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Abstract—Modern microprocessors include a sophisticated hi-
erarchy of caches to hide the latency of memory access and
thereby speed up data processing. However, multiple cores within
a processor usually share the same last-level cache. This can
hurt performance, especially in concurrent workloads whenever
a query suffers from cache pollution caused by another query
running on the same socket.

In this work, we confirm that this particularly holds true for
the different operators of an in-memory DBMS: The throughput
of cache-sensitive operators degrades by more than 50 %. To
remedy this issue, we devise a cache allocation scheme from an
empirical analysis of different operators and integrate a cache
partitioning mechanism into the execution engine of a commercial
DBMS. Finally, we demonstrate that our approach improves the
overall system performance by up to 38 %.

I. INTRODUCTION

In recent years, hardware advances gave rise to modern
main-memory database management systems (DBMS) [1].
By keeping data in main memory, these systems are no
longer constrained by the traditional bottlenecks, i.e., disk I/O.
Instead, memory bandwidth and access latency emerge as the
new performance bottlenecks that systems need to address.

With all data in memory, this class of DBMS is also
referred to as Operational Analytics Data Management Sys-
tems [2], allowing applications and users to concurrently
execute transactional and analytical workloads on the same
data set. As a result, concurrent queries usually have different
resource requirements depending on the workload, the number
of records accessed, as well as the data structures (i.e., indices)
and algorithms being used. In particular, some workloads are
highly sensitive to the available amount of CPU cache (e.g.,
random accesses to a small hash table), contrary to cache-
insensitive operations such as a sequential scan of a large
memory area.

Consider the example of the mixed workload illustrated
in Figure 1. We executed an OLTP query either isolated,
concurrently to an OLAP query, or concurrently to an OLAP
query with cache partitioning applied. Our measurements show
that the throughput of the OLTP query degrades significantly
when executed concurrently to the OLAP one, because they
compete for shared resources such as the processor’s last-
level cache (LLC). The OLAP query pollutes the cache by
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Fig. 1. Throughput of an OLTP query running either isolated, concurrently
to an OLAP query, or concurrently to an OLAP query with cache partitioning
(p) applied. Restricting the LLC for the OLAP query by partitioning the cache
avoids cache pollution and improves performance of the OLTP query.

frequently accessing data from DRAM, thus evicting data from
the cache needed by the OLTP query.

For system designers, the good news is that hardware
manufacturers allow fine-grained control of cache allocation
by offering mechanisms such as Intel’s Cache Allocation
Technology (CAT) [3] to avoid cache pollution. However,
besides some isolated analysis of individual algorithms and
data structures, it is still unclear how easy it is to apply these
mechanisms in the context of real-world systems, and whether
the corresponding integration effort pays off.

To fill this gap, we study in this work the impact of the
CPU cache size on various query workloads and analyze
the effect of careful cache partitioning on the overall system
performance. To this end,

(i) we empirically analyze the cache requirements of key
DBMS operators varying available cache sizes;

(ii) we derive cache partitioning schemes to reserve cache
capacity for cache-sensitive operators and queries;

(iii) we discuss how cache partitioning support can be
retrofitted into an existing DBMS with low expenditure
using SAP HANA as an example; and

(iv) we evaluate the practical benefits of the proposed tech-
niques using both standard benchmarks and queries from
a modern HTAP business application (S/4 HANA).



We propose to integrate cache partitioning into a DBMS
by restricting the LLC for scan-intensive operators causing
cache pollution. We show that our approach can improve
performance significantly without introducing regressions.

The rest of the paper is structured as follows. Section II
introduces key data structures used by SAP HANA during
query processing. In Section III, we describe our experimental
set-up for the analysis, while we analyze the cache usage of
key database operators in Section IV. In Section V, we discuss
our approach of integrating cache allocation control into an
existing system and derive cache partitioning schemes from
our analysis. Subsequently, we evaluate our cache partitioning
approach in Section VI. Finally, we discuss related work in
Section VII and conclude in Section VIII.

II. QUERY EXECUTION IN SAP HANA

As a poster child for our analysis of cache usage, we use
the in-memory database SAP HANA [4]. To better interpret
the experiments described later in the paper, we give a
brief overview of the most relevant implementation details
of SAP HANA’s query execution engine. In this section, we
first present key data structures commonly used by different
algorithms. In the subsequent section, we describe the database
algorithms which we analyze in the evaluation regarding their
cache usage.

The execution engine of SAP HANA uses tailor-made,
cache-optimized data structures. For the scope of our current
work, three data structures are most relevant: (i) dictionaries,
which help to compress columnar data in SAP HANA, but
also speed up value comparisons; (ii) hash tables, which
are relevant for our current work regarding aggregation with
grouping; and (iii) bit vectors, which accelerate the processing
of foreign key joins. These data structures are used throughout
SAP HANA’s query processing engine (not just for the types
of queries we study in this work).

Dictionaries play a significant role in the compression-
optimized execution engine of SAP HANA. The ordered dic-
tionary maps the domain values to a dense set of consecutive
numbers. Instead of storing the actual value in the columns
of a table, the storage engine of SAP HANA stores the
typically much smaller number referencing an entry in the
dictionary. In addition, each column can be further compressed
using different compression methods. If data needs to be
decompressed during query processing, e.g., for projection
or intermediate result construction, the dictionary is accessed
frequently to look up the actual value.

Hash tables are a prominent example in the context of
cache-sensitive data structures and operations. By nature, they
are typically accessed in a random-access fashion, which can
be very expensive when the hash table does not fit into the
CPU caches. In SAP HANA, individual algorithms such as
grouped aggregation use hash tables, e.g., to store temporary
results for different groups. They are used both locally per
worker thread and globally to merge thread-local results. Char-
acteristic is their very frequent access during query processing.

SELECT COUNT(*) FROM R, S WHERE R.P = S.F;

-- Query 3: Foreign Key Join

SELECT MAX(B.V), B.G FROM B GROUP BY B.G;

-- Query 2: Aggregation with Grouping

SELECT COUNT(*) FROM A WHERE A.X > ?;

-- Query 1: Column Scan

Fig. 2. The three SQL queries executed in the experimental analysis. Each
query focuses on a specific database operator.

Bit vectors accelerate, e.g., the evaluation of foreign key
joins in the OLAP-optimized join algorithms of the execution
engine of SAP HANA. The bit vectors map the primary key
range to a highly compact representation, which can be kept
in CPU caches even for a large key range. Using bit vectors is
known to reduce memory loads and CPU cost since the CPU
can perform the same operation on multiple elements of a bit
vector at once [5], [6].

III. MICRO-BENCHMARKS: SET-UP

To motivate why cache partitioning can improve the per-
formance of concurrent workloads, we first study micro-
benchmarks in order to analyze the cache usage of individual
database algorithms. Our goal is to determine how much last-
level cache a database operator needs to reach best perfor-
mance and to determine how data distribution impacts the
cache usage.

Furthermore, experimentally studying the cache charac-
teristics of individual operators allows us to derive cache
partitioning schemes for the concurrent execution of these
operators. First, we present the experimental set-up of the
analysis.

A. Queries

Since we want to see the effects of CPU caches on end-
to-end performance, we express our benchmark queries on
the SQL level and measure full query execution times. The
three queries used in our experiments are listed in Figure 2.
We keep the queries deliberately simple so that each query is
dominated by a specific database operator: (1) column scan,
(2) aggregation with grouping, and (3) foreign key join.

Column Scan: We execute Query 1 to analyze the per-
formance of the column scan operator. The parameter “?”
is used to vary the selectivity of the predicate. The operator
sequentially reads an entire column of a table while evaluating
a range predicate. The operator works on compressed data and
uses SIMD instructions to process multiple encoded values at
once, which significantly improves performance [7], [8].

Note that the column scan operator reads data from DRAM
only once. It exploits data locality by processing each byte
of a cache line. Thus, it profits from the hardware prefetcher,
i.e., the CPU can load cache lines into the cache before they
are requested. Column scan does not depend on any of the
auxiliary data structures mentioned in the previous section.



CREATE COLUMN TABLE S( F INT );

CREATE COLUMN TABLE R( P INT, PRIMARY KEY(P));

-- Schema for Query 3

CREATE COLUMN TABLE B( V INT, G INT );

-- Schema for Query 2

CREATE COLUMN TABLE A( X INT );

-- Schema for Query 1

Fig. 3. The different SQL table schemata used in the experimental analysis.

Aggregation with Grouping: We use Query 2 to analyze the
aggregation with grouping operator. The operator proceeds as
follows. First, it distributes its input among a set of worker
threads. Then, each worker thread collects aggregates locally
for its partition. After all threads have finished aggregating, the
algorithm merges the local results to build the global result for
the next operator of the query plan.

The aggregation with grouping operator decompresses the
input data to compute the aggregate [9]. As a result, the
operator performs many random accesses to the dictionary.
Furthermore, the algorithm uses hash tables to store interme-
diate, pre-aggregated results for every group as well as to store
the merged results globally—similar to [10]. Thus, accessing
the hash tables results in additional random memory accesses.

Foreign Key Join: By executing Query 3, we trigger the
execution of the foreign key join operator of SAP HANA’s
execution engine. The join operator is optimized for OLAP
workloads and exploits the fact that a foreign key maps to
exactly one primary key.

In a first step, the join algorithm creates a very compact
representation of the primary keys by mapping the keys to a bit
vector. If the primary keys range from 1 to N , the algorithm
creates a bit vector of length N and sets the i-th bit if the
query’s predicate evaluates to true for the row of primary key
i. The resulting bit vector usually fits in the CPU caches even
for a large number of keys. During the next step, the algorithm
performs a look-up in the bit vector for each foreign key to
check if it matches a primary key. In addition, it aggregates
the matches.

B. Data Sets

Figure 3 illustrates the SQL schemata of the column tables
used in the experiments. We fill the table with generated data
(no null values) and vary the distribution of the data to study
its impact on the cache usage of the operators.

Query 1 (Column Scan): The input data of Query 1
is a table consisting of one column with 109 integers. We
randomly generate numbers between 1 and 106 with a uniform
distribution. While the integers initially have a size of 32 bits,
SAP HANA applies compression to store each integer using
dlog2(106)e = 20 bits. To vary the selectivity of the predicate,
we set the parameter “?” to a random integer between 1 and
106 after every execution of the query.

Query 2 (Aggregation with Grouping): The input data of
Query 2 is a table consisting of two columns with 109 integers.

The first column V is used for aggregating while the second
column G is used for grouping. We vary the number of distinct
values by randomly picking integers from 1 to N . For column
V we vary N between 106 and 108, which changes the size of
the dictionary, and for column G we vary N between 102 and
106, which changes the number of groups and thus impacts
the size of the hash tables used by the algorithm.

Query 3 (Foreign Key Join): The input data of Query 3
are two tables consisting of one column each. Column P of
the first table contains distinct integers that form a primary
key ranging from 1 to N . We vary N between 106 and 109,
which impacts the number of matches and the size of the bit
vector used by the join algorithm. Column F of the second
table contains 109 integers referencing the primary key of the
first table. We generate the foreign keys by randomly picking
numbers from column P.

C. Hardware Platform

We perform the experiments with a prototype of SAP
HANA running on a single socket system with 128GiB of
main memory. We use SUSE Linux Enterprise Server 12.1 as
the operating system, but update the Linux kernel to version
4.10. The system features an Intel Xeon E5-2699 v4 processor
with 22 cores. With simultaneous multithreading enabled, the
processor can execute 44 threads in parallel.

Using the Intel Memory Latency Checker [11], we deter-
mine that DRAM has a memory read bandwidth of 64GB/s
and an access latency of 80 ns. The shared L3 cache (LLC)
has a size of 55MiB. It stores both data and instructions and
is inclusive: This means the LLC contains all the information
stored in the other caches of the hierarchy.

D. Measurement Method

To analyze the cache usage and to determine the perfor-
mance impact of a smaller cache, we limit the size of the
available LLC [3]. Thus, the entire instance of SAP HANA
can only allocate data into a limited size of the LLC. We state
the available size of the cache in MiB.

We execute SQL queries with SAP HANA and measure end-
to-end response time, i.e., the total execution time including
parsing, optimizing, query execution and result transfer. Note
that we set the concurrency limit of a SQL statement to the
number of physical cores of the system. Consequently, a query
is potentially executed on all available cores of the processor.

As a result of the reduction in cache size in the experiments,
we normalize a query’s throughput to its maximum throughput
using the entire cache. In addition, we measure the LLC
hit ratio and the LLC misses per instruction using Intel’s
Processor Counter Monitor [12].

IV. MICRO-BENCHMARKS: RESULTS

In this section, we present the experimental analysis of
the cache usage of isolated database algorithms. By varying
the size of the LLC, we study the impact of the cache size
on performance. Note that the results conceptually apply not
only to SAP HANA but to any modern in-memory DBMS.
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Fig. 4. Normalized throughput of Query 1 (column scan operator) at varying
LLC sizes. The operator is hardly sensitive to the size of the cache.

First, we analyze the cache usage of the column scan operator.
Afterwards, we focus on aggregation with grouping. Finally,
we present the results of the foreign key join operator.

A. Query 1 (Column Scan)

Figure 4 shows the impact of the cache size on the
throughput of the column scan operator. We observe that the
throughput of Query 1 remains unaffected by the cache size.
In addition, we measure that the LLC hit ratio is below 0.08,
while the LLC misses per instruction amount to 1.9 · 10−2,
independent of the cache size. Thus, we conclude that the
scan is not sensitive to the cache size.

The results do not come as a surprise because the column
scan reads data from DRAM only once without reusing it.
Moreover, the sequential memory access pattern of the scan
operator features strong data locality. Therefore, it profits from
the hardware prefetcher of the CPU.

Furthermore, the column scan operator takes advantage of
the fact that it can process its input data without decompressing
it first. This is possible because SAP HANA’s dictionary
encoding is order preserving. That is, it is sufficient to map the
query parameter “?” to its dictionary code, then execute the
query entirely on compressed data [7], [8]. During the column
scan, the dictionary remains untouched and does not have to
be cached.

B. Query 2 (Aggregation with Grouping)

The evaluation of the aggregation with grouping operator
is split into three different experiments: We vary the number
of distinct values in the column B.V to change the size
of the dictionary to 4MiB, 40MiB and 400MiB. Then, in
each experiment we alter the number of groups in addition to
changing the size of the LLC.

Dictionary Size of 4 MiB: Figure 5a shows the experimental
results of aggregation with grouping using a data set with
106 distinct values in the column B.V. This results in a
dictionary size of approximately 4MiB. Thus, the dictionary
fits completely in the LLC (55MiB) but exceeds a single L2
cache (256KiB).

The results show that for a group size of 102, 103 and 104

the throughput degrades as soon as the aggregation query is
forced to use less than 20MiB of the cache. In addition, we

notice that the throughput degrades by more than 46% if we
limit the size of the cache to approximately 5MiB. We observe
the strongest throughput degradation with 105 groups: The
curve breaks at a cache size of less than 40MiB, resulting in
a throughput degradation of 67%.

If we increase the number of groups to 106, the throughput
degrades less strongly. The throughput decreases by 28% if
we limit the cache size to 25MiB. If we reduce the cache size
even further, the throughput degrades by 46%.

We explain the different performance impacts by the size
of the hash table, which is decided by the number of groups.
In case of 105 different groups, the hash table occupies all of
the LLC. Thus, if we change the size of the available cache,
we observe the most significant impact on performance.

If the number of groups is smaller, the hash table is so
small that even a small portion of the cache is enough to store
it entirely. If the number of groups is bigger, the size of the
hash table exceeds the size of the LLC. As a result, the hash
table does not completely fit in the cache and the algorithm
suffers from cache misses even if the entire cache is used.
Reducing the cache size results in an increasing number of
cache misses and further degrades performance.

Accordingly, we measure that the LLC hit ratio as well as
the LLC misses per instruction decline significantly between
group sizes 102 to 105 and group size 106 when the size of
the hash table exceeds the size of the LLC: the LLC hit ratio
drops from more than 0.9 to less than 0.6, while the LLC
misses per instruction increase by an order of magnitude.

Dictionary Size of 40 MiB: Figure 5b illustrates the second
experimental results of executing Query 2 with varying cache
sizes. In this experiment, we set the number of distinct values
in the column B.V to 107. This results in a dictionary size
of approximately 40MiB. Thus, the dictionary can occupy a
large portion of the LLC (55MiB).

We observe that for group sizes 102 to 105 the throughput
drops significantly by up to 62% as we lower the size of
the available LLC. In contrast, we observe that for the largest
group size the impact on the performance is less significant.
The results show that the throughput degrades by up to 34%.
Moreover, if we compare the results of this experiment to the
previous one, we notice that the throughput degrades steadily
for all group sizes—even for larger cache sizes.

We explain these results by the increased size of the dic-
tionary. In contrast to the first experiment, the dictionary has
a size of more than half of the LLC. During the aggregation,
the algorithm performs lots of random memory accesses to the
dictionary to decompress the encoded values of the column
before aggregating them. Therefore, the execution time of the
operator is dominated by accesses to DRAM, as soon as the
dictionary size exceeds the LLC size. The results show that
the dictionary cannot be held in the LLC either if the number
of groups is large (106) or if we limit the size of available
cache to less than 45MiB.

Dictionary Size of 400 MiB: Figure 5c displays the third set
of experimental results, where we set the number of distinct
values in the column B.V to 108. The configuration results
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(a) 4MiB Dictionary: The operator is slightly
sensitive to the size of the cache for smaller
groups and highly sensitive for larger groups.
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(b) 40MiB Dictionary: The operator is
highly sensitive to the size of the cache
for all group sizes.
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(c) 400MiB Dictionary: The operator is slightly sensitive
to the size of the cache for smaller groups and increasingly
sensitive for larger groups.

Fig. 5. Normalized throughput of Query 2 (aggregation with grouping operator) at varying LLC sizes. We set the dictionary size of the column that is
aggregated to 4MiB (a), 40MiB (b) and 400MiB (c) and vary the number of groups (G).

in a dictionary size of 400MiB. The size of the dictionary
exceeds the size of the LLC (55MiB) by a factor of more
than 7.

The experimental results reveal that the cache size impacts
the throughput less compared to the second experiment. We
observe that, as we limit the size of the cache, the throughput
degrades by more than 31%. For group sizes 102 to 104, the
curve breaks at a cache size of less than 30MiB, while for a
group size of 106 the curve breaks earlier at a cache size of
less than 50MiB. If the algorithm aggregates over 105 groups,
the throughput degrades by up to 54%.

The experimental results are similar to the results of the
first experiment (Figure 5a) if we compare where the curves
break. The reason for this behavior is again the increasing size
of the hash table. This time, however, the dictionary exceeds
by far the size of the LLC. Consequently, the algorithm suffers
from lots of cache misses. We notice that compared to the first
experiment, the cache hit ratio drops by at least 10% to 20%.
Consequently, the overall performance degradation is less in
comparison to the first experiment (Figure 5a). However, the
size of the hash tables still impacts the cache sensitivity of the
algorithm significantly.

C. Query 3 (Foreign Key Join)

Figure 6 illustrates the throughput of Query 3 with varying
cache sizes. The query triggers the execution of the OLAP-
optimized foreign key join operator, which uses a bit vector
to represent the primary keys. The results show that the
throughput of the join algorithm worsens by only 5–14% for
106, 107 and 109 primary keys. For 108 primary keys, however,
the throughput degrades by up to 33%. We attribute the cache
sensitivity of the algorithm to the size of the bit vector used
to store the primary keys. To store 108 distinct keys ranging
from 1 to 108, the algorithm uses a bit vector with a size of
108 bit = 11.92MiB. Thus, the bit vector easily fits in the
LLC. In all other cases the bit vector either exceeds the LLC
or (almost) fits in the L2 cache.
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Fig. 6. Normalized throughput of Query 3 (foreign key join operator) at
varying LLC sizes. We vary the number of primary keys (P). The operator is
sensitive to the size of the cache only for 108 primary keys when the size of
the bit vector is comparable to the size of the LLC.

D. Discussion

Our measurements show that the column scan operator is
hardly sensitive to the size of the cache. Column scans do not
benefit from a large portion of the LLC and run well with a
small cache configuration (e.g., 10%). This observation does
not come as a surprise because, by nature, scans read data
exactly once from DRAM without any data re-use.

Aggregations, by contrast, can be highly sensitive to the
size of the cache. The aggregation with grouping operator that
we consider is based on hashing, and is most cache-sensitive
whenever the size of the hash tables is comparable to the
(configured) LLC size. If the hash table is either very small or
very large, cache sensitivity becomes less significant. In this
regard, our observations are consistent with the findings of
Lee et al. [13] who contrasted cache demand and cache usage
within PostgreSQL.

In addition, we ran experiments for a join query with an
OLAP-optimized join algorithm of SAP HANA. The foreign
key join algorithm’s cache sensitivity depends on the cardi-
nality of the primary keys: If the size of the bit vector is
comparable to the size of the LLC size, the operator becomes
cache-sensitive. Otherwise the operator does not use the LLC.
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Fig. 7. Simplified example of using Intel Cache Allocation Technology to
partition the LLC. A bitmask controls the cache allocation of each core. The
first core can evict cache lines from the entire LLC, while the second core
can only evict 25% of the LLC and shares its portion with the first core.

Our results suggest that scan-intensive operators, such as
the column scan operator or the foreign key join operator
(for a small bit vector), cause cache pollution for cache-
sensitive operators, such as the aggregation with grouping
operator, if they are executed concurrently. The awareness of
these different cache usage characteristics allows us to classify
database operators based on their cache usage and use cache
partitioning to manage the shared LLC more efficiently for
concurrent workloads, which we study in the following.

In fact, we validate whether the simple approach of re-
stricting scan-intensive operators to a minimum portion of
the cache—while allowing a cache-sensitive operator to use
the entire cache—can avoid cache pollution for concurrent
workloads and improve performance.

V. CACHE PARTITIONING IN SAP HANA

In this section, we present the cache partitioning feature of
current Intel processors and we describe how we implement
cache partitioning in the execution engine of a prototype
version of SAP HANA. By integrating cache partitioning into
a database system, we can avoid cache pollution and thereby
improve the performance of concurrent query execution.

A. Cache Partitioning with Cache Allocation Technology

Traditionally, the user has little control over the cache, as
it is entirely managed by hardware. Techniques such as page
coloring [13] offer the possibility of partitioning the cache by
allocating memory in specific memory pages, known to map
to a specific portion of the cache. However, their use in com-
mercial systems is limited. Page coloring requires significant
changes to the Linux kernel and to the application, resulting in
poor usability and maintainability. In addition, page coloring
is less flexible because re-partitioning the cache dynamically
at runtime requires copying the allocated data [14], [15].

With the Haswell microarchitecture Intel introduced the
possibility to partition the last-level cache of a processor (not
L2 or L1), thereby giving the user more control over the CPU
cache. Intel refers to this hardware feature as Cache Allocation
Technology (CAT) [3]. It allows the user or the operating
system to dynamically control from which portion of the last-
level cache an individual (logical) core can evict a cache line
in order to replace it with a new one. Figure 7 illustrates the
feature using a simplified example.

The user partitions the cache by writing a bitmask of N bits
in a specific processor register of a core, where N depends
on the processor model. Setting the bit at the i-th position of
the bitmask means that the core can evict cache lines from
the i-th portion of the last-level cache, while un-setting the
bit at the i-th position means that the core never evicts cache
lines from the i-th portion of the cache. By choosing distinct
bitmasks, the user allows cores to evict portions of the cache
exclusively. Bitmasks can be dynamically changed at run time.

To illustrate, the Intel Xeon E5-2699 v4 processor used in
our experiments has a 20-way associative LLC with a size
of 55MiB. The bitmask for controlling the cache partitioning
feature has a size of 20 bits. As a result, one portion of the
cache equals 55MiB / 20 = 2.75MiB. This means that setting,
e.g., two bits in the bitmask, corresponds to a portion with
a size of 5.5MiB. Note that the processor allows up to 16
different bitmasks to be active at the same time.

The Linux kernel supports CAT since version 4.10 [16]. The
extension allows the user to specify each core’s bitmask used
for cache partitioning by reading and writing to the pseudo file
system sysfs. Furthermore, instead of specifying a bitmask for
a core, the user has the option to specify a bitmask for a
process id (PID) or a thread id (TID). This allows mapping a
portion of the cache to an individual process or thread. During
a context switch, the scheduler of the kernel is responsible for
updating the bitmask of the core on which the process or thread
is currently running.

B. Cache Partitioning Scheme

To avoid cache pollution and to improve the performance
of concurrent workloads by partitioning the cache, we need to
decide how much cache we need to allocate to an operator or a
query, respectively. In fact, we can derive a cache partitioning
scheme from the results of Section IV.

Query 1: Figure 4 showed that the performance of
Query 1 does not depend on the size of the cache because the
column scan operator does not re-use data and does not need to
access the dictionary. However, the scan evicts lots of cache
lines by continuously loading data from DRAM. Thus, we
conclude that column scans will cause cache pollution for co-
running queries. To avoid cache pollution, we give the column
scan operator the smallest amount of cache (without reducing
performance): 10% using the bitmask “0x3”.

Query 2: Figure 5 illustrated how the aggregation with
grouping operator can be highly sensitive to the size of the
cache, because it accesses the dictionary and the hash table
frequently. Thus, we do not restrict the access to the LLC
for the aggregation with grouping operator using the bitmask
“0xfffff”.

Query 3: Figure 6 demonstrated that the foreign key join
operator is sensitive to the size of the cache depending on the
cardinality of the primary keys: It causes cache pollution if
the size of the bit vector is not comparable to the size of the
cache, otherwise it becomes cache-sensitive.

Consequently, we restrict the foreign key join operator to
10% of the LLC using the bitmask “0x3” in the first case
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Fig. 8. Schematic overview of the interaction between the execution engine of
SAP HANA, the Linux kernel and the processor. The execution engine maps
jobs to cache partitions by associating the cache usage identifier (CUID) of
a job with a bitmask. Then, it passes the thread id (TID) of the job worker
and the bitmask to the kernel, which interacts with the processor to partition
the cache.

and to 60% (throughput degrades below 35MiB) using the
bitmask “0xfff” in the other case. As a simple heuristic, we
decide based on the size of the bit vector whether the operator
is cache-sensitive or not.

Note that we also evaluated using the bitmask “0x1” to
restrict a scan-intensive operator. We observed, however, that
this configuration degrades performance severely (not shown
in Figure 4 to 6)—even for Query 1. We explain this behavior
with the current implementation of CAT (restricting access to
certain ways for a N -way set associative cache) which may
result in contention.

C. Integration into SAP HANA

We decided to use the Linux kernel interface of CAT to
integrate cache partitioning into the execution engine of a
prototype version of SAP HANA. Directly using the hardware
interface would require to either pin threads to cores with
specific bitmasks or to track which thread is running on which
core and to manually update a core’s bitmask upon thread
migration. This would limit flexibility especially for changing
workloads. A schematic overview of how we integrate cache
partitioning is illustrated in Figure 8.

The execution engine of SAP HANA uses a thread pool
of worker threads called job workers to execute jobs [17].
A job encapsulates a single operator or—together in a group
of jobs—a parallelized operator. Thus, a job represents one
operator at the maximum. Therefore, we implement cache par-
titioning for jobs to enable cache optimizations per operator—
similar to existing NUMA optimizations [17].

In fact, we annotate a job with information of its cache
usage by associating it with an identifier (CUID). We currently
distinguish between three categories: (i) jobs which are not
cache-sensitive and pollute the cache such as the column scan;
(ii) jobs which are cache-sensitive and profit from the entire
cache such as the aggregation with grouping operator for most
cases; and (iii) jobs such as the foreign key join operator which

can be both cache-polluting and cache-sensitive depending on
the query or data. By default, a job belongs to (ii) to avoid
regressions.

The execution engine maps the CUID to a bitmask, follow-
ing the heuristics described in Section V-B (“0x3” for (i);
“0xfffff” for (ii); and “0x3” or “0xfff” for (iii)), then
passes the bitmask to the Linux kernel.

Interacting with the Linux kernel to associate a thread
with a new CAT bitmask might incur an execution time
overhead. Therefore, our implementation always compares old
and new bitmasks and only associates a TID with a new
bitmask if really necessary. In practice, however, the overhead
is negligible at least for OLAP scenarios. We benchmarked
our test system and measured an overhead of less than 100µs.

If at all, only short-running OLTP queries might see a small
performance penalty due to the interaction with the kernel.
However, SAP HANA handles such queries in a dedicated
thread pool anyway. That thread pool always has access to the
entire cache.

VI. EXPERIMENTAL EVALUATION

To evaluate the integration of cache partitioning into the
database system, we use the same hardware platform that was
introduced in Section III-C with a prototype based on the
SAP HANA code base. We implemented the cache partitioning
feature in the execution engine as described in Section V-C.

We perform the following experiments: We start by exe-
cuting Query 1 and Query 2, and Query 2 and Query 3 (cf.
Figure 2) concurrently using the same data sets as described in
Section III-B. We compare the performance with and without
using cache partitioning. Afterwards, we evaluate the cache
partitioning feature using the TPC-H benchmark and a mixed
workload with a query extracted from a real-world SAP
S/4HANA application.

A. Setup

TPC-H: We run each TPC-H query concurrently with
Query 1 (column scan) using a generated data set of scale
factor 100. Our goal is to study how a scan-intensive OLAP
query (column scan), which causes cache pollution, impacts
the performance of the individual TPC-H queries and how
cache partitioning can improve performance.

S/4HANA Workload: S/4HANA is an enterprise resource
planning application commercialized by SAP. The “Universal
Journal Entry Line Items” table ACDOCA is one of the central
data stores for processing core financial aspects, and is heavily
used in both OLTP and OLAP query processing. Reflecting
complex business logic, ACDOCA is a wide table with 336
attributes of type NVARCHAR (285) or DECIMAL (51). The
instance of ACDOCA used in our experiments has 151 million
rows and was extracted from a real customer system together
with the most frequent OLTP query—executed more than 10
million times a week.

In each experiment, we execute all queries repeatedly for 90
seconds. This assures that each query is affected by another
query for the same time. For each query, we report the



throughput of the query, when running concurrently to another
query, normalized to the throughput of the query when running
in isolation. If not stated otherwise, we restrict the query
causing cache pollution such as the column scan to 10% of the
cache, while the other query can access the entire cache. Note
that we tune the system for best throughput: The memory-
intensive workloads are limited by memory bandwidth.

B. Query 1 (Column Scan) & Query 2 (Aggregation)

Figure 9 illustrates how the throughput of Query 1 and
Query 2 degrades when executed concurrently. We set the
dictionary size of the data set for Query 2 to 4MiB, 40MiB,
and 400MiB. Then, in each experiment we vary the number
of groups. In addition, we evaluate if partitioning the LLC
improves throughput: we allocate 10% of the cache to Query 1
and 100% to Query 2.

Dictionary Size of 4 MiB: We observe that the throughput
degrades with increasing group sizes. If we increase the group
size from 104 to 105, the throughput of the aggregation query
drops from 80% to 66%. If we increase the group size from
105 to 106, the throughput of the scan query drops from
89% to 69%. Note that, as the number of groups increases,
the aggregation algorithm uses larger hash tables to store
temporary results. This heavily impacts the cache usage of
the aggregation. Up to a group size of 104, the hash table has
the size of only a fraction of the LLC. It mostly fits in the L2
cache. Thus, the aggregation is not sensitive to the capacity
of the LLC and cache pollution is not a problem.

If we increase the number of groups to 105, the size of
the hash table is comparable to the size of the LLC. The
column scan evicts an increased number of cache lines used
by the aggregation, thereby causing cache pollution. When
aggregating over 106 groups, the situation changes, as the size
of the hash table exceeds the size of the LLC. The aggregation
query performs more DRAM accesses and uses more memory
bandwidth. As a result, both queries increasingly compete for
memory bandwidth, which explains why the throughput of the
scan query degrades more strongly.

The results show that enabling the cache partitioning feature
of the execution engine significantly improves performance
of the aggregation query when the aggregation algorithm
becomes sensitive to the capacity of the LLC (for group size
of 105). By giving the aggregation the entire cache and the
column scan only a small portion of the cache, we improve
throughput by 20%. At the same time, the throughput of the
column scan improves by 3%.

Note that the performance improvement correlates with
other metrics, which we collected by sampling hardware
performance counters for the entire system: The cache hit
ratio increases from 0.78 to 0.82, while the LLC misses per
instruction improve from 2.86 · 10−3 to 2.32 · 10−3. Thus,
partitioning the cache avoids cache pollution and improves
the overall cache efficiency of the workload.

Dictionary Size of 40 MiB: The results show that the
throughput of the aggregation query drops below 60% for up
to 105 groups. At the same time, the throughput of the column

scan query drops to 84%. If we increase the number of groups
from 105 to 106, the throughput of the aggregation degrades
less, but the throughput of the column scan degrades more. By
utilizing cache partitioning, we can improve the throughput of
the aggregation query by up to 21%. At the same time, the
throughput of the column scan is improved by up to 6%.
Reserving 90% of the cache exclusively for the aggregation
query allows the entire dictionary to be kept in the cache, as
long as the hash table does not exceed the size of the LLC
(i.e., up to 105 groups). Otherwise, the dictionary and the hash
table compete for cache capacity.

We determine that the overall cache hit ratio increases and
that the LLC misses per instruction decrease because the
aggregation has to perform fewer accesses to main memory.
In addition, the column scan gets more memory bandwidth.
By partitioning the cache, the database system uses hardware
resources more efficiently and executes both queries faster.

Dictionary Size of 400 MiB: We observe that, when
the dictionary is several times larger than the cache, the
throughput of the aggregation query decreases to 60–66%.
At the same time, the throughput of the column scan query
decreases to 68–81%, which is more significant than in the
previous two experiments. This illustrates that both queries
compete less for the LLC but more for memory bandwidth.
The dictionary and the hash table cannot be kept in the cache at
the same time. Thus, the aggregation algorithm performs more
memory accesses to DRAM—independent of the group size.
It consumes more memory bandwidth and impacts the column
scan query more strongly. At the same time, the aggregation
is less sensitive to the cache size, which explains why cache
partitioning improves the throughput of the aggregation query
only by 3–9%.

C. Query 2 (Aggregation) & Query 3 (Join)

Figure 10 illustrates how the throughput of Query 2 and
Query 3 degrades if they are executed concurrently. We change
the number of primary keys in the data set for Query 3 to
106 and 108 to change the size of the bit vector used by the
foreign key join algorithm. Then, in each experiment, we vary
the number of groups for Query 2. In addition, we evaluate
two cache partitioning schemes: Fist, we restrict Query 1 to
10% of the LLC. Second, we restrict Query 1 to 60% of the
LLC. We allocate 100% of the LLC to Query 2.

106 Primary Keys: We observe that for group sizes
below 106 the throughput of the aggregation query drops
to 41%, while the throughput of the join query drops to
63%. If we increase the group size to 106, the throughput of
the aggregation query decreases to 51%. The results match
previous results presented in Section VI-B, albeit in this
workload the performance of both queries suffers more.

The results show that enabling cache partitioning improves
the throughput of the aggregation query by up to 38%. At
the same time, the throughput of the join query improves by
up to 7%. Note that the cache hit ratio increases from 0.55
to 0.67, while the LLC misses per instruction improve from
2.26 · 10−3 to 1.93 · 10−3 for, e.g., a group size of 103. Thus,
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Query 2 degrades significantly. Cache parti-
tioning improves throughput by up to 21%.

102 103 104 105 106

group size

Query 2
(not part.)
Query 1
(not part.)
Query 2
(10% LLC)
Query 1
(100% LLC)

(c) 400MiB Dictionary: Throughput of both queries
degrades significantly. Cache partitioning improves
throughput by up to 9%.

Fig. 9. Normalized throughput of Query 1 (column scan operator) and Query 2 (aggregation with grouping operator) when executed concurrently. We set
the dictionary size of the column that is aggregated to 4MiB (a), 40MiB (b) and 400MiB (c), vary the number of groups (G), and disable or enable cache
partitioning. We restrict Query 1 to 10% of the LLC and allow Query 2 to access 100%.
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(a) 106 Primary Keys: Restricting Query 3 to 10% of the
LLC improves throughput by up to 38%.
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(b) 108 Primary Keys: Restricting Query 3 to 10% of the LLC does not improve
performance, while restricting Query 3 to 60% improves total throughput by up to 8%.

Fig. 10. Normalized throughput of Query 2 (aggregation with grouping operator) and Query 3 (foreign key join operator) when executed concurrently. We
set the dictionary size of the column that is aggregated to 40MiB, the number of primary keys to 106 (a) or 108 (b), vary the number of groups (G), and
disable or enable cache partitioning. We restrict Query 3 to either 10% or 60% of the LLC and allow Query 2 to access 100%.

we conclude that partitioning the cache improves the overall
cache efficiency of the workload. If the group size is 106, both
operators are only limited by the memory bandwidth and not
by LLC contention. Consequently, partitioning the cache does
not improve performance.

108 Primary Keys: If we choose the data set with 108 pri-
mary keys, we observe that the throughput of the aggregation
query drops to 49%, while the throughput of the join query
drops to 70%. By partitioning the cache with the configuration
that gives Query 2 the entire cache and Query 3 only 10%
of the cache, we improve the throughput of the aggregation
query by up to 19%. However, the throughput of the join query
worsens by 15–31%. Based on the combined throughput, we
lose more performance than we gain from applying this cache
partitioning scheme.

This observation is consistent with the results from Section
IV-C, where we learned that the throughput of the join query
decreases if the cache size falls below 35MiB. Thus, we need
to partition the cache differently. We allow the aggregation

query to evict cache lines from the entire cache, while we
restrict the join query to 60% of the cache. This means that
we allocate 40% exclusively to the aggregation query, while
60% of the cache is shared between both queries. We prioritize
Query 2 over Query 3 because it needs more cache and suffers
more from cache conflicts.

The results show that this configuration improves the
throughput of the aggregation query by up to 9%. At the
same time, the throughput of the join query varies around
2%. When we consider the combined throughput, the second
cache configuration improves the overall performance of the
workload.

D. Query 1 (Column Scan) & TPC-H

Figure 11 illustrates how cache pollution caused by column
scans (Query 1) impacts the throughput of each TPC-H query.
In addition, we study whether our policy of limiting the column
scan operator (to 10% of the cache) improves the performance
of the workload.
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Fig. 11. Normalized throughput of Query 1 (column scan operator) and each TPC-H query when executed concurrently. We disable or enable cache
partitioning. We restrict Query 1 to 10% of the LLC and allow each TPC-H query to access 100%. Cache pollution caused by Query 1 impacts especially
TPC-H queries 1, 7, 8 and 9, while TPC-H queries 10 to 22 suffer less from cache pollution. Partitioning the cache improves throughput by up to 5%.

We observe that the impact of a co-running query varies
significantly with the TPC-H queries. The throughput of the
TPC-H queries degrades to 74–93%, while the throughput of
the column scan query degrades to 65–96%. If we enable
cache partitioning, we improve the throughput of the TPC-H
queries by up to 5%. The results show that for TPC-H Queries
1, 7, 8 and 9 the cache partitioning approach improves the
overall performance of the workload. For other queries the
improvements are less noticeable.

This shows that the performance of only some queries
depends on the LLC. That is because the columns of the
TPC-H data, which are aggregated, feature comparatively
small dictionaries. Furthermore, grouping usually uses only a
relatively small number of groups. Thus, most of the frequently
accessed data structures are small enough to fit in L2 caches
or in a small portion of the LLC.

One exception is the column “L EXTENDEDPRICE” with
a dictionary size of approximately 29MiB, which is frequently
accessed during the execution of, e.g., TPC-H Query 1. The
query aggregates the column causing lots of accesses to
the dictionary, which explains why reducing cache pollution
through cache partitioning improves its performance.

Interestingly, the avoidance of cache pollution sometimes
reflects back on the column scan operator. Faced with fewer
cache misses, the co-running TPC-H query takes away less
bandwidth from the bandwidth-sensitive scan, resulting in a
throughput increase of up to 5% for the column scan query
(e.g., with TPC-H Query 18 co-running).

E. OLAP & OLTP

Figure 12 presents the throughput of Query 1 and an OLTP
query from the S/4HANA workload when executed concur-
rently. We use a modified version of the OLTP query, which
contains a projection to 13 columns featuring the biggest
dictionaries of the table (Figure 12a), and the unmodified
query, which contains a projection to 6 different columns
featuring smaller dictionaries (Figure 12b). The results show
that the throughput of the OLTP query drops to 66% and
68%, respectively, while the throughput of Query 1 decreases
to only 95% and 96%, respectively. Restricting Query 1 to
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Fig. 12. Normalized throughput of Query 1 (column scan operator) and an
OLTP query from the S/4HANA workload running concurrently. We set the
number of projected columns to 13 (a) and 6 (b). We restrict Query 1 to 10%
of the LLC and allow the OLTP query to access 100%. Cache partitioning
improves the throughput of the OLTP query by 13% and 9%, respectively.

10% of the cache improves the throughput of the OLTP query
by 13% and 9%, respectively.

During the processing of the OLTP query, the engine
accesses the inverted index of five columns that are part of
a primary key. Afterwards, it projects the selected rows to
13 (or 6) columns causing accesses to the dictionaries of the
columns. We argue that, for a larger number of projected
columns, cache partitioning improves the performance more
significantly because more dictionaries need to be kept in the
cache to avoid cache misses.

An additional experiment (not shown here) further demon-
strates that the size of the working set, i.e. the size of the
dictionaries and indices, affects the cache-sensitivity of the
OLTP query: We varied the number of projected columns
from 2 to 13 (featuring the biggest dictionaries) and observed
that the throughput degrades with an increasing number of
projected columns. At the same time, restricting Query 1 to
10% of the cache improves the throughput of the OLTP query
by 8% to 13%.

F. Discussion

Our evaluation confirms that aggregations are sensitive to
cache pollution either caused by column scans or joins. Ag-



gregations are most sensitive to cache pollution whenever the
size of their performance-critical data structures is comparable
to the size of the LLC. While the column scan operator always
pollutes the cache because it continuously evicts cache lines
and does not re-use data, the join operator only causes cache
pollution whenever its frequently accessed data structures fit
in the L2 cache. In these cases, we can eliminate cache
pollution and significantly improve performance by restricting
the column scan or join to a small portion (10%) of the
LLC. In addition, the column scan operator profits from the
fact that aggregation consumes less memory bandwidth: The
throughput of the column scan increases, too.

If the size of the data structures used by a join is comparable
to the size of the LLC, the aggregation with grouping and the
join operators compete for cache capacity. Thus, we evaluate
a different cache partitioning scheme: We restrict the join to
60% of the cache, but observe that performance improves only
slightly. Generally, the search for the “best” partitioning in any
given situation will depend on accurate result size estimates.

Furthermore, we performed experiments using the TPC-H
benchmark to evaluate whether limiting scans improves the
performance of OLAP workloads. Our measurements show
that the performance of TPC-H Queries 1, 7, 8 and 9 improves
from partitioning the cache because these queries frequently
access a column with a large dictionary. The performance
of the other queries, however, does not improve noticeably.
This demonstrates that not all queries are sensitive to cache
pollution: The size of the working set, affecting, e.g, dictionary
and hash table sizes, determines if the performance of an
operator depends on the size of the available LLC.

Finally, we ran experiments with the column scan (OLAP)
and an OLTP query from a real-world application. The results
demonstrate that the performance of the OLTP query degrades
significantly in the base configuration. This is because OLTP
queries tend to use dictionaries aggressively, which the OLAP
query evicts from the cache. By using cache partitioning to
restrict the OLAP query to a small portion (10%) of the
cache, we avoid the eviction of dictionaries and improve the
performance of the OLTP query.

The results illustrate that our simple approach for avoid-
ing cache pollution is effective in improving overall system
throughput. Thus, we propose to restrict scan-intensive oper-
ators which do not profit from using the LLC, such as the
column scan, to a minimum portion of the cache without
reducing performance. This approach has the advantage that
it can improve the performance of any concurrent workload
containing a scan-intensive operator. In addition, it does not
depend on further knowledge of the workload.

VII. RELATED WORK

A plethora of research efforts from the database community
focuses on developing and optimizing cache-aware database
algorithms, which exploit the cache hierarchy of modern
computer systems [18], [19], [20]. They are finely tuned to
current processors and usually depend on setting the correct
hardware parameters. Hence, others propose cache-oblivious

algorithms which achieve cache efficiency independent of
specific hardware parameters [21], [22], [23], [24]. However,
by design, both groups of algorithms are sensitive to the cache
and thus sensitive to cache pollution. Thus, we expect our
approach to benefit both groups of algorithms.

Plenty of work from the systems community focuses on
cache partitioning based on page coloring [25], [26], [15].
The goal is to statically or dynamically partition the cache
among competing threads to improve resource utilization or
guarantee quality of service. Among others, Soares et al. [27]
specifically aim to avoid cache pollution. They propose a
dynamic mechanism, which first characterizes an application’s
cache behavior using hardware performance counters. Then, it
maps the memory pages of applications with high cache miss
rates to dedicated cache sets to avoid polluting memory pages
of an application with low cache miss rates.

Lee et al. [13] build on the results from the systems
community and present a method for minimizing last-level
cache conflicts for PostgreSQL. They demonstrate a cache
allocation mechanism based on page coloring to avoid cache
capacity conflicts and classify queries based on their data
locality and cache sensitivity. However, they mainly focus on
a hash join and an index nested loop join. In addition, they
evaluate a disk-based DBMS, which uses a memory buffer
pool to keep a portion of the data in main memory. For
such a system, allocating and copying memory (necessary to
(re-)partition the cache via page coloring) is potentially less
performance-critical compared to an in-memory system.

In contrast to software-based cache partitioning, Chiou et
al. [28] or Qureshi et al. [29] propose hardware-based cache
partitioning by restricting cache line replacement to a certain
way for an n-way associative cache. Zhuravlev et al. [30] pro-
pose to mitigate contention for shared resources on multicore
processors via thread scheduling. More recently, Herdrich et
al. [31] introduced two technologies addressing quality of ser-
vice on Intel’s multi-core server platforms: Cache Monitoring
Technology (CMT) and Cache Allocation Technology (CAT).
They highlight the benefit of partitioning the LLC using the
SPEC CPU2006 benchmark, network communications, and
the STREAM benchmark.

While we derived the cache partitioning scheme from an
experimental analysis, the application of existing characteri-
zation methods for describing the cache usage pattern of a
database operator could be investigated. For instance, Chou
and DeWitt [32] propose the query locality set model based
on the knowledge of the various patterns of queries to allocate
buffer pool memory efficiently. Others propose the cache
miss ratio as an online model for characterizing workloads
or operators [26], [33], [34].

VIII. CONCLUSION

In modern microprocessors, multiple processor cores share
the same last-level cache. Conflicts over the shared cache can
significantly degrade performance of concurrent workloads,
whenever query execution suffers from cache pollution caused
by the execution of another query.



In this work, we confirm that key in-memory database op-
erators exhibit different performance characteristics depending
on the available cache size. Based on micro-benchmarks, we
derived a cache partitioning scheme that we deliberately kept
simple: Restrict memory-intensive operators that do not re-use
data to a small portion of the cache.

Furthermore, we demonstrate how to integrate a cache
partitioning mechanism into the execution engine of an exist-
ing DBMS with low expenditure. Our evaluation shows that
our approach avoids cache pollution and significantly reduces
cache misses. We demonstrate that, by partitioning the cache,
we can improve the overall system performance and showcase
improvements for custom queries targeting column scans,
aggregations, and joins, as well as for the TPC-H benchmark
and a modern HTAP business application. Ultimately, our
results show that integrating cache partitioning into a DBMS
engine is worth the effort: it may improve but never degrades
performance for arbitrary workloads containing scan-intensive,
cache-polluting operators.

Looking ahead, cache allocation might give incentive to re-
visit scheduling strategies in a database context. For instance,
it might be advisable to co-run operators with high cache
pollution characteristics (cache usage identifiers (i) and (iii),
according to our taxonomy), but let cache-sensitive queries
(identifiers (ii) and (iii)) rather run alone. Lee et al. [13] have
found similar strategies to be successful in connection with
page coloring and PostgreSQL.
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