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FPGAs for Data Processing: Current State
Jens Teubner

Abstract: To escape a number of physical limitations (e.g., bandwidth and thermal
issues), hardware technology is strongly trending toward heterogeneous system designs,
where a large share of the application work can be off-loaded to accelerators, such as
graphics or network processors.
In the database domain, field-programmable gate arrays (FPGAs) were recently
discovered as a powerful class of co-processors. Data-intensive tasks can benefit from
their very high bandwidth paired with a very low latency.
However, a number of challenges still have to be solved before FPGA-accelerated
systems can go mainstream. Applications must leverage the massive parallelism
provided by FPGAs; algorithms must be re-designed with awareness for communication;
and new abstractions are needed to make system development effective.
In this article, we report on some of the results we obtained working toward solutions to
these challenges. They have been carried out in the context of the Avalanche project, a
pioneer in the use of FPGAs for database applications.

ACM CCS:

Keywords: FPGA; database; acceleration

1 Introduction

While hardware technology has always been marked
by fast and significant advances, none of the previous
changes has been as disruptive as the ongoing trend to-
ward heterogeneity. All of today’s processors are power-
limited [1], and the use of specialized hardware is seen
as the only promising escape to the growing energy li-
mitation.

A particular brood of specialization are field-program-
mable gate arrays (FPGAs). Unlike most other co-
processor classes, FPGAs do not run sequential pro-
grams. Rather, they provide “uncommitted chip space.”
Through a (software-based) configuration process, this
chip space can be used to realize arbitrary logic circuits
directly in hardware.

FPGAs were recently discovered as a promising plat-
form to accelerate database tasks. But the characteri-
stics, strengths, and weaknesses of the technology are
still not widely known, nor are the challenges under-
stood or solved that arise in FPGA-accelerated systems.

This article provides an overview not only of FPGAs as
a technology. We further exemplify how FPGAs can be
used effectively and we illustrate design principles that
lead to good FPGA solutions. Much of the work that we
present here is an outcome of the Avalanche project that
has pioneered the use of FPGAs in a database context.

2 FPGA Technology

Any electronic circuit, whether realized using FPGAs or
as a hard silicon component, is built from three principle
types of resources:

(a) Combinational logic is composed of basic logic gates
(‘and ’, ‘or ’, etc.) and maps a set of (Boolean) input
values x̄ = (x1, . . . , xn) to an output signal f(x̄). f is
a function in the mathematical sense. That is, f(x̄)
depends solely on the input signals xi.

(b) Memory elements allow a circuit to keep state. Spe-
cifically, a flip-flop is a single-bit storage usually di-
rectly wired into the circuit.

(c) Finally, an interconnect wires up all logic resources
to obtain a complete circuit.

Most circuits make use of an external clock signal, a pe-
riodically changing high/low signal. Flip-flops will save
their input data value on every rising edge of the clock
signal. This allows to build sequential circuits that, e.g.,
can perform step-by-step operations or computations.

2.1 FPGA Architecture

FPGAs integrate configurable implementations of all
three resource types. Figure 1 illustrates how an FPGA
is built internally. The majority of the chip area is cover-
ed by a two-dimensional grid of configurable logic blocks,
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Figure 1: FPGA architecture. The chip hosts a 2d array of
logic blocks with a configurable interconnect in-between. Each
intersection is controlled by a set of “switches” (transistors) as
illustrated on the right.

illustrated as squares in Figure 1. Logic blocks provide
combinational logic and memory elements.

Logic blocks are interspersed with an interconnect net-
work. Through this network, a direct line can be instan-
tiated from any logic block to any other. The illustrati-
on on the bottom-right of Figure 1 shows how this can
be implemented in hardware. At any intersection point
between a horizontal and a vertical wire, arbitrary wi-
rings between the four ends of the intersection can be
realized through a set of “switches” (illustrated as ).
In practice, these “switches” are transistors whose base
is connected to an SRAM cell, based on static RAM.
The content of those SRAM cells thus defines the rou-
ting configuration of the interconnect. By (re-)writing
the cells, the interconnect can be (re-)configured at any
time.

in0
in1
in2
in3

L
U

T D

flip-flopclock

multi-
plexer

out

SRAM SRAM

Figure 2: FPGAs package combina-
tional logic (in the form of lookup ta-
bles or LUTs) and flip-flops into con-
figurable logic blocks.

FPGAs provide
combinational
logic and memory
elements (flip-
flops) in the form
of configurable
logic blocks. A ty-
pical combination
is illustrated in
Figure 2. The loo-
kup table (LUT)
shown on the
left is a generic

implementation for a combinational circuit with up to
four inputs and one output. It materializes f(x̄) for all
possible input values xi and stores them in a 16-bit
SRAM cell. Depending on the contents of a further
SRAM cell, the multiplexer shown on the right enables
or bypasses the flip-flop element in the middle. Modern
FPGA devices use lookup tables with six input lines.

2.2 Additional Functionality

Typical FPGA devices include additional components,
such as clock generators or I/O units to interface with
the outside. To exemplify, current Xilinx Virtex-7 chips
provide an aggregate I/O bandwidth of up to 2.8 Tb/s.

Lookup tables, flip-flops, and interconnect network may
all be scarce resources. For frequently-used functionali-
ty, FPGA vendors thus often package discrete silicon im-
plementations into their devices. Such hard cores achie-
ve much higher resource efficiency and better perfor-
mance, e.g., for on-chip memories (so-called block RAM
or BRAM ) or multiply/add functionality. Typical chips
contain hundreds of small BRAM units, with an aggre-
gate capacity of a few megabytes. This idea can go a far
way: there are chips that include network controllers or
full-fledged processors (e.g., Xilinx’ Zynq platform).

For a more detailed treatment on the architecture of
FPGAs, refer to [18].

2.3 Strengths and Weaknesses

FPGAs provide the unique opportunity to build tailor-
made hardware, efficient and at low cost. Circuits can
be dedicated to an application (such as a database en-
gine), to a typical workload, or even to a specific que-
ry; and those circuits can be re-programmed at any ti-
me if needed. Often, the massive parallelism offered by
FPGAs (every lookup table can operate independent of
any other) can lead to significant application speed-ups.

Obviously, these advantages come at a cost. A circuit in-
stantiated on an FPGA will be slower by factors when
compared to the identical circuit realized in pure silicon;
at the same time, the latter will be about fourteen times
more energy efficient [6]. To make up for this up-front
overhead, FPGA-based solutions must use highly spe-
cialized hardware and exploit the available parallelism
as far as possible. However, once such an implementa-
tion is found, the lower FPGA clock speed may lead to
significant savings in energy consumption (e.g., [21]).

FPGAs may further excel with their possibilities for sy-
stem integration. Chips may be installed, e.g., close to
I/O devices such as network, disk, or memory. Such con-
figurations can address data-intensive (sub-)tasks and
filter or pre-process data directly at its source. Latency-
sensitive tasks may benefit from the avoidance of an
expensive round-trip to a general-purpose CPU [12].

Finally, FPGAs are best when the same and simple task
must be performed over a large set of input data. Com-
plex application tasks lead to larger chip area consump-
tion, so less of the available parallelism can be exploited.
A good fit are streaming-type applications that can pro-
cess large amounts of data “on the wire.”

3 Challenges

FPGA-backed data processors can achieve spectacular
performance—if the developer manages to leverage the
key advantages of the devices without hitting any of its
limitations. After having worked in the field for a while,
three aspects turned out to be the hardest nuts to crack.
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Massive Parallelism. Efficient support for paralle-
lism is among the key challenges in computer science
as a whole. In the context of FPGAs, however, the pro-
blem gets exacerbated by the massive scale of the availa-
ble hardware parallelism. FPGA designs can easily use
thousands of parallel processing units, whereas many al-
gorithms for CPUs begin to struggle when parallelism
goes beyond four or eight independent units [4].

In this article, we will not discuss parallelization schemes
for FPGAs in detail. But we refer to [17] for examples
in the database domain.

Communication. An often-overlooked effect in mo-
dern computing systems is the cost of communication.
Increased parallelism naturally goes with communicati-
on between the parallel units, and bandwidth, latency,
or locality of communication become an issue.

In FPGAs, this surfaces not only because of their high
degree of parallelism. Rather, signal propagation delays
as a physical effect are usually the limiting factor for
the clock frequency of the device. This emphasizes loca-
lity effects. Only circuits that have been designed with
locality in mind will scale to large problem sizes.

It is interesting to note that locality effects have strong
similarities with NUMA (non-uniform memory access)
effects in multi-core systems. FPGA designs may thus
be a good blueprint for large “many-core” systems that
we may soon see on the market.

Abstractions. Decades of research have produced a
large number of tools and abstractions that are the ba-
sis for any realistic software project today. For the de-
velopment of FPGA/CPU co-designed systems, by con-
trast, such support is virtually non-existent. Suitable
abstractions are heavily sought for at all levels of the
programming stack: (a) good design tools (in particu-
lar, compilers for high-level language synthesis) are nee-
ded to close the gap between hardware and software
developers; (b) more libraries and drivers will allow de-
velopers to focus on their actual application problems;
finally, (c) massive degrees of parallelism will require
new abstractions for parallel programming.

4 XML Filtering with FPGAs

The filtering of XML data is a good poster child to illu-
strate some of the challenges—and solutions—that arise
when using FPGAs for data processing. In fact, several
groups suggested the use of FPGA technology to ac-
celerate XML processing tasks. For instance, Mitra et
al. [10] and Moussalli et al. [11] used FPGAs to im-
plement state machines in hardware and match XPath-
based subscriptions in an XML publish/subscribe engi-
ne. Their use case assumes a large set of subscriptions
(several thousand queries) and small input documents.

source raw data FPGA
filtered

data
CPU

Figure 3: Data path architecture. The FPGA filters (or aggre-
gates) the input to shield bandwidth off the software side.

The FPGA consumes input documents and emits, for
each document, a bitvector that indicates for each sub-
scription whether it matched or not. That bitvector is
consumed by a software-based system, resulting in an
FPGA/CPU co-designed setup.

Clearly, in such designs the FPGA will quickly become
the I/O bottleneck of the system, particularly when the
subscription count is scaled up to the values reported
in earlier articles. In this case, the FPGA will actually
amplify the original data volume and make the problem
even more bandwidth bound.

4.1 Data Path Architecture

FPGAs seem much better suited for tasks where they
can sustainably and significantly reduce the data volume
that would otherwise hit the software system directly. A
very effective means to do so is a data path architecture
as illustrated in Figure 3. Thereby, the FPGA filters (ag-
gregates, summarizes, . . . ) a high-volume input stream
and leaves only a small fraction to the bandwidth-criti-
cal software part of the system.

In the XML domain, a good candidate for such behavi-
or is XML projection [9] in FPGA hardware. Thereby,
XML nodes are stripped off an XML data stream if they
can be shown to not affect the outcome of a given XQue-
ry expression. For actual queries, about 97 % of all input
data can be discarded from the stream this way [5].

4.2 Expressiveness ↔ Speed

Integration also involves important trade-offs between
flexibility (i.e., how large a class of filter tasks can the
accelerator support?) and performance.

Most existing systems chose to focus on only one side
of the trade-off. Glacier compiles a large class of SQL
queries into equivalent hardware circuits [12]. The price
of Glacier ’s very high flexibility is a very high circuit
re-compilation cost. Every incoming query may result
in minutes or hours of compilation time. Other systems
[10, 11] have followed a similar route and require similar
compilation costs.

Systems like Netezza [13] go for the other extreme. Their
FPGA-based filter supports only a very restricted set of
filter criteria, expressible through parameters exchanged
by the hard- and software sides. Changes in the workload
can then be accommodated in negligible time.
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Figure 4: FPGA-accelerated XML filtering. After parsing, the
XML stream passes through a skeleton automaton, which
controls what the serializer emits as the projection result.

4.3 Skeleton Automata

Only few systems have attempted to strike a balan-
ce between the two ends, such as the fpga-ToPSS sy-
stem [16]. For the XML projection problem, we pre-
sented a solution that provides expressiveness and fast
workload changes [19]. It is based on skeleton automata,
a novel mechanism to realize automata on FPGAs.

The idea is illustrated in Figure 4. The heart of the fil-
tering engine is a finite-state automaton. Rather than
re-compiling that automaton from scratch for every
workload (or workload change), the FPGA device is pre-
pared with a set of uncommitted automaton fragments,
forming a skeleton automaton. In the skeleton automa-
ton, transition conditions remain undefined (� in Fi-
gure 4). The skeleton automaton becomes a functional
automaton by loading a parameter file with transition
conditions, depending on the individual user workload.

Skeleton automata separate concerns in an elegant way.
Circuit compilation is expensive because of the structu-
ral aspects of finite-state automata. Many applications,
including XML processing, do not exhibit high struc-
tural diversity. With skeleton automata, such applicati-
ons can push expensive compilation parts to an off-line
phase. Workload- or query-specific aspects merely affect
configuration parameters, that can be determined and
set in the hardware in negligible time. These parameters
may still modify the pre-compiled automaton structure,
e.g., by setting transition conditions to false.

4.4 Hybrid XML Processing

We realized the skeleton automaton idea as part of our
XLynx system. Plugged in-between the network path
from an XML data source and an off-the-shelf XQuery
processor, XLynx pre-filters the XML data stream on
the wire. Effectively, a substantial part of the query pro-
cessing workload is off-loaded to the FPGA-based acce-
lerator. Figure 5 illustrates this for the first ten queries of
the XMark benchmark. The figure shows improvements
in parsing time, query execution time, and consumed
main memory of the XQuery processor Saxon.

XML projection has been proposed as a software-based
mechanism before [9]. Such functionality can optional-
ly be enabled in the commercial version of Saxon, re-
sulting in speedups/memory savings as illustrated using
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Figure 5: Speedup and improvement in memory consumption
due to XML projection for the first ten XMark queries. Software
projection for Q9 failed.

shading in Figure 5. A software-based projection stra-
tegy still has to parse the full XML input. Unfortunately,
most XML applications are dominated by their high par-
sing overhead [14], which explains why software-based
projection yields hardly any benefit in Figure 5.

5 Abstractions

Many existing FPGA solutions assume—at least to a
significant extent—that an FPGA circuit is generated
from scratch for the particular problem at hand (e.g.,
XML pre-filtering). Given the tedious programming ef-
fort for FPGA solutions, such a methodology is not
going to be practical for wide-spread FPGA use. Rat-
her, abstractions are needed that ease the development
task, much like standard data structures or boilerplate
algorithms are the basis for any software-only project.

Unfortunately, usual data structures or algorithms do
not carry over to FPGA solutions. This is because im-
portant parameters (e.g., the degree of parallelism) are
significantly different in the hardware world. But even
more importantly, FPGAs completely blur the separati-
on of algorithms and data structures. Rather, computa-
tion can be wrapped right into data structures, and data
elements can be directly weaved into processing circuits.

5.1 Shifter Lists

As part of the Avalanche project, we made a first step
at devising meaningful abstractions that can help imple-
mentors to solve data-intensive tasks on FPGA hardwa-
re. The outcome are shifter lists, a novel combination of
data structure and massively parallel computation.

Figure 6 illustrates a typical application pattern for a
shifter list. A (possibly large) input data set is scan-
ned item-by-item. For each input item, a working set is
consulted and possibly modified. The output will be a
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Figure 6: Application pattern for a shifter list: For each input
item, the working set is accessed and possibly modified.
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· · ·

Figure 7: Shifter lists group working set items onto nodes ν.
Input items x are forwarded from node to node and applied to
the local working set part.

modified copy of the input stream or information col-
lected within the working set while the input data has
been consumed. Many stream processing tasks match
this pattern, including the XML use case above.

5.1.1 Shifter Lists are a Data Structure

One way of explaining shifter lists is how they represent
the working set and the input data set, which resembles
a linked list where each list node ν holds a unique share
of the working set and one “current” working set item
x. Figure 7 illustrates this view.

During operation, input items x are forwarded from no-
de to node. In effect, each input item x is guaranteed to
“see” every item of the overall working set. In addition,
shifter lists give a guarantee for causality. Input items
travel through the shifter list one after another. As a
consequence, the later input item xj is guaranteed to
see any effect caused by the earlier input item xi. Con-
versely, xi is not going to see any effect caused by xj . As
we detailed in [20], this enables to re-formulate existing
(sequential) algorithms using shifter lists.

5.1.2 Shifter Lists are a Processing Model

To enable automatic parallelization, shifter lists impose
a particular processing model on the algorithmic part,
which we illustrated in Figure 8.

The algorithm alternates between two phases, dubbed
eval and shift. The former phase usually corresponds to
the sequential implementation of the algorithm in que-
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Figure 8: Two-phase processing in parallel BNL. Working set
items (i.e., tuples with several dimensions) are distributed over
a pipeline of shifter list nodes.

node 0 node 1 node 2

working set items message channels

Figure 9: Shifter lists result in strict neighbor-to-neighbor com-
munication, which can be implemented efficiently on modern
hardware platforms (e.g., FPGAs, NUMA architectures).
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Figure 10: Shifter list-based implementation for skyline pro-
blem (anti-correlated data set with 7 dimensions).

stion. During the shift phase, neighboring nodes in the
shifter list exchange working set data (indicated using
arrows ) and forward input data along the chain of
shifter list nodes (illustrated along the top).

To solve a particular application problem using shifter
lists, the implementor must provide eval and shift func-
tions. This remotely resembles the map and reduce func-
tions that must be provided to a MapReduce framework.
Contrast to MapReduce, however, shifter lists allow in-
tuitive solutions to problems that may not run efficiently
on MapReduce’s rigid data parallelization scheme.

5.1.3 Shifter Lists are Massively Parallel

The eval/shift processing model results in a restricted
communication pattern, where only immediate neigh-
bors exchange working set data or input items. Logical-
ly, the shifter list forms a chain of processing elements,
connected by pairs of FIFO message channels (Figure 9).

The structure fits particularly well to the constraints
and capabilities of real hardware. FIFO queues have ve-
ry little synchronization overhead. But more important-
ly, even large shifter list instances with large node counts
do not require longer-distance messaging. FPGA hard-
ware, but also NUMA architectures, favor communica-
tion patterns that exhibit a strong locality—a characte-
ristic naturally given by the shifter list structure.

5.2 Shifter Lists in Practice

The skyline problem [2] demonstrates the potential of
shifter lists. In [20], we detailed a solution to the well-
known problem that uses the shifter list abstraction and
FPGAs as an implementation platform.

Figure 10 illustrates the performance of the shifter list-
based implementation, compared to the usual BNL al-
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gorithm and the recent VSkyline proposal of Cho et
al. [3]. The experiments assume a Xeon 2.26 GHz CPU
and a Xilinx XUPV5 development board, respectively.
The shifter list implementation can exploit larger wor-
king set sizes to distribute processing over parallel units
inside the FPGA. As can be seen in the figure, this re-
sults in a significant advantage over existing solutions.

6 Related Work

In 2008, we ramped up the Avalanche project, a pionee-
ring effort on FPGA-accelerated database processing.
Glacier [12] is an SQL-to-hardware compiler, which pro-
vides ultra-low latencies that cannot be reached with
commodity components. Ibex [21] is an FPGA-based
storage engine which can accelerate MySQL databases
by pre-processing data along the SSD-to-CPU path.

The work of Sadoghi et al. [15, 16] also targets financial
trading applications with high throughput/low latency
demands. Their results also emphasize the importance
of the expressiveness↔ speed trade-off (Section 4).

FPGAs have been used very successfully in application
domains where data streams with massive volumes ap-
pear far out of reach for commodity hardware. A good
poster child for this is the LHCb experiment at CERN,
where more than 1 TB/s of sensor data must be pre-
filtered in real time to search for rare decay events [7].

Within the database community, FPGAs have become
popular also because of the success of Netezza (now an
IBM company, [13]). In the product, FPGAs pre-filter
data during scans. The usage pattern fits the “simple
task on a large set of input data” scheme and can lever-
age the I/O and system integration opportunities.

Powerful IP cores for specific application needs (e.g.,
those of Lockwood [8]) and the use of partial reconfigu-
ration (runtime chip re-configuration with help of pre-
built circuit blocks; proposed, e.g., by Ziener et al. [22])
complement our quest for powerful abstractions in order
to increase developer productivity in the field.

7 Summary

There is no doubt that FPGAs are a highly interesting
technology for data processing systems. In this article,
we highlighted some of the challenges (and steps toward
their solutions) that we think still need attention, before
FPGA-accelerated data processing can go mainstream.

We focussed on two aspects. System integration can be
seen as an opportunity for FPGAs, because the techno-
logy allows entirely new ways to integrate the hardware
into the remaining system stack. We used XML proces-
sing as a poster child for our discussion. We also discus-
sed abstractions, e.g., to make the FPGA development
process more efficient. We looked at shifter lists as a
possible step toward new abstractions for FPGAs.
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