
Robust Query Processing in Co-Processor-accelerated
Databases

Sebastian Breß
∗

German Research Center for
Artificial Intelligence

Germany
sebastian.bress@dfki.de

Henning Funke
TU Dortmund University

Germany
henning.funke@tu-

dortmund.de

Jens Teubner
TU Dortmund University

Germany
jens.teubner@cs.tu-

dortmund.de

ABSTRACT
Technology limitations are making the use of heterogeneous
computing devices much more than an academic curiosity. In
fact, the use of such devices is widely acknowledged to be
the only promising way to achieve application-speedups that
users urgently need and expect. However, building a robust
and efficient query engine for heterogeneous co-processor
environments is still a significant challenge.

In this paper, we identify two effects that limit performance
in case co-processor resources become scarce. Cache thrashing
occurs when the working set of queries does not fit into the co-
processor’s data cache, resulting in performance degradations
up to a factor of 24. Heap contention occurs when multiple
operators run in parallel on a co-processor and when their
accumulated memory footprint exceeds the main memory
capacity of the co-processor, slowing down query execution
by up to a factor of six.

We propose solutions for both effects. Data-driven opera-
tor placement avoids data movements when they might be
harmful; query chopping limits co-processor memory usage
and thus avoids contention. The combined approach—data-
driven query chopping—achieves robust and scalable perfor-
mance on co-processors. We validate our proposal with our
open-source GPU-accelerated database engine CoGaDB and
the popular star schema and TPC-H benchmarks.

1. INTRODUCTION
Modern processors hit the power wall, which forces vendors

to optimize a processor’s performance within a certain energy
budget [6]. As a consequence, processor manufactures started
to specialize processors. Thus, experts predict that future
machines will consist of a set of heterogeneous processors,
where each processor is optimized for a certain application
scenario [6]. This trend has already become commodity, e.g.,
in the form of graphics processors (GPUs), many integrated
cores architectures (MICs), or field-programmable gate arrays
(FPGAs). Not taking advantage of them for query processing
means to leave available resources unused.

∗Work done when author was working at TU Dortmund.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SIGMOD’16, June 26-July 01, 2016, San Francisco, CA, USA
c© 2016 ACM. ISBN 978-1-4503-3531-7/16/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2882903.2882936

0

1

2

3

1.0

3.1

0.4

E
x
ec

u
ti

o
n

T
im

e
in

S
ec

o
n
d
s CPU Only

GPU Cold Memory

GPU Hot Memory

Figure 1: Impact of different query execution strate-
gies on performance of a star schema benchmark
query (Q3.3) on a database of scale factor 20. Using
a GPU slows the system down in case input data is
not cached on the GPU.

The potential of heterogeneous systems is often limited
by the capacity of the communication channel between the
co-processor and its host system [11]. We illustrate this
problem in Figure 1 for a GPU-based co-processor, which we
use as a poster child in the context of this work.

We obtained this figure by executing Query 3.3 from the
Star Schema Benchmark (a) on a commodity CPU; (b) us-
ing a GPU accelerator, assuming a cold-cache scenario (i.e.,
all data has to be transferred to the GPU before an op-
erator starts, which is very likely for ad-hoc queries); and
(c) using the GPU accelerator in a hot-cache setting (more
details on our experimentation platform follow later in the
text). Clearly, while a GPU co-processor has the potential to
speed up query execution by a factor of 2.5 (consistent with
earlier results on GPU-accelerated query processing [13]),
data transfer costs turn the situation into a performance
degradation by more than a factor of three.

Techniques for co-processor acceleration typically make
two assumptions:

1. The input data is cached on the co-processor and the
working set fits into the co-processor memory.

2. Concurrent queries do not access the co-processor si-
multaneously.

Co-processors can slow down query processing significantly
if these assumptions are violated, which is especially likely
for ad-hoc queries. The goal of this paper is to understand
why performance degrades under realistic conditions and
how we can automatically detect when co-processors will
slow down the DBMS (e.g., for many ad-hoc queries) and
when co-processors will improve performance (e.g., for re-
occuring or ad-hoc queries accessing the data cached on the
co-processor).

In this work, we identify two problems: cache thrashing and
heap contention. Cache thrashing occurs if the working set
of the DBMS does not fit into the memory of a co-processor
(assumption 1 violated), causing expensive evictions and re-
caching. Heap contention is the situation where too many

1891

operators use the co-processor in parallel (assumption 2
violated), so their combined heap memory demand exceeds
the device’s memory capacity.

We show how existing techniques from other domains
can mitigate the problem and thus achieve robust query
processing in heterogeneous systems. First, we place data
before query execution, according to the workload pattern;
we assign operators only to (co-)processors where necessary
data is already cached, thus avoiding the cache thrashing
problem. Second, we defer operator placement to the query
execution time, so we can dynamically react to faults. This
way, we can react to out-of-memory situations and limit heap
space usage to avoid heap contention. Third, we limit the
number of parallel running operators on a co-processor to
reduce the likelihood that heap contention occurs. The main
benefit of our approaches lies in optimizing the worst-case
execution time and thus, make it feasible to use co-processors
in practice.

To validate the effect of the strategies, we provide a detailed
experimental evaluation based on our open-source database
engine CoGaDB1. CoGaDB is a from-scratch implementation
of a column-oriented in-memory database engine, with GPU
support from the ground.

The remainder of the paper is structured as follows. In
Section 2, we present the state of the art on co-processing in
databases. Then, we discuss our techniques: data-driven op-
erator placement in Section 3, run-time placement in Section
4, and the query chopping technique in Section 5. Then, we
present our extensive experimental evaluation in Section 6.
Finally, we present related work in Section 7 and conclude
in Section 8.

2. STATE OF THE ART
In this section, we provide a brief overview of the ba-

sics of co-processors, their resource limitations, the operator
placement problem, and the evaluation system CoGaDB.

2.1 Co-Processors
Compared to CPUs, today’s co-processors are specialized

processors spending more chip space to light-weighted cores
than on control logic such as branch prediction and pipelin-
ing [34]. In order to feed these cores, co-processors need
high-bandwidth memory, which in turn means that the to-
tal memory capacity is relatively small (up to 16 GBs for
high end GPUs or Xeon Phis) to achieve reasonable mone-
tary costs. Since co-processors are separate processors, they
are usually connected to the CPU by the PCIe bus, which
often ends up being the bottleneck in CPU/co-processor
systems [11].

A common optimization is to use part of the co-processor
memory as cache, which can reduce the data volume that
needs to be transferred to the co-processor. The remaining
part of the co-processor’s memory is used as heap for inter-
mediate data structures and results. Naturally, the caching
strategy cannot avoid the cost of moving results back from
the co-processor to the host system.

2.2 Resource Limitations
The limited resource capacity of co-processors poses a

major problem for database operators. For instance, the
probability that an operator runs out of memory on a co-
processor is significantly higher compared to a CPU operator.
In case memory becomes scarce, operators will fail resource
allocations and have to abort and clean up.

1cogadb.cs.tu-dortmund.de/wordpress/download

0 1 2 3 4 5
1

10

100

240
Size of Required
Input Columns

GPU Buffer Size in GB

W
o
rk

lo
a
d

E
x
e
c
u
ti

o
n

T
im

e
in

s

Figure 2: Execution time of selection workload. The
performance degrades by a factor of 24 if not all
input columns fit into the cache.

To be practically useful, database engines must have a
mechanism to deal with such fault situations. Previous
work [35] did so by aborting and re-starting the entire query.
However, such simplistic solutions will hardly meet user
expectations in realistic settings. As the use of GPU accel-
eration proliferates (and more users share the co-processor),
the probability for resource contention sharply increases,
resulting in starvation and other problems.

CoGaDB offers a more sophisticated mechanism for fault
handling. In case of resource exhaustion, the system will
have to re-start only the single failed operator. This way, we
avoid losing already computed results and continue query
processing immediately.

2.3 Query Processing
Most approaches for co-processor acceleration assume that

first, the input data fits into the co-processor cache and
second, no concurrent queries access the co-processor simul-
taneously. Next, we show the performance penalties that
occur if these assumptions are not met, which is more the
norm than the exception.

Cache Thrashing Figure 2 shows the query execution time
of a workload of selection operators on the GPU with varying
GPU buffer size. The workload consists of eight selections,
which filter on eight different columns. Furthermore, the
selections are executed interleaved, a common scenario in
databases where different queries access different data. As
input data, we chose the fact table of the star schema bench-
mark (scale factor 10). We provide the detailed workload in
Section B.1. All required input columns have a total size of
1.9 GB. In the case that not all input columns fit into the co-
processor’s data cache, we observe a performance degradation
of a factor of 24 due to cache thrashing. Caches commonly
use a least-recently-used strategy, a least-frequently-used
strategy or variants of the two strategies. For both strategies,
at least one column needs to be evicted from the cache if
the cache size is smaller than the accumulated memory foot-
print of required input columns (1.9 GB). Evicting the least
recently used column practically makes the cache useless in
case the memory footprint exceeds the cache size. This is
because the evicted columns will be accessed by the next
query of the workload (cf. Appendix B.1), which results in a
copy operation.

Heap Contention Even if we solve the cache thrashing
problem, we run into a similar effect in case we execute oper-
ators in parallel. We illustrate the problem with a selection
workload on a GPU with increasing number of parallel users.
The selection queries require four different operators to be
executed consecutively to compute the result. All selections
filter the same input columns to avoid the cache-trashing
effect. The workload is fixed and consists of 100 queries,

1892

1 5 10 15 20
0

20

40

Hits GPU
Memory Limit

Optimal

Number of Parallel Users

W
o
rk

lo
a
d

E
x
e
c
u
ti

o
n

T
im

e
in

s

Figure 3: Execution time of a selection workload.
With increasing parallelism, more operators allocate
memory on the GPU, which leads to performance
degradation when memory capacity is exceeded.

but we increase the number of parallel user sessions that
execute the workload. We discuss the detailed workload in
Appendix B.2.

Since all workloads contain the same amount of work, an
ideal system could execute all workloads in the same time.
Figure 3 shows the actual effect on our execution platform.
Clearly visible is a performance degradation of up to factor
six compared to a single user execution.

What we observe here is that the intermediate data struc-
tures of the parallel running operators exceed the co-proces-
sor’s memory when seven or more users use the graphics
processor concurrently (assumption 2 violated), which causes
operators to run out of memory.

Once this happens, operator execution will be aborted on
the GPU and moved to another processor instead, which
increases the IO on the bus and degrades performance. We
call this effect heap contention.

It is clearly visible that co-processors can slow down data-
base query processing significantly, if we have no additional
mechanism. To achieve robust query processing, we need to
ensure that co-processors will never slow down the DBMS
and that co-processors improve performance with increasing
fraction of the working set that fits into their memory.

2.4 Operator Placement
All co-processor-accelerated database systems either pro-

cess all queries on the co-processor (e.g., GPUDB [37], Multi-
Qx-GPU [35], and Red Fox [36]), or try to balance the process-
ing tasks between processors (e.g., CoGaDB, GPUQP [13],
MapD [24]) by performing operator placement (i.e., a com-
plete query plan is analyzed and each operator is assigned to
a processor). Both strategies use the same principles: First,
they create a query plan that is fixed during query execution.
Second, the execution engine is responsible to transfer data to
the processors where the operators are executed. Since data
movement can be very expensive, this strategy is combined
with data caching on co-processors.

2.5 Evaluation System: CoGaDB
CoGaDB is a main memory database system using a

column-oriented data layout, has an SQL interface, and
a Selinger-style optimizer. Similar to other OLAP DBMSs
such as MonetDB [17], CoGaDB is an interpreter-based en-
gine and processes queries by calling an operator-specific
function for each operator in the query execution plan. The
operator functions consume the complete input and ma-
terialize their output. Thus, CoGaDB does not employ
pipelining. In case an operator contains two or more child
operators, the child operators are evaluated in parallel (inter-
operator parallelism). CoGaDB makes use of all CPU cores

(or GPU cores, respectively) to speed up query processing
(intra-operator parallelism). Furthermore, CoGaDB uses
the hardware-oblivious query optimizer HyPE to solve the
operator placement problem [7, 9]. We compare the perfor-
mance of CoGaDB to the GPU-accelerated database engine
MonetDB/Ocelot in Section A.

2.5.1 Fault Tolerance
In error situations (e.g., an operator runs out of memory),

CoGaDB restarts the operator on a CPU. This is in contrast
to the earlier system of Wang and others, which handled
out-of-memory situations by aborting entire queries [35].
Thus, to cope with the resource restriction of GPUs, we
provide a CPU-based fallback handler for every operator.
This way, query processing can always continue though at
a two-fold cost: First, the aborted operator will run slower
than anticipated; second, the query processor performs more
data transfer operations than expected.

Note that it is not practical to use a wait-and-admit ap-
proach for memory allocation. Since we cannot provide a
concise upper bound for many database operators (e.g., joins),
we are forced to allocate memory in several steps and hold
onto already allocated memory. If this is done in parallel for
multiple operators, the DBMS will run into deadlocks. Thus,
CoGaDB aborts operators immediately if an allocation fails
to avoid the overhead of deadlock detection.

2.5.2 Operator Placement
He and others early recognized the importance of oper-

ator placement and data movement [13]. To address the
problem, they performed backtracking for sub-query plans
and combined optimal sub plans to the final query plan [13].
From our experience in CoGaDB, this backtracking approach
can be very time consuming. Thus, CoGaDB uses an iter-
ative refinement optimizer that only considers query plans
where multiple successive operators are executed on the
same processor, a technique that already proved very useful
in distributed databases because it limits communication
between processors/nodes. We use this established approach
for query optimization as a baseline for the experiments in
the remainder of this paper.

2.5.3 Performance Optimizations for Data Transfer
CoGaDB implements the recommended optimizations to

reduce data transfer bottlenecks [1]. It uses asynchronous
data transfers via CUDA streams, which is required to get
the full PCIe bus bandwidth and allows for parallel data
transfer and computation on GPUs. For this, it is required
to copy data into page-locked host memory as staging area,
which cannot be swapped to disk by the OS. Unified Virtual
Addressing (UVA) performs data transfers implicitly and
transparently to the application but pays the same data
transfer cost as manual data placement.

3. DATA-DRIVEN OPERATOR PLACEMENT
All of the heuristics in Section 2.5.2 assume that data

placement is operator-driven. That is, for each operator the
optimizer first decides on a processor, then—if necessary—
moves required data to that processor. In case the hot data
of the workload does not fit in the co-processor’s data cache,
the system runs into the cache thrashing effect.

In this section, we discuss how we can completely avoid the
cache thrashing effect by first, deciding on a data placement
and second, perform operator placement according to the
data placement. For this, we analyze the workloads access
pattern and place the most frequently accessed data in the co-

1893

Figure 4: Principle of Data-Driven operator place-
ment. Operators 1 and 3 are pushed to the cached
data on the co-processor, whereas the data of oper-
ator 2 is not cached and must run on a CPU.

processor cache. Then, we place operators on the co-processor
if and only if their input data is cached. Consequently,
excessive evictions and re-caching cannot happen because
the data placement is decided by one central component: the
data placement manager.

3.1 Data-Driven: Push Operators to Data
As an alternative strategy to operator-driven data place-

ment, we propose a Data-Driven Operator Placement (in
short Data-Driven). The idea is that a storage adviser pins
frequently used access structures to the co-processor’s data
cache and the query processor automatically places operators
on the co-processor, if and only if the input data is avail-
able on the co-processor. Otherwise, the query processor
executes the operator on a CPU. This strategy assumes
that operators run faster on the co-processor if the data
is cached on the co-processor. However, this is consistent
with many studies (e.g., He and others [13]) and with our
experiments in Section 6 and Section A in the appendix. In
case the input data is not cached, join operators running
on a co-processor can outperform their CPU counterparts,
but most operators running on co-processors will not [13].
We illustrate Data-Driven in Figure 4. Here, we have three
operators, where the input data of operators 1 and 3 are
cached on the co-processor, whereas the input data of oper-
ator 2 is not. Therefore, operators 1 and 3 are pushed to
the co-processor, whereas operator 2 must be executed on a
CPU. This is similar to data-oriented transaction execution
[29], where each processor core is responsible for processing
transactions on a certain database partition. Similarly, we
pin certain database access structures such as columns to
the co-processor to profit from a perfect cache hit rate.

3.2 Automatic Data Placement
When we only execute operators on a co-processor in

case their input is cached on that co-processor, then we
need a background job that analyzes the access patterns
of the query workload and automatically places frequently
required access structures on a co-processor. We keep the
data-placement strategy simple and use a least-frequently-
used strategy. For this, the storage manager keeps statistics
about how frequently and how recently access structures were
used by the query processor. Each column in the database
has an access counter, which is incremented each time an

Algorithm 1 Data placement updates the coprocessor’s
cache content using the access counts from query processing.

Input: Columns C, Cache State CS
1: K =sortaccess count,descending(C)
2: used buffer=0
3: Ccacheold = CS.cached columns
4: Ccachenew = ∅
5: for i = 1; used buffer + Ki.size ≤ CS.buffer size

and i < |K|; i + + do
6: Ccachenew = Ccachenew ∪Ki

7: used buffer+=Ki.size
8: end for
9: CS.evict(Ccacheold \ Ccachenew)

10: CS.cache(Ccachenew \ Ccacheold)

0 1 2 3 4 5
1

10

100

240

Size of Working Set

GPU Buffer Size in GB

W
o
rk

lo
a
d

E
x
e
c
u
ti

o
n

T
im

e
in

s
Operator-Driven Data Placement

Data-Driven Operator Placement

Figure 5: Execution time of selection workload. The
performance degradation can be avoided by data-
driven operator placement.

operator accesses a column. We show the cache management
in Algorithm 1. Periodically, we fill the cache with the
most frequently queried columns and access structures. This
strategy commonly caches join columns and frequently used
filter columns of dimension tables. Note that LRU and LFU
strategies perform similarly well, as we show in Section E.
Note that running queries can continue execution when the
background job adjusts the data placement. We use reference
counters for access structures to determine when they are
no longer in use and can clean up evicted data when it is
no longer used during query processing. Furthermore, we
use fine-grained latching to avoid that running queries block
when accessing the cache.

3.3 Query Processing
A consequence of Data-Driven is that operators are auto-

matically chained (e.g., consecutive operators are executed
on the same processor) from the leaf operators, until an n-ary
operator (n ≥ 1) is found where at least one input column is
not available in the co-processor memory. Then, the operator
chain is not continued and the remaining part of the query
is processed on a CPU. This is because Data-Driven re-
quires that all input columns are resident in the co-processor
memory. Data-Driven can process the complete query on
a co-processor in case the memory capacity is sufficient. If
not all input data fits in the co-processor’s memory, the
co-processor is only used to the degree where the input data
fits in the co-processor’s memory, avoiding delays by transfer
operations and ensuring graceful degradation.

We illustrate the behavior of Data-Driven on our two prob-
lem cases from the introduction in Figure 5 and 7, respec-
tively. Data-Driven eliminates the performance degradation,

1894

0 1 2 3 4 5
1

10

100

240
Size of Working Set

GPU Buffer Size in GB

D
a
ta

T
ra

n
sf

e
r

T
im

e
in

s

Operator-Driven Data Placement

Data-Driven Operator Placement

Figure 6: Time spent on data transfers in the selec-
tion workload.

1 5 10 15 20
0

20

40

Hits GPU
Memory Limit

Optimal

Number of Parallel Users

W
o
rk

lo
a
d

E
x
e
c
u
ti

o
n

T
im

e
in

s

Operator-Driven Data Placement

Data-Driven Operator Placement

Figure 7: Execution time of a selection workload.
Data-Driven has the same performance degradation
as operator-driven data placement.

which we observed for the classic approach: operator-driven
data placement. We show in Figure 6 that the performance
degradation is caused by the enormous data transfer times
caused by cache thrashing. However, with Data-Driven this
cannot happen because the co-processor is not used for an
operator, when its input data is not cached. We also observe
that with increasing buffer size, Data-Driven gets faster with
the number of input columns that fit into the cache, until it
reaches the optimum.

3.4 Problems in Concurrent Workloads
The second problem case, where we observe performance

degradation with an increasing number of concurrent op-
erators on a co-processor, is not solved with Data-Driven
as illustrated by Figure 7. This effect is caused by an in-
creased data transfer overhead due to operator aborts on
co-processors. In case too many operators run in parallel,
their collective memory demand exceeds the co-processors
memory capacity (heap contention).

In case of the parallel selection workload, we require a
column C as input data. CoGaDB implements the GPU
selection algorithm of He and others [13], which requires a
memory footprint of 3.25 times the size of the input column.
For n parallel queries, a column size C of 218 MB (fact
table columns of star schema benchmark for scale factor 10),
and a GPU memory capacity M of 5GB, we can execute

n = |M|
3.25·|C| ≈ 7 parallel users without running in the memory

limit. This is exactly the point where the performance starts
to degrade in Figure 7.

In case of more than 7 parallel queries, some operators
run out of memory and are restarted on a CPU. Since the
operator placement decisions were all done during query

Figure 8: Flexibility of run-time placement.
Compile-time heuristics force the query processor
to switch back to the GPU after an operator aborts,
whereas run-time heuristics avoid this overhead.

compile-time, the successor operator is still executed on the
co-processor, which causes additional data transfers that
were not anticipated by the optimizer. We discuss how we
can solve this issue by performing operator placement at
query run-time in the next section.

4. RUN-TIME OPERATOR PLACEMENT
Until now, we discussed heuristics for the operator place-

ment problem applied at query compile-time, i.e., they decide
on a fixed operator placement before a query runs. This strat-
egy has three drawbacks:

1. It cannot predict error situations such as out of memory
scenarios, where a co-processor operator needs to abort.

2. Compile-time heuristics need to rely on sufficiently
accurate cardinality estimates to estimate the data
transfer volume. However, it is still very difficult to
provide cardinality estimations.

3. GPU code is particularly sensitive to environment pa-
rameters such as current load or usage of heap memory.
Inherently, those parameters cannot be known before
the actual execution time—the classical dilemma of
multi-query optimization.

A way to escape this dilemma has been proposed by Boncz
and others [4]. By separating query optimization into strate-
gical and tactical decisions, many important runtime parame-
ters can be considered for the optimization process. Whereas
the database optimizer performs the strategic optimization
(e.g., the structure of the query plan), a run-time optimizer
conducts the tactical optimization (e.g., operator placement
and algorithm selection).2 Therefore, run-time placement
can dynamically react to unforeseen events (e.g., out of mem-
ory conditions) and does not need any cardinality estimates,
because it performs operator placement after all input rela-
tions are available. In this section, we discuss how run-time
operator placement helps a query processor to react to faults
during operator execution on co-processors.

4.1 Run-Time Flexibility
If the optimizer performs operator placement decisions at

run-time, it can dynamically react to unforeseen events, such
as aborting co-processor operators. Since memory is scarce in
co-processors, there is always the possibility that an operator
cannot allocate enough memory. In this case, CoGaDB

2This separation requires the DBMS to use operator- or
vector-at-a-time processing, which is the case for CoGaDB.

1895

1 5 10 15 20
0

20

40

Hits GPU
Memory Limit

Optimal

Number of Parallel Users

W
o
rk

lo
a
d

E
x
e
c
u
ti

o
n

T
im

e
in

s

Compile-Time Operator-Driven

Run-Time Operator-Driven

Figure 9: Run-time operator placement improves
performance, but does not achieve the optimum.

discards the work of the operator and restarts the operator
on the CPU. This mechanism is very efficient, because
operators typically start with the allocation of memory for
their input data and data structures. So most of the time,
co-processor operators abort without wasting any resources.

Run-time resource contention interacts poorly with com-
pile-time operator placement. We illustrate the problem in
Figure 8. We assume a simple query execution plan that is
placed completely on the GPU. The second operator runs
out of memory and aborts, so CoGaDB creates a fall back
operator and executes it on the CPU. The problem is that
the third operator is still placed on the GPU, and requires
to copy the result data to the GPU. In contrast, a run-time
placement heuristic schedules the third operator, after the
second operator aborted, and hence, places the third operator
on the CPU to avoid the copy cost. Note that this procedure
can repeat itself multiple times in the same query, and may
cause large performance degradations.

4.2 Query Processing
We illustrate in Figure 9 that run-time operator placement

reduces the performance penalty of concurrent running que-
ries of up to a factor of two. However, run-time placement
is still more than two times slower than the optimal case.
The reason for this is that run-time placement avoids data
transfer overhead in case of operator aborts. Instead, the
aborted operators are restarted and lose their co-processor
acceleration, so we still pay a performance penalty.

5. MINIMIZING OPERATOR ABORTS
In this section, we discuss how we can reduce the over-

head of running multiple queries in parallel by reducing the
probability that operators abort. Based on this, we present
our technique query chopping, which reduces the maximum
number of operators that can run in parallel by using the
thread pool pattern.

5.1 Probability of Operator Aborts
To avoid operator aborts, we reduce the probability that

an operator runs out of memory. One way to achieve this
is to prohibit the DBMS to execute multiple GPU opera-
tors concurrently (e.g., He and others [13]). However, Wang
and others showed that we can improve the performance of
query processing by allowing moderate parallel execution [35].
Wang and others proposed to use an admission control mech-
anism for queries, limiting the total number of queries in the
DBMS and hence, the number of parallel queries that con-
currently access the co-processor. While we cannot use this
approach on an operator granularity, we can put an upper

1 2

3 4

5

6

7 8

9

1 2 4 6 8

Physical Processors

Worker Threads

HyPE

CPU GPU

Operator Stream

1

4
Ready Queues

Query Plans

2

6

8

Figure 10: Query Chopping.

1 2

3 4

5

3

Add into
Operator Stream

1 248 6

Query Plan Notify
Parent

Notify
Parent

Operator waiting for Children

Scheduled Operator

Finished Operator

Newly added Parent Operator

Figure 11: Query Chopping: Finished operators pull
their parents into the global operator stream.

bound on the number of operators concurrently executing
on a co-processor by using the thread pool pattern. Here,
processing tasks are not pushed towards the processor, but
pulled by the processor. If no worker thread is available
for an operator, it is kept in a queue, until a prior operator
finishes execution. This way, we do not artificially limit the
number of concurrent queries in the DBMS, but still avoid
that queries run into resource contention problems due to
the use of co-processors.

5.2 Query Chopping
Based on our discussions, we now present our novel tech-

nique query chopping (Chopping), which is essentially a
progressive query optimizer that performs operator place-
ment at query run-time and limits the number of operators
executing in parallel via a thread pool.

Our goal is to accelerate a workload of queries by using the
available (co-)processors, but avoid that these accelerators
can slow down query processing. We implemented Chopping
as an additional layer between the strategic optimizer of
CoGaDB and the hardware oblivious query optimizer HyPE.
Chopping takes n queries, chops off their leaf operators,
and inserts them into a global operator stream. Since the

1896

leaf operators have no dependencies, they can immediately
start their execution independent of each other. HyPE then
schedules the operators on the available processors, and
selects for each operator a suitable algorithm. We summarize
our discussion in Figure 10.

When an operator finishes execution, it notifies its parent.
After all children of an operator completed, the operator
inserts itself into the global operator stream. Once the root
operator of a query plan has finished execution, the query
result is returned. We illustrate this procedure in Figure 11.

This technique works for single-query and multi-query
workloads. The virtue of the strategy is that we always know
the exact input cardinalities during the tactical optimization,
which increases the accuracy of HyPE’s cost models and,
hence, its operator placement and algorithm selection. Fur-
thermore, we can fully benefit from HyPE’s load balancing
capabilities.

Additionally, Chopping manages the concurrency on a
processor at the operator level. HyPE’s execution engine
virtualizes the physical processors, e.g., we can create mul-
tiple worker threads per processor to achieve inter-operator
parallelism. For each physical processor, we maintain a ready
queue, where all worker threads of that processor pull new
operators from. This mechanism can also be used to decide
on the number of threads for a single operator. In a work-
load with low concurrency, an algorithm could decide to use
more threads to execute faster, whereas in highly parallel
workloads, each operator would use only a single thread. To
balance the load between CPU and GPU, we keep track of
the load on each processor by estimating the completion time
of each processor’s ready queue.

A thread pool avoids that operators run out of memory
by accumulated memory usage, but does not guarantee that
single operators get enough heap memory. However, the heap
memory usage of operators directly corresponds to the data-
base size. When the input columns exceed a certain memory
capacity, the operators cannot allocate enough memory for
intermediate data structures and results, which forces the
system to process the workload on CPU only. Therefore, a
thread pool is sufficient to solve the heap contention problem.

Chopping puts only an upper bound to the concurrency
of operators: It is up to the operating system or the co-
processor’s driver when and how many operators are executed
in parallel. Thus, Chopping steers the parallelism on all
processors and leaves it to the scheduling mechanisms of the
OS to place threads on a certain CPU socket to a specific
core. Thus, Chopping seamlessly integrates with existing
approaches.

5.3 Query Processing
We illustrate in Figure 12 that Chopping achieves near

optimal performance. This is because Chopping also limits
the number of operators that can run concurrently on a
co-processor. This significantly reduces the probability that
operators run into the heap contention effect and need to
abort. We illustrate this in Figure 13. It is clearly visible that
operator-driven data placement at compile-time leads to the
most operator aborts. Simple run-time placement reduces
this overhead, as it continues query processing on the CPU
if an operator aborts, thus relieving the GPU heap. If we
additionally limit the inter-operator parallelism we achieve
near optimal results.

5.4 Data-Driven Query Chopping
We now discuss how Data-Driven and Chopping work

together. The combined strategy places frequently used

1 5 10 15 20
0

20

40

Hits GPU
Memory Limit

Number of Parallel Users

W
o
rk

lo
a
d

E
x
e
c
u
ti

o
n

T
im

e
in

s

Figure 12: Dynamic reaction to faults and limit-
ing the number of parallel running GPU operators
achieves near optimal performance.

1 5 10 15 20
0

50

100

150

Number of Parallel Users

N
u
m

b
e
r

o
f

A
b

o
rt

e
d

G
P

U
O

p
e
ra

to
rs

Compile-Time Operator-Driven

Run-Time Operator-Driven

Query Chopping

Run-Time + Data-Driven

Query Chopping + Data-Driven

Figure 13: Run-time placement reduces heap con-
tention by continuing execution in the CPU. Chop-
ping limits the number of parallel running GPU op-
erators and further decreases the abort probability.

access structures in the co-processor’s data cache using a
periodic background job to avoid cache thrashing. Then,
starting from the leaf operators of the query, all operators
are pushed on the co-processor if the input data of an operator
is cached and on the CPU otherwise. The operator is then
put into the ready queue of the selected processor. After a
worker thread executed an operator, it notifies its completion
to the parent operator and fetches the next operator from
the ready queue. The parent operator is processed in the
same way, when all child operators completed execution. This
procedure is continued until all operators of the query finished.
The trick is that when operator aborts are detected, query
processing continues on the CPU, because the output data
no longer resides on the co-processor. Thus, the combined
strategy avoids memory thrashing and heap contention.

5.5 Applicability To Other Processing Models
Aside from operator-at-a-time processing, two alternative

processing models have been proposed in the past: vector-a-
time processing and query compilation. An inherent prop-
erty of many real world queries is that they contain multiple
pipeline breakers, which force the DBMS to materialize inter-
mediate results, regardless of the processing model. In this
cases, cache thrashing and heap contention can lead to the
same performance penalties observed in this paper.

Vectorized Execution. Vector-at-a-time processing works
on cache-resident chunks of columns (vectors), avoids materi-
alization cost of operator-at-a-time processing, and supports
pipelining [5]. Support of Data-Driven is straightforward:
Cached vectors would be processed on the co-processors and
the remaining vectors on the CPU. In case the co-processor

1897

finished its cached vectors, we can exploit an additional op-
timization: The vector-at-a-time scheme can overlap data
transfer and computation on the co-processor, which allows to
process vectors on all processors (e.g., Chen and others [10]).
We expect that such a cross-processor database engine would
significantly boost performance, but the observations in this
paper are still valid in such a system. Heap contention is
reduced to pipeline-breaking operators, but for a reasonable
complex query workloads the DBMS is still required to deal
with this problem.

Compiled Execution. Query compilation generates C
or assembly code for a specific query and executes the com-
piled program [21, 27]. Operators that can be pipelined
are compiled to a single function (called pipeline), which
typically processes data in a single pass. Thus, intermedi-
ate results are only materialized for pipeline breakers [27].
These pipelines then need to be placed on a (co-)processor.
In this scenario, Data-Driven Chopping is still required to
avoid cache trashing and heap contention. An extension
of the morsel framework [22] would lead to the option of
streaming data to co-processors as it is a vector-at-a-time
processing using compiled pipelines. Therefore, the reasoning
for vector-at-a-time execution applies for query compilation
as well.

Summary. In summary, the cache thrashing and heap
contention effects are inherent to all database engines re-
gardless of their processing model. Therefore, our discussed
approaches are useful in all co-processor-accelerated database
engines.

6. EFFECTS ON FULL WORKLOAD
In this section, we quantitatively assess the performance

of our proposed approaches on two more complex workloads:
the star schema benchmark and the TPC-H benchmark.

6.1 Experimental Setup
As evaluation platform, we use a machine with an In-

tel Xeon CPU E5-1607 v2 with four cores @3.0 GHz (Ivy
Bridge), 32 GB main memory, and an NVIDIA GTX 770
GPU with 4 GB of device memory. On the software side,
we use Ubuntu 14.04.2 (64 Bit) as operating system and the
NVIDIA CUDA driver 331.113 (CUDA 5.5). Before starting
the benchmark, we pre-load the database into main memory
and access structures in the GPU memory, until the GPU
buffer size is reached.

For each SSBM workload, we run all SSBM queries (Q1.1-
Q4.3). In case of the TPC-H workload, we run a subset
of the queries (Q2-Q7). The remaining TPC-H queries are
not fully supported in the current version of CoGaDB. We
elaborate details about the benchmarks and the selection
of queries in Appendix C. For each experiment, we run a
workload two times to warm up the system. Then, we run
the workload 100 times, and show the execution time of the
workload and the time to transfer data over the PCIe bus.
We focus our discussions on Data-Driven, Chopping , and
Data-Driven Chopping .

6.2 Detailed Experiments
We validate our proposed heuristics on the SSBM and

TPC-H benchmark in terms of performance and caused IO on
the PCIe bus. We investigate both effects—cache thrashing
when a working set exceeds the co-processor cache and heap
contention by excessive inter-operator parallelism—on the
SSBM and TPC-H benchmark. For this, we perform one
experiment per effect. We conduct an experiment where we
increase the scale factor of both benchmarks (single user) and

5 10 15 20 25 30

0

2,000

4,000

Scale Factor

W
o
rk

lo
a
d

E
x
e
c
u
ti

o
n

T
im

e
in

s

(a) Workload of SSBM queries.

5 10 15 20

0

200

400

600

800

Scale Factor

W
o
rk

lo
a
d

E
x
e
c
u
ti

o
n

T
im

e
in

s

CPU Only GPU Only

Critical Path Data-Driven

Chopping Data-Driven +Chopping

(b) Workload of selected TPC-H queries.

Figure 14: Average workload execution time of
SSBM and selected TPC-H Queries. Data-Driven
combined with Chopping can improve performance
significantly and is never slower than any other
heuristic.

measure performance and transfer times for inter-processor
communication to investigate the cache thrashing effect. To
understand how different execution and placement strategies
react to heap contention situations, we conduct an experiment
where we increase the number of concurrently running queries
of both benchmarks and measure workload execution time
and transfer times for inter-processor communication for a
scale factor of 10.

As reference points, we included two heuristics for operator-
driven data placement at compile-time to reflect the state of
the art. The GPU Preferred heuristic executes all operators
on the GPU, and only switches back to the CPU in case
an operator runs out of memory. The Critical Path is the
default iterative refinement optimizer of CoGaDB, which
creates a hybrid CPU/GPU plan with the lowest response
time. We describe Critical Path in detail in Appendix D.
These heuristics all use operator-driven data placement at
compile time. We compare these heuristics to the three
basic variants of our proposal: Data-Driven at compile-time,
Chopping with operator-driven data placement, and Data-
Driven Chopping .

6.2.1 Scaling Database Size
To understand how different execution and placement strat-

egies react to cache thrashing situations, we scale up the
SSBM and TPC-H databases to increase the memory require-
ments of the working set. We show the results in Figure 14 for
the SSBM and TPC-H benchmark. It is clearly visible that
a GPU-only execution is not suitable for growing database
sizes, as it is inferior to the remaining strategies. The reason
is that a large portion of the execution time is spend on data

1898

5 10 15 20 25 30

10

100

1000

3000

Scale Factor

D
a
ta

T
ra

n
sf

e
r

T
im

e
C

P
U

to
G

P
U

in
s

(a) Workload of SSBM queries.

5 10 15 20

10

100

600

Scale Factor

D
a
ta

T
ra

n
sf

e
r

T
im

e
C

P
U

to
G

P
U

in
s

GPU Only Critical Path

Data-Driven Chopping

Data-Driven +Chopping

(b) Workload of selected TPC-H queries.

Figure 15: Average data transfer time CPU to GPU
of SSBM and selected TPC-H Queries. Data-Driven
combined with Chopping saves the most IO.

5 10 15 20 25 30

2

4

6
GPU Memory Capacity

GPU Data Cache Capacity

Scale Factor

M
e
m

o
ry

F
o
o
tp

ri
n
t

in
G

B

SSBM TPC-H

Figure 16: Memory footprint of workloads

transfers from CPU to GPU as illustrated by Figure 15. The
performance of the GPU-only approach falls behind starting
at scale factor 15 (SSBM and TPC-H). Figure 16 shows
the memory footprint of the SSBM and TPC-H Workload.
Starting from scale factor 15, it significantly exceeds the data
cache, and thus, clearly shows the cache-thrashing effect.

As expected from our observations in the selection work-
load, Data-Driven and Chopping reduce the workload exe-
cution time compared to the GPU-only approach, however,
Data-Driven can still slow down performance compared to
a CPU-only approach. The combined Data-Driven Chop-
ping approach can improve performance even when resources
become scarce, and never performs worse than a CPU-only
approach. Thus, Data-Driven Chopping fulfills our require-
ments for robust query processing.

Data-Driven saves data transfers from the CPU to the
GPU, because Chopping runs into the cache thrashing effect
while Data-Driven avoids this overhead. We can observe this
effect in the increased copy times of Chopping compared to
Data-Driven in the TPC-H workload (cf. Figure 15(b)). At

Q1.1 Q2.1 Q2.3 Q3.1 Q3.4 Q4.1 Q4.3

0

2

4

E
x
e
c
u
ti

o
n

T
im

e
in

s

CPU Only GPU Only

Critical Path Data-Driven

Chopping Data-Driven +Chopping

Figure 17: Query execution times for selected SSBM
queries for a single user and a database of scale fac-
tor 30.

the same time, the data transfer time from GPU to CPU
is larger for Data-Driven compared with Chopping , because
Data-Driven alone cannot react to aborted operators.

According to the savings of IO time of Chopping compared
with Data-Driven, we conclude that the increasing database
size can also lead to the heap contention effect, where oper-
ators need to abort because they run out of heap memory.
This situation is difficult to predict and Chopping provides a
simple and cheap error handling.

To get a more detailed understanding of what happens
when memory resources become scarce, we investigate the
query run-time of selected SSBM queries at scale factor 30
and illustrate them in Figure 17. The GPU-Only approach
slows down each query. Critical Path is always as fast as the
CPU-Only approach, because it detected the performance
degradation due to the co-processor and only uses the CPU.
For low selectivity queries (Q1.1, Q2.1, Q3.1, Q4.1), Data-
Driven Chopping has little impact on performance. However,
for high selectivity queries (Q2.3, Q3.4, Q4.3) we observe
a performance improvement of up to factor 2.5 (Q3.4). A
detailed examination of the query plans revealed that the
(pushed-down) selections are put on the GPU, and frequently
the first join, which accelerates the query. Since the inter-
mediate results are small, it is cheap to switch back to the
CPU in case a required input column is not cached (e.g.,
a join column). The reason low selectivity queries cannot
be accelerated as well is twofold. First, it is more costly
to switch back to the CPU and second, larger intermediate
results increase the probability of memory scarcity and hence,
operator aborts.

Overall, we conclude that of the compared strategies, the
combination Data-Driven Chopping achieves the best perfor-
mance (Figure 14) and minimal IO (Figure 15).

6.2.2 Scaling User Parallelism
To show the heap contention effect, we use a SSBM and a

TPC-H database with fixed size (scale factor 10) and increase
the number of parallel running queries (users). For each
workload, we execute all queries 100 times. We repeat the
workload multiple times and present the average execution
time. Note that the total number of queries in the workload
is fixed, only the number of parallel running queries changes.

Parallel query execution slows down query processing by
a factor of 1.24 for the SSBM workload and by a factor of
1.85 for the TPC-H workload compared to a naive use of
the GPU, as we show in Figure 18. Compared to a GPU
Only execution, Data-Driven Chopping achieves a speedup
by a factor of 1.36 for the SSBM and 1.66 for the TPC-H
workload and uses significantly less resources.

1899

1 5 10 15 20

0

200

400

600

Number of Parallel Users

W
o
rk

lo
a
d

E
x
e
c
u
ti

o
n

T
im

e
in

s

(a) Workload of SSBM queries.

1 5 10 15 20

0

100

200

300

400

Number of Parallel Users

W
o
rk

lo
a
d

E
x
e
c
u
ti

o
n

T
im

e
in

s

CPU Only GPU Only

Critical Path Data-Driven

Chopping Data-Driven +Chopping

(b) Workload of selected TPC-H queries.

Figure 18: Average workload execution time of
SSBM and TPC-H queries for varying parallel users.
The dynamic reaction to faults of Chopping results
in improved performance.

Chopping and Data-Driven Chopping reduce the required
IO significantly—especially for workloads with many parallel
users—as we show in Figure 19. Data-Driven Chopping re-
duces the time required for data transfers from CPU to GPU
by a factor of 48 for the SSBM and 16 for the TPC-H work-
load. The main reason for the improved performance is the
fine grained concurrency limitation of Chopping . However,
run-time placement without parallelism control significantly
reduces resource consumption as well.

To quantify the cost of aborted GPU operators, we measure
the time from begin to abort of GPU operators and add
them to a counter. We call this metric the wasted time and
illustrate it for the SSBM experiments in Figure 20. Chopping
and Data-Driven Chopping reduce the wasted time by up
to a factor of 74. Note that both the copy time and wasted
time can be larger than the overall workload execution time,
because they reflect the total time, whereas the workload
execution time represents the response time.

We show the execution time of selected SSBM queries
for a workload serving 20 parallel users (cf. Figure 21).
Chopping and Data-Driven Chopping are faster than the
other heuristics for queries Q3.1, Q3.4, Q4.1 (up to a factor
of 3.5 for Q3.4), competitive for queries 2.1, 2.3, 4.3, and
slower for query Q1.1 (by a factor of 1.78 compared to GPU
Only). As reference point, we use a GPU Only execution
combined with an admission control mechanism that admits
only a single query at a time. This way, intermediate results
are consumed as fast as possible and heap contention is
avoided. However, such admission control at query level
increases query latencies (cf. Figure 21 and Figure 25 in the
appendix). Chopping is either as fast as admission control

1 5 10 15 20

100

200

300

400

500

600

Number of Parallel Users

D
a
ta

T
ra

n
sf

e
r

T
im

e
C

P
U

to
G

P
U

in
s

(a) Workload of SSBM queries

1 5 10 15 20

100

200

300

400

Number of Parallel Users

D
a
ta

T
ra

n
sf

e
r

T
im

e
C

P
U

to
G

P
U

in
s

GPU Only Critical Path

Data-Driven Chopping

Data-Driven +Chopping

(b) Workload of selected TPC-H queries

Figure 19: Data transfer times CPU to GPU of
SSBM and TPC-H workload for varying parallel
users. Chopping reduces IO significantly especially
with increasing number of parallel queries.

(Q4.1 and Q4.2) or faster and improves query response times
of up to a factor of 1.4. Compared to admission control, some
queries are significantly faster using Data-Driven Chopping
(Q3.4 by a factor of 3.6 and Q4.1 by a factor of 1.5), while
other queries are slowed down (e.g., Q1.3 by a factor of 1.25).
This is due to different operator placement enforced by the
Data-Driven heuristic. With respect to the average query
execution time, the average query response time of Data-
Driven Chopping is improved by a factor of 1.1 and with
Chopping it is improved by a factor of 1.2. By examining
execution times of all queries, we observe that short running
queries become slower to some degree, whereas long running
queries are accelerated. This is not surprising as long running
queries either include more operators or process more data,
which both increases the probability of operator aborts and
thus, benefit more from Chopping . Short running queries are
not always executed at full speed but can be decelerated by
the concurrency limitation of Chopping .

We conclude that heap contention occurs in complex work-
loads and can significantly decrease performance and in-
crease resource usage. Furthermore, we have seen that Chop-
ping and Data-Driven Chopping both significantly accelerate
query processing and reduce resource consumption by avoid-
ing heap contention.

During our experiments we also discovered that the heap
contention effect can be much stronger in case the join order is
sub-optimal, because the greater intermediate results increase
processing time and the probability of operator aborts.

We confirm the observations of Wang that executing too
many queries in parallel on GPUs degrades performance [35].
Our solution Data-Driven Chopping limits the use of the

1900

1 5 10 15 20

1

10

100

600

Number of Parallel Users

W
a
st

e
d

T
im

e
b
y

A
b

o
rt

e
d

G
P

U
O

p
e
ra

to
rs

in
s

GPU Only Critical Path

Data-Driven Chopping

Data-Driven +Chopping

Figure 20: Wasted time by aborted GPU operators
depending on the number of parallel users for the
SSBM. With an increasing number of users, the
wasted time increases significantly because of heap
contention.

Q1.1 Q2.1 Q2.3 Q3.1 Q3.4 Q4.1 Q4.3

0

5

10

L
a
te

n
c
y

in
s

CPU Only GPU Only

Critical Path Data-Driven

Chopping Data-Driven +Chopping

Admission Control

Figure 21: Latencies for selected SSBM queries for
20 users and a database of scale factor 10.

GPU to the degree where it is beneficial and thus, avoids
heap contention.

6.3 Discussion
In all of our experiments, the strategy which combines

Data-Driven with Chopping achieved the best overall result.
Either it was the fastest strategy, or it was as fast as the other
strategies while minimizing IO. This is not surprising as this
is the only strategy that avoids the cache thrashing and the
heap contention effect, and thus, achieves the most stable
performance, especially when compared to the state-of-the-
art heuristics, which use a operator-driven data placement
at query compile-time. We also learned that cache thrashing
has a much stronger effect on a complex query workload than
heap contention.
Data-Driven Chopping improves several metrics at once:

1. Worst-Case Execution Time: Data-Driven Chop-
ping improves performance when resources become
scarce of up to factor 24 in our micro benchmarks and
up to factor 2 for the SSBM and TPC-H workload.

2. PCIe Traffic: Data-Driven Chopping requires less IO
(up to a factor of 48) on the PCIe bus. In database
engines using block-oriented query execution, we can
spend these resources to stream data blocks from CPU
to the co-processor when the co-processor finished its
local data.

Our results have several implications. We can use co-
processors only for a part of the workload. We can improve
the scalability by compressing the database, which shifts the
point where performance breaks down to a larger scale factor
or number of users. Thus, compression neither solves the
cache thrashing nor the heap contention problem. However,
it is common to use multiple GPUs in a single machine,
which can handle larger databases and more parallel users.
This scale up by multiple co-processors can help us to pro-
cess workloads that have resource demands exceeding the
resources of a single co-processor. Our Data-Driven strategy
can support multiple co-processors by performing horizontal
partitioning. However, the basic problems and their solu-
tions stay the same. Additionally, our results show that
GPUs—and other co-processors—alone are not a viable so-
lution. CPUs and co-processors need to work together to
perform query processing efficiently.

7. RELATED WORK
In this section, we discuss related work on co-processor-

accelerated DBMSs and concurrent query processing.

7.1 Co-Processor-accelerated DBMSs
He and others developed the first GPU-accelerated data-

base engine, namely GPUQP [13]. GPUQP can use CPU and
GPU in the same query and uses a modified backtracking op-
timizer: Each query plan is decomposed into sub-plans with
at most 10 operators. Then, the optimizer performs a back-
tracking search to find the optimal plan for each sub-plan.
Finally, the physical query plan is created by combining the
optimal sub-plans. GPUQP could afford to create many plan
candidates, because it used analytical cost models, where
each estimation can be computed in a couple of CPU cycles.
However, for learning-based approaches, computing an esti-
mation can take a non-negligible amount of time (in the order
of several micro seconds). Since CoGaDB uses the learned
cost models of HyPE during optimization, using backtracking
or dynamic programming approaches is very expensive. In
this work, we counter this drawback of learning-based cost
models by introducing simple but efficient heuristics.

He and others investigated the performance of hash joins
on a coupled CPU/GPU architecture [14]. For each step in
the hash join, a certain part of the input data is placed on
the CPU and on the GPU to fully occupy both processors
and minimize execution skew.

Zhang and others developed OmniDB [38], a database
engine that targets heterogeneous processor environments
and focuses on hardware obliviousness, similar to Ocelot [15].
OmniDB schedules so called work units on the available pro-
cessors. Each work unit is placed on the processor with the
highest throughput, but only a certain fraction of the work-
load may be executed on each processor to avoid overloading.
We were not able to include this heuristic in CoGaDB, be-
cause CoGaDB uses a bulk processor, whereas the heuristic
of Zhang assumes a vector-at-a-time processing model.

Pirk and others propose the approximate and refine tech-
nique [30], where data is lossily compressed using the bitwise
decomposition technique [31]. The idea is to compute an ap-
proximate result on lossily compressed data, which is cached
on a co-processor. Then, the result is refined on the CPU,
which has the missing information lost by the compression
and filters out false positives. The technique completely
avoids data transfer from the CPU to a co-processor, similar
to our Data-Driven technique. However, approximate and
refine requires a refinement step after each GPU operator.
On the one hand, this distributes the load on CPU and GPU

1901

and allows for inter-device parallelism. On the other hand,
the data transfer from the co-processor to the CPU is likely
to become the bottleneck. Data-Driven avoids to copy back
intermediate results if possible, but is also likely to require a
larger device memory footprint. It would be worthwhile to
compare these techniques in future work.

Karnagel and others extended the hardware-oblivious da-
tabase engine Ocelot by their heterogeneity-aware operator
placement [20], which uses a combination of analytical and
learning-based cost models to predict the performance of
operators, similar to He and others [13] and Yuan and others
[37]. Karnagel and others place operators at run-time and
use operator-driven data placement. However, they do not
support inter-operator parallelism on a single processor.

Karnagel and others evaluated the impact of compile-time
and run-time optimization with the Ocelot Engine [19]. They
conclude that both approaches are similarly efficient, where
run-time placement is easier to implement and global opti-
mization achieves an overall more robust performance. We
make similar observations in CoGaDB in case no memory
thrashing or heap contention occurs. However, when hitting
the resource limits of co-processors, the operator placement
should be done at run-time.

Except some management tasks, GPUDB [37], MultiQx-
GPU [35] and Red Fox [36] process queries only on the GPU,
and hence, use no query optimization heuristic for operator
placement. Ocelot is capable of running on all OpenCL capa-
ble processors, but Ocelot cannot make automatic placement
decisions by itself [15]. For operator placement, Ocelot makes
use of the HyPE optimizer [8].

Aside from GPUs, there are other co-processors to acceler-
ate database query processing, such as MICs [18, 23], Cell
Processors [16], and FPGAs [25].

7.2 Concurrent Query Processing
Parallel query processing on co-processors and its problems

with resource contention is strongly related to concurrent
query processing in general.

Harizopoulos and others contribute QPipe, a relational en-
gine that uses simultaneous pipelining and focuses on parallel
OLAP workloads [12]. Since concurrent queries are likely to
access the same data and perform similar operators, it is pos-
sible to perform common disk accesses or to reuse common
intermediate results. Since QPipe detects commonalities
between queries at run-time, it does not need a multi-query
optimizer. Our strategy Data-Driven shares the basic idea,
because co-processor operators share the cached access struc-
tures of CoGaDB to avoid the data transfer overhead.

Arumugam and others developed the DataPath system,
which uses a purely data-driven approach to push data to
processors, where it is consumed by any interested compu-
tation [3]. This allows for heavy sharing of computational
and memory resources and may be a viable way to use co-
processors in case the database is orders of magnitudes larger
than the co-processors memory.

Psaroudakis and others propose to decompose database
operators into tasks, which can be efficiently executed on
multi-socket, multi-core machines [33]. However, a fixed con-
currency level is not optimal, and thus, needs to be adapted
at run-time. Furthermore, they decompose complex opera-
tors into several tasks according to a certain task granularity
to efficiently parallelize OLAP queries. These results can
also benefit Chopping , and other run-time placement strate-
gies, to adjust the concurrency in a workload, especially on
a co-processor to find the optimal concurrency level, where
co-processor operators seldom abort and we can sufficiently

use the co-processor to accelerate query processing. The
operator decomposition can also help us to process operators
on CPUs and co-processors concurrently.

In a further study, Psaroudakis and others investigate
under which conditions a data warehouse should use simul-
taneous pipelining and global query plans [32].

Leis and others present the Morsel framework, which mul-
tiplexes a query workload to a fixed set of worker threads at
the granularity of blocks of tuples (morsels) [22]. Parallelism
is achieved by processing different morsels in parallel by
the same operator pipeline. These pipelines are created by
just-in-time query compilation [27]. Furthermore, the Morsel
framework is NUMA aware, because it prefers to work on
morsels in local NUMA regions. Thus, it shares the idea
of processing data locally similar to Data-Driven and also
uses a thread pool pattern to avoid over-commitment similar
to Chopping . Mühlbauer and others build a heterogeneity-
aware operator placement on top of the Morsel framework
to optimize databases for performance and energy efficiency
on the ARM big.LITTLE processor [26].

Wang and others investigated concurrent query processing
on GPUs in their system MultiQx-GPU [35]. They argue that
we cannot utilize the PCIe bus bandwidth, device memory
bandwidth, and compute utilization with a single query,
and propose to execute queries concurrently on the GPU.
However, due to the limited device memory, the DBMS needs
to be careful to not overload the GPU, because otherwise the
performance decreases. Wang and others use an admission
control mechanism to steer the concurrency.

However, our observations differ for concurrent workloads
for the GPU Preferred strategy, which achieved 62% better
performance for a workload with ten parallel queries. We
explain this difference by the differences in the database
engines and their fault-tolerance mechanisms. Wang and
others execute complete queries on the GPU, and use their
cost-driven replacement technique to swap data to the CPU’s
main memory in case memory becomes scarce, which causes
high PCIe bus traffic. CoGaDB also evicts cached data to
successfully complete a query, but uses CPU and GPU to
process queries. Otherwise, CoGaDB aborts an operator and
restarts it on a CPU. With our Data-Driven heuristic, we
avoid this data transfer overhead and can cheaply outsource
load from the GPU in case it becomes overloaded. We expect
similar results if our approaches are applied to other systems,
such as Ocelot [15] or MultiQx-GPU [35].

8. SUMMARY
In this paper, we investigated robust query processing in

heterogeneous co-processor environments. Since co-proces-
sors typically have a small dedicated memory, it is crucial
to cache frequently-accessed data in the co-processor’s mem-
ory. We identify two effects during query processing on
co-processors that can lead to poor performance: Cache
thrashing and heap contention.

We showed that placing operators on co-processors, where
their input is cached and the remaining operators are pro-
cessed on the CPU, is the key to overcome cache thrashing.
The heap contention problem appears in parallel user work-
loads, where multiple operators use a co-processor. We can
solve this issue by using a pool of worker threads that pulls
operators to the co-processor, and at the same time dynam-
ically reacts to operator faults (e.g., out of memory). We
showed that our technique Data-Driven Chopping combines
these approaches and achieves robust and stable query pro-
cessing compared to the state of the art of query processing
on co-processors.

1902

9. REFERENCES
[1] CUDA C programming guide, CUDA version 6.5,

77–78. NVIDIA, 2014. http://docs.nvidia.com/cuda/
pdf/CUDA C Programming Guide.pdf.

[2] D. J. Abadi, S. R. Madden, and N. Hachem.
Column-stores vs. row-stores: How different are they
really? In SIGMOD, pages 967–980. ACM, 2008.

[3] S. Arumugam, A. Dobra, C. M. Jermaine, N. Pansare,
and L. Perez. The DataPath system: A data-centric
analytic processing engine for large data warehouses. In
SIGMOD, pages 519–530. ACM, 2010.

[4] P. A. Boncz and M. L. Kersten. MIL primitives for
querying a fragmented world. The VLDB Journal,
8(2):101–119, 1999.

[5] P. A. Boncz, M. Zukowski, and N. Nes.
MonetDB/X100: Hyper-pipelining query execution. In
CIDR, pages 225–237, 2005.

[6] S. Borkar and A. A. Chien. The future of
microprocessors. Communications of the ACM,
54(5):67–77, 2011.

[7] S. Breß, F. Beier, H. Rauhe, K.-U. Sattler,
E. Schallehn, and G. Saake. Efficient co-processor
utilization in database query processing. Information
Systems, 38(8):1084–1096, 2013.

[8] S. Breß, M. Heimel, M. Saecker, B. Kocher, V. Markl,
and G. Saake. Ocelot/HyPE: Optimized data
processing on heterogeneous hardware. PVLDB,
7(13):1609–1612, 2014.

[9] S. Breß, N. Siegmund, M. Heimel, M. Saecker,
T. Lauer, L. Bellatreche, and G. Saake. Load-aware
inter-co-processor parallelism in database query
processing. Data & Knowledge Engineering,
93(0):60–79, 2014.

[10] L. Chen, X. Huo, and G. Agrawal. Accelerating
mapreduce on a coupled cpu-gpu architecture. In SC,
pages 25:1–25:11. IEEE, 2012.

[11] C. Gregg and K. Hazelwood. Where is the data? why
you cannot debate CPU vs. GPU performance without
the answer. In ISPASS, pages 134–144. IEEE, 2011.

[12] S. Harizopoulos, V. Shkapenyuk, and A. Ailamaki.
QPipe: A simultaneously pipelined relational query
engine. In SIGMOD, pages 383–394. ACM, 2005.

[13] B. He, M. Lu, K. Yang, R. Fang, N. K. Govindaraju,
Q. Luo, and P. V. Sander. Relational query
co-processing on graphics processors. In ACM Trans.
Database Syst., volume 34. ACM, 2009.

[14] J. He, M. Lu, and B. He. Revisiting co-processing for
hash joins on the coupled CPU-GPU architecture. Proc.
VLDB Endow., 6(10):889–900, 2013.

[15] M. Heimel, M. Saecker, H. Pirk, S. Manegold, and
V. Markl. Hardware-oblivious parallelism for
in-memory column-stores. PVLDB, 6(9):709–720, 2013.

[16] S. Héman, N. Nes, M. Zukowski, and P. Boncz.
Vectorized data processing on the Cell broadband
engine. In DaMoN, pages 4:1–4:6. ACM, 2007.

[17] S. Idreos, F. Groffen, N. Nes, S. Manegold, K. S.
Mullender, and M. L. Kersten. MonetDB: Two decades
of research in column-oriented database architectures.
IEEE Data Eng. Bull., 35(1):40–45, 2012.

[18] S. Jha, B. He, M. Lu, X. Cheng, and H. P. Huynh.
Improving main memory hash joins on Intel Xeon Phi
processors: An experimental approach. PVLDB,
8(6):642–653, 2015.

[19] T. Karnagel, D. Habich, and W. Lehner. Local vs.
global optimization: Operator placement strategies in

heterogeneous environments. In DAPHNE,
EDBT/ICDT Workshops, pages 48–55, 2015.

[20] T. Karnagel, M. Heimel, M. Hille, M. Ludwig,
D. Habich, W. Lehner, and V. Markl. Demonstrating
efficient query processing in heterogeneous
environments. In SIGMOD, pages 693–696. ACM, 2014.

[21] K. Krikellas, S. Viglas, and M. Cintra. Generating code
for holistic query evaluation. In ICDE, pages 613–624.
IEEE, 2010.

[22] V. Leis, P. Boncz, A. Kemper, and T. Neumann.
Morsel-driven parallelism: A NUMA-aware query
evaluation framework for the many-core age. In
SIGMOD, pages 743–754. ACM, 2014.

[23] M. Lu, L. Zhang, H. P. Huynh, Z. Ong, Y. Liang,
B. He, R. Goh, and R. Huynh. Optimizing the
mapreduce framework on Intel Xeon Phi coprocessor.
In Big Data, pages 125–130. IEEE, 2013.

[24] T. Mostak. An overview of MapD (massively parallel
database). White Paper, MIT, April 2013.
http://geops.csail.mit.edu/docs/mapd overview.pdf.

[25] R. Mueller, J. Teubner, and G. Alonso. Data processing
on FPGAs. PVLDB, 2(1):910–921, 2009.

[26] T. Mühlbauer, W. Rödiger, R. Seilbeck, A. Kemper,
and T. Neumann. Heterogeneity-conscious parallel
query execution: Getting a better mileage while driving
faster! In DaMoN, pages 2:1–2:10. ACM, 2014.

[27] T. Neumann. Efficiently compiling efficient query plans
for modern hardware. PVLDB, 4(9):539–550, 2011.

[28] P. O’Neil, E. J. O’Neil, and X. Chen. The star schema
benchmark (SSB), 2009. Revision 3,
http://www.cs.umb.edu/˜poneil/StarSchemaB.PDF.

[29] I. Pandis, R. Johnson, N. Hardavellas, and A. Ailamaki.
Data-oriented transaction execution. PVLDB,
3(1-2):928–939, 2010.

[30] H. Pirk, S. Manegold, and M. Kersten. Waste not...
efficient co-processing of relational data. In ICDE.
IEEE, 2014.

[31] H. Pirk, T. Sellam, S. Manegold, and M. Kersten.
X-Device Query Processing by Bitwise Distribution. In
DaMoN, pages 48–54. ACM, 2012.

[32] I. Psaroudakis, M. Athanassoulis, and A. Ailamaki.
Sharing data and work across concurrent analytical
queries. PVLDB, 6(9):637–648, 2013.

[33] I. Psaroudakis, T. Scheuer, N. May, and A. Ailamaki.
Task scheduling for highly concurrent analytical and
transactional main-memory workloads. In ADMS,
pages 36–45. VLDB Endowment, 2013.

[34] J. Sanders and E. Kandrot. CUDA by Example: An
Introduction to General-Purpose GPU Programming.
Addison-Wesley Professional, 1st edition, 2010.

[35] K. Wang, K. Zhang, Y. Yuan, S. Ma, R. Lee, X. Ding,
and X. Zhang. Concurrent analytical query processing
with GPUs. PVLDB, 7(11):1011–1022, 2014.

[36] H. Wu, G. Diamos, T. Sheard, M. Aref, S. Baxter,
M. Garland, and S. Yalamanchili. Red Fox: An
execution environment for relational query processing
on GPUs. In CGO, pages 44:44–44:54. ACM, 2014.

[37] Y. Yuan, R. Lee, and X. Zhang. The yin and yang of
processing data warehousing queries on GPU devices.
PVLDB, 6(10):817–828, 2013.

[38] S. Zhang et al. OmniDB: Towards portable and
efficient query processing on parallel CPU/GPU
architectures. PVLDB, 6(12):1374–1377, 2013.

1903

Q2 Q3 Q4 Q5 Q6 Q7

0.01

0.1

1

3
E

x
e
c
u
ti

o
n

T
im

e
in

s

MonetDB Ocelot (CPU)

Ocelot (GPU) CoGaDB (CPU)

CoGaDB (GPU)

Figure 22: Query execution times for selected TPC-
H queries for a single user and a database of scale
factor 10.

APPENDIX
A. PERFORMANCE COMPARISON:

OCELOT VERSUS CoGaDB
In this section, we conduct a performance comparison of

CoGaDB and a state-of-the-art database engine with GPU
support: Ocelot [15] (at revision 3e75851).3 As Ocelot is an
extension of MonetDB, we include measurements of Mon-
etDB as well. Note that MonetDB, Ocelot, and CoGaDB
exploit all cores of the CPU to maximize performance. For
a fair comparison with CoGaDB, we optimized MonetDB/O-
celot as follows.

We set the databases to read-only mode and set the size
of OIDs to 32 bit. Furthermore, we measured a warm sys-
tem after the queries where run before to ensure that the
database resides in memory. For all measurements with
MonetDB/Ocelot, we used the benchmark scripts that are
provided by the author of Ocelot as part of the source code.

We show the average query execution times for the TPC-H
benchmark in Figure 22 and the SSBM in Figure 23. Both
engines show that GPUs can significantly accelerate query
processing. We will now discuss the performance for the
GPU and CPU backends. Since we are interested in the raw
query processing power, we choose a configuration with a
single user and use databases with scale factor 10, where
neither memory thrashing nor heap contention occurs. We
omit SSBM Query 2.2 and TPC-H query 2 for Ocelot, as it
does not support them.

For the SSBM workload, the GPU backends of Ocelot and
CoGaDB perform equally well for queries Q1.1-Q1.3 and
Q3.1-Q4.3. Ocelots GPU backend is faster for the queries
Q2.1 and 2.3. As for the TPC-H workload, CoGaDB is faster
for queries Q3 and Q4, equally fast for queries Q5 and Q7
and slower for query Q7. Thus, the GPU backends of Ocelot
and CoGaDB are both highly optimized and competitive in
performance.

As for the CPU backend, we see that Ocelot performs bet-
ter than CoGaDB for all SSBM queries except Q1.1-1.3 and
Q3.1. For queries Q4.1-Q4.3, the performance improvement
is comparatively small. For the TPC-H queries, CoGaDB is
faster or competitive to Ocelot for queries Q3,Q4,Q6, Q7 and
slower for query Q5. Besides TPC-H query Q2, CoGaDB
is never significantly slower than MonetDB, and for some
queries even faster (e.g., SSBM Q4.1).

3https://bitbucket.org/msaecker/monetdb-opencl

We conclude that CoGaDB is competitive in performance
to the MonetDB/Ocelot system and thus, is a suitable basis
for our performance studies.

B. MICRO BENCHMARKS
In this section, we describe our micro benchmarks which

show the cache thrashing and heap contention effects.

B.1 Serial Selection Workload
Our first benchmark shows the cache thrashing effect. For

this, we execute queries serially and use multiple selection
queries that access different input columns of the fact table
from the star schema benchmark. We show the queries in
Figure 1. A workload consists of 100 repetitions of these
queries. We execute the workload multiple times and show
the average execution time.

1 s e l e c t ∗ from order where quantity<1
2 s e l e c t ∗ from order where discount >10
3 s e l e c t ∗ from order where s h i p p r i o r i t y >0
4 s e l e c t ∗ from order where extendedpr ice <100
5 s e l e c t ∗ from order where o r d t o t a l p r i c e <100
6 s e l e c t ∗ from order where revenue <1000
7 s e l e c t ∗ from order where supplycost <1000
8 s e l e c t ∗ from order where tax>10

Listing 1: Serial Selection Queries. Note the inter-
leaved execution. The order table is an alias for the
lineorder table.

B.2 Parallel Selection Workload
Our second benchmark shows the heap contention effect.

To show the problems of aborted co-processor operators,
we use a more complex selection query, but filter only two
columns which fit into the co-processors data cache (cf. List-
ing 2). The query is derived from query Q1.1 of the star
schema benchmark. For each experiment, we execute 100
queries, but increase the number of parallel user sessions that
execute the workload. Since all workloads contain the same
amount work, an ideal system could execute all workloads
in the same time. The only difference is that with increas-
ing number of parallel users, the parallelism in the DBMS
changes from intra-operator parallelism to inter-operator
parallelism.

s e l e c t ∗ from order where d i scount
between 4 and 6 and quant i ty between 26 and 35

Listing 2: Parallel Selection Query

C. WORKLOADS
In this section, we briefly present the star schema bench-

mark and our modifications to the TPC-H benchmark.

C.1 Star Schema Benchmark
The Star Schema Benchmark (SSBM) is a popular OLAP

benchmark, derived from the TPC-H benchmark by applying
de-normalization. The SSBM is frequently used for perfor-
mance evaluation, such as in C-Store [2] or GPUDB [37].

C.1.1 Schema and Data
The SSBM uses a classical star schema with one fact table

lineorder and four dimension tables supplier, part, date, and
customer. Similar to TPC-H, we can adjust the size of the
database by a scale factor. If not defined differently, we use a
scale factor of 10 (LINEORDER contains 60,000,000 tuples).

1904

Q1.1 Q1.2 Q1.3 Q2.1 Q2.2 Q2.3 Q3.1 Q3.2 Q3.3 Q3.4 Q4.1 Q4.2 Q4.3

0

500

1,000

E
x
e
c
u
ti

o
n

T
im

e
in

m
s

MonetDB Ocelot (CPU) Ocelot (GPU) CoGaDB (CPU) CoGaDB (GPU)

Figure 23: Query execution times for SSBM queries for a single user and a database of scale factor 10.

C.1.2 Queries
The SSBM defines 13 queries, which are grouped into

four categories (flights). In each category, the basic query
is the same, but different queries have different selectivities.
One category basically models a drill-down operation in a
data warehouse. Furthermore, the number of required join
operations vary from 1 (category 1) to 4 (category 4) join
operations. Therefore, with increasing category number,
query complexity increases. For further details on the SSBM,
we refer the reader to the work of O’Neil and others [28].

C.2 Modifications to TPC-H Benchmark
As the TPC-H benchmark is widely known, we will focus

on our modifications to the workload. Our goal is to run a rep-
resentative set of TPC-H queries that benchmark relational
operators. Advanced capabilities such as case statements,
joins with arbitrary join conditions, and substring functions
are not in our scope and queries that use these features are
omitted. Thus, we focused on the efficient support of six
TPC-H queries (Q2-Q7) on CPU and GPU to evaluate the
memory thrashing and heap contention effects.

D. CRITICAL PATH HEURISTIC
We now discuss the Critical Path heuristic for operator

placement used by default in CoGaDB. Critical Path opti-
mizes for response time and operates as classic cost-based
optimizer, where multiple plan candidates are enumerated
and the cheapest plan is selected for execution.

To achieve a low response time for queries, we need to
optimize the critical path, which is the path from a leaf
operator to the plan’s root that takes the longest time to
execute. As data transfers are expensive, we only consider
plans where such a path is either completely executed on
the CPU or the co-processor. For each binary operator, the
processing on the co-processor is continued only if both child
operators were executed on the co-processor.

This heuristic also significantly reduces the search space,
as we have an exponential complexity in the number of
leaf operators instead of an exponential complexity in the
number of all operators. However, for large queries this can
also become expensive, so we use an iterative refinement
algorithm that prunes the search space further and runs for
a fixed amount of iterations.

Based on these concepts, the Critical Path heuristic works
as follows. Each leaf operator is assigned to the CPU and
a pure CPU plan is created. From this initial plan, we first
investigate all plans where a single leaf operator (and it’s
path to the first binary parent operator) is executed on the co-
processor. For the fastest plan, one additional leaf operator is
placed on the co-processor and the next iteration takes place.

0 % 20 % 40 % 60 % 80 % 100 %
0

200

400

600

Working Set Size

Fraction of GPU memory used as column cache

W
o
rk

lo
a
d

E
x
e
c
u
ti

o
n

T
im

e
in

s

LFU LRU CPU only

Figure 24: Execution time of a workload of in-
terleaved SSBM queries with different placement
strategies on a database of scale factor 10.

The additional reduction of the optimization space makes
Critical Path quadratic in the number of leaf operators. The
algorithm terminates if all plans of the reduced optimization
space were examined or a fixed number of iterations has
passed in case the plan contains too many leaf operators.

The Critical Path heuristic produces faster query plans
than simulated annealing or genetic algorithms in most cases.
Occasionally, the produced plans of simulated annealing or
genetic algorithms are more efficient, but the plans produced
by Critical Path are still competitive. Thus, the problem
specific information of Critical Path provide an advantage
over established optimization strategies that explore a larger
part of the optimization space.

E. DATA PLACEMENT STRATEGIES
We compare a LFU and a LRU strategy in our data-driven

strategy for a complete SSBM workload in Figure 24. The
amount of GPU memory that is used as column cache is
varied between 0% and 100%. If input data does not fit in the
GPU memory, all processing on that data will be performed
by the CPU. As expected, the execution times are improving
until the working set fits entirely in the GPU memory, with
no slowdown for cases where no column fits into the cache.
The LFU strategy performs slightly better than the LRU
strategy for corner cases, where different columns are cached
first by LRU and LFU. This leads to a slight slowdown of
LRU. Overall, we conclude that the background policy is
effective for complex query workloads such as the SSBM
and that the data placement strategy itself has only a minor
impact on performance. Thus, the observed performance
gain comes clearly from our data driven strategy.

1905

1 5 10 15 20

0

2

4

6

L
a
te

n
c
y

in
s

Q1.1

1 5 10 15 20

0

2

4

6

Q1.2

1 5 10 15 20

0

2

4

6

Q1.3

1 5 10 15 20

0

5

10

L
a
te

n
c
y

in
s

Q2.1

1 5 10 15 20

0

5

10

Q2.2

1 5 10 15 20

0

5

10

Q2.3

1 5 10 15 20

0

5

10

L
a
te

n
c
y

in
s

Q3.1

1 5 10 15 20

0

5

10

Q3.2

1 5 10 15 20

0

5

10

Q3.3

1 5 10 15 20

0

5

10

Number of Parallel Users

L
a
te

n
c
y

in
s

Q3.4

1 5 10 15 20

0

5

10

Number of Parallel Users

Q4.1

1 5 10 15 20

0

5

10

Number of Parallel Users

Q4.2

CPU Only GPU Only Chopping Data-Driven +Chopping Admission Control

Figure 25: Latencies of all SSBM queries with a varying number of parallel users and a database of scale
factor 10.

Acknowledgements
We thank the anonymous reviewers of SIGMOD for their help-
ful comments. We also thank Max Heimel from TU Berlin,
David Broneske, Sebastian Dorok, and Andreas Meister
from University of Magdeburg, and Thomas Lindemann and
Michael Kußmann from TU Dortmund University for helpful

feedback and discussions. The work has received funding
from the Deutsche Forschungsgemeinschaft (DFG), Collabo-
rative Research Center SFB 876, project C5 (http://sfb876.tu-
dortmund.de/) and from the European Union’s Horizon2020
Research & Innovation Program under grant agreement
671500 (project “SAGE”).

1906

