
Data Processing on Modern Hardware

Jens Teubner, TU Dortmund, DBIS Group

jens.teubner@cs.tu-dortmund.de

Summer 2016

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 1

Part II

Cache Awareness

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 16

Hardware Trends

S
o

u
rc

e
:

H
e

n
n

e
ss

y
&

P
a

tt
e

rs
o

n
,

C
o

m
p

u
te

r
A

rc
h

it
e

c
tu

re
,

4
th

E
d

.

1980 1985 1990 1995 2000 2005

1

10

100

1,000

10,000

n
o

rm
a

liz
ed

p
er

fo
rm

a
n

ce

year

Processor

DRAM Memory

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 17

Hardware Trends

There is an increasing gap between CPU and memory speeds.

Also called the memory wall.

CPUs spend much of their time waiting for memory.

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 18

Memory 6= Memory

Dynamic RAM (DRAM) Static RAM (SRAM)

VDD

WL

BL

BL

State kept in capacitor

Leakage

→ refreshing needed

Bistable latch (0 or 1)

Cell state stable

→ no refreshing needed

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 19

DRAM Characteristics

Dynamic RAM is comparably slow.

Memory needs to be refreshed periodically (≈ every 64 ms).

(Dis-)charging a capacitor takes time.

charge discharge
%

ch
ar

g
ed

time

DRAM cells must be addressed and capacitor outputs amplified.

Overall we’re talking about ≈ 200 CPU cycles per access.

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 20

DRAM Characteristics

Under certain circumstances, DRAM can be reasonably fast.

DRAM cells are physically organized as a 2-d array.

The discharge/amplify process is done for an entire row.

Once this is done, more than one word can be read out.

In addition,

Several DRAM cells can be used in parallel.

→ Read out even more words in parallel.

We can exploit that by using sequential access patterns.

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 21

SRAM Characteristics

SRAM, by contrast, can be very fast.

Transistors actively drive output lines, access almost instantaneous.

But:

SRAMs are significantly more expensive (chip space ≡ money)

Therefore:

Organize memory as a hierarchy.

Small, fast memories used as caches for slower memory.

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 22

Memory Hierarchy

CPU

L1 Cache

L2 Cache

main memory
...

disk

technology

SRAM

SRAM

SRAM

DRAM

capacity

bytes

kilobytes

megabytes

gigabytes

latency

< 1 ns

≈ 1 ns

< 10 ns

70–100 ns

Some systems also use a 3rd level cache.

cf. Architecture & Implementation course

→ Caches resemble the buffer manager but are controlled by

hardware

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 23

Principle of Locality

Caches take advantage of the principle of locality.

90 % execution time spent in 10 % of the code.

The hot set of data often fits into caches.

Spatial Locality:

Code often contains loops.

Related data is often spatially close.

Temporal Locality:

Code may call a function repeatedly, even if it is not spatially close.

Programs tend to re-use data frequently.

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 24

CPU Cache Internals

To guarantee speed, the overhead of caching must be kept reasonable.

Organize cache in cache lines.

Only load/evict full cache lines.

Typical cache line size: 64 bytes.

0 1 2 3 4 5 6 7

cache line

lin
e

size

The organization in cache lines is consistent with the principle of

(spatial) locality.

Block-wise transfers are well-supported by DRAM chips.

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 25

Memory Access

On every memory access, the CPU checks if the respective cache line is

already cached.

Cache Hit:

Read data directly from the cache.

No need to access lower-level memory.

Cache Miss:

Read full cache line from lower-level memory.

Evict some cached block and replace it by the newly read cache line.

CPU stalls until data becomes available.1

1Modern CPUs support out-of-order execution and several in-flight cache misses.
c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 26

Block Placement: Fully Associative Cache

In a fully associative cache, a block can be loaded into any cache line.

Offers freedom to block

replacement strategy.

Does not scale to large

caches

→ 4 MB cache,

line size: 64 B:

65,536 cache lines.

Used, e.g., for small

TLB caches.

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7 8 9 0
1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
1

0
2

1
2

2
2

3
2

4
2

5
2

6
2

7
2

8
2

9
2

0
3

1
3

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 27

Block Placement: Direct-Mapped Cache

In a direct-mapped cache, a block has only one place it can appear in

the cache.

Much simpler to

implement.

Easier to make fast.

Increases the chance of

conflicts.

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7 8 9 0
1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
1

0
2

1
2

2
2

3
2

4
2

5
2

6
2

7
2

8
2

9
2

0
3

1
3

place block 12

in cache line 4

(4 = 12 mod 8)

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 28

Block Placement: Set-Associative Cache

A compromise are set-associative caches.

Group cache lines into

sets.

Each memory block

maps to one set.

Block can be placed

anywhere within a set.

Most processor caches

today are

set-associative.

0 1 2 3 4 5 6 7

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0
1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
1

0
2

1
2

2
2

3
2

4
2

5
2

6
2

7
2

8
2

9
2

0
3

1
3

place block 12

anywhere in set 0

(0 = 12 mod 4)

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 29

Effect of Cache Parameters

S
o

u
rc

e
:

U
lr

ic
h

D
re

p
p

e
r.

W
h

a
t

E
ve

ry
P

ro
g

ra
m

m
e

r
S

h
o

u
ld

K
n

o
w

A
b

o
u

t
M

e
m

o
ry

512 kB 1 MB 2 MB 4 MB 8 MB 16 MB

cache size

0

5

10

15

20

ca
ch

e
m

is
se

s
(m

ill
io

n
s) direct-mapped

2-way associative
4-way associative
8-way associative

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 30

Block Identification

A tag associated with each cache line identifies the memory block

currently held in this cache line.

status tag data

The tag can be derived from the memory address.

byte address

block address

tag set index offset

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 31

Example: Intel Q6700 (Core 2 Quad)

Total cache size: 4 MB (per 2 cores).

Cache line size: 64 bytes.

→ 6-bit offset (26 = 64)

→ There are 65,536 cache lines in total (4 MB÷ 64 bytes).

Associativity: 16-way set-associative.

→ There are 4,096 sets (65, 536÷ 16 = 4, 096).

→ 12-bit set index (212 = 4, 096).

Maximum physical address space: 64 GB.

→ 36 address bits are enough (236 bytes = 64 GB)

→ 18-bit tags (36− 12− 6 = 18).

18 bit 12 bit 6 bit

tag set index offset

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 32

Block Replacement

When bringing in new cache lines, an existing entry has to be evicted.

Different strategies are conceivable (and meaningful):

Least Recently Used (LRU)

Evict cache line whose last access is longest ago.

→ Least likely to be needed any time soon.

First In First Out (FIFO)

Behaves often similar like LRU.

But easier to implement.

Random

Pick a random cache line to evict.

Very simple to implement in hardware.

Replacement has to be decided in hardware and fast.

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 33

What Happens on a Write?

To implement memory writes, CPU makers have two options:

Write Through

Data is directly written to lower-level memory (and to the cache).

→ Writes will stall the CPU.2

→ Greatly simplifies data coherency.

Write Back

Data is only written into the cache.

A dirty flag marks modified cache lines (Remember the status field.)

→ May reduce traffic to lower-level memory.

→ Need to write on eviction of dirty cache lines.

Modern processors usually implement write back.

2Write buffers can be used to overcome this problem.
c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 34

Putting it all Together

To compensate for slow memory, systems use caches.

DRAM provides high capacity, but long latency.

SRAM has better latency, but low capacity.

Typically multiple levels of caching (memory hierarchy).

Caches are organized into cache lines.

Set associativity: A memory block can only go into a small number

of cache lines (most caches are set-associative).

Systems will benefit from locality.

Affects data and code.

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 35

Example: AMD Opteron

Example: AMD Opteron, 2.8 GHz, PC3200 DDR SDRAM

L1 cache: separate data and instruction caches,

each 64 kB, 64 B cache lines, 2-way set-associative

L2 cache: shared cache,

1 MB, 64 B cache lines, 16-way set-associative, pseudo-LRU policy

L1 hit latency: 2 cycles

L2 hit latency: 7 cycles (for first word)

L2 miss latency: 160–180 cycles

(20 CPU cycles + 140 cy DRAM latency (50 ns) + 20 cy on mem. bus)

L2 cache: write-back

40-bit virtual addresses

Source: Hennessy & Patterson. Computer Architecture—A Quantitative Approach.

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 36

Performance (SPECint 2000)

0

5

10

15

20

gzip vpr gcc mcf crafty parser eon perlbmk gap vortex bzip2 twolf avg

m
is

se
s

p
er

1
0

0
0

in
st

ru
ct

io
n

s

benchmark program

...

L1 Instruction Cache

L2 Cache (shared)

TPC-C

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 37

Assessment

� Why do database systems show such poor cache behavior?

Poor code locality:

Polymorphic functions

(E.g., resolve attribute types for each processed tuple individually.)

Volcano iterator model (pipelining)

Each tuple is passed through a query plan composed of many

operators.

Poor data locality:

Database systems are designed to navigate through large data

volumes quickly.

Navigating an index tree, e.g., by design means to “randomly” visit

any of the (many) child nodes.

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 38

Data Caches

How can we improve data cache usage?

Consider, e.g., a selection query:

SELECT COUNT(*)

FROM lineitem

WHERE l_shipdate = "2009-09-26"

This query typically involves a full table scan.

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 39

Table Scans (NSM)

Tuples are represented as records stored sequentially on a database page.

recordl_shipdate

cache block boundaries

With every access to a l_shipdate field, we load a large amount of

irrelevant information into the cache.

Accesses to slot directories and variable-sized tuples incur additional

trouble.

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 40

Row-Wise vs. Column-Wise Storage

Remember the “Architecture & Implementation” course?

The n-ary storage model (NSM, row-wise storage) is not the only choice.

a1 b1 c1 d1

a2 b2 c2 d2

a3 b3 c3 d3

a4 b4 c4 d4

a1 b1 c1

c1 d1 a2

b2 c2 d2

d2 a3 b3

c3 d3

page 0

a4 b4 c4

c4 d4

page 1

Column-wise storage (decomposition storage model, DSM):

a1 b1 c1 d1

a2 b2 c2 d2

a3 b3 c3 d3

a4 b4 c4 d4

a1 a2 a3

a3 a4

page 0

b1 b2 b3

b3 b4

page 1

· · ·

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 41

Column-Wise Storage

All data loaded into caches by a “l_shipdate scan” is now actually

relevant for the query.

→ Less data has to be fetched from memory.

→ Amortize cost for fetch over more tuples.

→ If we’re really lucky, the full (l_shipdate) data might now

even fit into caches.

The same arguments hold, by the way, also for disk-based systems.

Additional benefit: Data compression might work better.

↗ Copeland and Khoshafian. A Decomposition Storage Model. SIGMOD 1985.

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 42

MonetDB: Binary Association Tables

MonetDB makes this explicit in its data model.

All tables in MonetDB have two columns (“head” and “tail”).

oid NAME AGE SEX

o1 John 34 m

o2 Angelina 31 f

o3 Scott 35 m

o4 Nancy 33 f

→

oid NAME

o1 John

o2 Angelina

o3 Scott

o4 Nancy

oid AGE

o1 34

o2 31

o3 35

o4 33

oid SEX

o1 m

o2 f

o3 m

o4 f

Each column yields one binary association table (BAT).

Object identifiers (oids) identify matching entries (BUNs).

Oftentimes, oids can be implemented as virtual oids (voids).

→ Not explicitly materialized in memory.

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 43

NSM vs. DSM Trade-Offs

Tuple recombination can cause

considerable cost.

Need to perform many joins.

Workload-dependent trade-off.

→ MonetDB: positional joins

(thanks to void columns)

32l-

30--

28.-

26~-

24--

22.-

20--

r I%--
B

04 I i IO ioo $000 ,oooo iooooo

P

275

C
o

p
e

la
n

d
a

n
d

K
h

o
sh

a
fi

a
n

.
A

D
e

c
o

m
p

o
si

ti
o

n
S

to
ra

g
e

M
o

d
e

l.
S
IG
M
O
D
1
9
8
5

.

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 44

Column Stores in Commercial DBMSs

Commercial databases have just recently announced column-store

extensions to their engines:

Microsoft SQL Server:

Represented as “Column Store Indexes”

Available since SQL Server 11

see Larson et al., SIGMOD 2011

IBM DB2:

IBM announced DB2 “BLU Accelerator” last week, a column

store that is going to ship with DB2 10.5.

BLU stands for “Blink Ultra”; Blink was developed at IBM

Almaden (↗ Raman et al., ICDE 2008).

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 45

PAX: Another Alternative

A hybrid approach is the PAX (Partition Attributes Accross) layout:

Divide each page into minipages.

Group attributes into them.

↗ Ailamaki et al. Weaving Relations for Cache Per-

formance. VLDB 2001. mini-
page 0

mini-
page 1

mini-
page 2

mini-
page 3

page 0

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 46

Processing Characteristics

Most systems implement the Volcano

iterator model:

Operators request tuples from their

input using next ().

Data is processed tuple at a time.

“pipelining”

Each operator keeps its own state.

↗DB implementation course · · ·

Operator 3

Operator 2

Operator 1

next () tuple

next () tuple

next () tuple

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 47

Tuple-At-A-Time Processing

Consequences:

All operators in a plan run tightly interleaved.

→ Their combined instruction footprint may be large.

→ Instruction cache misses.

Operators constantly call each other’s functionality.

→ Large function call overhead.

The combined state may be too large to fit into caches.

E.g., hash tables, cursors, partial aggregates.

→ Data cache misses.

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 48

Example: TPC-H On MySQL

Example: Query Q1 from the TPC-H benchmark on MySQL.

SELECT l_returnflag, l_linestatus, SUM (l_quantity) AS sum_qty,

SUM(l_extendedprice) AS sum_base_price,

SUM(l_extendedprice*(1-l_discount)) AS sum_disc_price,

SUM(l_extendedprice*(1-l_discount)*(1+l_tax)) AS sum_charge,

AVG(l_quantity) AS avg_qty, AVG(l_extendedprice) AS avg_price,

AVG(l_discount) AS avg_disc, COUNT(*) AS count_order

FROM lineitem

WHERE l_shipdate <= DATE ’1998-09-02’

GROUP BY l_returnflag, l_linestatus

Scan query with arithmetics and a bit of aggregation.

Results taken from Peter Boncz, Marcin Zukowski, Niels Nes. MonetDB/X100:

Hyper-Pipelining Query Execution. CIDR 2005.

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 49

time [sec] calls instr./call IPC function name
11.9 846M 6 0.64 ut fold ulint pair

8.5 0.15M 27K 0.71 ut fold binary
5.8 77M 37 0.85 memcpy
3.1 23M 64 0.88 Item sum sum::update field
3.0 6M 247 0.83 row search for mysql
2.9 17M 79 0.70 Item sum avg::update field
2.6 108M 11 0.60 rec get bit field 1
2.5 6M 213 0.61 row sel store mysql rec
2.4 48M 25 0.52 rec get nth field
2.4 60 19M 0.69 ha print info
2.4 5.9M 195 1.08 end update
2.1 11M 89 0.98 field conv
2.0 5.9M 16 0.77 Field float::val real
1.8 5.9M 14 1.07 Item field::val
1.5 42M 17 0.51 row sel field store in mysql
1.4 36M 18 0.76 buf frame align
1.3 17M 38 0.80 Item func mul::val
1.4 25M 25 0.62 pthread mutex unlock
1.2 206M 2 0.75 hash get nth cell
1.2 25M 21 0.65 mutex test and set
1.0 102M 4 0.62 rec get 1byte offs flag
1.0 53M 9 0.58 rec 1 get field start offs
0.9 42M 11 0.65 rec get nth field extern bit
1.0 11M 38 0.80 Item func minus::val
0.5 5.9M 38 0.80 Item func plus::val

Observations

Observations:

Only single tuple processed in each call; millions of calls.

Only 10 % of the time spent on actual query task.

Very low instructions-per-cycle (IPC) ratio.

Further:

Much time spent on field access (e.g., rec get nth field ()).

NSM ; polymorphic operators.

Single-tuple functions hard to optimize (by compiler).

→ Low instructions-per-cycle ratio.

→ Vector instructions (SIMD) hardly applicable.

Function call overhead.
38 instr.
0.8 instr.

cycle

= 48 cycles vs. 3 instr. for load/add/store assembly.

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 51

Operator-At-A-Time Processing

MonetDB: operator-at-a-time processing.

Operators consume and produce full columns.

Each (sub-)result is fully materialized (in memory).

No pipelining (rather a sequence of statements).

Each operator runs exactly once.

Example:

sel_age := people_age.select(30, nil);

sel_id := sel_age.mirror().join(people_age);

sel_name := sel_age.mirror().join(people_name);

tmp := [-](sel_age, 30);

sel_bonus := [*](50, tmp);

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 52

Operator-At-A-Time Processing

Few function calls; extremely tight loops when iterating over tuples.

Example: batval_int_add (· · ·) (impl. of [+](int, BAT[any,int]))

...
if (vv != int_nil) {

for (; bp < bq; bp++, bnp++) {
REGISTER int bv = *bp;
if (bv != int_nil) {

bv = (int) OP(bv,+,vv);
}
*bnp = bv;

}
} else {

for (; bp < bq; bp++, bnp++) {
*bnp = vv;

}
}
...

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 53

Tight Loops

These tight loops

conveniently fit into instruction caches,

can be optimized effectively by modern compilers,

→ loop unrolling

→ vectorization (use of SIMD instructions)

can leverage modern CPU features (hardware prefetching).

Function calls are now out of the critical code path.

Note also:

No per-tuple field extraction or type resolution.

Operator specialization, e.g., for every possible type.

Implemented using macro expansion.

Possible due to column-based storage.

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 54

S
o

u
rc

e
:

B
o

n
c

z
e
t
a
l.

,
M

o
n

e
tD

B
/

X
1

0
0

:
H

yp
e

r-
P

ip
e

lin
in

g
Q

u
e

ry
E

xe
c

u
ti

o
n

.
C
ID
R
2
0
0
5

.

result bandwidth
size time [ms] [MB/s] MIL statement

5.9M 127 352 s0 := select (l_shipdate, · · ·).mark ();
5.9M 134 505 s1 := join (s0, l_returnag);
5.9M 134 506 s2 := join (s0, l_linestatus);
5.9M 235 483 s3 := join (s0, l_extprice);
5.9M 233 488 s4 := join (s0, l_discount);
5.9M 232 489 s5 := join (s0, l_tax);
5.9M 134 507 s6 := join (s0, l_quantity);
5.9M 290 155 s7 := group (s1);
5.9M 329 136 s8 := group (s7, s2);

4 0 0 s9 := unique (s8.mirror ());
5.9M 206 440 r0 := [+](1.0, s5);
5.9M 210 432 r1 := [-](1.0, s4);
5.9M 274 498 r2 := [*](s3, r1);
5.9M 274 499 r3 := [*](s12, r0);

4 165 271 r4 := {sum}(r3, s8, s9);
4 165 271 r5 := {sum}(r2, s8, s9);
4 163 275 r6 := {sum}(s3, s8, s9);
4 163 275 r7 := {sum}(s4, s8, s9);
4 144 151 r8 := {sum}(s6, s8, s9);
4 112 196 r9 := {count}(s7, s8, s9);

3,724 365

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 55

Tuple-At-A-Time vs. Operator-At-A-Time

The operator-at-a-time model is a two-edged sword:

, Cache-efficient with respect to code and operator state.

, Tight loops, optimizable code.

/ Data won’t fully fit into cache.

→ Repeated scans will fetch data from memory over and over.

→ Strategy falls apart when intermediate results no longer fit into

main memory.

Can we aim for the middle ground between the two extremes?

tuple-at-a-time operator-at-a-time

X100 vectorized execution

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 56

Vectorized Execution Model

Idea:

Use Volcano-style iteration,

but:

for each next () call return a large number of tuples

→ a “vector” in MonetDB/X100 terminology.

Choose vector size

large enough to compensate for iteration overhead (function calls,

instruction cache misses, . . .), but

small enough to not thrash data caches.

� Will there be such a vector size? (Or will caches be thrashed long

before iteration overhead is compensated?)

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 57

Vector Size ↔ Instruction Cache Effectiveness

S
o

u
rc

e
:

M
.

Z
u

ko
w

sk
i.

B
a

la
n

c
in

g
V

e
c

to
ri

ze
d

Q
u

e
ry

E
xe

c
u

ti
o

n
w

it
h

B
a

n
d

w
id

th
-O

p
ti

m
iz

e
d

S
to

ra
g

e
.

P
h

D
th

e
si

s,
C

W
I

A
m

st
e

rd
a

m
.

2
0

0
9

.

88 Chapter 5: Vectorized execution model

100M
200M

500M
1G
2G

5G
10G
20G

50G

 1 8 64 1K 8K 64K 1M

In
st

ru
ct

io
ns

 e
xe

cu
te

d

Vector size (tuples)

Q1’’
Q1’
Q1

1K

10K

100K

1M

10M

100M

 1 8 64 1K 8K 64K 1M

In
st

ru
ct

io
n-

ca
ch

e
m

is
se

s
Vector size (tuples)

Q1’’
Q1’
Q1

Figure 5.2: Impact of the vector size on the number of instructions and L1
instruction-cache misses (Athlon64)

5.1.3 Processing unit size

Comparing to the tuple-at-a-time and column-at-a-time models, the vectorized
model provides a granularity of operation that falls between these two extremes.
As a result, there are situation in which some logic that is usually executed for
every tuple, can be executed on a per-vector base. A simple example is data
partitioning, when the result partition sizes are not known in advance. The
code for dividing a vector of N tuples into P partitions using the hash values
could be as follows:

for (i = 0; i < N; i++) {
group = hash_values[i] % P;
*(part[group]++) = values[i];
if (part[group] == part_end[group])
overflow(group);

}

Note that the overflow check is necessary for each tuple if we do not know the
partition sizes in advance. While this check is usually false, we can still remove
it from the loop, by exploiting the fact that in most cases the buffers for the
destination groups are much larger than the size of the vector. As a result, we
can check if every group buffer still contains enough tuples before processing
each vector.

for (i = 0; i < P; i++)
if (part[i] >= part_sentinel[i])

Vectorized execution quickly compensates for iteration overhead.

1000 tuples should conveniently fit into caches.

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 58

Vectorized Execution in MonetDB/X100

S
o

u
rc

e
:

M
.

Z
u

ko
w

sk
i.

B
a

la
n

c
in

g
V

e
c

to
ri

ze
d

Q
u

e
ry

E
xe

c
u

ti
o

n
w

it
h

B
a

n
d

w
id

th
-O

p
ti

m
iz

e
d

S
to

ra
g

e
.

P
h

D
th

e
si

s,
C

W
I

A
m

st
e

rd
a

m
.

2
0

0
9

.

Section 4.1: MonetDB/X100 architecture 63

. . . Query tree . . .

Decompression

memory

selection
vector

X100
execution
engine

vat_price

Select

Project

selection
vector

shipdate returnflag extprice

returnflag sum_vat_price

the cache
vectors fit in

Aggregate

Scan

vectors
contain multiple
values of a single
attribute

primitives
process entire
vectors at a time

operators
process sets
of tuples
represented as
aligned vectors

returnflagshipdate

Scan
extprice

ColumnBM

in DSM
data

Disk Disk

1998−09−02

1.19

CPU

Cache

Main

Storage

Network

hash table maintenance aggr_sum_flt_col

map_hash_chr_col

map_mul_flt_val_flt_col

select_le_date_col_date_val

3

6

4

2

4

4

5

3

1

2

7

7

1

3
6

5

2 3

1

Figure 4.1: MonetDB/X100: architecture overview (left) and the query execution
layer (right)

improving the instructions-per-tuple ratio and increasing the code local-
ity. Additionally, primitives typically consist of simple loops over multiple
input values. This exposes multiple compiler-level optimization opportu-
nities, and allows efficient execution on super-scalar CPUs.

Cache MonetDB/X100 avoids the intermediate result materialization overhead of
MonetDB by combining the bulk-processing approach with the pipelined
iterator model. Instead of single tuples or full columns, the operators ex-
change data in the form of vectors – small (ca. 100-1000 elements) arrays
of input values (see Section 4.2.1.1). These vectors are fully cache-resident,
removing the need of expensive memory accesses. Furthermore, relational
operators are internally implemented using cache-efficient algorithms.

RAM The buffered disk data is stored in a vertical layout, often compressed,
maximizing the amount of useful information that can be kept in memory.
Main-memory bandwidth is minimized by only reading relevant attributes
and by decompressing the buffered compressed data on the boundary be-
tween RAM and cache. Additionally, RAM access is seen in many cases
as an input-output operation, and is carried out through explicit memory-
to-cache and cache-to-memory routines.

Disk The ColumnBM I/O subsystem of X100 is geared towards efficient se-
quential data access. To reduce bandwidth requirements, it uses a ver-
tically fragmented data layout, in some cases enhanced with lightweight

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 59

Effect on Query Execution Time

B
o

n
c

z
e
t
a
l.

M
o

n
e

tD
B

/
X

1
0

0
:

H
yp

e
r-

P
ip

e
lin

in
g

Q
u

e
ry

E
xe

c
u

ti
o

n
.
C
ID
R
2
0
0
5

.

MonetDB/MIL MonetDB/X100, 1CPU DB2, 4CPU

Q SF=1 SF=1 SF=1 SF=100 SF=100

1 3.72 0.50 0.31 30.25 229

2 0.46 0.01 0.01 0.81 19

3 2.52 0.04 0.02 3.77 16

4 1.56 0.05 0.02 1.15 14

5 2.72 0.08 0.04 11.02 72

6 2.24 0.09 0.02 1.44 12

7 3.26 0.22 0.22 29.47 81

8 2.23 0.06 0.03 2.78 65

9 6.78 0.44 0.44 71.24 274

10 4.40 0.22 0.19 30.73 47

11 0.43 0.03 0.02 1.66 20

12 3.73 0.09 0.04 3.68 19

13 11.42 1.26 1.04 148.22 343

14 1.03 0.02 0.02 2.64 14

15 1.39 0.09 0.04 14.36 30

16 2.25 0.21 0.14 15.77 64

17 2.30 0.02 0.02 1.75 77

18 5.20 0.15 0.11 10.37 600

19 12.46 0.05 0.05 4.47 81

20 2.75 0.08 0.05 2.45 35

21 8.85 0.29 0.17 17.61 428

22 3.07 0.07 0.04 2.30 93

AthlonMP Itanium2

Table 4: TPC-H Performance (seconds)

5.1 Query 1 performance

As we did for MySQL and MonetDB/MIL, we now also
study the performance of MonetDB/X100 on TPC-
H Query 1 in detail. Figure 9 shows its translation
in X100 Algebra. X100 implements detailed tracing
and profiling support using low-level CPU counters,
to help analyze query performance. Table 5 shows the
tracing output generated by running TPC-H Query 1
on our Itanium2 at SF=1. The top part of the trace
provides statistics on the level of the vectorized prim-
itives, while the bottom part contains information on
the (coarser) level of X100 algebra operators.

A first observation is that X100 manages to run all
primitives at a very low number of CPU cycles per
tuple - even relatively complex primitives like aggre-
gation run in 6 cycles per tuple. Notice that a mul-
tiplication (map mul *) is handled in 2.2 cycles per tu-
ple, which is way better than the 49 cycles per tuple
achieved by MySQL (see Section 3.1).

A second observation is that since a large part of
data that is being processed by primitives comes from
vectors in the CPU cache, X100 is able to sustain a
really high bandwidth. Where multiplication in Mon-
etDB/MIL was constrained by the RAM bandwidth
of 500MB/s, MonetDB/X100 exceeds 7.5GB/s on the
same operator 4.

Finally, Table 5 shows that Query 1 uses three
columns that are stored in enumerated types (i.e.
l discount, l tax and l quantity). X100 automatically
adds three Fetch1Joins to retrieve the original values

4On the AthlonMP it is around 5GB/s

Order(
Project(

Aggr(
Select(

Table(lineitem)
< (l_shipdate, date(’1998-09-03’))),

[l_returnflag, l_linestatus],
[sum_qty = sum(l_quantity),

sum_base_price = sum(l_extendedprice),
sum_disc_price = sum(

discountprice = *(-(flt(’1.0’), l_discount),
l_extendedprice)),

sum_charge = sum(*(+(flt(’1.0’), l_tax),
discountprice)),

sum_disc = sum(l_discount),
count_order = count()]),

[l_returnflag, l_linestatus, sum_qty,
sum_base_price, sum_disc_price, sum_charge,
avg_qty = /(sum_qty, cnt=dbl(count_order)),
avg_price = /(sum_base_price, cnt),
avg_disc = /(sum_disc, cnt), count_order]),

[l_returnflag ASC, l_linestatus ASC])

Figure 9: Query 1 in X100 Algebra

from the respective enumeration tables. We can see
that these fetch-joins are truly efficient, as they cost
less than 2 cycles per tuple.

5.1.1 Vector Size Impact

We now investigate the influence of vector size on per-
formance. X100 uses a default vector size of 1024, but
users can override it. Preferably, all vectors together
should comfortably fit the CPU cache size, hence they
should not be too big. However, with really small vec-
tor sizes, the possibility of exploiting CPU parallelism
disappears. Also, in that case, the impact of interpre-
tation overhead in the X100 Algebra next() methods
will grow.

 0.1

 1

 10

4M1M256K64K16K4K1K 256 64 16 4 1

Ti
m

e
(s

ec
on

ds
)

Vector size (tuples)

AthlonMP
Itanium2

Figure 10: Query 1 performance w.r.t. vector-size

Figure 10 presents results of the experiment, in
which we execute TPC-H Query 1 on both the Ita-
nium2 and AthlonMP with varying vector sizes. Just
like MySQL, interpretation overhead also hits Mon-
etDB/X100 strongly if it uses tuple-at-a-time process-

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 60

Comparison of Execution Models

Overview over discussed execution models:

execution model tuple operator vector

query plans simple complex simple

instr. cache utilization poor extremely good very good

function calls many extremely few very few

attribute access complex direct direct

most time spent on interpretation processing processing

CPU utilization poor good very good

compiler optimizations limited applicable applicable

materialization overhead very cheap expensive cheap

scalability good limited good

source: M. Zukowski. Balancing Vectorized Query Execution with

Bandwidth-Optimized Storage. PhD thesis, CWI Amsterdam. 2009.

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 61

Vectorized Execution in SQL Server 11

Microsoft SQL Server supports vectorized (“batched” in MS jargon)

execution since version 11.

Storage via new column-wise index.

→ Includes compression and prefetching improvements.

New operators with batch-at-a-time processing.

→ Can combine row- and batch-at-a-time operators in one plan.

→ CPU-optimized implementations.

↗ Per-Åke Larson et al. SQL Server Column Store Indexes. SIGMOD 2011.

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 62

Column-Wise Index Storage

Tables divided into row groups (≈ 1 million rows)

Each group, each column compressed independently.

The results are shown in Table 1. The column store index
improves performance dramatically: the query consumes 13 times
less CPU time and runs 25 times faster with a cold buffer pool and
10 times faster with a warm buffer pool. SQL Server column store
technology gives subsecond response time for a star join query
against a 1.44 billion row table on a commodity machine. This
level of improvement is significant, especially considering that
SQL Server has efficient and competitive query processing
capabilities for data warehousing, having introduced star join
query enhancements in SQL Server 2008.
The machine used has a high-throughput I/O system (10GB/sec)
which favors the row store. On a machine with a weaker I/O
system, the relative improvement in elapsed time would be even
higher.
The rest of the paper provides more detail about column store
indexes. Section 2 describes how they are stored including how
they are compressed. Section 3 describes extensions to query
processing and query optimization to fully exploit the new index
type. Section 4 provides some experimental results and section 5
summarizes related work.

2. INDEX STORAGE
SQL Server has long supported two storage organization: heaps
(unordered) and B-trees (ordered), both row-oriented. A table or a
materialized view always has a primary storage structure and may
have additional secondary indexes. The primary structure can be
either a heap or a B-tree; secondary indexes are always B-trees.
SQL Server also supports filtered indexes, that is, an index that
stores only rows that satisfy a given selection predicate.
Column store capability is exposed as a new index type: a column
store index. A column store index stores its data column-wise in
compressed form and is designed for fast scans of complete
columns. While the initial implementation has restrictions, in
principle, any index can be stored as a column store index, be it
primary or secondary, filtered or non-filtered, on a base table or
on a view. A column store index will be able to support all the
same index operations (scans, lookups, updates, and so on) that
heaps and B-tree indices support. All index types are functionally
equivalent but they do differ in how efficiently various operations
can be performed.

2.1 Column-Wise Index Storage
We now outline how a column store index is physically stored.
Figure 1 illustrates the first step that converts rows to column
segments. The set of rows to be stored is first divided into row
groups, each group consisting of, say, one million rows. Each row
group is encoded and compressed independently. The result is one
compressed column segment for each column included. Figure 1
shows a table divided into three row groups where three of the
four columns are included in the column store index. The result is
nine compressed column segments, three segments for each of
columns A, B, and C.
The column segments are then stored using existing SQL Server
storage mechanisms as shown in Figure 2. Each column segment
is stored as a separate blob (LOB). Segment blobs may be large,
requiring multiple pages for storage, but this is automatically
handled by the existing blob storage mechanisms. A segment
directory keeps track of the location of each segment so that all
segments of a given column can be easily located. The directory is
stored in a new system table and visible through the catalog view
sys.column_store_segments. The directory also contains

additional metadata about each segment such as number of rows,
size, how data is encoded, and min and max values.
Storing a column store index in this way has several important
benefits. It leverages the existing blob storage and catalog
implementation - no new storage mechanisms are needed – and
many features are automatically available. Locking, logging,
recovery, partitioning, mirroring, replication and other features
immediately work for the new index type.

2.2 Data Encoding and Compression
Data is stored in a compressed form to reduce storage space and
I/O times. The format chosen allows column segments to be used
without decompression in query processing. Compressing the
columns in a segment consists of three steps.

1. Encode values in all columns.
2. Determine optimal row ordering.
3. Compress each column

2.2.1 Encoding
The encoding step transforms column values into a uniform type:
a 32-bit or 64-bit integer. Two types of encoding are supported: a
dictionary based encoding and a value based encoding.
The dictionary based encoding transforms a set of distinct values
into a set of sequential integer numbers (data ids). The actual

Figure 1: Converting rows to column segments

Figure 2: Storing column segments

A B C D

Encode,
compress

Encode,
compress

Encode,
compress

Compressed
column segments

1178

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 63

Segment Organization

The results are shown in Table 1. The column store index
improves performance dramatically: the query consumes 13 times
less CPU time and runs 25 times faster with a cold buffer pool and
10 times faster with a warm buffer pool. SQL Server column store
technology gives subsecond response time for a star join query
against a 1.44 billion row table on a commodity machine. This
level of improvement is significant, especially considering that
SQL Server has efficient and competitive query processing
capabilities for data warehousing, having introduced star join
query enhancements in SQL Server 2008.
The machine used has a high-throughput I/O system (10GB/sec)
which favors the row store. On a machine with a weaker I/O
system, the relative improvement in elapsed time would be even
higher.
The rest of the paper provides more detail about column store
indexes. Section 2 describes how they are stored including how
they are compressed. Section 3 describes extensions to query
processing and query optimization to fully exploit the new index
type. Section 4 provides some experimental results and section 5
summarizes related work.

2. INDEX STORAGE
SQL Server has long supported two storage organization: heaps
(unordered) and B-trees (ordered), both row-oriented. A table or a
materialized view always has a primary storage structure and may
have additional secondary indexes. The primary structure can be
either a heap or a B-tree; secondary indexes are always B-trees.
SQL Server also supports filtered indexes, that is, an index that
stores only rows that satisfy a given selection predicate.
Column store capability is exposed as a new index type: a column
store index. A column store index stores its data column-wise in
compressed form and is designed for fast scans of complete
columns. While the initial implementation has restrictions, in
principle, any index can be stored as a column store index, be it
primary or secondary, filtered or non-filtered, on a base table or
on a view. A column store index will be able to support all the
same index operations (scans, lookups, updates, and so on) that
heaps and B-tree indices support. All index types are functionally
equivalent but they do differ in how efficiently various operations
can be performed.

2.1 Column-Wise Index Storage
We now outline how a column store index is physically stored.
Figure 1 illustrates the first step that converts rows to column
segments. The set of rows to be stored is first divided into row
groups, each group consisting of, say, one million rows. Each row
group is encoded and compressed independently. The result is one
compressed column segment for each column included. Figure 1
shows a table divided into three row groups where three of the
four columns are included in the column store index. The result is
nine compressed column segments, three segments for each of
columns A, B, and C.
The column segments are then stored using existing SQL Server
storage mechanisms as shown in Figure 2. Each column segment
is stored as a separate blob (LOB). Segment blobs may be large,
requiring multiple pages for storage, but this is automatically
handled by the existing blob storage mechanisms. A segment
directory keeps track of the location of each segment so that all
segments of a given column can be easily located. The directory is
stored in a new system table and visible through the catalog view
sys.column_store_segments. The directory also contains

additional metadata about each segment such as number of rows,
size, how data is encoded, and min and max values.
Storing a column store index in this way has several important
benefits. It leverages the existing blob storage and catalog
implementation - no new storage mechanisms are needed – and
many features are automatically available. Locking, logging,
recovery, partitioning, mirroring, replication and other features
immediately work for the new index type.

2.2 Data Encoding and Compression
Data is stored in a compressed form to reduce storage space and
I/O times. The format chosen allows column segments to be used
without decompression in query processing. Compressing the
columns in a segment consists of three steps.

1. Encode values in all columns.
2. Determine optimal row ordering.
3. Compress each column

2.2.1 Encoding
The encoding step transforms column values into a uniform type:
a 32-bit or 64-bit integer. Two types of encoding are supported: a
dictionary based encoding and a value based encoding.
The dictionary based encoding transforms a set of distinct values
into a set of sequential integer numbers (data ids). The actual

Figure 1: Converting rows to column segments

Figure 2: Storing column segments

A B C D

Encode,
compress

Encode,
compress

Encode,
compress

Compressed
column segments

1178

Segment directory keeps track of segments.

Segments are stored as BLOBs (“binary large objects”)

; Re-use existing SQL Server functionality.

Statistics (min/max values) for each segment.

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 64

I/O Optimizations

Column-store indexes are designed for scans.

Compression (RLE, bit packing, dictionary encoding)

→ Re-order row groups for best compression.

Segments are forced to be contiguous on disk.

→ Unlike typical page-by-page storage.

→ Pages and segments are automatically prefetched.

data set uncompressed column-store idx ratio

cosmetics 1,302 88.5 14.7

SQM 1,431 166 8.6

Xbox 1,045 202 5.2

MSSales 642,000 126,000 5.1

Web Analytics 2,560 553 4.6

Telecom 2,905 727 4.0

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 65

Batched Execution

Similar to the X100/Vectorwise execution model, batch operators in

SQL Server can process batches of tuples at once.

Can mix batch- and row-based processing in one plan.

Typical pattern:

→ Scan, pre-filter, project, aggregate data early in the plan using

batch operators.

→ Row operators may be needed to finish the operation.

Good for scan-intensive workloads (OLAP) , not for point queries

(OLTP workloads).

Internally, optimizer treats batch processing as new physical

property (like sortedness) to combine operators in a proper way.

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 66

SQL Server: Performance

so
u

rc
e

:
L

a
rs

o
n
e
t
a
l.

S
Q

L
S

e
rv

e
r

C
o

lu
m

n
S

to
re

In
d

e
xe

s.

S
IG
M
O
D
2
0
1
1

(e
la

p
se

d
ti

m
e

s,
w

a
rm

b
u

ff
e

r
p

o
o

l)
.Performance impact (TPC-DS, scale factor 100, ≈ 100 GB):

100 ms

1 s

10 s

100 s

ex
ec

u
ti

o
n

ti
m

e

Q1 Q2 Q3 Q4

query number (TPC-DS)

row store

column store

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 67

Alternative: Buffer Operators

A similar effect can be achieved in a less invasive way by placing buffer

operators in a pipelined execution plan.

Organize query plan into

execution groups.

Add buffer operator between

execution groups.

Buffer operator provides

tuple-at-a-time interface to the

outside,

but batches up tuples

internally.

↗ Zhou and Ross. Buffering Database

Operations for Enhanced Instruction

Cache Performance. SIGMOD 2004. · · ·

Operator 3

Operator 2

Buffer

Operator 1

next () tuple

next () tuple

next () tuple

next () tuple

Group 1

Group 2

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 68

Buffer Operator

A buffer operator can be plugged into every Volcano-style engine.

1 Function: next ()

// Read a batch of input tuples if buffer is empty.

2 if empty and !end-of-tuples then

3 while !full do

4 append child.next () to buffer ;

5 if end-of-tuples then

6 break ;

// Return tuples from buffer

7 return next tuple in buffer ;

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 69

Buffer Operators in PostgreSQL

J
in

g
re

n
Z

h
o

u
a

n
d

K
e

n
n

e
th

A
.

R
o

ss
.

B
u

ff
e

ri
n

g
D

a
ta

b
a

se
O

p
e

ra
ti

o
n

s
fo

r
E

n
h

a
n

c
e

d
In

st
ru

c
ti

o
n

C
a

c
h

e
P

e
rf

o
rm

a
n

c
e

.
S
IG
M
O
D
2
0
0
4

.

Our experience indicates that the threshold is not very sen-
sitive to the choice of operator. By changing the predicate
selectivity in the operator “TableScan”, we can control the
cardinality of the output of the table scan operator, thus
controlling the number of times that the operator “TableS-
can” is invoked. Figure 11 shows the query performance of
both the original and buffered plans for different cardinali-
ties.

Buffered plans get faster than original plans when the cardi-
nalities are larger than 600. Thus, the cardinality threshold
discussed in Section 6 would be 600 on the system used for
the experiments.

In this example, the relative benefits of buffering are small
when the predicate is selective. The “TableScan” operator
consumes many input tuples to generate one output tuple,
and thus there is a relatively large amount of computation
(without instruction cache misses) per output tuple. As a
result, the contribution of instruction cache misses to the
overall cost is small. The benefits of buffering become more
obvious as the predicate becomes less selective. In the previ-
ous example of Query 1, we achieve a 12% overall improve-
ment when the selectivity is close to 1.

7.4 Buffer Size
Another buffering parameter is the size of array used to
buffer tuple pointers. The size is set during operator initial-
ization. The number of reduced trace cache misses is roughly
proportional to 1/buffersize. Once the buffer is of moderate
size, there is only a small incentive to make it bigger.

A bigger buffer size means that the child of the buffer oper-
ator requires more memory to store intermediate tuples (the
memory requirement for the buffer array itself is compara-
tively small), and thus incurs more L2 data cache misses. It
is tempting to conclude that these L2 misses may be impor-
tant for large buffer sizes, and to choose a buffer size so that
the total memory requirement is less than L2 cache size.
However, the intermediate tuples are stored (and retrieved)
only once, and that access is usually sequential. As a re-
sult, machines such as the Pentium 4, which prefetch ahead
of the current reference for sequential access patterns, can
hide the memory latency.

0

2

4

6

8

10

12

14

16

18

1 10 100 1000 10000

E
la

ps
ed

 ti
m

e
(s

ec
on

ds
)

Buffer Entries

Original Plan

Buffered Plans

Figure 12: Varied Buffer Sizes

Figure 12 shows buffered query performance as a function
of the buffer size for Query 1. When the buffer size is very

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1 2 4 8 16 50 10
0

20
0

50
0

70
0 1K 2K 4K 8K 10

K
16

K
20

K
30

K
40

K

E
la

ps
ed

 T
im

e
(s

ec
on

ds
)

L2 Cache Miss Penalty Trace Cache Miss Penalty

Branch Misprediction Penalty

Figure 13: Execution Time Breakdown for Varied
Buffer Sizes

small, the overhead of buffering is relatively high, and the
buffered plan performs slower. As the buffer size increases,
the buffered plan shows better performance with better in-
struction locality. Once the buffer size is larger than 1000,
no obvious benefit is shown for even larger buffer sizes.

Figure 13 shows the execution time breakdown for different
configurations. The trace cache miss penalty drops as the
buffer size increases. Buffer operators incur more L2 data
cache misses with large buffer sizes. However, since the data
is allocated (or accessed) sequentially, hardware prefetching
hides most of the L2 data cache miss latency. These results
how that we can achieve good query performance with a
moderate buffer size.

A disadvantage of large buffer sizes is for query plans which
use large data structures, such as an in-memory hash table,
index etc. In those cases, a large buffer competes with other
data structures for cache memory. Therefore, there is a po-
tential performance drop with an increasing buffer size. We
use a buffer size of 1000 in our experiments.

7.5 More Complex Queries
We use a two-table join query to demonstrate how buffer op-
erators can be used in more complex situations. Figure 14
shows a query that joins the tables “lineitem” and “order”
and lists the total price and the average discount. We explic-
itly force the optimizer to choose three different join meth-
ods. Different query plans have different buffering schemes.

SELECT sum(o_totalprice),

count(*),

avg(l_discount)

FROM lineitem, orders

WHERE l_orderkey = o_orderkey

AND l_shipdate <= date ’1998-11-01’;

Figure 14: Query 3

The plans using nested loop joins are shown in Figure 15.
For the buffered plan, footprint analysis suggests two exe-
cution groups (marked with boxes). Note that there is no
buffer operator added above the “IndexScan” operator, even
though its footprint is larger than the L1 instruction cache.
This is because it is a foreign-key join and the optimizer

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 70

In-Memory Joins

After plain select queries, let us now look at join queries:

SELECT COUNT (*)

FROM orders, lineitem

WHERE o_orderkey = l_orderkey

(We want to ignore result construction for now, thus only count result tuples.)

We assume:

no exploitable order,

no exploitable indices (input might be an intermediate result), and

an equality join predicate (as above).

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 71

Hash Join

Hash join is a good match for such a situation.

To compute R 1 S ,

1 Build PhaseBuild a hash table on the “outer” join relation R.

2
Join Phase

Scan the “inner” relation S and

probe into the hash table for each tuple s ∈ S .

1 Function: hash_join (R, S)

// Build Phase

2 foreach tuple r ∈ R do

3 insert s into hash table H ;

// Join Phase

4 foreach tuple s ∈ S do

5 probe H and append matching tuples to result ;

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 72

Hash Join

R
sc

a
n

h

b1

b2

...

bk

hash table

...

1© build

S

sc
a

n

h...

2© probe

X O
(

N
)

(approx.)

X Easy to parallelize

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 73

Parallel Hash Join

Parallel Hash Join

R

h

...

h

b1

b2

...

bk

shared
hash table

S

h

...

h

1© build 2© probe

X Protect using locks; very low contention

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 74

Modern Hardware

/ Random access pattern

→ Every hash table access a cache miss

Cost per tuple (build phase):

34 assembly instructions hash join

is severely

latency-bound

1.5 cache misses

3.3 TLB misses

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 75

Partitioned Hash Join

Thus: partitioned hash join [Shatdal et al. 1994]

R

sc
a

n

h1

r4

r3

r2

r1

cache-sized
chunks

h2

...

...

h2 ...

one hash table
per partition

...

...

s4

s3

s2

s1

h2

...

...

h2

h1

sc
a

n

S

1© partition 1© partition2© build 3© probe

(parallelism: assign partitions to threads → no locking needed)

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 76

Cache Effects

Build/probe now contained within caches:

15/21 instructions per tuple (build/probe)

≈ 0.01 cache misses per tuple

almost no TLB misses X
�

Partitioning is now critical

→ Many partitions, far apart

→ Each one will reside on its own page

→ Run out of TLB entries (100–500)

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 77

Cost of Partitioning

4 5 6 7 8 9 10 11 12 13 14 15 16

radix bits

0

25

50

75

100

125

th
ro

u
g

h
p

u
t

[m
ill

io
n

tu
p

le
s/

se
c]

want to
be here

for all input tuples t do

h ← hash (t.key)
out[pos[h]]← t

pos[h]← pos[h]+ 1

end for

→ Expensive beyond ≈ 28–29 partitions.

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 78

Multi-pass partitioning (“radix partitioning”)

R

sc
a

n

h1,1

h1,2

h1,2

r4

r3

r2

r1

h2

...

...

h2 ...

one hash table
per partition

...

...

s4

s3

s2

s1

h2

...

...

h2

h1,2

h1,2

S

sc
a

n

h1,1

1© partition 1© partition2© build 3© probe

pass 2pass 1 pass 2 pass 1

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 79

Multi-pass partitioning (“radix partitioning”)

In practice:

h1, . . . , hP use same hash function but look at different bits.

57 (001)
17 (001)
03 (011)
47 (111)
92 (100)
81 (001)
20 (100)
06 (110)
96 (000)
37 (101)
66 (010)
75 (001)

h1

57 (001)
17 (001)
81 (001)
96 (000)
75 (001)
03 (011)
66 (010)
92 (100)
20 (100)
37 (101)
47 (111)
06 (110)

h2

h2

h2

h2

96 (000)
57 (001)
17 (001)
81 (001)
75 (001)
66 (010)
03 (011)
92 (100)
20 (100)
37 (101)
06 (110)
47 (111)

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 80

Two-pass partitioning

4 5 6 7 8 9 10 11 12 13 14 15 16

radix bits

0

25

50

75

100

125

th
ro

u
g

h
p

u
t

[m
ill

io
n

tu
p

le
s/

se
c]

single-pass partitioning

two-pass partitioning

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 81

�

Hash join is O
(

N log N
)
!

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 82

for all input tuples t do

h ← hash (t.key)
copy t to out[pos[h]]

memory access

pos[h]← pos[h]+ 1

end for

Näıve

partitioning

(cf. slide 78)

for all input tuples t do

h ← hash (t.key)
buf [h][pos[h] mod bufsiz]← t

if pos[h] mod bufsiz = 0 then

copy buf [h] to out[pos[h]− bufsiz]

memory access
end if

pos[h]← pos[h]+ 1

end for

Software-

Managed

Buffers

→ TLB miss only every bufsiz tuples

→ Choose bufsiz to match cache line size

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 83

Software-Managed Buffers

4 5 6 7 8 9 10 11 12 13 14 15 16

radix bits

0

25

50

75

100

125

th
ro

u
g

h
p

u
t

[m
ill

io
n

tu
p

le
s/

se
c] single-pass partitioning

two-pass partitioning

sw-managed buffers

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 84

Plugging it together

0

10

20

30

40

cy
cl

es
p

er
o

u
tp

u
t

tu
p

le

n-part rdx n-part rdx n-part rdx n-part rdx

Nehalem Sandy Bridge AMD Niagara T2

partition build probeBlanas et al.:
86.4 / 64.6 cy/tpl

N
e

h
a

le
m

:
4

c
o

re
s/

8
th

re
a

d
s;

2
.2

6
G

H
z
·S

a
n

d
y

B
ri

d
g

e
:

8
c

o
re

s/
1

6
th

re
a

d
s;

2
.7

G
H

z
A

M
D

B
u

lld
o

ze
r:

1
6

c
o

re
s;

2
.3

G
H

z
·N

ia
g

a
ra

2
:

8
c

o
re

s/
6

4
th

re
a

d
s;

1
.2

G
H

z

256 MiB 1 4096 MiB

e.g., Nehalem: 25 cy/tpl ≈ 90 million tuples per second

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 85

Another Workload Configuration

0

20

40

60

80

cy
cl

es
p

er
o

u
tp

u
t

tu
p

le

n-part rdx n-part rdx n-part rdx n-part rdx

Nehalem Sandy Bridge AMD Niagara T2

partition build probe

N
e

h
a

le
m

:
4

c
o

re
s/

8
th

re
a

d
s;

2
.2

6
G

H
z
·S

a
n

d
y

B
ri

d
g

e
:

8
c

o
re

s/
1

6
th

re
a

d
s;

2
.7

G
H

z
A

M
D

B
u

lld
o

ze
r:

1
6

c
o

re
s;

2
.3

G
H

z
·N

ia
g

a
ra

2
:

8
c

o
re

s/
6

4
th

re
a

d
s;

1
.2

G
H

z

977 MiB 1 977 MiB

e.g., Nehalem: 25 cy/tpl ≈ 90 million tuples per second

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 86

Resulting Overall Performance

Overall performance is influenced by a number of parameters:

input data volume

cluster size / number of clusters

number of passes (plus number of radix bits per pass)

An optimizer has to make the right decisions at runtime.

Need a detailed cost model for this.

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 87

Joins and Column-Based Storage

�
With column-based storage, a single join is not enough.

1

join index

1 1

Joining BATs for key attributes yields a join index.

Post-project BATs for all remaining attributes.

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 88

Joins and Column-Based Storage

Positional lookup?

Makes post-projection joins “random access” /

Thus:

(Radix-)Sort by oids of larger relation

→ Positional lookups become cache-efficient.

Partially cluster by oids before positional join of smaller relation

→ Access to smaller relation becomes cache-efficient, too.

Details: Manegold, Boncz, Nes, Kersten. Cache-Conscious

Radix-Decluster Projections. VLDB 2004.

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2016 89

	Cache Awareness
	Hardware Trends
	Memory Technologies
	Memory Hierarchy

	Caches
	Cache Associativity
	Cache Performance

	Improving Data Cache Effectiveness
	Storage Models (NSM vs. DSM)

	Data Processing
	Volvano Iterator Model
	Operator-At-A-Time Processing
	Vectorized Execution
	Vectorized Execution in SQL Server 11
	Alternative: Buffer Operators

	In-Memory Joins
	Hash Join

