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Abstract: As the operating costs of today’s data centres continue to increase and processor man-
ufacturers are forced to meet thermal design power constraints, the energy efficiency of a main-
memory database management system becomes more and more important. In this paper, we experi-
mentally study the impact of reducing the clock frequency of the processor on the energy efficiency
of common database algorithms such as scans, simple aggregations, simple hash joins and state-of-
the-art join algorithms. We stress the fundamental trade-off between peak performance and energy
efficiency, as opposed to the established race-to-idle strategy. Ultimately, we learn that database
workloads behave considerably different than other workload types and that reducing the computing
power e.g. by limiting the clock frequency can significantly improve energy efficiency.
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1 Introduction

While a lot of current research in the domain of main-memory database systems (MMDBs)
focuses on improving performance, only a small part of the research community focuses
on improving energy efficiency. However, the energy consumption of a main-memory
database system makes for an interesting research objective for several reasons. First,
reducing the energy consumption also means reducing the operating costs, because the
system needs less power and cooling. As electricity costs increase due to the growing de-
mand for computing power, it is expected that the trend towards increased operating and
cooling costs will intensify in the near future [PN08].
In addition, energy efficiency is a major aspect for chip design. In fact, semiconductor
engineers have to meet fixed thermal design power (TDP) constraints. This means for
example that not all cores of a processor can be fully powered at the same time without
damaging parts of the integrated circuit. As a result, underutilised areas of the chip must
be kept powered off (dark) or have to be operated at a low voltage and clock frequency,
which is referred to as the Dark Silicon problem [Es11].
The aim of this work is to experimentally study as well as to understand the relationship
between energy consumption and software to improve energy efficiency. We show that
most algorithms used in a MMDB differ from algorithms used in other software. In fact,
most database algorithms are memory-bound instead of compute-bound. As a result, un-
used computing power as well as electrical power gets wasted during the execution of
database algorithms. Therefore, we propose to reduce the unused computing power of a
processor for example by lowering the clock frequency and voltage which decreases the
power consumption of a processor.
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We conduct a series of experiments with a compute-bound microbenchmark, with differ-
ent memory-bound microbenchmarks simulating database algorithms as well as with two
state-of-the-art join algorithms and analyse the impact of a limited clock frequency on
the energy efficiency of the different workloads. In particular, we stress the fundamental
trade-off between peak performance and energy efficiency, as opposed to the established
race-to-idle strategy, which is usually used to maximise energy efficiency. Ultimately, we
show that reducing unused computing power significantly improves the energy efficiency
of memory-bound database algorithms.
In summary, we make the following contributions:

• We develop microbenchmarks simulating a compute-bound algorithm and different
memory-bound algorithms.

• We experimentally study the impact of a limited clock frequency on the energy
efficiency of the microbenchmarks and two state-of-the-art join algorithms.

• We use the results of the experiments to propose concepts for energy-aware software
intended to improve the energy efficiency of a MMDB.

2 Basics

In this section we focus on the characteristics of database workloads. In addition, we in-
troduce the power management features, which we use in the design of the experiments as
well as for the reasoning in the course of the paper.

2.1 Characteristics of Database Workloads

Most database operations of a MMDB such as scans, aggregations or joins heavily depend
on the memory bandwidth of the computer system. Thus, database algorithms are usu-
ally more memory-intensive than compute-intensive. In fact, most database algorithms are
typically memory-bound or more specifically bandwidth-bound or latency-bound, because
they perform lots of (random) memory accesses but only a few computations.
If an algorithm is memory-bound, the CPU stalls. It has to wait for data from the main
memory until it can proceed with the execution of the algorithm. As a consequence, a lot
of clock cycles are wasted. However, wasting computing power also means wasting elec-
tric power. Consequently, we argue that a high amount of computing power is not needed if
an algorithm is memory-bound. To improve the energy efficiency of a database algorithm
we propose to carefully reduce unused computing power.

2.2 Power Management Features

The Advanced Configuration and Power Interface (ACPI) defines several power manage-
ment features of a modern computer system. This includes power and performance states
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a computer system can enter to manage power consumption. In fact, the standard specifies
two groups of states for a processor: the processor power states (C-States) and the proces-

sor performance states (P-States).
C-States describe the capability of an idle processor to save power by powering down un-
used parts of the processor. When individual processor cores or entire packages are idle,
the operating system can put the hardware in a low-power state. Therefore, C-States are
used to implement the race-to-idle strategy. Race-to-idle means executing a task as fast as
possible and subsequently putting the processor in a sleep mode to save power.
P-States define the capability of an active processor to save power by lowering the clock
frequency and voltage. A more common term used to describe this concept is dynamic

frequency and voltage scaling (DFVS). In fact, a P-State can be interpreted as a pair con-
sisting of a clock frequency and voltage. Higher (numerical) P-States result in slower pro-
cessing speeds but also in a lower power consumption. The lowest P-State refers to the
maximum clock frequency using turbo mode (e.g. “Turbo Boost” by Intel).

3 Experimental Design

In this section we present the experimental design. First, we introduce the database algo-
rithms used in the experiments: one compute-bound microbenchmark, four memory-bound
microbenchmarks and two state-of-the-art join algorithms. Afterwards, we introduce the
hardware platform used to execute the experiments. Following this, we describe the mea-
surement metrics and the experiments.

3.1 Benchmarks

The microbenchmark compute is designed to simulate a compute-bound algorithm. It in-
duces a heavy load situation on all processor cores but avoids any accesses to the main
memory. The benchmark creates several worker threads that spin on calculating the square
root of a random number and on performing a multiplication.
The other four microbenchmarks are designed to simulate memory-bound, read-intensive
database algorithms. They process integers with a size of 64 bits. The benchmarks scan
and local_scan feature a sequential memory access pattern and resemble a scan or a sim-
ple aggregation. They create several worker threads that read a different section of a shared
data array containing randomly generated integers (500 MB per thread). Each thread adds
up all the integers of its section and prints the sum. In addition, we let each thread execute
its work ten times to prolong the execution time in order to reduce variations and con-
founding factors.
The benchmarks dira and local_dira feature a data-independent random memory ac-

cess (DIRA) [Ba14] pattern and resemble a simple hash join. The memory access pattern
is called data-independent, because the processor can perform a random access without
knowing the result of the previous random access. Each thread reads a different section of
a shared data array containing randomly generated integers (500 MB per thread). These
integers are used as indices to randomly access a second shared data array (8 GB).
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We implement the microbenchmarks in C++ using the program library libnuma to allo-
cate the input data on specific NUMA nodes. The data is either allocated on one NUMA
node only (scan and dira) resulting in both local and remote memory accesses or equally
distributed across both NUMA nodes (local_scan and local_dira) resulting in local
memory accesses only. We execute the microbenchmark using 32 threads.
In addition, we implement two benchmarks featuring two state-of-the-art join algorithms
by using the program code of Balkesen et al. [Ba13]. We use the implementation of the
optimised parallel radix hash join and the implementation of the NUMA-aware sort-merge
join with either the multi-way or the multi-pass merging strategy. We slightly modify the
source code to include the measurement metrics described in Section 3.3. We execute the
algorithms using 16 threads and join two relations with a size of 4 GB each.

3.2 Hardware Platform

The hardware platform is configured as a dual-socket machine. It has two Intel Xeon E5-
2690 processors featuring 8 processor cores (per socket), which are clocked at a base
frequency of 2.9 GHz. Using turbo mode the processor can theoretically achieve a max-
imum clock frequency of up to 3.8 GHz. Furthermore, the system has 32 GB of DDR3
main memory per socket. The maximum memory bandwidth amounts to 51.2 GB/s for
one socket or to 102.4 GB/s for both sockets.

3.3 Measurement Metrics

First, we determine the execution time of a benchmark to evaluate the performance. The
execution time refers to the time each benchmark needs to process all of the input data. It
does not include the time it takes to generate the data.
Second, we measure the total energy consumption of both processors by using the energy
estimations provided by the Running Average Power Limit (RAPL) interface. The energy
estimations refer to the energy consumption of the entire processor die including the core
and uncore parts of the processor but excluding the attached DRAM.
Third, we compute the average power consumption of both processors by dividing the
energy consumption by the execution time. In addition, we use an external power meter3,
which we plug between the power supply socket and the power supply unit to measure the
power consumption of the entire computer system.
Fourth, we measure the memory read bandwidth by accessing hardware performance
counters [WDF16] which provide information about the amount of bytes that are read
from the memory controller of both sockets. Note that this includes additional memory
traffic caused by cache misses if a new cache line has to be fetched but not all the data of
the cache line is used by the program.
We do not use a specific metric to evaluate the energy efficiency. Instead, we argue that we
improve the energy efficiency of a benchmark if the percentage decrease of the energy con-
sumption is more significant than the percentage decrease of the performance. The point
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of comparison is the measurement data from the execution at the highest clock frequency
of 3.8 GHz, which is the default setting of the operating system.

3.4 Experiments

We conduct experiments to study the impact of a reduced computing power using the
example of lowering the clock frequency of the processor. In fact, we limit the maximum
clock frequency the Intel P-State driver of the Linux kernel intel_pstate is able to
select. The driver can still select a clock frequency which lies below the limit but not above
the limit. We execute every benchmark at different clock frequency limits from 1.2 GHz
to 3.8 GHz while measuring the metrics described in Sect. 3.3.

4 Evaluation

Before we start evaluating the energy efficiency of the benchmarks, we first take a look at
the accuracy of the energy estimations provided by the RAPL interface. Using the example
of the microbenchmark compute, we compare the power estimations of both processors
with the measurement data obtained from an external power meter. Figure 1a illustrates
the experimental results. We observe that the two curves differ in approximately 65 W.
Only in the frequency range of the turbo mode the two curves differ in up to 85 W. Thus,
we argue that the energy estimations are reliable enough to evaluate the energy efficiency
of the benchmarks. Furthermore, we verify that reducing the power consumption of both
processors significantly improves the energy balance of the entire computer system. In ad-
dition, we notice that the curves break at 3.4 GHz. That is because the processor is not able
to achieve a higher clock frequency using all cores due to thermal constraints.
Next, we evaluate the impact of a limited clock frequency on the energy efficiency of
the benchmarks. The experimental results of the microbenchmark compute depicted in
Fig. 1b reveal that the performance of the benchmark heavily depends on the clock fre-
quency. Limiting the clock frequency to e.g. 1.9 GHz decreases the performance by more
than 42%. At the same time the energy consumption only degrades by 26%. Thus, we ob-
serve that limiting the clock frequency does not improve the energy efficiency. Instead, it
seems best to clock the processor at the highest frequency, finish the tasks as fast as possi-
ble and then put the processor in a sleep mode to save power (race-to-idle). Furthermore,
we verify that the benchmark is only compute-intensive because the measured memory
read bandwith is approximately 0 GB/s (cf. Table 1).
Figure 2a and Figure 2b illustrate the experimental results of the microbenchmarks scan
and dira. We notice that limiting the clock frequency to e.g. 1.9 GHz only results in per-
formance degradations of up to 4%. However, the energy consumption is reduced by 47%.
Thus, limiting the clock frequency improves the energy efficiency of both benchmarks.
Moreover, we notice that the microbenchmarks scan and dira achieve a memory read
bandwidth of up to 30 GB/s. The value lies below the hardware limit of 51 GB/s per
socket. In fact, we determine that both benchmarks are limited by the bandwidth of the
QPI links which connect both sockets. That is because all threads executed on the second
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Benchmark Name
Execution

Time [s]

Energy

Consumption [J]

Memory Read

Bandwidth [GB/s]

compute 16.1 / 5.9 956 / 1202 0.0 / 0.0

scan 6.6 / 5.4 455 / 973 24.3 / 30.2

local_scan 3.5 / 1.7 268 / 452 45.0 / 90.4

dira 5.5 / 4.5 387 / 837 25.5 / 31.2

local_dira 3.3 / 1.9 248 / 465 42.0 / 71.5

Parallel Radix Hash Join 4.3 / 2.5 295 / 448 15.4 / 24.8

Sort-Merge Join (multi-way) 8.5 / 3.7 611 / 842 9.9 / 21.9

Sort-Merge Join (multi-pass) 10.0 / 5.6 744 / 1233 18.5 / 32.3

Tab. 1: Execution time, energy consumption and memory read bandwidth of every benchmark at the
lowest and highest clock frequency limit: 1.2 GHz / 3.8 GHz.

1.2 1.9 3.0 3.8

100

200

300

clock frequency limit [GHz]

po
w

er
co

ns
um

pt
io

n
[W

]

RAPL interface
power meter

(a)

1.2 1.9 3.0 3.8

−60%

−40%

−20%

0%

clock frequency limit [GHz]

energy
performance

(b)

Fig. 1: Results of the benchmark compute: comparison of the energy estimations provided by the
RAPL interface with the data obtained from an external power meter (a) and percentage decrease
of the energy consumption and the runtime performance at different clock frequency limits (b). The
dashed line marks the start of the turbo mode.

socket perform remote memory accesses to the input data which is located on the first
socket. As a result, the execution slows down considerably.
Figure 3a and Figure 3b illustrate the results of the microbenchmarks local_scan and
local_dira. We observe that limiting the clock frequency to e.g. 1.9 GHz saves more
than 40% of the energy. At the same time we lose 20% of the performance. Thus, limiting
the clock frequency improves the energy efficiency of both benchmarks. Furthermore, we
learn that the microbenchmark local_scan reaches a memory read bandwidth of up to
90 GB/s (cf. Table 1), which is very close to the hardware limit of 102.4 GB/s for both
sockets. In fact, the benchmark is bandwidth-bound. The microbenchmark local_dira

on the other hand only reaches a memory read bandwidth of up to 72 GB/s (cf. Table 1).
We conclude that the benchmark is latency-bound, i.e. by the time it takes to transfer data
from the main memory to the processor.
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Fig. 2: Percentage decrease of the energy consumption and the runtime performance of
the benchmarks scan (a) and dira (b) at different clock frequency limits.
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Fig. 3: Percentage decrease of the energy consumption and the runtime performance of
the benchmarks local_scan (a), local_dira (b) and the parallel radix hash join (c) at different
clock frequency limits.

Figure 3c depicts the measurement results of the parallel radix hash join. We learn that
limiting the clock frequency to e.g. 1.9 GHz degrades the performance by 20%. At the
same time the energy consumption is reduced by 31%. Thus, limiting the clock frequency
improves the energy efficiency of the parallel radix hash join, too.
Figure 4a and Figure 4b illustrate the results of the sort-merge join algorithm using the
multi-way and the multi-pass merging strategy. We observe that in case of the multi-way
merging, limiting the clock frequency to e.g. 1.9 GHz deteriorates the performance by
34% while the energy consumption is reduced by 28%. In case of the multi-pass merging,
limiting the clock frequency to 1.9 GHz degrades the performance by 21%. At the same
time we save 36% of the energy. Thus, limiting the clock frequency significantly improves
the energy efficiency of the sort-merge join algorithm if the multi-pass merging is used.
In order to explain the results we have to visualise the difference between the two al-
gorithms. Figure 4c illustrates the execution times of every phase of the sort-merge join
algorithm using either multi-way or multi-pass merging. We learn that the partitioning
phase, the sorting phase and the joining phase all take approximately the same amount of

Energy Efficiency in Main-Memory Databases 341



time. However, we observe that the merging phase lasts significantly longer if the algo-
rithm uses the multi-pass merging technique.
Considering that the in-cache sorting is compute-intensive while merging is memory-
intensive, it is plausible that the energy efficiency of the sort-merge join algorithm using
multi-way merging does not improve. The algorithm is mainly compute-intensive. Thus,
it heavily depends on the clock frequency of the processor. The sort-merge join using the
multi-pass merging on the other hand is mainly memory-intensive. Therefore, we can re-
duce unused computing power of the processor to improve the energy efficiency.
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Fig. 4: Percentage decrease of the energy consumption and the runtime performance of the
sort-merge join using either the multi-way merging strategy (a) or the multi-pass merging strategy
(b) while limiting the clock frequency. Breakdown of the execution times (c) of the different phases
of the sort-merge join algorithm using either multi-way merging or multi-pass merging [Ba13].

Discussion. Our evaluation reveals that the energy efficiency of the microbenchmark
compute does not improve if we limit the clock frequency. We conclude that the most
energy-efficient execution strategy for a compute-bound algorithm is the race-to-idle strat-
egy. In contrast, we learn that limiting the clock frequency improves the energy efficiency
of the memory-bound microbenchmarks.
If the input data is allocated on only one NUMA node, reducing the clock frequency hardly
degrades the performance. If the input data is equally distributed across all NUMA nodes,
limiting the clock frequency has a bigger impact on the performance. However, the energy
savings prevail. Moreover, we observe that the impact of a limited clock frequency does
not differ between a sequential memory access pattern (bandwidth-bound) and a random
memory access pattern (latency-bound). In addition, we learn that reducing the clock fre-
quency improves the energy efficiency of the parallel radix hash join, too.
In case of the sort-merge join we observe that the impact of a limited clock frequency de-
pends on the merging strategy. If we use the multi-way merging, the algorithm is mostly
compute-intensive. Reducing the clock frequency does not improve the energy efficiency.
If we use the multi-pass merging, the algorithm is mostly memory-intensive. Limiting the
clock frequency improves the energy efficiency.
Therefore, we conclude that we can improve the energy efficiency of a database algo-
rithm by reducing the computing power if the algorithm is more memory-intensive than
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compute-intensive. We showed that we can for example limit the clock frequency to im-
prove the energy efficiency of database algorithms: If we execute a compute-bound algo-
rithm, we should increase the clock frequency to the maximum (race-to-idle). If we execute
a memory-bound algorithm, we should decrease the clock frequency.

Towards Energy-Efficient Software. The results of the evaluation reveal that we can
reduce unused computing power to improve the energy efficiency of database algorithms.
This allows us to develop ideas for energy-efficient software used in a MMDB.
First, the results can influence the design of database algorithms. If an algorithm consists
of a compute-bound phase and a memory-bound phase, we propose to balance both phases
in order to avoid energy waste. In case of e.g. the sort-merge join algorithm, we could over-
lap the compute-bound sorting phase with the memory-bound merging phase.
Second, we propose to extend the optimiser of a MMDB to avoid energy waste. When the
optimiser decides upon the physical database operations of an execution plan, it should
balance compute-bound operations and memory-bound operations. Thus, the optimiser
needs specific cost models. These can be built based on the ratio between compute inten-
sity and memory intensity of a database operation.
Third, we propose to extend the execution engine of a MMDB by a live monitoring com-
ponent. The engine could use hardware performance counters to periodically calculate the
ratio between compute intensity and memory intensity of database operations at runtime.
This can be done on multiple levels: for the entire system, individual sockets or individual
cores. The collected statistics can be used to dynamically change settings such as the clock
frequency, thread-to-core mappings or the data placement.

5 Related Work

In this section we briefly present related work from the research community specialising
on the topic of energy efficiency in DBMS. Harizopoulos et al. [Ha09] argue that hardware
optimisations are only part of the solution towards improving energy efficiency. They pre-
dict that software will be the key to improve energy efficiency and propose to focus on
system-wide configuration parameters and query optimisations. In fact, they propose to
consolidate resource utilisation and power in order to facilitate powering down unused
hardware and to redesign data-structures and algorithms. Thus, their observations align
with our own results.
Tu et al. [Tu14] propose a storage manager which puts unused disk drives in a low power
mode and employs energy-aware data placements. In addition, they present a prototype
DBMS, which uses a feedback loop using DFVS based on the current performance and a
performance threshold. They claim to achieve significant energy savings.
The work of Psaroudakis et al. [Ps14] further supports our results. They propose a fine
granular approach for improving energy efficiency by dynamically scheduling tasks as
well as using DVFS. They conclude that using simultaneous multithreading, a moderate
clock frequency and a thread placement that fills both sockets can significantly improve
the energy efficiency of memory-intensive workloads. In addition, they propose to use a
memory allocation policy that uses the memory bandwidth of all available sockets.
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6 Conclusion

The characteristics of typical database workloads matter. In fact, most database algorithms
are memory-bound instead of compute-bound. As a result, computing power as well as
electrical power gets wasted if the processor has to wait for data from the main memory.
We experimentally explored the impact of reducing the computing power on the energy
efficiency of several benchmarks representing common database algorithms such as scans,
simple aggregations and joins. Our evaluation reveals that limiting the clock frequency de-
teriorates the energy efficiency of the compute-bound microbenchmark, while it improves
the energy efficiency of the memory-bound benchmarks including state-of-the-art joins.
We show that database workloads behave considerably differently than other workload
types and that reducing the computing power e.g. by limiting the clock frequency can
significantly improve energy efficiency.
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