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Parallelism is currently seen as a mechanism to minimize the impact of the power and heat dissipation
problems encountered in modern hardware. Data parallelism—based on partitioning the data—and pipeline
parallelism—based on partitioning the computation—are the two main approaches to leverage parallelism
on a wide range of hardware platforms.

Unfortunately, not all data processing problems are susceptible to either of those strategies. An example is
the skyline operator [Börzsönyi et al. 2001], which computes the set of Pareto-optimal points within a multi-
dimensional data set. Existing approaches to parallelize the skyline operator are based on data parallelism.
As a result, they suffer from a high overhead when merging intermediate results because of the lack of a
global view of the problem inherent to partitioning the input data.

In this paper, we show how to combine pipeline with data parallelism on an FPGA for a more efficient
utilization of the available hardware parallelism. As we show in our experiments, skyline computation using
our proposed technique scales linearly with the number of processing elements and the performance we
achieve on a rather small FPGA is comparable to the one of a 64-core high-end server running a state-of-
the-art data parallel implementation of skyline [Park et al. 2009].

The proposed approach to parallelize the skyline operator can be generalized to a wider range of data
processing problems. We demonstrate this through a novel, highly parallel data structure, a shifter list, that
can be efficiently implemented on an FPGA. The resulting template is easy to parameterize to implement a
variety of computationally intensive operators such as frequent items, n-closest pairs, or K-means.
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1. INTRODUCTION
There has been an increasing amount of research and commercial systems that ex-
ploit heterogeneous, low power, and massively parallel co-processors to accelerate data
processing operations. Vendors such as IBM/Netezza [IBM 2014] and Convey [Con-
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vey Computer 2014] equip their systems with hardware accelerators using FPGAs.
However, it can be very difficult to turn the hardware’s parallelism into performance,
especially, if a given problem is not embarrassingly parallel and exhibits many data
dependencies. Moreover, the lack of suitable abstractions and design patterns prevents
the efforts invested in one solution to carry over from one application to another.

To address these issues, we propose a data structure—shifter list—that helps in the
design of massively parallel and scalable algorithms for a number of different prob-
lems. Shifter lists combine data organization, computational power, and synchroniza-
tion into a new parallel processing model that naturally supports the characteristics of
FPGAs. In our model, we think of input data as a data stream that propagates through
the shifter list, which itself is distributed over many processing elements. These pro-
cessing elements—we call them shifter list nodes—are arranged as a pipeline and lo-
cally update the shifter list as input data flows by. The only communication required
is between neighboring shifter list nodes, i.e., nearest neighbor communication.

In this paper, we first discuss in detail an efficient and scalable FPGA implementa-
tion of the skyline operator as an instance of a shifter list application. Skyline com-
putation is a good example where straightforward input data partitioning neither
matches the complexity properties of the problem—linear in the input data volume,
but quadratic in the (intermediate) skyline result—, nor does it fit the characteris-
tics of modern parallel hardware. In contrast, we can partition the working set of a
block-nested-loops (BNL) [Börzsönyi et al. 2001] variant (a commonly used algorithm
to solve the skyline problem) and leverage the lightweight partitioning mechanisms
across many shifter list nodes.

Based on this concrete skyline implementation, we explicitly identify shifter list
properties and introduce some generalizations that allow us to apply this design pat-
tern to a wider range of applications. We then specify a shifter list template, and show
how other well-known data processing tasks such as frequent items, n-closest pairs or
K-means could be mapped to this template.

2. SKYLINE QUERIES
In this section, we will define skyline queries, a popular software algorithm to solve
skyline queries (the BNL algorithm [Börzsönyi et al. 2001]), and our modified version
of BNL for parallel execution on an FPGA. Our intention here is to describe our ap-
proach of parallelizing BNL at a high level, before we discuss technical details later.
To do so, we will take the liberty of digressing into the world of Lemmings1.

2.1. The Lemming Skyline
Lemmings are primitive creatures that go on migrations in masses. On Lemmings
Planet every year a challenge takes place among the Lemmings with the goal to iden-
tify the “best” Lemmings. Every Lemming has different skills: some are very strong
but slow and clumsy, others are agile but neither strong nor fast, then again others are
generalists that do not have a particular skill that they are best in but have multiple
skills they are pretty good in. As the committee of the competition could not agree on
a weighting function that would determine the best Lemmings, all Lemmings that are
not dominated (cf. Definition 2.1) by any other Lemming are considered best. In other
words, the winners are the (Pareto-optimal) Lemmings that are part of the Lemming
skyline (cf. Definition 2.2).2

1As in the video game “Lemmings”: http://www.dmadesign.org/
2According to Definition 2.1, if two Lemmings are equal in all dimensions, neither Lemming dominates the
other. As a result, both Lemmings would be part of the skyline, given they are not dominated by any other
skyline Lemmings.
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Definition 2.1. A Lemming li dominates (≺) another Lemming lj iff every skill (di-
mension) of li is better or equal than the corresponding skill of lj and at least one skill
of li is strictly better than the corresponding skill of lj .

Definition 2.2. Given a set of Lemmings L = {l1, l2, . . . ln}, the skyline query re-
turns a set of Lemmings S, such that any Lemming li ∈ S is not dominated by any
other Lemming lj ∈ L.

2.2. The Competition—1st Year (Best)
When the competition took place for the first time, the committee did have a formal
definition for the set of best Lemmings but it was still unclear how to determine this
set. Thus, in the absence of sophisticated logistic means, one committee member sug-
gested the following simple algorithm. Initially, all Lemmings queue up in front of a
bridge, as illustrated in Figure 1.

qi dominated

p0qi+1 requeue

queue

Fig. 1: Lemming skyline with Best [Torlone and Ciaccia 2002].

The first Lemming in the queue q0 is considered a potential skyline Lemming p0 and
can advance onto the bridge. There, the candidate Lemming has to battle all other
Lemmings in the queue q1 . . . qn−1. A battle can have three possible outcomes. (1) p0
dominates qi. In this case, qi will be pushed from the bridge and p0 remains on its po-
sition to combat qi+1. (2) qi dominates p0. Now, p0 falls from the bridge and qi becomes
the new candidate Lemming p0, i.e., has to battle qi+1. (3) If neither of the two Lem-
mings dominates the other, they are considered incomparable. In this case, p0 stays on
the bridge and qi has to requeue.

The candidate Lemming p0 has to remain on the bridge until it has fought all queued
Lemmings once. When a challenger qj confronts p0 for the second time, we know that
p0 is not dominated by any other Lemming. Hence, p0 is part of the Lemming skyline
and can leave the bridge safely and qj becomes the new p0. The algorithm terminates
when the queue is empty, i.e., all dominated Lemmings have fallen from the bridge.
The Lemmings still alive all belong to the Lemming skyline. This algorithm, known as
Best, has been formally described in [Torlone and Ciaccia 2002].

2.3. The Competition—2nd Year (BNL)
The following year many new Lemmings were born and it was time to determine the
Lemming skyline anew. The previous year some Lemmings complained that they had
to spend too much time queuing. In particular, requeing was time-consuming and de-
layed the entire competition. To improve on this drawback, the set of candidate Lem-
mings was increased from 1 to w. The modified version of the algorithm is known as
block-nested-loops (BNL) [Börzsönyi et al. 2001] and illustrated in Figure 2.

On the bridge there is room for a working set of w candidate Lemmings. A challeng-
ing Lemming qi from the queue has to battle all candidate Lemmings on the bridge. If
the challenging Lemming survives all battles, there are two possibilities. (1) If there
are already w other candidate Lemmings on the bridge, qi has to requeue. (2) Other-
wise, qi becomes a candidate Lemming pi.
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qi dominated

[p0, pw−1]qi+1 requeue

queue

Fig. 2: Lemming skyline with BNL [Börzsönyi et al. 2001].

Unfortunately, now it is unclear when exactly a candidate Lemming has been on
the bridge long enough to qualify as a true skyline Lemming. Luckily, the competition
committee found a simple solution to this problem. After a Lemming qi survives all
candidate Lemmings on the bridge, it receives a timestamp independent of whether it
becomes a candidate Lemming or has to requeue. A candidate Lemming pi becomes
a true skyline Lemming (and leaves the bridge) when it either encounters the first
challenging Lemming qj that has a larger timestamp or when the queue is empty.
When Lemmings initially queue up for the first time, this timestamp is set to zero. A
larger timestamp indicates that two Lemmings must have already competed against
each other and since the queue is ordered, all following Lemmings in the queue will
also have larger timestamps.

2.4. The Competition—3rd Year (Parallel BNL)
While the BNL algorithm used in the 2nd year significantly reduced the number of
times that Lemmings had to requeue, there were new complaints coming from some
Lemmings. In particular, candidate Lemmings criticized that most of the time on the
bridge they were idle, waiting for their turn to battle the next challenger. Thus, in favor
of higher throughput, the competition committee decided to slightly modify the BNL
algorithm. The basic idea is that instead of one challenger qi now up to w challengers
q(i+w−1) . . . qi are allowed on the bridge, and each challenger can battle a different
candidate Lemming in parallel. This version of the algorithm is illustrated in Figure 3.

pk
qj

queue

q(i+w−1) requeue

Fig. 3: Lemming skyline: parallel BNL for FPGAs.

To avoid chaos on the bridge the procedure is as follows: In each iteration there is a
shift phase followed by a evaluation phase. In the shift phase all challenger Lemmings
q(i+w−1) . . . qi move one position to the right to face their next opponent (indicated by
the lower arrows in the figure). This frees the leftmost position on the bridge and
allows a new Lemming from the queue to step on the bridge every iteration. Then
in the evaluation phase all w pairs of Lemmings battle concurrently. As can be seen
in Figure 3, in some situations a Lemming will not have an opponent because the
corresponding Lemming was previously dominated, i.e., fell from the bridge. In that
case, the Lemming does not need to battle in this iteration.

Once a challenging Lemming qi safely reaches the right end of the bridge, it qualifies
as a candidate Lemming if there is room on the bridge, otherwise it has to requeue. If
during the evaluation phase a candidate Lemming pi falls from the bridge, the other
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Lemmings pi+1 . . . pw−1 to the right of that Lemming have to move up in the subse-
quent shift phase and fill the gap (indicated by the upper arrows in the figure), making
room for new candidate Lemmings that reach the right end of the bridge.

Again, we can use timestamping to decide when candidate Lemmings turn into true
skyline Lemmings and can leave the bridge. Since the order among the Lemmings
on the bridge is maintained, it is always the leftmost candidate Lemming that may
become the newest skyline member. Thus, candidate Lemmings begin on the right end
of the bridge and then gradually move towards the left end, where they need to wait
until they encounter a challenger with a larger timestamp.

3. IMPLEMENTATION—PARALLEL BNL WITH FPGAS
The parallelized BNL version, sketched previously in Section 2.4, exhibits proper-
ties such as pipeline parallelism and nearest neighbor communication that make it
amenable to an FPGA implementation, the details of which we discuss in this section.

3.1. Pipeline of Processing Elements
To compute skyline queries with an FPGA, we assume the following setup. The FPGA
reads input data from external DRAM and maintains a set of candidate skyline tuples
inside the FPGA chip. Overflow tuples are written back to DRAM and processed in a
later iteration. In BNL, each input tuple (a tuple read from DRAM) needs to be com-
pared against every tuple of what we call the working set of a shifter list. With respect
to our Lemmings example, the working set would consist of the candidate Lemmings
on the bridge. This working set may contain several hundred tuples but we want to
spend only a minimal number of clock cycles on each input tuple in order to achieve
high throughput. Hence, we distribute the tuples of the working set over a pipeline of
daisy-chained processing elements (shifter list nodes), as illustrated in Figure 4.

eval

FSM

eval

FSM

eval

FSM

eval

FSM

eval

FSM

eval

FSM

shift shift shift shift shift

Fig. 4: Two-phase processing in parallel BNL. Working set items (i.e., tuples with sev-
eral dimensions) are distributed over a pipeline of shifter list nodes.

A shifter list node consists of one BRAM block to store tuples of the working set
and a state machine that manipulates the working set data. An input tuple is fetched
from DRAM and submitted to the first shifter list node in the pipeline, from where it
is forwarded to the neighboring shifter list node after evaluation. Once an input tuple
has propagated to the last shifter list node, it may be written back to DRAM into an
overflow queue for processing in a subsequent round.

Thus, only the first and the last shifter list node directly interact with DRAM. Be-
tween the shifter list nodes, nearest neighbor communication is used, leading to a
scalable solution with respect to the number of shifter list nodes since negative effects,
e.g., long communication paths or high fan-in/-out, can be avoided if the communication
follows very simple topologies such as pipelining along a series of parallel units.
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1 on each shifter list node do
2 q ← current input tuple ;
3 p← local working set contents ;
4 s← state of shifter list node ;
5 if q.valid then /* next input tuple (challenger) */
6 if s = working set then /* local working set tuple (candidate) */
7 if q.timestamp > p.timestamp then
8 s← output ; /* found skyline tuple */
9 end

10 else if q.data ≺ p.data then
11 s← deleted ; /* drop working set tuple */
12 end
13 else if p.data ≺ q.data then
14 q.valid← false ; /* drop input tuple */
15 end
16 end
17 else if s = free then /* add input tuple to working set */
18 timestamp(q) ;
19 p.data← q.data ;
20 s← working set ;
21 q.valid← false ;
22 end
23 end
24 end

Fig. 5: Evaluation phase executed on each shifter list node.

3.2. Parallel BNL as Two-Phase Algorithm
As mentioned in Section 2.4, we can divide skyline computation into two phases: (i) an
evaluation phase and (ii) a shift phase. During the evaluation phase, the next state is
determined for each shifter list node (the exact definition of shifter list node states for
BNL is subject of Section 3.3); but these changes are not applied before the shift phase,
which is the phase that allows nearest neighbor communication. Those two phases run
synchronously across the FPGA, as depicted in Figure 4.
Evaluation Phase. Figure 5 lists the partial algorithm that is executed locally on each
shifter list node in the evaluation phase. It very closely resembles the global algo-
rithm, i.e., standard BNL. Only boundary cases have to be modified to obtain the code
for node-local execution. For instance, node-local “overflow tuples” in our parallel BNL
implementation have to be forwarded to the next shifter list node, rather than be writ-
ten directly to an overflow queue as in the superordinate BNL skyline algorithm.
Shift Phase. All interactions between neighboring shifter list nodes are performed in
the shift phase, displayed in Figure 6, which updates the global algorithm state based
on the outcome of the evaluation phase. In essence, all input tuples are forwarded one
shifter list node toward the right, whereas candidate results (working set tuples) move
toward the left if there is space available. Since skyline candidates move toward the
left, we report them on the leftmost shifter list node ν0 once their timestamp condition
has been satisfied. Likewise, on the rightmost shifter list node νw−1, we write input
tuples to the overflow queue in DRAM if they were not invalidated during their journey
along the pipeline of shifter list nodes, and cannot be inserted into the working set
because there is no space.
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1 foreach shifter list node νi do
/* all skyline results are emitted on ν0 */

2 if i = 0 ∧ νi.state = output then
3 emit νi.working set.tuple as result ;
4 νi.state← deleted ;
5 end
6 if i < w − 1 then /* not last shifter list node */
7 if νi.state = deleted then

/* move up candidates to left */
8 νi.working set← νi+1.working set ;
9 νi.state← νi+1.state ;

10 νi+1.state = deleted ;
11 end

/* challengers move one position to right */
12 νi+1.input tuple← νi.input tuple ;
13 end
14 else /* the last shifter list node (physically) */
15 if νi.state = deleted then
16 νi.state← free ;
17 end
18 if νi.input tuple.valid then
19 timestamp(νi.input tuple) ;
20 write νi.input tuple to overflow queue ;
21 end
22 end
23 end

Fig. 6: Shift phase. Results are reported on ν0; candidates and input tuples move to
the left and right, respectively; tuples after the last shifter list node are written to the
overflow queue in DRAM.

3.3. The Finite State Machine (FSM) inside a Shifter List Node
While in Figures 5 and 6, we phrased parallel BNL as an algorithm in pseudo code,
its implementation in hardware boils down to the simple finite state machine (FSM)
depicted in Figure 7. In this state machine, each shifter list node can be in any of
four states: F (free), W (working set), X (deleted), and O (output). Initially, all shifter
list nodes are in state F . The dashed transitions enable shifting of shifter list nodes
toward the end or the beginning of the shifter list. To implement shifting, two adjacent
shifter list nodes swap their state and working set contents. Shifter list nodes in state
O are shifted to the beginning of the shifter list, whereas shifter list nodes in state X
are shifted to the end, where automatically the (dotted) transition X → F is executed.
Note that we cannot directly perform the transition W → F because “free” shifter list
nodes need to be at the end of the shifter list to ensure that new candidate tuples
have been evaluated against the entire existing working set first. The solid transitions
labeled “insert”, “output”, and “delete” are followed when a corresponding condition
(listed below) is satisfied:

(i) Insert: when an input tuple reaches the first shifter list node in state F , it is
inserted into the working set and the respective shifter list node changes its state
accordingly (F →W ).
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Fstart W

XO

insert

deleteou
tput

delete

Fig. 7: State machine inside an shifter list node.

(ii) Output: when the timestamp condition of a working set tuple has been met (cf.
Figure 5), that tuple is a skyline tuple and is ready for output (W → O).

(iii) Delete: working set tuples are deleted when they are dominated by an input tuple
(W → X). Output tuples (i.e., skyline tuples) are deleted after they have been
output, i.e., shifter list nodes in state O first are shifted to the beginning of the
shifter list, where the tuple is output and the state of the shifter list node is
changed (O → X).

3.4. Correctness of the Proposed Approach
The shift phase of our parallel BNL version leads to a pipeline-style processing mode,
where all input tuples visit all shifter list nodes, i.e., all tuples in the working set, one
after another. This allows us to exploit parallelism without altering the semantics of
the original algorithm, in this case conventional BNL [Börzsönyi et al. 2001].

However, working set tuples and input tuples move in opposite directions, which
bears a risk of race conditions, in particular missed comparisons. This problem can be
avoided as follows: Working set tuples that move from νi+1 to νi are compared to the
current input tuple in addition to being copied to the predecessor shifter list node, i.e.,
evaluation and copying are synchronized (cf. Section 3.5). If we detect that a working
set tuple was dominated during the copy process, we cancel the copy transaction by
not updating the state of νi from X to W . At the same time we change the state of νi+1

from W to X such that now both shifter list nodes hold a deleted working set tuple.
By avoiding potential race conditions in the shift phase, the semantics of parallel

BNL become identical to the original algorithm because it is guaranteed that when an
input tuple is processed at an arbitrary shifter list node, all effects caused by tuples
earlier in the input stream are “visible” to that shifter list node.

3.5. BRAM-based Component-wise Processing
Up to now, we have assumed atomic processing and forwarding of tuples. However, for
performance reasons and because our implementation is based on BRAM, we stream
all data one dimension at a time through the pipeline of shifter list nodes. Figure 8
illustrates this for the case of three-dimensional tuples and twelve shifter list nodes.
Notice that after each tuple, we pass meta data such as timestamp information or the
tuple valid flag.

We use BRAM (dashed boxes in Figure 8) for tuple storage within a shifter list node
since potentially large tuples need to be saved in the working set. A BRAM block is
big enough to store tuples of any realistic size. As a positive side effect, the number of
dimensions has minor impact on resource consumption.

To swap two adjacent shifter list nodes, we cannot copy entire chunks of memory
from one BRAM block to another in a single clock cycle—we have to do this word by
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Fig. 8: Three tuples streaming by twelve shifter list nodes.

word. Nevertheless, as illustrated in Figure 9, copying is still possible without reducing
throughput.

1
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3

w
X

3

1
2
3

r
W

2

≺
copy

1

≺ 1
2
3

r

W

Fig. 9: BRAM copy mechanism: three shifter list nodes with a three-dimensional input
tuple streaming by above.

In this example, the first shifter list node, is in state X (deleted), while the subse-
quent one is in state W (working set), which means they need to be swapped so that
the deleted processing element can propagate to the end of the shifter list. For the
BRAM block of the first shifter list node the write enable signal is asserted (w-flag).
As data is read from BRAM of the second shifter list node (r-flag) for the dominance
test, this data is written proactively to the BRAM of the “deleted” predecessor shifter
list node. At the end of the dominance test, the relevant BRAM contents have been
entirely copied, and the state of both shifter list nodes can be updated appropriately.
Note that with this approach, it is sufficient to instantiate single-ported BRAM, as
opposed to dual-ported BRAM, which provides twice as many available BRAM blocks,
enabling a longer pipeline of processing elements.
Race Conditions. In Section 3.4, we stated that tuples are never missed, i.e., that tuples
of the working set are evaluated properly against all input tuples. Since we evaluate
every working set tuple against the current input tuple and potentially copy the work-
ing set tuple to a “deleted” predecessor shifter list node at the same time, we can in-
validate a copy transaction in case the copied tuple was dominated by the input tuple.
Conversely, the meta data appending every input tuple ensures that the copy transac-
tion can be completed before the next input tuple reaches the predecessor shifter list
node, holding the freshly copied working set tuple.

3.6. Resource Consumption & Scalability
In the next section, we show that more shifter list nodes result in better performance.
Therefore, it is crucial that we utilize FPGA resources efficiently. In Table I, we display
resource consumption on a Virtex 5 FPGA (XC5VLX110T) for different configurations
of our circuit using a shifter list of 4, 64 and 192 shifter list nodes, respectively. A sin-
gle shifter list node consumes one out of 296 available single-ported BRAM blocks and
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roughly 320 LUTs, i.e., 80 slices (post-map measurement). Physically, only 148 dual-
ported BRAM blocks are available. However, each dual-ported 36 Kbit BRAM block
can be used as two 18 Kbit single-ported BRAM blocks instead. A configuration with
only four shifter list nodes consumes 20% of the available slices and 21% of the avail-
able BRAM because the measurements also include resources used for the DRAM con-
troller [Bittner 2009] and the Ethernet-based communication framework [Eguro 2010]
that we use to move data in and out of the FPGA board. Notice that we are LUT-
bound, and that a configuration with 192 shifter list nodes saturates our FPGA. More
importantly, even with 99% slice utilization, we were still able to operate the circuit at
150 MHz, which is only possible because of the scalability of shifter list-based imple-
mentations with their simple communication pattern.

Slices Flip-Flops LUTs BRAM
available 17,280 100.0% 69,120 100.0% 69,120 100.0% 148 100%

4 PEs 3,385 20% 6,371 9% 8,501 12% 32 21%
64 PEs 9,204 53% 15,495 22% 27,385 40% 69 46%

192 PEs 17,151 99% 34,951 51% 67,398 98% 136 91%

Table I: Resource Consumption on the Virtex-5 (XC5VLX110T)

4. EVALUATION—FPGA VERSUS CPU
We first evaluate our parallel FPGA-based skyline operator against a sequential soft-
ware implementation of BNL, in Section 4.2, to get a better understanding of the be-
haviour of both versions of the algorithm. Furthermore, in Section 4.4, we compare
our FPGA solution to a state-of-the-art, multi-threaded skyline implementation [Park
et al. 2009] on two different multicore platforms, in Section 4.4.

4.1. Experimental Setup
All experiments were run from main memory. We used the Xilinx XUPV5 development
platform with a Virtex-5 FPGA (XC5VLX110T) clocked at 150 MHz and 256 MiB on-
board DDR2 memory. The single-threaded CPU experiments were carried out on an
Intel Xeon 2.26 GHz server processor (Gainestown, L5520, DDR3 memory). The multi-
core experiments were conducted on the same 8-core Intel Xeon server, as well as on a
64-core (AMD Bulldozer, 2.2 GHz, DDR3 memory) PowerEdge R815 Server from Dell.

4.2. Effects of Data Distribution
To give a better understanding of the performance characteristics of sequential BNL
(single-threaded, with and without SIMD support) versus our parallel FPGA imple-
mentation, we evaluate skyline queries on input data following three different data
distributions. Synthetic input data was generated with the data generator provided
by [Börzsönyi et al. 2001] according to the three different distributions: (1) random,
(2) correlated, and (3) anti-correlated. These distributions are commonly used to eval-
uate skyline operators. The input data consists of 1,024,000 input tuples. A tuple has
seven dimensions and a timestamp resulting in a total width of 32 bytes, i.e., the size
of the entire input set is 31.25 MiB.3

3We set the tuple width to 32 bytes so that it matches the DRAM word width because our logic to interact
with DRAM is rather simple. However, with a more sophisticated memory unit, our implementation should
handle an arbitrary number of dimensions equally well.
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Fig. 10: Randomly distributed dimensions→ tuples/sec.

Randomly Distributed Data. For our randomly distributed data set, the skyline con-
sists of 15,154 tuples, i.e., 1.48 % of the input data are skyline tuples. This measure
is called the density of skyline tuples. On the y-axis we display throughput (input
tuples/sec) and on the x-axis we vary the size of the working set used in the BNL
algorithm.

As can be seen in Figure 10, the size of the BNL working set has little effect on
the CPU-based version. On the FPGA, however, throughput increases linearly with
the size of the working set because a larger working set also means more processing
elements, i.e., a higher degree of parallelism.

Notice that the software solution can be improved by a constant factor using SIMD
(single instruction, multiple data), e.g., with special SSE instructions we can perform
up to four 32-bit comparisons in parallel. However, there is an overhead of using these
instructions. Therefore, the actual improvement is not 4X but rather between 2X and
3X, as was also confirmed by Cho et al. [2010].
Correlated Data. The dimensions of a tuple are correlated if there is a high probability
that the values in all dimension are similar. This means that a tuple that is “good”
in one dimension is likely to be “good” also in the other dimensions and therefore
dominates many tuples. As a result, the skyline is very small, e.g., in this experiment,
the skyline consists of only 135 tuples, corresponding to a density of 0.013%.
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Fig. 11: Correlated dimensions→ tuples/sec.
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In Figure 11, the CPU-based version of BNL is faster than the FPGA-based one. Low
skyline density favors the CPU-based implementation because parallel compute power
no longer is the key criteria for a fast execution. Rather, the CPU-based implementa-
tion here benefits from the faster memory (DDR3 versus DDR2). In Figure 11, we
display the upper bounds for throughput by dashed lines labeled CPU (87 million tu-
ples/sec) and FPGA (17 million tuples/sec), respectively. These bounds were computed
using a data set where the first input tuple is the only skyline tuple, which eliminates
all other tuples. This results in a minimal number of tuple comparisons of n−1, where
n is the number of input tuples, which is in line with the known best case complexity
of O(n) for BNL [Godfrey et al. 2005].

While we cannot beat the CPU skyline operator with our FPGA implementation
when the skyline tuples have a very low density, it is important to note that in absolute
numbers both versions are very fast when dealing with correlated data. For instance,
the fastest execution (working set size = 4, SIMD support) of the above query on the
CPU takes 13 milliseconds and on the FPGA (working set size = 192) 61 milliseconds.
Anti-Correlated Data. This experiment is the opposite of the previous one. Anti-
correlated means that a tuple, which is “good” in one dimensions, is likely to be “bad”
in the other dimensions. In this case, a lot more tuples are part of the skyline, e.g., now
the skyline consists of 202,701 tuples, which corresponds to a density of 19.80%.
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Fig. 12: Anti-correlated dimensions→ tuples/sec.

The computation of the skyline is now significantly more expensive, e.g., the best
execution time of the CPU-based version has gone from 13 milliseconds to almost ten
minutes. This slowdown is due to the increased number of comparisons since all sky-
line tuples have to be pairwise compared with each other. The number of comparisons
among skyline tuples alone is 1

2s(s + 1), where s is the size of the skyline—hence, the
worst case complexity for BNL is O(n2) [Godfrey et al. 2005].

4.3. Discussion on Utilization of Compute Resources
To further analyze the utilization of compute resources of the shifter list for the three
workloads used in the previous section, in Figure 13, we plot the ratio between actual
number of comparisons and peak number of comparisons for different working set
sizes. That is, we show which fraction of the instantiated tuple comparators actually
performs useful work as we vary data distributions and shifter list sizes (utilization is
averaged over a full run of each experiment).
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Fig. 13: Utilization of shifter list during query execution.

The figure confirms the throughput characteristics that we observed above. For cor-
related data, our circuit becomes memory bandwidth bound—additional shifter list
nodes do not receive enough useful work and utilization drops as we increase the work-
ing set size. Not so with random or anti-correlated data, where the loss is significantly
less dramatic.

4.4. FPGA versus Multicore Server
We also compared our FPGA results to PSkyline [Park et al. 2009], which is the fastest
published skyline algorithm for multicore architectures.4 We ran PSkyline on the same
data sets as in the previous experiments that consisted of 1,024,000 seven-dimensional
input tuples. We measured the performance of PSkyline on the 8-core (plus hyper-
threading) Intel Xeon server used previously, as well as on a 64-core PowerEdge R815
Server from Dell. The FPGA was configured with 192 shifter list nodes. The results
are depicted in Table II.

Data Distribution FPGA Intel Xeon PowerEdge
Random 0.445 sec 0.722 sec 0.433 sec
Correlated 0.061 sec 0.003 sec 0.005 sec
Anti-correlated 31.633 sec 55.104 sec 18.574 sec

Table II: Execution time: FPGA versus multicore.

On the Intel Xeon server and on the PowerEdge server, best results were obtained
using 16 and 64 threads, respectively. The performance for the more compute-intensive
workloads (random and anti-correlated) achieved by the FPGA is better than the Intel
Xeon Server and not far from the performance we measured on the high-end Pow-
erEdge 64-core server.

Moreover, with 192 shifter list nodes a throughput of 32 thousand tuples/sec (anti-
correlated distribution) is reached on the FPGA. This is more than two orders of mag-
nitude below the upper bound of 17 million tuples/sec (cf. Figure 11), i.e., with more
real estate (using a larger FPGA), there is still a lot of leeway to further increase per-
formance by adding more shifter list nodes.

4We would like to thank H. Im for providing the PSkyline code.
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5. SHIFTER LISTS
In the previous sections, we described and evaluated an efficient and scalable shifter
list-based skyline query processor. This section focuses on the shifter list abstraction
itself and its most important properties. We will then explore how this design pattern
could be applied to several problems, e.g., computing frequent items, the n-closest pairs
problem, and K-means clustering.

5.1. A Shifter List is a Data Structure
A shifter list targets the application patterns illustrated in Figure 14. From a given
input data set, all items (e.g., multi-dimensional tuples as for skyline computation) are
consumed in turn. Each input item is evaluated against many or even all of the items
in an on-chip working set. Possibly, this evaluation results in an update to the working
set, such as inserting the current input item to the set or removing/updating others.

?

current input item
input data set

working set

Fig. 14: Typical application pattern for a shifter list: For each input item, the working
set is accessed and possibly modified.

The high-level structure of a shifter list is illustrated in Figure 15. Working set items
are held in a number of shifter list nodes (processing elements). There is a defined to-
tal order among all nodes νi in a shifter list. Nodes are organized independently but
communicate with each other through well-defined message channels. As illustrated
in Figure 15, these channels constrain communication to nearest-neighbor messaging.
Aside from application-defined messages, the channels are also used to propagate in-
put data and to exchange working set items between nodes, which ultimately results
in a dynamic repartitioning of the working set.

node 0 node 1 node 2

working set items message channels

Fig. 15: Shifter lists group working set items into nodes. Neighboring nodes are con-
nected via message channels.

5.2. A Shifter List is for Data Processing
To process the input, we submit each input item to the left-most shifter list node ν0,
where it is evaluated against the local working set item(s)—for parallel BNL this was a
single tuple but for other applications multiple items per shifter list node are conceiv-
able. Then the input item is shifted on to the right neighbor where the process repeats.
Effectively, a sequence of input items flows through all nodes in a pipeline fashion.

The actions performed at each node depend on the specific task that is to be solved
with the shifter list. Action code may decide to alter the local working set partition
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(e.g., by deleting, inserting, or re-arranging working set items); drop the input item
from the pipeline; or send and/or receive messages along the message channels.

5.3. A Shifter List is for Parallelism
Input items are evaluated over the individual shifter list node contents and strictly
processed in a feed-forward fashion. This has important consequences that we can ex-
ploit in order to parallelize the execution over many shifter list nodes while preserving
the causality of the corresponding sequential algorithm.

Causality Guarantees. Feed-forward processing implies that the global working set
is scanned exactly once in a defined order. What is more, once an input item xi has
reached a shifter list node νh, its evaluation cannot be affected by any later input item
xj that is evaluated over a preceding node νd. Conversely, the later xj is guaranteed to
see all effects caused by the earlier xi.

? ?

node νd node νh

xj xi

· · ·

Fig. 16: Shifter list causality guarantees. The earlier xi will see no effects caused by
the later xj but xj sees all effects of xi.

These causality guarantees hold even if we let the executions of xi on νh and xj on
νd run in parallel on independent compute resources, as illustrated in Figure 16. To
uphold the guarantees, xj only must never overtake xi in the processing pipeline. The
preservation of causality hides much of the parallelization difficulties from the appli-
cation developer, e.g., with a shifter list we can parallelize BNL without any locking
mechanism, complicated merging of intermediate results, etc.
Application-Level Guarantees and Invariants. Applications may use the shifter lists’
causality guarantees to further establish their own invariants. For skyline queries, for
instance, we add new items to the working set only at the end of the shifter list and
then gradually shift them to the beginning. Since items never overtake each other, this
ensures that the oldest working set item is always at the front of the shifter list.

6. SHIFTER LIST TEMPLATE
In this section, we describe a shifter list template that incorporates a number of gen-
eralizations. Their usefulness will become apparent in Section 7, where we discuss the
mapping of several algorithms to this template. Note that the purpose of the template
is to provide a starting point for a shifter list implementation of a given algorithm but
application-specific engineering will still be necessary to produce an efficient solution.

6.1. Template Instantiation
A shifter list is a pipeline of identical shifter list nodes but the first and last shifter
list nodes typically implement additional functionality, which is why they are instan-
tiated separately. All intermediate shifter list nodes can be instantiated by means of
a Verilog/VHDL generate statement. Shifter list nodes communicated using nearest
neighbor communication, i.e., the input and output ports of the shifter list nodes need
to be connected in a pre-defined way, which can be achieved conveniently using Ver-
ilog/VHDL generate statements, as well.
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6.2. Evaluating Input Data Items
Input data items are processed in a feed-forward manner and evaluated locally at
every shifter list node, as illustrated in Figure 17. Node-local evaluation may trigger
an action that affects the state of the input item and/or the state of the shifter list node,
e.g., for skyline the actions “drop input tuple” or “drop working set tuple” are executed
when the corresponding condition with respect to the dominance test is satisfied.

meta data

evaluate

meta data

evaluate

meta

start node end node

I/O

Fig. 17: Evaluation of input items results in the execution of user-defined action code.

Updating Input Item State. To forward the state of an input item to the next shifter
list node, meta data is appended to every input item after evaluation (e.g., as the flag
in the case of skyline when a working set tuple dominated an input tuple). Thus, the
stream of input items is interspersed with meta data words (cf. Figure 17).
Updating Shifter List Node State. Evaluation of input items may also affect the state of
the evaluating shifter list node itself, e.g., when a working set tuple is dominated in the
skyline example, the respective shifter list node is set to “free”, causing it to be shifted
towards the end of the shifter list. For the shifting to work correctly, the subsequent
shifter list node needs to know about state changes in the predecessor shifter list node.
Thus, this information can also be appended to the input item.
The input data bus is accompanied by a data valid and a type signal that indicates
whether the current word is data or meta data. Meta data spanning over multiple
words is easily feasible but in many cases a single word is sufficient.

6.3. Swapping Shifter List Nodes
The ability to move shifter list nodes within the shifter list, or more precisely, copy
working set data from one shifter list node to an adjacent shifter list node has proven
useful for skyline queries. The shifter list template thus supports a notion of swapping
node contents. However, we cannot allow arbitrary swapping since this could introduce
race conditions. Thus, the situation where both the left and right neighbor of a shifter
list node attempt to swap contents with that core at the same time needs to be avoided.
Granting only every other shifter list node to issue swap requests during the same
clock cycle solves this problem. Hence, in shifter lists only the shifter list nodes that
are processing meta words are allowed to trigger swaps, as depicted in Figure 18.

6.4. Atomic versus Component-wise Processing of Input Data Items
In this section, we have silently assumed atomic processing of data items for ease of
presentation. However, multi-dimensional data items can be processed not only atom-
ically but also component-wise, as we did for the case of skyline, resulting in a nar-
rower input data bus. For skyline queries on our FPGA, component-wise processing
using BRAM had some advantages but it also posed some engineering challenges such
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E S E S E S E S . . .

data meta data meta data meta data meta

Fig. 18: Shifter list with half the shifter list nodes (E) evaluating data items, and the
other half (S) potentially issuing swap requests.

as implementing component-wise swaps. In general though, the shifter list concept
supports both atomic and component-wise processing of input items.

7. SHIFTER LIST MAPPINGS OF DIFFERENT ALGORITHMS
This section discusses the mapping and parallelization of several algorithms from dif-
ferent domains using shifter lists.

7.1. Frequent Item Computation with Shifter Lists
Teubner et al. [2010] solved computing frequent items (in a streaming context) on an
FPGA with a variation of the Space-Saving algorithm (cf. Figure 19). In the paper, they
evaluated a number of FPGA-based implementations. Their most efficient version re-
lied heavily on pipelining, achieving three times higher throughput as the best known
software results. The algorithm that Teubner et al. [2010] propose can be implemented
with shifter lists, and we therefore revisit the most important aspects and results here.

1 foreach stream item x ∈ S do
2 find bin bx with bx.item = x ;
3 if such a bin was found then
4 bx.count← bx.count+ 1 ;
5 end
6 else
7 bmin ← bin with minimum count value ;
8 bmin.count← min.count+ 1 ;
9 bmin.item← x ;

10 end
11 end

Fig. 19: Algorithm Space-Saving [Metwally et al. 2006].

An exact solution that identifies the n most frequent items, would count the number
of occurrences for every item, sort the result by item count, and emit the top n items.
To avoid exhaustive space consumption the Space-Saving algorithm that approximates
an exact solution was developed by Metwally et al. [2006]. The original algorithm is
depicted in Figure 19. It uses k bins to count the frequencies of the most frequent items
in a stream. If a corresponding bin bx for a new stream item x exists, that item’s fre-
quency is increased (lines 3–4 in Figure 19). Otherwise, the bin with the lowest count
value gets evicted in favor of the new item (lines 6–9), which inherits the incremented
frequency of its predecessor (for more details see [Metwally et al. 2006]).
High-Level Shifter List Mapping. The key idea to implement the Space-Saving algo-
rithm with shifter lists, is to map every bin to a shifter list node. To find corresponding
bins we stream all input items through the shifter list (lines 3–4 in Figure 19). If at the
end of the shifter list no appropriate bin is found, we update the last shifter list node
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Fig. 20: Space-Saving algorithm. The software version is affected by the Zipf distri-
bution (z ∈ {0, 1.5,∞}), whereas the FPGA implementations Pipeline and Parallel-
Lookups are Zipf-independent.

according to lines 7–9, in Figure 19. However, this is correct only if the last shifter list
node stores the bin with the lowest count, which we ensure by keeping the shifter list
sorted by bin count, using the swapping mechanism of shifter lists. As a result, the
item with lowest count automatically propagates to the end of the shifter list.
Evaluation Phase. The working set item at every shifter list node consists of a bin ID
and the current bin count (working_set = {binx,count}). Nodes compare input item
IDs to working_set.binx, i.e., line 2 in Figure 19 is performed in a pipeline-parallel
manner. If a corresponding bin is found for an item, the count is incremented (line 4 in
Figure 19 is executed directly on the respective shifter list node). This action affects the
state of both the input item and the shifter list node: a meta data flag is set, indicating
that the current input item was counted, and also the updated bin count is forwarded
to the next shifter list node, which is relevant for the later shift phase.
Shift Phase. The shifter list nodes that process meta words are allowed to issue swap
requests with their predecessor shifter list nodes. If the count of the predecessor shifter
list node is smaller than the local bin count, i.e., if the condition (meta_data.count <
working_set.count) is satisfied, working set contents will be exchanged, and in the fol-
lowing cycle the predecessor node will evaluate the next data item against the working
set data just received from its successor.
Last Shifter List Node. This node has slightly modified functionality. In the evaluation
phase, if the data item does not match the current bin ID, it is temporarily stored at
the shifter list node. In the subsequent shift phase, if meta data indicates that the
item has already been counted by some other bin, the temporary copy of the data item
is discarded. Otherwise, the bin count is incremented, and the bin ID is overwritten
with the ID of the temporary copy, as in the original Space-Saving algorithm. Due to
the swapping mechanism it is guaranteed that the last shifter list node always stores
the bin with the smallest count.
Performance & Scalability. In Figure 20, [Teubner et al. 2010] evaluated the perfor-
mance of monitoring a varying number of frequent items, using different techniques.
Pipeline corresponds to the shifter list implementation. It achieves the best perfor-
mance and scales well with respect to the number of bins. In contrast, Parallel-Lookups
is an implementation that uses a tree structure to look up the bin with the smallest
count. Figure 20 shows that the tree-based approach does not scale well, i.e., perfor-
mance degrades significantly with an increasing number of bins.
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7.2. n-Closest Pairs of Points with Shifter Lists
The n-closest pairs of points problem is defined as follows: given N points in a multi-
dimensional space, find the n pairs of points with the smallest distance to each other.
Distance can be defined in various ways, e.g., the Euclidean distance (`2-norm), Man-
hattan distance (`1-norm), etc. The brute force algorithm that finds a single closest
pair is illustrated in Figure 21. To find n such pairs we can execute this algorithm n
times, while making sure that we exclude previously found pairs.

1 mindist =∞ ;
2 for i = 1→ i < length(P )− 1 do
3 for j = i→ j < length(P ) do
4 if dist(P [i], P [j]) < minDist then
5 minDist = dist(P [i], P [j]) ;
6 closestPair = (P [i], P [j]) ;
7 end
8 end
9 end

10 return closestPair ;

Fig. 21: Brute-force algorithm that determines the closest pair of points.

High-Level Shifter List Mapping. To compute n closest pairs, we map a different point
from the input data to each of k shifter list nodes, where k > n. As input points visit the
shifter list nodes, the distance d to the working set points is computed. If the distance
to an input point is smaller than the smallest previously observed distance, the new
distances is saved together with that input point at the respective shifter list node. The
swapping mechanism of shifter lists keeps the global working set sorted by distance
such that the closest pairs reside at the beginning of the shifter list.

Figure 22 illustrates this idea. The first n shifter list nodes store the n closest pairs
observed so far. If d at one of the shifter list nodes νi (where i > n) becomes smaller,
that node is shifted upstream to its proper position. Points that do not fit into the
working set are timestamped and written to an overflow queue, as in our skyline im-
plementation. The timestamp is used to drop pairs that did not make it into the top n
shifter list nodes after having been compared to all input items. Furthermore, “free”
shifter list nodes can be reused to store new input points. The algorithm terminates
when there are no more input points.
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Fig. 22: The shifter list keeps the n closest pairs (here, n = 4) at the beginning of the
list implicitly sorted. The pairs after the first n eventually expire and can be replaced.

Evaluation Phase. Every shifter list node stores a pair of points (PA, PB), the distance
between those points d, and a timestamp when PA was inserted into the shifter list
(working_set = {PA,PB,d,timestamp}). All nodes that process an input item compute
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the distance d′ between that item and PA. If d′ < d, PB is replaced with the input item,
and d is overwritten with d′. Moreover, d′ is sent as meta data to the subsequent shifter
list node, which is relevant for the later shift phase. Finally, if the timestamp condition
was satisfied the working set distance is set to d =∞.
Shift Phase. If the distance of the predecessor shifter list node is larger than the dis-
tance of the local closest pair, node contents are swapped to keep the shifter list sorted
by distance. Notice that shifter list nodes with d = ∞ will automatically be swapped
towards the end of the shifter list.
Last Shifter List Node. If at the last shifter list node d = ∞, a new point PA can be
assigned to this node, and the next data point will be the second point of the pair PB .
To avoid that PB overwrites PA, we set the distance d =∞− 1. As for skyline, this last
node also has additional I/O capabilities, i.e., if the distance at the last shifter list node
is not set to infinity, meaning that this core is still in use, we need to write the current
input item to an overflow queue for processing in a subsequent round.

7.3. K-means Clustering with Shifter Lists
K-means clustering aims to partition N points in a d-dimensional space into k clusters
such that each cluster has a center (the mean position of all points in the cluster) and
each point in the cluster is closest to that center. Finding the optimal solution to this
problem is NP-hard [Drineas et al. 2004], which is why typically approximation algo-
rithms are used. A common iterative approximation algorithm is the following. Start
with k random samples as initial centers. In every iteration, first assign each point
to the closest center, then recompute all centers. Repeat this process until either the
result converges or a specified threshold of iterations is reached. Note that a variant of
K-means updates the cluster centers each time a point is reassigned to a new cluster,
which leads to faster convergence. The center can be updated incrementally as follows:

Cn+1 =

∑n+1
i=1 ti
n+ 1

= Cn +
tn+1 − Cn

n+ 1
,

where Cn corresponds to the current center, tn+1 corresponds to the new data point,
and n is the running count of items in the cluster.
High-Level Shifter List Mapping. To implement the above algorithm we only instan-
tiate k shifter list nodes. Each node stores one of the k centers and is initialized with
some random data point. As input data points propagate through the shifter list, the
distance to every center is computed, and the closest center is identified. After a data
item has traversed the entire list the closest center is updated. To this end, the closest
center is shifted together with the data item towards the end of the shifter list.
Evaluation Phase. The working set at every shifter list node stores a different center
of the k clusters, i.e., a d-dimensional data point together with the current count of
points assigned to this cluster (working_set = {center,count}). The count is necessary
to perform incremental updates of the center, as discussed above. All shifter list nodes
that process an input item compute the distance d between the data point and the local
center, which is temporarily stored at the shifter list node. Furthermore, d is sent as
meta data to the subsequent shifter list node as it will be relevant for the shift phase.
Shift Phase. In the shift phase, the closest center is moved towards the end of the
shifter list together with the respective data item. If the temporarily stored distance
is smaller than the smallest distance computed so far, there is no need to swap. Other-
wise, the predecessor node stores the closest center, and we therefore need to swap.
Last Shifter List Node. At the last shifter list node we simply recompute the center by
taking the current data item into account using the formula discussed above.
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8. RELATED WORK
The introduction of skyline queries in 2001 [Börzsönyi et al. 2001] has created a new
direction for research (a comprehensive overview is given in [Godfrey et al. 2005]).
There have been a few attempts to exploit parallelism for skyline query processing,
e.g., using SIMD instructions [Cho et al. 2010] or multiple threads [Park et al. 2009]
on multicore machines. However, the compute-intensive nature of skyline queries sug-
gests that even higher degrees of parallelism are required to effectively tackle this type
of problem, making FPGAs an interesting alternative platform to explore.

There have been several approaches to execute SQL on FPGAs (e.g., [Dennl et al.
2012; Sukhwani et al. 2012]). Furthermore, FPGA solutions in the context of databases
have been proposed for sorting [Koch and Torresen 2011], XML filtering [Moussalli
et al. 2011], or high-speed event processing [Inoue et al. 2011]. Nevertheless, those
examples all confirm the observation of [Chung et al. 2011]: FPGAs still lack essential
abstractions that have become pervasive in general-purpose computers; rather, most
systems are developed in an ad-hoc manner for just one particular problem setting.

With shifter lists, we provide an abstraction that aids in building parallel solutions
for difficult data processing tasks that demand high performance. Shifter lists com-
bine well-studied FPGA concepts such as stream processing, nearest neighbor commu-
nication, and pipeline-parallelism (see, e.g., [Hormati et al. 2008; Kahn 1974]) into a
special kind of data structure for highly parallel hardware, comprising data storage
and concurrent data processing. Shifter lists keep working set data co-located with
the processing logic that uses it. In a sense, this blurs the classical separation of data
and logic. Softening this strict separation indeed makes sense in the light of FPGAs
and ongoing hardware trends. There is a general consensus that power and heat dissi-
pation problems will force a move toward heterogeneous system architectures [Borkar
and Chien 2011; Esmaeilzadeh et al. 2011; Singh 2011]. In such designs (an example
are Nanostores [Ranganathan 2011]), data structures can be wrapped right into the
corresponding processing logic to further improve energy efficiency and speed.

9. CONCLUSION
The prevalence of parallel hardware forces application developers to come up with
efficient solutions that are able to exploit the available parallelism and scale to many
parallel elements. However, in doing so, developers face several challenges such as
the programmability of complex parallel systems, as well as dealing with the cost of
communication among parallel units.

It is generally recognized that the ease of programming FPGAs is an important
issue that will determine the success and impact of FPGAs in future heterogeneous
systems. Yet, FPGAs still lack essential abstractions and design patterns, resulting in
a high engineering overhead for every new problem.

Furthermore, developing FPGA solutions for data processing tasks that scale to high
degrees of parallelism is often difficult. With increasing core counts, the average on-
chip distance grows between arbitrary communication partners. What is more, for all-
to-all communication patterns, the necessary routing logic scales quadratically in the
number of compute nodes, which limits the observed bandwidth. Algorithms based on
scatter-gather mechanisms are affected by the cost of communication in a similar way.

With shifter lists, we address the design of parallel data processing algorithms for
FPGAs in two important ways: (i) Shifter lists can be used as a generic implementation
strategy to build parallel data processing operators, i.e., no need to re-start platform
optimization for each new problem instance. (ii) Shifter lists have the awareness of
communication cost built-in. It is applied by bringing pipelining and nearest neighbor
communication to the inside of individual data processing operators.
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