large-core
throughput

Small-core
throughput

Pollack’s Rule
(5/25)0.5=0.45

Total
throughput

13

Small-Core Homogeneous

Large-core
throughput

1

Small-core
throughput

Pollack’s Rule
(5/25)0.5=0.45

Total
throughput

11

5 MT 2 3

30

5 MT 2 3

20

Large-Core
25MT

Figure 10. A system-on-a-chip from Texas Instruments.

ARM
Cortex

A8
CPU

C64x+ DSP
and video

accelerators
(3525/3530 only)

Display Subsystem

Peripherals

Camera I/F

Connectivity

Serial Interfaces

System

Program/Data Storage

2D/3D Graphics
(3515/3530 only)

LCD
Controller

USB 2.0 HS
OTG Controller

McBSP x5 I2C x3 UART x2 HDQ/1-wire SDRC

GPMCUART w/
IRDAMcSPI x4

Timers
GP x12
WDT x2

MMC/SD/SDIO
x3

Image
Pipe

Video
Enc

USB Host
Controller x2

10-bit DAC

Parallel I/F

10-bit DAC

L3/L4 Interconnect

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 277

Field-Programmable Gate Arrays

Field-Programmable Gate Arrays (FPGAs) are yet-another point in

the design space.

“Programmable hardware.”

Make (some) design decisions after chip fabrication.

Promises of FPGA technology:

; Build application-/workload-specific circuit.

; Spend chip space only on functionality that you really need.

; Tune for throughput, latency, energy consumption, . . .

; Overcome limits of general-purpose hardware with regard to task at

hand (e.g., I/O limits).

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 278

Field-Programmable Gate Arrays

An array of logic gates

Functionality fully

programmable

Re-programmable after

deployment (“in the field”)

→ “programmable hardware”

FPGAs can be configured to implement any logic circuit.

Complexity bound by available chip space.

→ Obviously, the effective chip space is less than in

custom-fabricated chips (ASICs).

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 279

Field-Programmable Gate Arrays

FPGAs are not instruction set processors.

→ Cannot run (sequential) programs.

One could build an instruction set processor using an FPGA.

→ Bad idea. FPGA ≈ 14× slower than equivalent ASIC.

→ If you want an instruction set processor, buy an instruction set

processor.

Instead:

Create arbitrary logic circuits.

Hardware description language (HDL).

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 280

Basic FPGA Architecture

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

DCM

DCM

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

chip layout: 2D array

Components

CLB: Configurable Logic Block

(“logic gates”)

IOB: Input/Output Block

DCM: Digital Clock Manager

Interconnect Network

signal lines

configurable switch boxes

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 281

Signal Routing

programmable
Switch Box and

bundle of lines
programmable

intersection
point

SRAM
cell

programmable
switch with
memory cell

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 282

Configurable Logic Block (CLB)

in0
in1
in2
in3

SRAM
cell

4-LUT

D

Flip
Flop

clock

SRAM
cell

Multiplexer

out

implements
{0, 1}4 → {0, 1}

function

stores a
single bit

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 283

Programming FPGAs

Programming is usually done using a hardware description language.

E.g., VHDL12, Verilog

High-level circuit description

Circuit description is compiled into a bitstream, then loaded into SRAM

cells on the FPGA:

VHDL synthesis map place & route FPGA

netlist bitstream

12VHSIC Hardware Description language
c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 284

Example: VHDL

HDLs enable programming language-like descriptions of hardware circuits.

architecture Behavioral of compare is

begin

process (A, B)

begin

if (A = B) then

C <= ’1’;

else

C <= ’0’;

end if;

end process;

end Behavioral;

VHDL can be synthesized, but also executed in software (simulation).

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 285

Real-World Hardware

CPU 0 CPU 1

Simplified Virtex-5

XC5VFXxxxT floor plan

Frequently used high-level

components are provided in

discrete silicon

BlockRAM (BRAM): set of

blocks that each store up

36 kbits of data

DSP48 slices: 25x18-bit

multipliers followed by a 48-bit

accumulator

CPU: two full embedded

PowerPC 440 cores

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 286

Development Board with Virtex-5 FPGA

source: Xilinx Inc., ML50x Evaluation Platform. User Guide.

Virtex-5

XC5VLX110T

Lookup Tables (LUTs) 69,120

Block RAM (kbit) 5,328

DSP48 Slices 64

PowerPC Cores 0

max. clock speed ≈ 450 MHz

release year 2006

� Low-level speed of configurable gates is slower than in

custom-fabricated chips (clock frequencies: ∼ 100 MHz).

→ Compensate with efficient circuit for problem at hand.

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 287

State Machines

The key asset of FPGAs is their inherent parallelism.

Chip areas naturally operate independently and in parallel.

For example, consider finite-state automata.

q0 q1 q2 q3 q4

a

*

b c d

*

→ non-deterministic automaton for .*abc.*d

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 288

State Machines

�How would you implement an automaton in software?

Problems with state machine implementations in software:

In non-deterministic automata, several states can be active at a

time, which requires iterative execution on sequential hardware.

Deterministic automata avoid this problem at the expense of a

significantly higher state count.

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 289

State Machines in Hardware

Automata can be translated mechanically into hardware circuits.

each state → flip-flop

(A flip-flop holds a single bit of information. Just the right amount to keep

the ‘active’/‘not active’ information.)

transitions:

→ signals (“wires”) between states

conditioned on current input symbol (; ‘and’ gate)

multiple sources for one flip-flop input → ‘or’ gate.

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 290

State Machines in Hardware

q0 q1 q2 q3 q4

a

*

b c d

*

FF

q0

FF

q1

FF

q2

FF

q3

FF

q4
or and

input
?
= a

and

input
?
= b

and

input
?
= c

or and

input
?
= d

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 291

0

1

2

3

4

5

F
lip

-fl
o

p
co

n
s.

in
% NFA

DFA
DFA (compressed)

0 1 2 3 4 5 6 7 8 9 10

i in (0|1)* 1 (0|1)i

0

1

2

3

4

5

6

L
U

T
co

n
s.

in
%

NFA
DFA
DFA (compressed)

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 292

Use Case: XML Projection

Example:

for $i in //regions//item

return <item>

{ $i/name }

<num-categories>

{ count ($i/incategory) }

</num-categories>

</item>

Projection paths:

{ //regions//item,

//regions//item/name #

keep descendants

,

//regions//item/incategory }

Challenge: Avoid explicit synthesis for each query.

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 293

Advantage: FPGA System Integration

Here: In-network filtering

server XML FPGA
filtered XML

client

In general: FPGA in the data path.

disk → CPU

memory → CPU

. . .

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 294

XPath → Finite State Automata

Automaton for //a/b/c//d:

q0 q1 q2 q3 q4

a

*

b c d

*

In hardware: (see also earlier slides)

tag

decod.

a

d

XML

FF

q0

FF

q1

FF

q2

FF

q3

FF

q4
or and

a

and

b

and

c

or and

d

root()/desc:: a/child:: b/child:: c/desc:: d

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 295

Compilation to Hardware

/a//b

a

*

b

FPGA

XPath Hardware FSM bitstream

� several hours!

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 296

Skeleton Automaton

Separate the difficult parts from the latency-critical

. . .

⊥

a

*

b

�

�

FPGA

XPath

spec.

. . .

�

�

�

�

�

�

skeleton

user query

/a//b

. . .

⊥

a

*

b

configuration param.

static part (off-line)

dynamic part (runtime)

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 297

Skeleton Automaton

Thus: Build skeleton automaton that can be parameterized to

implement any projection query.

XML

parser

skeleton

segment

seg1

. . .
skeleton

segment

segn

seria-

lizer

RAM

XML filtered

XML

“cooked XML”

skeleton automaton (NFA)

Intuitively:

Runtime-configuration determines presence of * .

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 298

Pipelining

seg0 seg1 seg2 seg3 seg4 seg5start

input stream

seg0 seg1 seg2 seg3 seg4 seg5start

input str.

pipeline registers

→ Side effect: Can support self and descendant-or-self axes.

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 299

Scalability

0

50

100

150

200

cl
o

ck
fr

eq
u

en
cy

[M
H

z]

0 100 200 300 400 500 600

number of segment matchers n

no BRAM sharing
2-way BRAM sharing
3-way BRAM sharing

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 300

Application Speedup

20 40

0

2

4

6

8

10

12

14

16
parse time
execution time
memory cons.

im
p

ro
ve

m
en

t
/

sp
ee

d
u

p

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

XMark query

↗ Jens Teubner, Louis Woods, and Chongling Nie. Skeleton Automata for

FPGAs: Reconfiguring without Reconstructing. SIGMOD 2012.
c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 301

	FPGAs for Data Processing
	Motivation: Chip Space Trade-Offs
	Field-Programmable Gate Arrays (FPGAs)
	FPGA Internals

	State Machines
	State Machines in Software
	State Machines in Hardware

	Use Case: XML Projection
	In-Network Filtering
	From Queries to Hardware
	Experiments

