
Information Systems

(Informationssysteme)

Jens Teubner, TU Dortmund

jens.teubner@cs.tu-dortmund.de

Summer 2013

c© Jens Teubner · Information Systems · Summer 2013 1

Part VI

SQL: Structured Query Language

c© Jens Teubner · Information Systems · Summer 2013 150

Basic SQL Query

We already saw the “Hello World!” example of SQL:

SELECT A1, ..., An
FROM R1, ..., Rm
WHERE C

Semantics:

All relations R1, . . . ,Rm listed in the FROM clause are combined into

a Cartesian product R1 × · · · × Rm.

The WHERE clause filters all rows according to the condition C .

(Absence of the WHERE clause is equivalent to C ≡ true.)

The SELECT clause specifies the attributes A1, . . . ,An to report in

the result (*≡ all attributes that occur in R1, . . . ,Rm).

c© Jens Teubner · Information Systems · Summer 2013 151

Tuple Variables

SQL adopted the notion of tuple variables:

SELECT i.Name, i.InStock, s.Supplier, s.Price

FROM Ingredients AS i, SoldBy AS s

WHERE i.Name = s.Ingredient

AND s.Price < i.Price

Tuple variables range over tuples; e.g., i represents a single row in

Ingredients.

If no tuple variable is given explicitly, a variable will automatically

be created with the name of the table:

FROM Foo ≡ FROM Foo AS Foo

(If a variable is given in the query, the implicit variable is not declared.)

The keyword AS is optional.

c© Jens Teubner · Information Systems · Summer 2013 152

Attribute References

Attributes can be referenced in the form

v.A ,

where v is a tuple variable and A an attribute name.

If attribute name A is unambiguous, the tuple variable may be omitted:

SELECT Name, InStock, Supplier, s.Price

FROM Ingredients AS i, SoldBy AS s

WHERE Name = Ingredient

AND s.Price < i.Price

Personal recommendation:

Fully qualify all attribute names (except for trivial queries).

Avoid using *.

c© Jens Teubner · Information Systems · Summer 2013 153

Joins

Consider a query with two tables in the FROM clause:

SELECT s.Name, c.Name AS Contact, c.Phone

FROM Suppliers AS s, ContactPersons AS c

WHERE s.SuppID = c.SuppID

The semantics of this query can be understood as follows:

Enumerate all pairs of tuples 〈s, c〉 from the Cartesian product

Suppliers × ContactPersons (the number of pairs may be huge).

Among all pairs 〈s, c〉, select only those that satisfy the join

condition s.SuppID = c.SuppID.

Most likely, your system will choose a better evaluation strategy.

→ E.g., using indexes or efficient join algorithms.

→ But the output is the same as if obtained by full enumeration.

c© Jens Teubner · Information Systems · Summer 2013 154

Joins

�
The join condition must be specified explicitly in the

WHERE clause (otherwise, the system will assume you

want the Cartesian product).

It is almost always an error when two tuple variables are not linked by an

explicit join predicate (this query most likely returns nonsense):

SELECT s.Name, c.Name AS Contact, c.Phone

FROM Suppliers AS s, ContactPersons AS c

WHERE s.Name = ’Shop Rite’

AND c.Phone LIKE ’+49 351%’

→ In case of composite keys (that span multiple attributes), don’t

forget to link tuple variables via all key columns.

c© Jens Teubner · Information Systems · Summer 2013 155

Duplicates

� What does the following query return?

SELECT c.CocktailID, c.Name

FROM Cocktails AS c, ConsistsOf AS co,

Ingredients AS i

WHERE c.CocktailID = co.CocktailID

AND co.IngrID = i.IngrID

AND i.Alcohol > 0

→ The CocktailIDs and Names of all cocktails with at least one

alcoholic ingredient.

→ This query likely will return many duplicates.

To eliminate duplicates use the keyword DISTINCT:

SELECT DISTINCT c.CocktailID, c.Name

... ...

c© Jens Teubner · Information Systems · Summer 2013 156

Unnecessary Joins

Do not join more tables than needed

→ Query might run slowly if the optimizer overlooks the redundancy.

SELECT c.Name, c.Phone

FROM Suppliers AS s, ContactPersons AS c

WHERE s.SuppID = c.SuppID

AND c.Phone LIKE ’+49 351%’

c© Jens Teubner · Information Systems · Summer 2013 157

Unnecessary joins might also lead to unexpected results.

� What is wrong with these two queries?

1 Return all supplier names with an address in ‘Dresden’:

SELECT s.Name

FROM Suppliers AS s, ContactPersons AS c

WHERE s.SuppID = c.SuppID

AND s.Address LIKE ’%Dresden%’

2 Return all cocktails with ‘Bacardi’ in their name:

SELECT c.Name

FROM Cocktails AS c, ConsistsOf AS co,

Ingredients AS i

WHERE c.CocktailID = co.CocktailID

AND co.IngrID = i.IngrID

AND c.Name LIKE ’%Bacardi%’

c© Jens Teubner · Information Systems · Summer 2013 158

Non-Monotonic Behavior

SQL queries that use only the constructs introduced above are

monotonic (↗ slide 104).

→ If further tuples are inserted to the database, the query result can

only grow.

Some real-world queries, however, demand non-monotonic behavior.

E.g., “Return all non-alcoholic cocktails (i.e., those without any

alcoholic ingredient).”

→ Insertion of a new ConsistsOf tuple could “make” a cocktail

alcoholic and thus invalidate a previously correct answer.

Such queries cannot be answered with the SQL subset we saw so far.

c© Jens Teubner · Information Systems · Summer 2013 159

Indicators for Non-Monotonic Behavior

Indicators for non-monotonic behavior (in natural language):

“there is no”, “does not exist”, etc.

→ existential quantification

“for all”, “the minimum/maximum”

→ universal quantification

→ ∀r ∈ R : C (r) ⇔ @r ′ ∈ R : ¬C (r ′)

In an equivalent SQL formulation of such queries, this ultimately leads to

a test whether a certain query yields a (non-)empty result.

c© Jens Teubner · Information Systems · Summer 2013 160

IN / NOT IN

Such tests can be expressed with help of the IN (∈) and NOT IN (/∈)

keywords in SQL:

SELECT c.Name

FROM Cocktails AS c

WHERE CocktailID NOT IN (SELECT co.CocktailID

FROM ConsistsOf AS co,

Ingredients AS i

WHERE i.IngrID = co.IngrID

AND i.Alcohol <> 0)

The IN (NOT IN) keyword tests whether an attribute value appears (does

not appear) in a set of values computed by another SQL subquery.

→ At least conceptually, the subquery is evaluated before the main

query starts.

c© Jens Teubner · Information Systems · Summer 2013 161

IN / NOT IN

The existence of a value in a subquery does not depend on multiplicity.

→ The previous query may equivalently be written as:

SELECT Name

FROM Cocktails

WHERE CocktailID NOT IN (SELECT DISTINCT CocktailID

FROM ConsistsOf AS co,

Ingredients AS i

WHERE i.IngrID = co.IngrID

AND i.Alcohol > 0)

Whether/how this will affect query performance depends on the

particular system and data.

→ The DBMS optimizer likely knows about this equivalence and decide

on duplicate elimination/preservation itself.

c© Jens Teubner · Information Systems · Summer 2013 162

IN vs. Join

Consider again the query for all alcoholic cocktails.

� Do the following queries return the same result?

SELECT Name

FROM Cocktails

WHERE CocktailID IN (SELECT DISTINCT CocktailID

FROM ConsistsOf AS co,

Ingredients AS i

WHERE i.IngrID = co.IngrID

AND i.Alcohol > 0)

SELECT DISTINCT c.Name

FROM Cocktails AS c, ConsistsOf AS co,

Ingredients AS i

WHERE c.CocktailID = co.CocktailID

AND co.IngrID = i.IngrID AND i.Alcohol > 0

c© Jens Teubner · Information Systems · Summer 2013 163

IN / NOT IN

Remarks:

In earlier versions of SQL, the subquery must return only a single

output column.

→ This ensures that the result of the subquery is a set of atomic

values and not an arbitrary relation.

Since SQL-92, comparisons were extended to the tuple level. It is

thus valid to write, e.g.:

...

WHERE (A, B) NOT IN (SELECT C, D FROM ...)

c© Jens Teubner · Information Systems · Summer 2013 164

EXISTS / NOT EXISTS

The construct NOT EXISTS enables the main (or outer) query to check

whether the result of a subquery is empty.10

In the subquery, tuple variables declared in the FROM clause of the

outer query may be referenced.

SELECT Name

FROM Cocktails AS c

WHERE NOT EXISTS (SELECT DISTINCT CocktailID

FROM ConsistsOf AS co,

Ingredients AS i

WHERE i.IngrID = co.IngrID

AND co.CocktailID = c.CocktailID

AND i.Alcohol > 0)

10Likewise, EXISTS tests for non-emptiness.
c© Jens Teubner · Information Systems · Summer 2013 165

Correlated Subqueries

The reference of an outer tuple makes the subquery correlated.

The subquery is parameterized by the outer tuple variable.

Conceptually, correlated subqueries have to be re-evaluated for

every new binding of a tuple to the outer tuple variable.

→ Again, the DBMS is free to choose a more efficient evaluation

strategy that returns the same result (; “query unnesting”)

Correlation can be used with IN/NOT IN, too.

→ Typically, this yields complicated query formulations (bad style).

Queries with EXISTS/NOT EXISTS can be non-correlated.

→ The WHERE predicate then becomes independent of the outer tuple.

→ This is rarely desired and almost always an indication of an error.

c© Jens Teubner · Information Systems · Summer 2013 166

Correlated Subqueries

Subqueries may reference tuple variables from the outer query.

The converse (referencing a tuple variable of the subquery in the outer

query) is not allowed:

SELECT c.Name, i.Alcohol wrong!
FROM Cocktails AS c

WHERE EXISTS (SELECT DISTINCT CocktailID

FROM ConsistsOf AS co,

Ingredients AS i

WHERE i.IngrID = co.IngrID

AND co.CocktailID = c.cocktailID

AND i.Alcohol > 0)

→ Compare this to variable scoping in block-structured programming

languages (C, Java).

c© Jens Teubner · Information Systems · Summer 2013 167

EXISTS / NOT EXISTS

EXISTS/NOT EXISTS only tests for the existence of (at least) one

row in the subquery result.

The actual tuple value returned by the query is immaterial to the

overall query result.

It is good style to make this explicit in the subquery phrasing:

→ ... EXISTS (SELECT * FROM ...)

→ ... EXISTS (SELECT NULL FROM ...)

→ ... EXISTS (SELECT 42 FROM ...)

It is legal SQL syntax, though, to specify arbitrarily complex result

tuples in the subquery’s SELECT clause.

c© Jens Teubner · Information Systems · Summer 2013 168

“For All”

Mathematical logic knows two quantifiers:

∃x : φ existential quantifier

There is an x that satisfies formula φ.

∀x : φ universal quantifier

For all x , formula φ is satisfied.

We saw an SQL notation to express existential quantification.

Universal quantification can be expressed due to the equivalence

∀x : φ ⇔ ¬∃x : ¬φ .

c© Jens Teubner · Information Systems · Summer 2013 169

“For All” in SQL

� State the query “Which is the most expensive cocktail?”

(I.e., the cocktail that is at least as expensive as all other cocktails.)

SELECT c1.Name

FROM Cocktails AS c1

WHERE NOT EXISTS (SELECT *

FROM Cocktails AS c2

WHERE c2.Price > c1.Price)

c© Jens Teubner · Information Systems · Summer 2013 170

ALL, ANY, SOME

For a restricted form of quantification, SQL provides additional notation.

→ Comparison of a single value with the values in a set (that is

computed by a subquery).

SELECT c1.Name

FROM Cocktails AS c1

WHERE c1.Price >= ALL (SELECT c2.Price

FROM Cocktails AS c2)

Prices of qualifying outer rows must be greater or equal than all

prices returned by the subquery.

Analogously: Comparisons =, <, etc.

c© Jens Teubner · Information Systems · Summer 2013 171

ALL, ANY, SOME

ANY can be used instead of ALL if one match should be enough to satisfy

the overall predicate.

SELECT c1.Name

FROM Cocktails AS c1

WHERE NOT c1.Price < ANY (SELECT c2.Price

FROM Cocktails AS c2)

SOME can be used as a synonym for ANY.

c© Jens Teubner · Information Systems · Summer 2013 172

Remarks

ANY/ALL do not extend the expressiveness of SQL, since, e.g.,

A < ANY (SELECT B FROM · · · WHERE · · ·)
≡

EXISTS (SELECT * FROM · · · WHERE · · · AND A < B)

x IN S is equivalent to x = ANY S .

The subquery must yield a single result column.

If none of the keywords ALL, ANY, or SOME are present, the subquery

must yield at most one row.

→ �This is a semantical property of the query,

which the query compiler cannot check for you.

→ This is a common source of trouble (your query

might run well when you test, but fail on real data).

c© Jens Teubner · Information Systems · Summer 2013 173

Subqueries in the FROM Clause

Since the result of an SQL query is a table, it seems most natural to use

a subquery result whenever a table might be specified, i.e., in the FROM

clause.

SELECT c.Name AS CocktailName, x.IngrName

FROM (SELECT co.CocktailID, i.Name AS IngrName

FROM ConsistsOf AS co, Ingredients AS i

WHERE co.IngrID = i.IngrID) AS x,

Cocktails AS c

WHERE c.CocktailID = x.CocktailID

SQL is orthogonal in this sense.

Earlier versions of SQL (up to SQL-86) were not orthogonal in this sense.

Inside the subquery, tuple variables in the same FROM clause may

not be referenced.

c© Jens Teubner · Information Systems · Summer 2013 174

Subqueries in the FROM Clause

Subqueries in the FROM clause may occur implicitly because of view

declarations, e.g.,

CREATE VIEW ConsistsOfIngr AS

SELECT co.CocktailID, i.Name AS IngrName

FROM ConsistsOf AS co, Ingredients AS i

WHERE co.IngrID = i.IngrID

This view declaration permanently registers the subquery under

the name ConsistsOfIngr.

After declaration, the view may be used in queries just like a table.

SELECT c.Name AS CocktailName, x.IngrName

FROM ConsistsOfIngr AS x, Cocktails AS c

WHERE c.CocktailID = x.CocktailID

c© Jens Teubner · Information Systems · Summer 2013 175

View Declarations

Views are not only for convenience.

They help to provide logical data independence.

→ E.g., replace an actual table by a view declaration that

computes the logical table content.

→ See slide 20 for an example.

They can be used for access control.

→ E.g., deny a certain user access to the base table(s), but allow

access to a view over those tables. Access is now restricted to

only those data generated by the view.

c© Jens Teubner · Information Systems · Summer 2013 176

Aggregations

Aggregation functions are functions from a multiset to a single

value, e.g.,

min{42, 57, 5, 13, 27} = 5 .

SQL defines five main aggregation functions:

COUNT, SUM, AVG, MAX, MIN .

(Some implementations might provide further aggregation functions:

STDDEV, VARIANCE, . . .)

Example:

SELECT MAX (Price)

FROM Ingredients

WHERE Alcohol = 0

c© Jens Teubner · Information Systems · Summer 2013 177

Aggregations and Duplicates

Some aggregation functions are sensitive to duplicates.

If so, SQL allows to explicitly request to ignore duplicates:

SELECT COUNT (DISTINCT City)

FROM Suppliers

WHERE ZipCode LIKE ’0%’

If you are only interested in counting rows, use COUNT (*):

SELECT COUNT (*)

FROM Ingredients

WHERE Alcohol > 0

There is a subtle difference between COUNT (*) and COUNT (A). The former will count all rows;

the latter only those where attribute A does not contain a null value. The latter might be

much more expensive to evaluate!

c© Jens Teubner · Information Systems · Summer 2013 178

Evaluation of Aggregation Functions

Conceptually, queries with aggregation are evaluated as follows:11

1 Evaluate the FROM clause

→ Form a Cartesian product of all referenced tables/subqueries

(see also slide 38).

2 Apply predicates of the WHERE clause.

→ Discard all rows that do not satisfy the WHERE predicate.

3 Add column values received from 2 to sets/multisets that will be

input to the aggregation functions.

→ Remove duplicates if requested by DISTINCT keyword within

aggregation function(s).

4 Compute aggregation result(s) and print a single row of aggregated

value(s).

11As usual, the system is free to choose a more efficient execution strategy.
c© Jens Teubner · Information Systems · Summer 2013 179

Evaluation of Aggregation Functions

FROM WHERE aggregate SELECT

Table1

Table2

...

× Condition aggr AttList

Notes:

Null values are ignored during aggregation. Exception: COUNT (*)

also counts null values.

If the aggregation input set is empty, aggregation functions return

NULL. Exception: COUNT returns 0.

c© Jens Teubner · Information Systems · Summer 2013 180

Evaluation of Aggregation Functions

Restrictions:

Aggregations must not be nested (makes no sense).

Aggregations must not be used in the WHERE clause.

→ Aggregation is performed only after the WHERE clause has been

evaluated.

The result of an aggregation query is a single output tuple.

If aggregation is used, no attributes may appear in the SELECT

clause.

→ Would make no sense, because aggregation yields a single

output row.

→ But see GROUP BY clause below.

c© Jens Teubner · Information Systems · Summer 2013 181

GROUP BY

The GROUP BY clause partitions the tuples of a table into disjoint

groups.

Aggregation functions are then applied for each tuple group

separately.

SELECT GlassID, COUNT (*) AS cnt

FROM Cocktails

GROUP BY GlassID

GlassID cnt

7 12

3 19

4 8

→ The tuple group with GlassID = 7 counts 12 rows, etc.

c© Jens Teubner · Information Systems · Summer 2013 182

Evaluation with GROUP BY

FROM WHERE GROUP BY aggregate SELECT

Table1

Table2

...

× Condition part

aggr

aggr

...
aggr

AttList

AttList
...

AttList

o
n

e
ro

w
p

er
p

artitio
n

Query returns as many result rows as there are distinct values in the

GROUP BY attribute(s).

Any attribute that appears in the GROUP BY clause may also be used

in the SELECT clause.

c© Jens Teubner · Information Systems · Summer 2013 183

GROUP BY Examples

The GROUP BY clause may contain more than one column:

SELECT Year, Month,

SUM (Amount) AS Amt

FROM Sales

WHERE Month LIKE ’J%’

GROUP BY Year, Month

Year Month Amt

2008 Jan 115154.86

2008 Jul 116348.82

2008 Jun 114418.37

2009 Jan 113908.68

2009 Jul 108407.65

2009 Jun 113489.23

� What is the result of this query?

SELECT Month

FROM Sales

WHERE Month LIKE ’J%’

GROUP BY Month

� This one?

SELECT Month, SUM (Amount)

FROM Sales

WHERE Month LIKE ’J%’

GROUP BY Year, Month

c© Jens Teubner · Information Systems · Summer 2013 184

GROUP BY: Columns in SELECT

Only columns (and aggregation functions) listed in the GROUP BY clause

may appear in the SELECT part.

SELECT c.CocktailID, c.Name, COUNT (*)

wrong!

FROM Cocktails AS c, ConsistsOf co

WHERE c.CocktailID = co.CocktailID

GROUP BY c.CocktailID

Solution: Group by CocktailID and Name.

→ Since CocktailID is a key, this will not actually affect grouping.

SELECT c.CocktailID, c.Name, COUNT (*)

"
FROM Cocktails AS c, ConsistsOf co

WHERE c.CocktailID = co.CocktailID

GROUP BY c.CocktailID, c.Name

c© Jens Teubner · Information Systems · Summer 2013 185

Conditions over Aggregates

Remember that aggregations must not be used in the WHERE clause.

With GROUP BY, it makes sense to filter out entire groups, based

on some aggregate group property.

E.g., Report average sales amount per month only for those months

where there were at least 5 transactions.

� Can we express that with the SQL constructs we learned so far?

SELECT x.Year, x.Month, x.Average

FROM (SELECT Year, Month, AVG (Amount) AS Average,

COUNT (*) AS Cnt

FROM Sales

GROUP BY Year, Month) AS x

WHERE x.Cnt >= 5

c© Jens Teubner · Information Systems · Summer 2013 186

HAVING

The SQL HAVING clause is a convenient means to describe exactly such

types of queries.

SELECT Year, Month, AVG (Amount) AS Average

FROM Sales

GROUP BY Year, Month

HAVING COUNT (*) >= 5

In the HAVING clause, the same types of expressions may be used as

in the SELECT clause, i.e.,

aggregation functions,

columns listed in the GROUP BY clause.

c© Jens Teubner · Information Systems · Summer 2013 187

Evaluation with GROUP BY and HAVING

The HAVING clause is applied after grouping and aggregation (WHERE is

applied before).

FROM WHERE GROUP BY aggreg. HAVING SELECT

Table1

Table2

...

× Cond part

aggr

aggr

...
aggr

HavCond

HavCond
...

HavCond

AttList

AttList
...

AttList

o
n

e
ro

w
p

er
p

artitio
n

→ Conditions that only refer to GROUP BY columns may be put into

WHERE or HAVING.

c© Jens Teubner · Information Systems · Summer 2013 188

UNION

The SQL keyword UNION allows to collect results from multiple queries

into a single output relation (; algebra operator ∪).

SELECT Name, Price

FROM Ingredients

WHERE Alcohol > 0

UNION

SELECT Name, Price

FROM Cocktails

UNION is strictly needed (no other way in SQL to express such queries).

Typical use case:

→ Specializations of a general concept are stored in separate tables.

They can be re-combined using UNION.

c© Jens Teubner · Information Systems · Summer 2013 189

SQL Set Operators

Combined relations must be schema-compatible.

But SQL is less strict than relational algebra.
Both operands must have the same number of columns; columns of

compatible types must be listed in same order. Column names,

however, do not matter (need not be identical).

The other set operators are available in SQL, too:

UNION implements ∪
EXCEPT implements − (MINUS is synonym)

INTERSECT implements ∩
All three operators remove duplicates.

To keep duplicates: combine with ALL

SELECT · · · FROM · · · WHERE · · ·
UNION ALL (or: EXCEPT ALL, INTERSECT ALL)

SELECT · · · FROM · · · WHERE · · ·

c© Jens Teubner · Information Systems · Summer 2013 190

Order

All SQL queries return result rows in arbitrary order.

You might observe that the system produces the same order when

you run the same query multiple times. But there is no guarantee:

the next run might already lead to a different order.

This is intentional. The system might find a better execution

strategy if it is allowed to produce results in any order.

Sometimes it is desirable to present the overall result of a query in a

particular order to the user.

→ SQL keyword ORDER BY.

SELECT LastName, FirstName, Phone

FROM ContactPersons

ORDER BY LastName, FirstName

c© Jens Teubner · Information Systems · Summer 2013 191

ORDER BY

Conceptually, the ORDER BY specification is applied as the last

operation, only to present results to the user.

→ May reference columns and aggregation functions just like the

SELECT part.

→ ORDER BY does not make sense in subqueries and is thus forbidden

there.

The ORDER BY clause is a list of ordering criteria.

→ lexicographic ordering according to this list

→ Append DESC to a sort key to sort in descending order.

(; · · · ORDER BY Year DESC, SUM (Amount) DESC)

c© Jens Teubner · Information Systems · Summer 2013 192

SQL Keyword JOIN

Joins can be expressed in SQL by listing the relations in the FROM clause

and constraining the Cartesian product in the WHERE clause.

SELECT s.Name, c.Name AS Contact, c.Phone

FROM Suppliers AS s, ContactPersons AS c

WHERE s.SuppID = c.SuppID

→ Don’t be afraid. The system will recognize the pattern and not

build up the Cartesian product.

Alternatively, joins can be made explicit as follows:

SELECT s.Name, c.Name AS Contact, c.Phone

FROM Suppliers AS s JOIN ContactPersons AS c

ON s.SuppID = c.SuppID

c© Jens Teubner · Information Systems · Summer 2013 193

JOIN · · · ON

That is, you can write

Table1 JOIN Table2 ON JoinCondition

in the FROM part of your query.

There are a number of restrictions on what can be used as a

JoinCondition:

The condition must only refer to columns of the two referenced

tables.

The condition must not contain any subqueries.

The JOIN clause can be nested:

(Table1 JOIN Table2 ON JoinCond1) JOIN Table3 ON JoinCond2

c© Jens Teubner · Information Systems · Summer 2013 194

Outer Joins

The JOIN syntax also allows to specify outer joins:

SELECT s.Name, c.Name AS Contact, c.Phone

FROM Suppliers AS s

LEFT OUTER JOIN ContactPersons AS c

ON s.SuppID = c.SuppID

Likewise: RIGHT OUTER JOIN, FULL OUTER JOIN.

JOIN is synonym for INNER JOIN.

Further syntactic sugar:

Table1 NATURAL JOIN Table2

Table1 JOIN Table2 USING (ColumnList)

c© Jens Teubner · Information Systems · Summer 2013 195

Null Values

SQL also uses null values and three-valued logic (↗ slide 80).

NULL is the literal for the null value.

(INSERT INTO Suppliers VALUES (42, ’Foo Inc.’, NULL))

Test for null values with IS NULL (or IS NOT NULL)

SELECT Name, www

FROM Suppliers AS s

WHERE www IS NOT NULL

�
Do not use = NULL in tests.

Comparisons =, <=, etc. with NULL always yield NULL

(i.e., “unknown”; also NULL = NULL _ NULL).

c© Jens Teubner · Information Systems · Summer 2013 196

Beyond Queries

So far we only looked at the data retrieval language part of SQL.

SQL also offers syntax to

create or delete tables, to modify their schema, etc.,

→ data definition language

add, delete, or modify rows in the database,

→ data manipulation language

define access rights on data.

→ data control language

Systems also implement further commands, not strictly part of SQL:

→ physical schema management (index creation), backup, etc.

c© Jens Teubner · Information Systems · Summer 2013 197

Table Creation

To create a new table, use the CREATE TABLE statement:

CREATE TABLE Ingredients (IngrID INTEGER NOT NULL,

Name CHAR(30),

Alcohol DECIMAL(3,1),

Flavor CHAR(20))

Data types (somewhat system-dependent):

INTEGER, SMALLINT, BIGINT

DECIMAL (m,n): m digits total, n of which are decimals

CHAR (n): fixed-length strings

VARCHAR (n): variable-length strings (up to length n)

DATE, TIME, DATETIME, etc.

c© Jens Teubner · Information Systems · Summer 2013 198

Table Creation

Allow (NULL; default) or disallow (NOT NULL) null values.

Specify key constraints:

CREATE TABLE Suppliers (SupplID INTEGER NOT NULL,

Name CHAR(30) NOT NULL,

www VARCHAR(200),

PRIMARY KEY (SupplID))

CREATE TABLE Contacts (ContactID INTEGER NOT NULL,

SupplID INTEGER NOT NULL,

Name CHAR(40),

Phone CHAR(20),

PRIMARY KEY (ContactID),

FOREIGN KEY (SupplID)

REFERENCES Suppliers (SupplID))

c© Jens Teubner · Information Systems · Summer 2013 199

Dropping or Altering Tables

Deleting an entire table (including its schema definition):

DROP TABLE Suppliers

All data in the table is irrecoverably lost.

Many systems implicitly commit transactions upon DDL statements

(see later).

Change the schema of existing tables using the ALTER TABLE statement,

e.g.,

ALTER TABLE Contacts ADD COLUMN Email VARCHAR (30)

c© Jens Teubner · Information Systems · Summer 2013 200

Views

CREATE VIEW is also a data definition statement (since it changes the

database schema; ↗ slide 175):

CREATE VIEW ConsistsOfIngr AS

SELECT co.CocktailID, i.Name AS IngrName

FROM ConsistsOf AS co, Ingredients AS i

WHERE co.IngrID = i.IngrID

To remove a view declaration from the schema, use the DROP VIEW

statement:

DROP VIEW ConsistsOfIngr

c© Jens Teubner · Information Systems · Summer 2013 201

Inserting Rows

Insert new rows into a table using the INSERT statement:

INSERT INTO Suppliers (SupplID, Name, www)

VALUES (42, ’Seven Eleven’, NULL)

List tuple values in same order as list of column names.

The list of column names (SupplID, · · ·) can be omitted (must

then give values for all columns).

You may choose to not specify all columns, but only if the missing

columns allow null values or are declared with a default value.

c© Jens Teubner · Information Systems · Summer 2013 202

Inserting Rows

The inserted row(s) may also be the result of an SQL query:

INSERT INTO SalesStat (Year, Month, Amount)

SELECT Year, Month, SUM (Amount)

FROM Sales

GROUP BY Year, Month

DML statements are executed with snapshot semantics.

→ Conceptually, new values are computed based on a snapshot of the

database. Then the updates are applied.

→ The statement does not “see” its own effects.

INSERT INTO Budget (Project, Year, Amount)

SELECT Project, 2012, AVG (Amount) * 1.10

FROM Budget

GROUP BY Project

c© Jens Teubner · Information Systems · Summer 2013 203

Changing Values in Existing Rows

Values in existing rows can be changed with UPDATE:

UPDATE Employee

SET Salary = Salary * 1.05,

Bonus = Bonus + 500

WHERE EmpType = ’Manager’

→ In the table listed in the UPDATE part, all rows that satisfy the WHERE

clause are assigned new values as stated by the SET clause.

→ Without a WHERE clause, all rows are updated.

→ Again: snapshot semantics

c© Jens Teubner · Information Systems · Summer 2013 204

UPDATE

New column values can be computed via SELECT statements:

UPDATE Sales AS s1

SET CumulativeAmount = (SELECT SUM (Amount)

FROM Sales s2

WHERE s2.Year <= s1.Year)

�
The subquery must return at most one row!

c© Jens Teubner · Information Systems · Summer 2013 205

Row Deletion

Tuples can be deleted with help of the DELETE statement:

DELETE FROM Customers

WHERE CustomerID = 42

DELETE without a WHERE clause deletes all rows of the table. But

the table itself remains existent.

→ Use DROP TABLE to remove the table.

c© Jens Teubner · Information Systems · Summer 2013 206

SQL ↔ Programming Language

SQL is not a complete programming language.

→ It is not even meant to provide such expressiveness (↗ slide 147)

Application programs typically use SQL to interact with the database.

They generate SQL statements (e.g., based on user input), ship

them to the DBMS, and present results to the user (e.g., via a GUI).

Challenge: Impedance mismatch

Different type systems

SQL ↔ Object-oriented concepts

declarative, set-oriented ↔ imperative, record-oriented

concurrency models, exception handling

c© Jens Teubner · Information Systems · Summer 2013 207

SQL ↔ Programming Language

Various forms of SQL ↔ programming language integration exist.

Embedded SQL (e.g., for C): SQL used in PL with special markup

SQL as a language subset (e.g., 4GL programming languages)

PL constructs that are compiled into SQL code (e.g., Linq,

ActiveRecords)

Libraries for SQL interaction (e.g., JDBC, ODBC)

Example: Embedded SQL (for DB2 and C; next slide)

c© Jens Teubner · Information Systems · Summer 2013 208

EXEC SQL INCLUDE SQLCA;

EXEC SQL BEGIN DECLARE SECTION;
short IngrID;
char Name[31];
EXEC SQL END DECLARE SECTION;

void main (void) {

EXEC SQL CONNECT TO DEMO;

EXEC SQL DECLARE IngrCursor CURSOR FOR
SELECT IngrID, Name
FROM Ingredients;

EXEC SQL OPEN IngrCursor;

while (1) {
EXEC SQL FETCH IngrCursor into :IngrID, :Name;

if (sqlca.sqlcode == 100)
break;

printf (" %8i | %30s\n", IngrID, Name);
}

EXEC SQL CLOSE IngrCursor;
}

c© Jens Teubner · Information Systems · Summer 2013 209

Embedded SQL

Instructions for DB2 preprocessor marked with EXEC SQL.

→ Preprocessor turns these into “real” C code, which is then

compiled by a regular C compiler.

Variable declarations marked, so preprocessor knows where to

convert SQL types ↔ C types.

→ Reference C variables in SQL code using :varname.

→ Extended SQL syntax to interact with C variables, e.g.,

SELECT · · · INTO VarList FROM · · · .
To iterate over result sets, use cursors.

→ OPEN, FETCH, . . . , FETCH, CLOSE

→ Make sure you properly close cursors; the database may release

locks then.

c© Jens Teubner · Information Systems · Summer 2013 210

	SQL: Structured Query Language
	Basic SQL Query
	Tuple Variables

	Joins
	Non-Monotonic Behavior
	IN / NOT IN
	EXISTS / NOT EXISTS
	Correlated Subqueries
	ALL, ANY, SOME
	Subqueries in the FROM
	View Declarations
	Aggregation
	GROUP BY
	HAVING

	Set Operators
	ORDER BY
	SQL Keyword JOIN
	Outer Joins
	Null Values

	Beyond Queries
	Table Creation
	Dropping or Altering Tables
	Views
	Inserting Rows
	Updating Rows
	Deleting Rows

	SQL and Programming Languages

