Data Processing on Modern Hardware

Jens Teubner, TU Dortmund, DBIS Group jens.teubner@cs.tu-dortmund.de

Summer 2016

© Jens Teubner · Data Processing on Modern Hardware · Summer 2016

Part II

Cache Awareness

There is an increasing gap between CPU and memory speeds.

- Also called the **memory wall**.
- CPUs spend much of their time **waiting** for memory.

Dynamic RAM is comparably **slow**.

- Memory needs to be **refreshed** periodically (\approx every 64 ms).
- (Dis-)charging a capacitor takes time.

DRAM cells must be addressed and capacitor outputs amplified.

Overall we're talking about \approx 200 CPU cycles per access.

Under certain circumstances, DRAM **can** be reasonably fast.

- DRAM cells are physically organized as a 2-d array.
- The discharge/amplify process is done for an **entire row**.
- Once this is done, more than one word can be read out.

In addition,

- Several DRAM cells can be used in **parallel**.
 - $\rightarrow\,$ Read out even more words in parallel.

We can exploit that by using **sequential access patterns**.

SRAM, by contrast, can be very **fast**.

Transistors actively drive output lines, access almost instantaneous.

But:

SRAMs are significantly more expensive (chip space \equiv money)

Therefore:

- Organize memory as a hierarchy.
- Small, fast memories used as **caches** for slower memory.

Memory Hierarchy

	technology	capacity	latency
CPU	SRAM	bytes	$< 1 \rm ns$
L1 Cache	SRAM	kilobytes	pprox 1 ns
L2 Cache	SRAM	megabytes	< 10 ns
main memory	DRAM	gigabytes	70–100 ns
: disk			

- Some systems also use a 3rd level cache.
- cf. Architecture & Implementation course
 - $\rightarrow\,$ Caches resemble the buffer manager but are controlled by hardware

Caches take advantage of the **principle of locality**.

- 90% execution time spent in 10% of the code.
- The **hot set** of data often fits into caches.

Spatial Locality:

- Code often contains loops.
- Related data is often spatially close.

Temporal Locality:

- Code may call a function repeatedly, even if it is not spatially close.
- Programs tend to re-use data frequently.

To guarantee speed, the **overhead** of caching must be kept reasonable.

- Organize cache in **cache lines**.
- Only load/evict full cache lines.
- Typical cache line size: 64 bytes.

- The organization in cache lines is consistent with the principle of (spatial) locality.
- Block-wise transfers are well-supported by DRAM chips.

On every memory access, the CPU checks if the respective **cache line** is already cached.

Cache Hit:

- Read data directly from the cache.
- No need to access lower-level memory.

Cache Miss:

- Read full cache line from lower-level memory.
- Evict some cached block and replace it by the newly read cache line.
- CPU stalls until data becomes available.¹

¹Modern CPUs support out-of-order execution and several in-flight cache misses.

© Jens Teubner · Data Processing on Modern Hardware · Summer 2016

Block Placement: Fully Associative Cache

In a fully associative cache, a block can be loaded into any cache line.

- Offers freedom to block replacement strategy.
- Does not scale to large caches
 - \rightarrow 4 MB cache, line size: 64 B: 65,536 cache lines.
- Used, *e.g.*, for small TLB caches.

Block Placement: Direct-Mapped Cache

In a **direct-mapped** cache, a block has only one place it can appear in the cache.

Block Placement: Set-Associative Cache

A compromise are **set-associative** caches.

- Group cache lines into **sets**.
- Each memory block maps to one set.
- Block can be placed anywhere within a set.
- Most processor caches today are set-associative.

Block Identification

A **tag** associated with each cache line identifies the memory block currently held in this cache line.

The tag can be derived from the memory address.

Example: Intel Q6700 (Core 2 Quad)

- Total cache size: **4 MB** (per 2 cores).
- Cache line size: **64 bytes**.
 - \rightarrow 6-bit offset (2⁶ = 64)
 - \rightarrow There are 65,536 cache lines in total (4 MB ÷ 64 bytes).
- Associativity: 16-way set-associative.
 - \rightarrow There are 4,096 sets (65, 536 \div 16 = 4,096).
 - \rightarrow 12-bit set index (2¹² = 4,096).
- Maximum physical address space: 64 GB.
 - \rightarrow 36 address bits are enough (2³⁶ bytes = 64 GB)
 - \rightarrow 18-bit tags (36 12 6 = 18).

Block Replacement

When bringing in new cache lines, an existing entry has to be evicted.

Different strategies are conceivable (and meaningful):

Least Recently Used (LRU)

Evict cache line whose last access is longest ago.

 $\rightarrow\,$ Least likely to be needed any time soon.

First In First Out (FIFO)

- Behaves often similar like LRU.
- But easier to implement.

Random

- Pick a random cache line to evict.
- Very simple to implement in hardware.

Replacement has to be decided in hardware and fast.

To implement memory writes, CPU makers have two options:

Write Through

- Data is directly written to lower-level memory (and to the cache).
 - $\rightarrow\,$ Writes will stall the CPU.^2
 - $\rightarrow\,$ Greatly simplifies data coherency.

Write Back

- Data is only written into the cache.
- A dirty flag marks modified cache lines (Remember the status field.)
 - $\rightarrow\,$ May reduce traffic to lower-level memory.
 - $\rightarrow\,$ Need to write on eviction of dirty cache lines.

Modern processors usually implement write back.

²Write buffers can be used to overcome this problem.

[©] Jens Teubner · Data Processing on Modern Hardware · Summer 2016

To compensate for **slow memory**, systems use **caches**.

- DRAM provides high capacity, but long latency.
- SRAM has **better latency**, but **low capacity**.
- Typically multiple levels of caching (memory hierarchy).
- Caches are organized into cache lines.
- Set associativity: A memory block can only go into a small number of cache lines (most caches are set-associative).

Systems will benefit from **locality**.

Affects data and code.

Example: AMD Opteron, 2.8 GHz, PC3200 DDR SDRAM

- L1 cache: separate data and instruction caches, each 64 kB, 64 B cache lines, 2-way set-associative
- L2 cache: shared cache,
 - 1 MB, 64 B cache lines, 16-way set-associative, pseudo-LRU policy
- L1 hit latency: 2 cycles
- L2 hit latency: 7 cycles (for first word)
- L2 miss latency: 160–180 cycles
 (20 CPU cycles + 140 cy DRAM latency (50 ns) + 20 cy on mem. bus)
- L2 cache: write-back
- 40-bit virtual addresses

Source: Hennessy & Patterson. Computer Architecture—A Quantitative Approach.

Performance (SPECint 2000)

How can we improve data cache usage?

Consider, *e.g.*, a selection query:

SELECT COUNT(*)
FROM lineitem
WHERE l_shipdate = "2009-09-26"

This query typically involves a **full table scan**.

Table Scans (NSM)

Tuples are represented as **records** stored sequentially on a database page.

cache block boundaries

- With every access to a l_shipdate field, we load a large amount of irrelevant information into the cache.
- Accesses to slot directories and variable-sized tuples incur additional trouble.

Row-Wise vs. Column-Wise Storage

Remember the "Architecture & Implementation" course?

The *n*-ary storage model (NSM, row-wise storage) is not the only choice.

Column-wise storage (decomposition storage model, DSM):

- All data loaded into caches by a "1_shipdate scan" is now actually relevant for the query.
 - $\rightarrow\,$ Less data has to be fetched from memory.
 - $\rightarrow\,$ Amortize cost for fetch over more tuples.
 - \rightarrow If we're really lucky, the full (1_shipdate) data might now even fit into caches.
- The same arguments hold, by the way, also for disk-based systems.
- Additional benefit: Data compression might work better.

↗ Copeland and Khoshafian. A Decomposition Storage Model. SIGMOD 1985.

MonetDB: Binary Association Tables

MonetDB makes this explicit in its data model.

■ All tables in MonetDB have two columns ("head" and "tail").

oid	NAME	AGE	SEX		oid	NAME	oid	AGE	oid	SEX
01	John	34	m		01	John	01	34	01	m
02	Angelina	31	f	\rightarrow	02	Angelina	02	31	<i>0</i> 2	f
03	Scott	35	m		03	Scott	03	35	03	m
04	Nancy	33	f		04	Nancy	04	33	04	f

Each column yields one binary association table (BAT).

- **Object identifiers** (oids) identify matching entries (BUNs).
- Oftentimes, oids can be implemented as virtual oids (voids).
 → Not explicitly materialized in memory.

Tuple recombination can cause considerable cost.

- Need to perform **many joins**.
- Workload-dependent trade-off.
- → MonetDB: **positional joins** (thanks to void columns)

Commercial databases have just recently announced column-store extensions to their engines:

Microsoft SQL Server:

- Represented as "Column Store Indexes"
- Available since SQL Server 11
- see Larson et al., SIGMOD 2011

IBM DB2:

- IBM announced DB2 "BLU Accelerator" last week, a column store that is going to ship with DB2 10.5.
- BLU stands for "Blink Ultra"; Blink was developed at IBM Almaden (<a>> Raman et al., ICDE 2008).

A hybrid approach is the PAX (Partition Attributes Accross) layout:

Divide each page into **minipages**.

Group attributes into them.

Most systems implement the **Volcano iterator model**:

- Operators request tuples from their input using next ().
- Data is processed **tuple at a time**.

"pipelining"

- Each operator keeps its own **state**.
- ∧DB implementation course

Consequences:

- All operators in a plan run **tightly interleaved**.
 - \rightarrow Their **combined** instruction footprint may be large.
 - \rightarrow Instruction cache misses.
- Operators constantly call each other's functionality.
 - \rightarrow Large function call overhead.
- The combined state may be too large to fit into caches.
 - *E.g.*, hash tables, cursors, partial aggregates.
 - \rightarrow Data cache misses.

Example: Query Q1 from the TPC-H benchmark on MySQL.

SELECT l_returnflag, l_linestatus, SUM(l_quantity) AS sum_qty, SUM(l_extendedprice) AS sum_base_price, SUM(l_extendedprice*(1-l_discount)) AS sum_disc_price, SUM(l_extendedprice*(1-l_discount)*(1+l_tax)) AS sum_charge, AVG(l_quantity) AS avg_qty, AVG(l_extendedprice) AS avg_price, AVG(l_discount) AS avg_disc, COUNT(*) AS count_order FROM lineitem WHERE l_shipdate <= DATE '1998-09-02' GROUP BY l_returnflag, l_linestatus

Scan query with **arithmetics** and a bit of aggregation.

Results taken from Peter Boncz, Marcin Zukowski, Niels Nes. MonetDB/X100: Hyper-Pipelining Query Execution. *CIDR 2005*.

time [sec]	calls	instr./call	IPC	function name
11.9	846M	6	0.64	ut_fold_ulint_pair
8.5	0.15M	27K	0.71	ut_fold_binary
5.8	77M	37	0.85	memcpy
3.1	23M	64	0.88	Item_sum_sum::update_field
3.0	6M	247	0.83	row_search_for_mysql
2.9	17M	79	0.70	Item_sum_avg::update_field
2.6	108M	11	0.60	rec_get_bit_field_1
2.5	6M	213	0.61	row_sel_store_mysql_rec
2.4	48M	25	0.52	rec_get_nth_field
2.4	60	19M	0.69	ha_print_info
2.4	5.9M	195	1.08	end_update
2.1	11M	89	0.98	field_conv
2.0	5.9M	16	0.77	Field_float::val_real
1.8	5.9M	14	1.07	Item_field::val
1.5	42M	17	0.51	row_sel_field_store_in_mysql
1.4	36M	18	0.76	buf_frame_align
1.3	17M	38	0.80	Item_func_mul::val
1.4	25M	25	0.62	pthread_mutex_unlock
1.2	206M	2	0.75	hash_get_nth_cell
1.2	25M	21	0.65	mutex_test_and_set
1.0	102M	4	0.62	rec_get_1byte_offs_flag
1.0	53M	9	0.58	rec_1_get_field_start_offs
0.9	42M	11	0.65	rec_get_nth_field_extern_bit
1.0	11M	38	0.80	Item_func_minus::val
0.5	5.9M	38	0.80	Item_func_plus::val
Observations:

- Only single tuple processed in each call; millions of calls.
- Only **10% of the time** spent on actual query task.
- Very low instructions-per-cycle (IPC) ratio.

Further:

- Much time spent on **field access** (*e.g.*, rec_get_nth_field ()).
 - **NSM** \sim polymorphic operators.
- Single-tuple functions hard to optimize (by compiler).
 - $\rightarrow\,$ Low instructions-per-cycle ratio.
 - $\rightarrow\,$ Vector instructions (SIMD) hardly applicable.
- Function call overhead.

• $\frac{38 \text{ instr.}}{0.8 \frac{\text{instr.}}{\text{cycle}}} = 48 \text{ cycles } \text{vs.} \text{ 3 instr. for load/add/store assembly.}$

MonetDB: operator-at-a-time processing.

- Operators consume and produce full columns.
- Each (sub-)result is **fully materialized** (in memory).
- **No** pipelining (rather a sequence of statements).
- Each operator runs exactly once.

Example:

sel_age	:=	<pre>people_age.select(30, nil);</pre>
sel_id	:=	<pre>sel_age.mirror().join(people_age);</pre>
sel_name	:=	<pre>sel_age.mirror().join(people_name);</pre>
tmp	:=	[-](sel_age, 30);
<pre>sel_bonus</pre>	:=	[*](50, tmp);

Operator-At-A-Time Processing

Few function calls; extremely tight loops when iterating over tuples. Example: batval_int_add (···) (impl. of [+](int, BAT[any,int]))

```
if (vv != int_nil) {
    for (; bp < bq; bp++, bnp++) {</pre>
         REGISTER int bv = *bp;
         if (by != int nil) {
             bv = (int) OP(bv, +, vv);
         }
         *bnp = bv;
    }
} else {
    for (; bp < bq; bp++, bnp++) {</pre>
         *bnp = vv;
    }
}
```

These tight loops

conveniently fit into instruction caches,

- can be **optimized** effectively by modern compilers,
 - \rightarrow loop unrolling
 - \rightarrow **vectorization** (use of SIMD instructions)
- can leverage modern CPU features (hardware prefetching).

Function calls are now **out of the critical code path**.

Note also:

- **No** per-tuple field extraction or type resolution.
 - **Operator specialization**, *e.g.*, for every possible type.
 - Implemented using macro expansion.
 - Possible due to column-based storage.

result		bandwidth	
size	time [ms]	[MB/s]	MIL statement
5.9M	127	352	<pre>s0 := select (l_shipdate, ···).mark();</pre>
5.9M	134	505	<pre>s1 := join (s0, l_returnag);</pre>
5.9M	134	506	<pre>s2 := join (s0, l_linestatus);</pre>
5.9M	235	483	<pre>s3 := join (s0, l_extprice);</pre>
5.9M	233	488	s4 := join (s0, l_discount);
5.9M	232	489	s5:=join(s0,l_tax);
5.9M	134	507	<pre>s6 := join (s0, l_quantity);</pre>
5.9M	290	155	s7 := group (s1);
5.9M	329	136	s8:=group(s7,s2);
4	0	0	s9:=unique(s8.mirror());
5.9M	206	440	r0 := [+](1.0, s5);
5.9M	210	432	r1 := [-](1.0, s4);
5.9M	274	498	r2 := [*] (s3, r1);
5.9M	274	499	r3 := [*] (s12, r0);
4	165	271	$r4 := {sum}(r3, s8, s9);$
4	165	271	$r5 := {sum}(r2, s8, s9);$
4	163	275	$r6 := {sum}(s3, s8, s9);$
4	163	275	$r(:=\{sum\}(s4, s8, s9);$
4	144	151	$r $:= {sum}(sb, sv, s9);
4	112	196	$r9 := \{count\}(s1, s8, s9);$
	3,724	365	

Source: Boncz et al., MonetDB/X100: Hyper-Pipelining Query Execution. CIDR 2005.

Tuple-At-A-Time vs. Operator-At-A-Time

The **operator-at-a-time model** is a two-edged sword:

- © Cache-efficient with respect to code and operator state.
- © Tight loops, optimizable code.
- **Data** won't fully fit into cache.
 - $\rightarrow\,$ Repeated scans will fetch data from memory over and over.
 - $\rightarrow\,$ Strategy falls apart when intermediate results no longer fit into main memory.

Can we aim for the **middle ground** between the two extremes?

tuple-at-a-time \longleftrightarrow operator-at-a-time \uparrow X100 vectorized execution

Idea:

Use Volcano-style iteration,

but:

- for each next () call return a large number of tuples
 - \rightarrow a "vector" in MonetDB/X100 terminology.

Choose vector size

- large enough to compensate for iteration overhead (function calls, instruction cache misses, ...), but
- **small enough** to not thrash data caches.

Will there be such a vector size? (Or will caches be thrashed long before iteration overhead is compensated?)

Vector Size \leftrightarrow Instruction Cache Effectiveness

Vectorized execution guickly compensates for iteration overhead.

1000 tuples should conveniently fit into caches.

Vectorized Execution in MonetDB/X100

2009. CWI Amsterdam. Balancing Vectorized Query Execution PhD thesis. with Bandwidth-Optimized Storage. Zukowski. Source: M.

Effect on Query Execution Time

Overview over discussed execution models:

execution model	tuple	operator	vector
query plans	simple	complex	simple
instr. cache utilization	poor	extremely good	very good
function calls	many	extremely few	very few
attribute access	complex	direct	direct
most time spent on	interpretation	processing	processing
CPU utilization	poor	good	very good
compiler optimizations	limited	applicable	applicable
materialization overhead	very cheap	expensive	cheap
scalability	good	limited	good

source: M. Zukowski. Balancing Vectorized Query Execution with Bandwidth-Optimized Storage. PhD thesis, CWI Amsterdam. 2009.

Microsoft SQL Server supports vectorized ("batched" in MS jargon) execution since version 11.

- Storage via new column-wise index.
 - $\rightarrow\,$ Includes compression and prefetching improvements.
- New operators with **batch-at-a-time processing**.
 - $\rightarrow\,$ Can combine row- and batch-at-a-time operators in one plan.
 - $\rightarrow\,$ CPU-optimized implementations.

[∧] Per-Åke Larson *et al.* SQL Server Column Store Indexes. *SIGMOD 2011*.

Column-Wise Index Storage

- **Tables divided into row groups** (≈ 1 million rows)
- Each group, each column **compressed** independently.

Segment Organization

Segment directory keeps track of segments.

- Segments are stored as BLOBs ("binary large objects")
 - \rightsquigarrow Re-use existing SQL Server functionality.
- Statistics (min/max values) for each segment.

I/O Optimizations

Column-store indexes are designed for scans.

- **Compression** (RLE, bit packing, dictionary encoding)
 - $\rightarrow\,$ Re-order row groups for best compression.
- Segments are forced to be **contiguous on disk**.
 - $\rightarrow~$ Unlike typical page-by-page storage.
 - $\rightarrow\,$ Pages and segments are automatically prefetched.

data set	uncompressed	column-store idx	ratio
cosmetics	1,302	88.5	14.7
SQM	1,431	166	8.6
Xbox	1,045	202	5.2
MSSales	642,000	126,000	5.1
Web Analytics	2,560	553	4.6
Telecom	2,905	727	4.0

Similar to the X100/Vectorwise execution model, **batch operators** in SQL Server can process batches of tuples at once.

- Can mix batch- and row-based processing in one plan.
- Typical pattern:
 - $\rightarrow\,$ Scan, pre-filter, project, aggregate data early in the plan using **batch operators**.
 - \rightarrow **Row operators** may be needed to finish the operation.
- Good for scan-intensive workloads (OLAP) , not for point queries (OLTP workloads).
- Internally, optimizer treats batch processing as new physical property (like sortedness) to combine operators in a proper way.

Performance impact (TPC-DS, scale factor 100, \approx 100 GB):

source: Larson et al. SQL Server Column Store Indexes SIGMOD 2011 (elapsed times, warm buffer pool)

Alternative: Buffer Operators

A similar effect can be achieved in a less invasive way by placing **buffer operators** in a pipelined execution plan.

- Organize query plan into execution groups.
- Add **buffer operator** between execution groups.
- Buffer operator provides tuple-at-a-time interface to the outside,
- but batches up tuples internally.

↗ Zhou and Ross. Buffering Database Operations for Enhanced Instruction Cache Performance. SIGMOD 2004.

A buffer operator can be plugged into every Volcano-style engine.

```
1 Function: next()
  // Read a batch of input tuples if buffer is empty.
2 if empty and lend-of-tuples then
      while !full do
3
          append child.next () to buffer ;
4
         if end-of-tuples then
5
             break :
6
  // Return tuples from buffer
7 return next tuple in buffer ;
```

Buffer Operators in PostgreSQL

Buffering Database Operations for SIGMOD 2004 Enhanced Instruction Cache Performance. Ross. Jingren Zhou and Kenneth A.

After plain select queries, let us now look at join queries:

```
SELECT COUNT(*)
FROM orders,lineitem
WHERE o_orderkey = l_orderkey
```

(We want to ignore result construction for now, thus only count result tuples.)

We assume:

- no exploitable order,
- no exploitable indices (input might be an intermediate result), and
- an equality join predicate (as above).

Hash Join

Hash join is a good match for such a situation.

```
To compute R \bowtie S,
```

- **1** Build a hash table on the "outer" join relation *R*.
- 2 Scan the "inner" relation S and probe into the hash table for each tuple s ∈ S.

```
} Build Phase
} Join Phase
```

Hash Join

✓ $\mathcal{O}(N)$ (approx.) ✓ Easy to **parallelize**

Parallel Hash Join

 $\checkmark\,$ Protect using locks; very low contention

Sandom access pattern

 $\rightarrow\,$ Every hash table access a cache miss

Cost per tuple (build phase):

- 34 assembly instructions
- 1.5 cache misses
- 3.3 TLB misses

hash join is severely **latency-bound**

Partitioned Hash Join

Thus: partitioned hash join [Shatdal et al. 1994]

(parallelism: assign partitions to threads \rightarrow no locking needed)

Build/probe now contained within caches:

- 15/21 instructions per tuple (build/probe)
- \approx 0.01 cache misses per tuple
- almost no TLB misses

Partitioning is now critical

- \rightarrow Many partitions, far apart
- $\rightarrow\,$ Each one will reside on its own page
- \rightarrow Run out of **TLB entries** (100–500)

Cost of Partitioning

 \rightarrow Expensive beyond $\approx 2^8 - 2^9$ partitions.

Multi-pass partitioning ("radix partitioning")

In practice:

• h_1, \ldots, h_P use same hash function but look at different bits.

57 (001)		57 (001)) >{	96 (000	I)
17 (001)		17 (001)		57 (001)
03 (011)	7	81 (001)	h_2	17 (001)
47 (111)		96 (000)		81 (001)
92 (100)		75 (001)	J	75 (001)
81 (001)	$b_{1} = \int$	03 (011)	$b_{n} \longrightarrow \{$	66 (010	I)
20 (100)	$\begin{pmatrix} n_1 \\ \dots \end{pmatrix}$	66 (010)	$\int II_2 \longrightarrow \langle$	03 (011)
06 (110)		92 (100)). (92 (100	I)
96 (000)	\ >{	20 (100)	h_2	20 (100	i)
37 (101)	$ \langle \rangle$	37 (101)		37 (101)
66 (010)		47 (111)	$b \rightarrow \{$	06 (110	I)
75 (001)) l	06 (110)	$\int I'^2 \longrightarrow \langle$	47 (111)

Two-pass partitioning

Naïve partitioning (cf. slide 78)

for all input tuples t do $h \leftarrow \text{hash}(t.key)$ $buf [h] [pos[h] \mod bufsiz] \leftarrow t$ if $pos[h] \mod bufsiz = 0$ then $copy \ buf [h]$ to out [pos[h] - bufsiz]end if $pos[h] \leftarrow pos[h] + 1$ memory access end for

Software-Managed Buffers

- \rightarrow TLB miss only every *bufsiz* tuples
- $\rightarrow\,$ Choose bufsiz to match cache line size

© Jens Teubner · Data Processing on Modern Hardware · Summer 2016

Software-Managed Buffers

Plugging it together

256 MiB 🛛 4096 MiB

e.g., Nehalem: $25 \text{ cy/tpl} \approx 90$ million tuples per second

Another Workload Configuration

- 🛯 977 MiB 🛛 977 MiB
- e.g., Nehalem: $25 \text{ cy/tpl} \approx 90 \text{ million tuples per second}$
Overall performance is influenced by a number of parameters:

- input data volume
- cluster size / number of clusters
- number of passes (plus number of radix bits per pass)
- An **optimizer** has to make the right decisions at runtime.
 - Need a detailed cost model for this.

With column-based storage, a single join is not enough.

- Joining BATs for key attributes yields a join index.
- Post-project BATs for all remaining attributes.

Positional lookup?

■ Makes post-projection joins "random access" ☺

Thus:

- (Radix-)Sort by oids of larger relation
 - $\rightarrow\,$ Positional lookups become cache-efficient.
- **Partially cluster** by oids before positional join of smaller relation
 - $\rightarrow\,$ Access to smaller relation becomes cache-efficient, too.

Details: Manegold, Boncz, Nes, Kersten. Cache-Conscious Radix-Decluster Projections. *VLDB 2004*.