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ABSTRACT
This work revisits the processing of stream joins on modern
hardware architectures. Our work is based on the recently
proposed handshake join algorithm, which is a mechanism to
parallelize the processing of stream joins in a NUMA-aware
and hardware-friendly manner. Handshake join achieves
high throughput and scalability, but it suffers from a high la-
tency penalty and a non-deterministic ordering of the tuples
in the physical result stream. In this paper, we first charac-
terize the latency behavior of the handshake join and then
propose a new low-latency handshake join algorithm, which
substantially reduces latency without sacrificing throughput
or scalability. We also present a technique to generate punc-
tuated result streams with very little overhead; such punc-
tuations allow the generation of correctly ordered physical
output streams with negligible effect on overall throughput
and latency.

1. INTRODUCTION
With the ongoing adoption of multi-core machines, the

need to devise suitable parallel algorithms keeps increasing.
A major challenge is that high degrees of parallelism heav-
ily emphasize locality effects in the hardware. Only very
recently, a few algorithms have been suggested that are pre-
pared for the non-uniform memory access (NUMA) charac-
teristics of modern hardware (e.g., [16, 20]).

In this paper, we revisit the processing of data streams
in multi-core systems. The computation of sliding-window
joins is among the most critical and resource-intensive oper-
ations in this context. The handshake join algorithm, which
was recently proposed by Teubner and Mueller [20], provides
a NUMA-aware solution for general sliding-window joins and
achieves high throughput as well as good scalability with the
number of compute cores.

The favorable performance characteristics of handshake
join come at the cost of high latency and non-deterministic
output order. We perform an in-depth analysis of the worst-
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case latency of handshake join. We find that its maximum
latency depends linearly on the sliding-window size. Our
experiments show that even for moderately-sized windows
consisting of a few minutes of data from both input streams,
the latency of handshake join can be in the range of tens of
seconds. Moreover, the order of the output stream produced
by handshake join is non-deterministic, and it is not clear
how a deterministic output ordering can be enforced without
sacrificing throughput or further increasing latency. Both,
high latency and non-deterministic output order, limit the
usefulness of the handshake join in real-world stream pro-
cessors.

To alleviate these drawbacks, we propose low-latency hand-
shake join (LLHJ) as an alternative to the handshake join
algorithm. Low-latency handshake join maintains the favor-
able throughput and scalability characteristics of handshake
join, but reduces latency by multiple orders of magnitude to
the millisecond scale. Moreover, low-latency handshake join
can produce a deterministically ordered output stream with
negligible runtime and space overhead through a punctua-
tion mechanism.

In summary, the main contributions of this paper are:

(i) We carefully analyze and experimentally verify the la-
tency characteristics of handshake join, the state of the
art in stream join processing.

(ii) We propose low-latency handshake join, which makes
use of a tuple expedition mechanism to improve upon
handshake join. Rather than queuing up tuples in
a processing pipeline—the main source of latency in
handshake join—, our low-latency handshake join fast-
forwards tuples between CPU cores. Low-latency hand-
shake join maintains the NUMA-efficient point-to-point
communication pattern as well as the semantic guaran-
tees of handshake join, but reduces latency by multiple
orders of magnitude.

(iii) We show how low-latency handshake join can be mod-
ified to generate a punctuated output stream. This al-
lows for deterministically ordered output streams with
negligible space and time overhead.

The remainder of this paper is organized as follows. Sec-
tion 2 summarizes the stream join problem and its existing
solutions. In Section 3, we study the latency characteris-
tics of the handshake join. We then present our low-latency
handshake join in Section 4, followed by a discussion on re-
sult generation (Section 5) and output order (Section 6).
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Figure 1: Three-step procedure of Kang et al. [10].
Every newly arrived tuple (here: of stream R) initi-
ates a scan of the opposite window, testing the join
condition p.

The results of our experimental study as well as relevant re-
lated work are summarized in Sections 7 and 8, respectively.
Section 9 concludes this paper.

2. BACKGROUND: STREAM JOINS
Input data for streaming operators is, by definition, infi-

nite in size. Hence, it must be cut into finite slices to make
operators like joins (1) semantically sound. The prevalent
way of slicing an infinite stream is the use of sliding win-
dows, where the current slice (“window”) at any moment
consists of the last-seen portion of the stream. Practical
definitions are tuple-based windows (the last k tuples that
arrived for the stream) and time-based windows (tuples that
arrived during the last τ time units).

2.1 Kang’s Three-Step Procedure
Kang et al. [10] were the first to describe a streaming

join operator. Each newly arriving tuple r of stream R is
processed in three steps:

1. Scan the window associated with input stream S and
look for matching tuples;

2. Invalidate old tuples in both windows (depending on
the window specification);

3. Insert r into the window associated with R.

The join problem is inherently symmetric, and tuples s ar-
riving from stream S are handled in a symmetric fashion.

We illustrated the scan part of the procedure in Figure 1.
After arrival of a new tuple r, the window associated with
S is scanned and for each tuple the join predicate p(r, s) is
evaluated to find matching pairs.

Latency Characteristics. The earliest moment when a
result tuple 〈r, s〉 can possibly be produced is when the later
of the two tuples r and s has arrived. In this sense, Kang’s
procedure offers optimal latency characteristics, since it tries
to find all possible matches immediately on arrival of any
tuple.

2.2 Parallelizing the Three-Step Procedure
Observe that Kang’s procedure is inherently sequential.

Since window states may change with every arriving tu-
ple, setups that process new arrivals in parallel or in non-
deterministic order may lead to different—incorrect—join
output.
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Figure 2: CellJoin [9], a parallel version of Kang’s
three-step procedure. Upon every arrival of a tuple,
the opposing window is re-partitioned to perform a
parallel scan.

2.2.1 CellJoin
Gedik et al. [9] have thus suggested to stick with the three-

step procedure even in parallel environments, but parallelize
the scan task over available processing units.

The idea, realized as the CellJoin algorithm, is illus-
trated in Figure 2. On arrival of a new tuple (say from
stream R), the in-memory window of the opposite input
stream (say S) is (re-)partitioned. The resulting partitions
Si are assigned to available CPU cores, which together per-
form a parallel window scan.

CellJoin inherits favorable latency characteristics from
Kang’s three-step procedure (with a slight overhead result-
ing from now-necessary core-to-core communication). The
price for the favorable latency, however, is the limited scal-
ability of CellJoin. Windows must be re-partitioned upon
every new input tuple, an overhead that grows linearly with
the core count and the input stream rate [9]. CellJoin
has not been designed with NUMA environments in mind.
Window re-partitioning and input tuple replication (to ev-
ery node) depend on a globally shared memory—a system
model known to scale poorly with core counts.

2.2.2 Stream Joins on Heterogeneous Hardware
Data parallelism was used in a similar fashion also in other

settings to accelerate the evaluation of stream joins. Kar-
nagel et al. [11, 12], for instance, showed how the idea is a
good fit to implement stream processing on graphics proces-
sors (GPUs). Specifically, their HELLS -Join algorithm ben-
efits from the high memory bandwidth available in modern
GPUs to scan potentially large tuple windows efficiently.

2.3 Handshake Join
Handshake join [20] replaces the three-step procedure by

a data flow-oriented setup, illustrated in Figure 3. Both
input streams notionally flow through the stream process-
ing engine, in opposing directions. The two sliding windows
are laid out side by side and predicate evaluations are per-
formed along the windows whenever two tuples encounter
each other. The mechanism resembles soccer players and
the handshake ceremony that they perform before impor-
tant matches (hence the term “handshake join”).

The data flow-oriented view lends itself to be processed in
parallel. To this end, handshake join’s processing pipeline is
divided into segments which are then assigned to individual
processing units [20]. The data flow then becomes a physical
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Figure 3: Handshake join mechanism. Streams flow
by each other in opposite directions; comparisons
(and result generation) happens in parallel as the
streams pass by.
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Figure 4: Latency analysis of handshake join.

movement of data from CPU to CPU.
The model is an excellent fit for the characteristics of mod-

ern multi-core architectures. Communication is restricted to
local point-to-point messages between neighboring cores; all
memory accesses are local; and no central coordinator (a
potential scalability bottleneck) is needed to orchestrate the
cores in the system. In [20], it was shown that handshake
join can scale linearly to at least hundreds of processing
units (cores).

The down side of this scalability is that tuples may have
to queue for longer periods of time before they encounter
matching partners. A potentially high latency is the con-
sequence. For example, two tuples r and s that arrive at
close-by time stamps will both have to travel about half of
their join window before 〈r, s〉 is detected as a join result.

3. ANALYZING HANDSHAKE JOIN
Handshake join was designed with throughput as the pri-

mary optimization goal. The resulting latency penalty was
largely ignored in previous work [20]. To better understand—
and later avoid—the latency cost, in this section we quantify
the incurred latency analytically as well as experimentally.

3.1 Latency Model
Consider two streams R and S that flow through a hand-

shake join instance as illustrated in Figure 4. At time stamp
T (the current time) two tuples r ∈ R and s ∈ S encounter
each other at position α along the processing pipeline of
handshake join, α ranging from 0 (left end of the pipeline) to
1 (right end). We denote the windows associated with R/S
as WR/WS and their sizes with |WR|/|WS |, respectively.

Assuming that the two streams are in a steady flow, at
time T , r has travelled the fraction α of the overall R window
(tr is the arrival time stamp of r):

T = tr + α× |WR| . (1)

Likewise, s has left the fraction (1 − α) of WS behind
before meeting r at time T :

T = ts + (1− α)× |WS | . (2)

Combined, the two equations yield

tr − ts = |WS | − α× (|WR|+ |WS |) . (3)

The reference point for latency is the time stamp of the
tuple that arrived later. Suppose r arrived after s (i.e.,
tr − ts > 0), then

|WS | > α× (|WR|+ |WS |)

or

α <
|WS |

|WR|+ |WS |
. (4)

Analogously, if s arrived after r, we obtain

α >
|WS |

|WR|+ |WS |
. (5)

The observed latency is T − max(tr, ts), i.e., the time
needed to detect the match, starting from the arrival of the
later tuple. By inserting Equation 1 into Equation 4 and
Equation 2 into Equation 5, we get

T − tr = α× |WR| <
|WS | × |WR|
|WR|+ |WS |

(6)

T − ts = (1− α)× |WS | <
|WS | × |WR|
|WR|+ |WS |

. (7)

Thus, for the observed latency of handshake join we get

T −max(tr, ts) <
|WS | × |WR|
|WR|+ |WS |

. (8)

A typical situation is when both windows have the same
size, i.e., |WR| = |WS | = |W |. The expected maximum
latency then is 1/2× |W |.

In practice, such latency is significant. To illustrate, for
the benchmark scenario considered in [9] and [20], a window
size of 15 min will correspond to latencies of up to 7.5 min!

3.2 Experimental Verification
To verify the correctness of our model, we analyzed the

latency distribution of handshake join. To this end, we used
the original implementation which is publicly available and
modified it to generate accurate time stamps for the input
and output streams. For our experiment, we used a server
machine with an AMD Opteron 6174 processor. We used 40
cores for the experiment.

Generally, latency in handshake join exhibits a very high
variance. Hence, in Figure 5 we plotted the observed la-
tency as a moving average, together with the corresponding
standard deviation. We also show maximum latencies that
we observed.

The x-axis in these figures is the wall-clock time as we
run our experiment. At time 0, the experiment starts with
empty windows. Latency gradually increases as the join win-
dows fill up (and sufficiently old tuples exist in the windows
at all), until both average and maximum latencies reach sta-
ble values (here: at T = 200 seconds = max(|WR|, |WS |)).

Our latency model of Section 3.1 predicts a maximum

latency of |WR|×|WS |
|WR|+|WS |

(i.e., 100 seconds for the configuration

in Figure 5(a) and 66.6 seconds for the one in Figure 5(b)).
In both figures, the observed latencies are slightly below the
predictions. This is because our parameter α assumes an
infinite number of CPU cores. For realistic CPU counts,
α becomes discrete and we observe a slightly better actual
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(a) |WR| = |WS | = 200 seconds.
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(b) |WR| = 100 and |WS | = 200 seconds.

Figure 5: Latency distribution of handshake join. Each data point represents 200,000 output tuples.

latency (handshake join degenerates to Kang’s three-step
procedure when using just a single CPU core [20]).

A high absolute latency and a high variance are both prob-
lematic characteristics of handshake join’s latency. The for-
mer one is undesirable, because the very purpose of most
stream processors is to react in real time. The latter one
mixes up the order of tuples in the output stream. Such
disorder can be corrected, but only at the price of (a) even
more latency and (b) high memory overhead, because tuples
must be buffered for re-ordering.

4. LOW-LATENCY HANDSHAKE JOIN
The goal of this work is to remove the latency bottle-

neck of the handshake join. In this section, we propose our
low-latency handshake join. The algorithm is semantically
equivalent to the handshake join and classical stream join
operators with respect to their set of output tuples. It also
preserves the architecture awareness of the handshake join
but in addition avoids its high latency penalty.

4.1 Overview
As in handshake join, our low-latency alternative consid-

ers a chain of processing nodes (CPU cores) in which each
node has some local memory store and neighboring nodes are
connected by communication channels using FIFO queues.
Tuples from input stream R flow through the chain from
“left to right”, whereas tuples from S flow in the opposite
direction, i.e., from “right to left”. The relevant state of the
windows of R and S is distributed across FIFO queues and
local stores. LLHJ proceeds as follows:

1 When an input tuple v arrives at one of the input
streams, low-latency handshake join decides on its home
node hv.

2 Tuple v is then expedited through the chain of pro-
cessing nodes, i.e., v does not queue up on each node
but becomes forwarded almost immediately after local
arrival.

3 When v reaches its home node hv, v is added to a
node-local window Whv and marked as stored.

4 As a stored tuple, v continues its expedition, until it
reaches the end of the processing pipeline, where it is
discarded.

core 1 core 2 core 3 core 4 core 5 core 6 core 7

v
1 2 2 2 3

4 4 4 4

Figure 6: High-level idea of our low-latency hand-
shake join. Input tuple v from R rushes through the
pipeline, gets stored in the local window of node
hv = core 4, continues to the pipeline end, and gets
discarded.

5 Similar to the original algorithm, low-latency hand-
shake join uses expiry messages (termed “acknowledge-
ment messages” in [20]) to delete expired tuples from
the processing pipeline and from node-local windows.

Figure 6 illustrates the first four steps for an input tuple
v from R (the “upper” stream). In Step 1 , low-latency
handshake join decides on core 4 as the home node of v.
Tuple v travels through the pipeline, gets stored on core 4,
and continues until core 7, where it gets discarded. The
squares boxes at the top and bottom indicate the node-local
windows on each core for streams R and S, respectively.

The high latency of the original handshake join algorithm
arises due to strict queueing of tuples along the distributed
join windows. Instead, in low-latency handshake join, each
core immediately forwards (“expedites”) incoming tuples
such that each tuple will have been seen by all involved
processing units shortly after its arrival. The moving tuple
gets discarded when it has rushed through all nodes, but
the copy on its assigned home node remains available for
matching until explicitly removed by an expiry message (see
Section 4.2.4 for a discussion of Step 5 ).

Other than in the original algorithm, in low-latency hand-
shake join every tuple gets to rest only on a single processing
node, its home node. This opens up the possibility to com-
bine low-latency handshake join with local indexing strate-



gies, where temporary hash or B-tree indexes are built over
the node-local data to accelerate matching.

4.2 Detailed Discussion

4.2.1 Communication Pattern
Low-latency handshake join aims to maintain the positive

characteristics of the original algorithm. In particular, as
can also be seen in Figure 6, low-latency handshake join in-
herits the architecture-efficient communication pattern from
handshake join. Teubner and Mueller [20] demonstrated
that this communication pattern matches, for example, the
system topology of the AMD Magny Cours system. Every
core communicates only with its immediate neighbors and
through dedicated FIFO channels. Such channels are effi-
cient to implement and—more importantly—scale well to
large core counts.

4.2.2 Propagating Tuples
In realistic settings, low-latency handshake join processing

is highly dynamic: tuples are constantly propagated between
cores and are added or removed from node-local windows.
This bears a risk of race conditions, which may lead to in-
correct results when not treated properly. In particular, we
want to make sure that when a tuple from r moves through
the pipeline, it encounters exactly once all concurrent tuples
from S—i.e., tuples from S that are either in the pipeline at
the time r arrives or arrive themselves before r reaches the
end of the pipeline—and vice versa.

Teubner and Mueller [20] pointed out the risk of missed
join pairs, which may occur when the two tuples are simulta-
neously “in flight” between the same two neighboring cores
(and thus do not encounter each other). The problem can
be avoided by using an acknowledgement mechanism that
ensures that a tuple virtually remains on its sending node
until the arrival of the tuple has explicitly been confirmed
by the receiving node via an acknowledgement message. It
suffices to use such an acknowledgement mechanism on only
one of the two input streams to guarantee that “missed” join
pairs are detected on at least one side of a pair of neighbors;
see [20] for details.

We adapt the above acknowledgement mechanism in low-
latency handshake join. This mechanism ensures that each
tuple is (virtually) present at exactly one node while travel-
ling, and the encountering of two tuples is detected reliably.

4.2.3 Matching Tuples
With the acknowledgement mechanism in place, we can

view the propagation of tuples along the processing pipeline
as data flows: There is one data flow for the tuples from
R (flowing from left to right in our figures) and one for the
tuples from S (right to left).

In the original handshake join algorithm, each tuple in a
data flow is treated in exactly the same way as any other
tuple. In our latency-optimized variant, the procedure is
different. In particular, each data flow now consists of what
we call fresh tuples ( 2 in Figure 6) and stored tuples ( 4 ).
Fresh tuples did not yet pass their home node and are thus
not stored in any node-local window. Stored tuples passed
their home node so that a copy of the tuple is stored in the
corresponding node-local window. Note that we distinguish
stored tuples (in the processing pipeline) from stored copies
(in the node-local window).

A fresh or stored tuple from one flow (say, R) may en-
counter (i) fresh tuples from the other flow (S), (ii) stored
tuples from the other flow (S), and (iii) stored copies in a
node-local window (of S). To ensure correct results, low-
latency handshake join treats arriving tuples differently de-
pending on their state (fresh or stored) and source (R or
S). Possible cases of how tuples can meet (or not meet) are
summarized in Table 1. We need to treat each case differ-
ently to avoid both missing results and duplicate results. In
the discussion below, we write “fresh/stored” for the case
that a fresh tuple R “meets” a matching stored tuple from
S; the other cases are denoted correspondingly.

R

S

T

Figure 7: At time T ,
two fresh tuples meet.

Fresh/Fresh. The situ-
ation that compares best
to the original handshake
join algorithm is when two
fresh tuples encounter each
other. This case is illus-
trated in Figure 7. The fig-
ure shows the state of a sin-
gle tuple r from R and a sin-
gle tuple s from S as they
flow through the processing pipeline. Solid segments indi-
cate a fresh tuple, dotted segments a stored tuple, and ar-
rows mark the position of the respective home nodes. The
two tuples meet at time T (at which both are fresh).

In the fresh/fresh situation, neither tuple has yet found
its home node and thus no stored copy of either tuple exists.
Hence there will be no future situation where the two tuples
might see each others’ copies again. We thus perform an
immediate predicate evaluation and emit a join result in
case of a match (as in the original handshake join).

R

S

T

Figure 8: At time T ,
a fresh tuple r meets a
stored tuple s.

Fresh/Stored. Figure 8 il-
lustrates the situation when
a fresh tuple r ∈ R en-
counters a stored tuple s ∈
S. Since a copy of s has
already been placed at its
home node hs, we know
that r will see a copy of
s somewhere down r’s pro-
cessing pipeline. We thus
attempt no match. Instead,

whenever a tuple from R arrives at a processing node, we
scan the node-local window of S and emit all matching join
pairs. This local join is performed in all cases, i.e., whether
r is fresh or stored.

R

S

T

Figure 9: At time T ,
two stored tuples meet.

Stored/Stored. When
two stored tuples meet
(Figure 9), we attempt no
match as above. The situa-
tion is more intricate, how-
ever: both tuples r ∈ R and
s ∈ S will see the node-local
copies of their counterpart
as they travel along. Care
must be taken to avoid in-
correct stored/stored double matches and thus duplicates in
the output stream.

In order to perform matching exactly once, we need to
break the symmetry between R and S and attempt match-
ing for such combinations in only one node-local store (this



Met when State Evaluate p(r, s) Expedition flag of r
travelling? r s when travelling at hr at hs when s arrives at hr

yes fresh fresh yes no no -
fresh stored no no yes -

stored fresh yes no no Set
stored stored no no yes Set

no fresh/stored - - - yes -
- fresh/stored - yes - Cleared

Table 1: When to evaluate join predicate p(r, s)?

R

non-expedited
tuples

expedited
tuples

· · · local R
window

S

r
expedition
end msg

s

Figure 10: Expedition end messages help to maintain
the expedition flag in each node-local R-store.

resembles the asymmetric acknowledgement mechanism of
[20]). To this end, we extend the node-local windows of R
to record an expedition flag for each tuple. The flag of tu-
ple r (in local window Whr ) indicates whether or not tuple
r has finished its expedition (see below). To avoid dou-
ble matches, arriving tuples from S are matched not against
the entire node-local window from R but only against tuples
that have finished their expedition (expedition flag cleared).

To populate the flag, we introduce a new message type, as
illustrated in Figure 10. Whenever an r-tuple has reached
the end of its pipeline, we insert an expedition end message
into the flow of S; this message signals r’s home node hr

that r has now reached the pipeline end (so hr can clear r’s
expedition flag). Since all tuples are processed in order, the
flag can be realized as a pointer that separates expedited
and non-expedited tuples in hr’s node-local window.

The above mechanism takes advantage of the strict FIFO
ordering in the system, i.e., all messages from one node to
its neighbor are sent through the same FIFO channel, re-
gardless of the type of the message.

Double matching must only be avoided for the stored/stored
situation of Figure 9 (by ignoring “expedited” tuples in
node-local R windows). The expedition end message for
r is generated at the pipeline end and thus separates the
tuples from S that have encountered r from those that have
not (because they arrived after r reached the end of the
pipeline). In more detail, all tuples from S that are inserted
into the flow of S before the expedition end message of r
(e.g., tuple s in Figure 10) match with r as it travels (but
not with its stored copy). All tuples inserted after the ex-
pedition end message match with the stored copy of r (but
do not encounter r as it travels).

R

S

T

Figure 11: At time T , a
stored tuple r meets a
fresh tuple s.

Stored/Fresh. Finally, a
stored tuple r ∈ R may en-
counter a fresh tuple s ∈ S.
This situation is illustrated
in Figure 11 on the right.

Since s encounters r, we
know that r is and will still
be flagged as “in expedi-
tion” on r’s home node hr

when s eventually arrives
there (the expedition end message of r arrives at node hr

after s). Hence, when s reaches hr, it will ignore r during
the node-local window scan due to the above mechanism for
avoiding stored/stored double matches: a stored/fresh miss
would result.

We resolve this problem by handling fresh/stored and
stored/fresh situations in an asymmetric way, too. While
the former are simply ignored, we do attempt a match in
the latter case, similar to the encountering of two fresh tu-
ples.

Table 1 summarizes the discussion above for any pair
(r, s) ∈ R × S. Low-latency handshake join produces cor-
rect results because p(r, s) is evaluated exactly once for each
case (row in the table) and the different cases are mutually
exclusive.

4.2.4 Tuple Expiration
We directly adapt the tuple expiration mechanism of hand-

shake join [20], which can be flexibly used with arbitrary
types of sliding windows. The processing pipeline of the al-
gorithm is oblivious with respect to the specification of the
sliding windows and, in particular, the algorithm does not
know (or need to know) whether it is processing tuple-based,
time-based or any other form of sliding windows.

We briefly summarize the approach here. Low-latency
handshake join assumes that there is an external driver that
is aware of the sliding window specification and determines
when tuples enter or leave one of the sliding windows. The
driver then submits tuple arrivals and tuple expiration mes-
sages to the low-latency handshake join instance. All arriv-
ing tuples enter the pipeline as fresh tuples on the left (R)
or right (S); expiring tuples are submitted to the opposite
ends, i.e., right for R and left for S. Intuitively, all tuples
from R that are inserted into the left-to-right queue after
the expiration message of some tuple s ∈ S do not join with
s, and vice versa. Similar to tuple arrivals, tuple expira-
tion messages travel along the pipeline; each node simply
removes the stored copy of the respective tuple, if present.
See [20] for further details.



1 Procedure: low latency handshake join ()

2 while true do
3 if message waiting in leftRecvQueue then
4 process left () ;

5 if message waiting in rightRecvQueue then
6 process right () ;

Figure 12: LLHJ with asynchronous message pass-
ing (runs on each core).

1 Procedure: process left ()

/* code is for core k in the pipeline */

2 msg ← message from leftRecvQueue ;
3 if msg is an arrival message then
4 r ← extract new tuple from msg ;
5 if k is leftmost core in pipeline then
6 decide on home node hr and tag r accordingly ;

7 insert r into rightSendQueue ;
8 scan WSk and IW Sk to find tuples that match r ;
9 if k = hr then

10 insert r into WRk (marked as expedited) ;

11 if k is rightmost in pipeline then
12 place expedition end for r in rightRecvQueue ;

13 else if msg is an acknowledgement message then
14 remove acknowledged tuple s from IW Sk ;

15 else
/* msg is an expiry message */

16 s ← extract expired tuple from msg ;
17 if s found in node-local store WSk then
18 remove s from WSk ;

19 else
20 insert msg into rightSendQueue ;

Figure 13: Processing a message from left input
queue.

4.3 The Complete Algorithm
Figures 12–14 describe the low-latency handshake join al-

gorithm more formally.
The main loop of low-latency handshake join is given by

the function low latency handshake join () in Figure 12,
which is run on each of the cores in the pipeline. Each core
communicates with the core to its left via an input queue
(leftRecvQueue) and an output queue (leftSendQueue); simi-
lar queues exist for communication with the core to the right.
The main event loop simply dispatches incoming messages
from either the left or right input channel to its respective
event handler.

Each core k maintains a node-local window WRk of tuples
from R, a node-local window WSk of tuples from S, and a
temporary buffer IWSk of tuples from S that have been
forwarded but not yet acknowledged.

Left-to-right messages. The pseudo-code for handling
messages that are passed from left to right is shown in Fig-
ure 13. There are three types of left-to-right messages: ar-
rival messages of tuples from R, acknowledgement messages
of forwarded tuples from S (to avoid missed join pairs), and

1 Procedure: process right ()

/* code is for core k in the pipeline */

2 msg ← message from rightRecvQueue ;
3 if msg is an arrival then
4 s ← extract tuple from msg ;
5 if k is rightmost core in pipeline then
6 decide on home node hs and tag s accordingly ;

7 insert s in leftSendQueue ;
/* avoid stored/stored double matches */

8 scan non-expedited entries of WRk to find tuples
that match r ;

9 if s is fresh (k > hs) then
/* avoid stored/fresh misses */

10 insert s into IW Sk ;

11 if k = hs then
12 insert s into WSk ;

13 insert acknowledgement for s into rightSendQueue ;

14 else if msg is an expedition end then
15 r ← extract expedition end r from msg ;
16 if r found in node-local store WRk then
17 clear the expedition flag for r from WRk ;

18 else
19 insert msg into leftSendQueue ;

20 else
/* msg is an expiry */

21 r ← extract expired tuple from msg ;
22 if r found in node-local store WRk then
23 remove r from WRk ;

24 else
25 insert msg into leftSendQueue ;

Figure 14: Processing a message from right input
queue).

expiration messages of tuples from S.
We first discuss the case when a new tuple r ∈ R arrives

at node k. If k is the leftmost node in the pipeline, and
thus the first node that processes r, it tags r with its home
node hr (lines 5 and 6). In our default implementation,
we select home nodes in a round-robin fashion to ensure
even load balancing. To minimize latency, each tuple is then
immediately forwarded to the next neighbor to the right
(line 7), before both the node-local window WSk and the
set IWSk of forwarded but not-yet-acknowledged tuples are
scanned for possible matches (line 8). If k is r’s home node
(hr = k), then r is stored in the node-local window WRk

(lines 9 and 10). If k is the right-most node of the pipeline,
an expedition end message for r is generated and sent in the
opposite direction (line 12, cf. Section 4.2.3).

The remaining cases are handled as follows: If node k
receives an acknowledgement messages of a tuple s ∈ S it
had forwarded (in the opposite direction), it removes s from
the buffer IW Sk of not-yet-acknowledged tuples (lines 13
and 14). If node k receives and expiration message of some
tuple s ∈ S, it removes the tuple from its node-local window
WSk if present or passes the expiration message along to its
right neighbor otherwise.
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Figure 15: Result assembly in handshake join.

Right-to-left messages. The handling of tuples in the op-
posite direction is not completely symmetric because of the
acknowledgement mechanism (Section 4.2.2) and the expe-
dition end mechanism (Section 4.2.3). Messages that travel
from right to left are: arrival messages of tuples from S,
expiration messages of tuples from R, and expedition end
messages of tuples from R (to avoid stored-stored double
matches).

When a tuple s ∈ S arrives at node k, it is tagged (only
at right-most node) and forwarded as before. In contrast to
the handling of left-to-right tuple arrivals, tuple s is matched
with only non-expedited tuples in the local window WRk to
avoid stored-stored double matches. Moreover, s is stored
in the temporary buffer IWSk (only needed if s is still fresh,
cf. Table 1) and an acknowledgement message for s is sent
to the node to the right.

Lines 14–19 handle expedition end messages of tuple r ∈
R. If r is stored in the node-local window WRk , its expedi-
tion flag is cleared; otherwise, the expedition end message
is forwarded to the next node to the left.

Finally, expiration messages from tuples from R are han-
dled as in the left-to-right case.

5. RESULT STREAM
Handshake join finds join matches in a fully distributed

manner. The paper of Teubner et al. [20] does not, however,
elaborate on how result tuples are assembled into one single
output stream.

Figure 15 illustrates how result collection is implemented
in the publicly available source code of Teubner et al.. Ev-
ery worker thread of the handshake join processing pipeline
connects to a dedicated result queue (Qi in Figure 15). A
separate thread (termed collector) periodically iterates over
all result queues, vacuums them, and produces result tuples
to a single output stream.

Strictly speaking, collecting results in this manner breaks
with the strict neighbor-to-neighbor communication model
of handshake join. The collector thread has to communicate
with all nodes in the system and runs the risk to become
a bandwidth and merging bottleneck. Oge et al. [18] in-
vestigated this problem in an FPGA-based implementation
and proposes adaptive merging to address it. In practical
settings, however, stream processing engines are typically
used to sieve high-volume data streams and return only low-
volume results. In the experimental settings that we consid-
ered, we could not saturate the result collection of neither
the code of [20] nor of our own code.

Join Pipeline
R

S

collector thread

punctuated
result stream

...
〈ri, sj〉
dtpe

Q1 Qnhigh water
mark tmax ,S

high water
mark tmax ,R

Figure 16: Low-latency handshake join infers time
stamp information for punctuations dtpe is from high
water marks, which are maintained for both input
streams at the respective pipeline end.

6. ORDER OF RESULT TUPLES
As a consequence of their sequential nature, data streams

come with a meaningful notion of order. And for most data
stream operators—including such that use windowing—useful
definitions have been suggested that exploit or produce streams
with a well-specified order.

On the flip side, precise order semantics is sometimes
costly to guarantee while not even necessary for realistic
workloads [13]. Punctuations [14, 15] were thus suggested
as a mechanism to allow for local disorder within the stream.
Explicit markers (“punctuations”) indicate stream progress
as a logical property within the stream. They can be inter-
preted as a guarantee about stream items that precede or
follow the punctuation in the physical stream.

Applied to the permission of local disorder, a punctuation
dtpe might, for instance, state the guarantee that there will
be no more tuples in the stream with a time stamp earlier
than tp (all tuples v with time stamp tv < tp have already
occurred in the stream before the punctuation).

6.1 Punctuations in Low-Latency Handshake
Join

Low-latency handshake join is—like its original algorithm
handshake join—a good example of an algorithm that can
benefit from relaxed order requirements and, through the
use of parallelism, turn the relaxation into improved per-
formance. But in spite of the algorithm’s high potential for
parallelism, low-latency handshake join offers a very natural
way of producing tight punctuations with only little over-
head.

6.1.1 High Water Marks
The mechanism to infer punctuation information in low-

latency handshake join is illustrated in Figure 16. For both
input streams, we maintain a high water mark tmax ,R/tmax ,S .
High water marks record the highest time stamp for any
tuple r/s that has reached the respective pipeline end (since
time stamps are monotonic, this corresponds to the last time
stamp seen).

The matching process, i.e., the generation of result tu-
ples along the processing pipeline, is driven by expedited
tuples that traverse the pipeline (‘scan’ calls in line 8 of Fig-
ures 13 and 14). And since all input data is processed in
strict sequential/time stamp order, high water mark values
tmax ,R/tmax ,S indicate that no tuples r/s with time stamps



tr < tmax ,R and ts < tmax ,S can drive any further matches.1

6.1.2 Result Time Stamps
The time stamp t〈r,s〉 of a result tuple 〈r, s〉 is defined to

be the later of the two time stamps tr and ts, i.e., t〈r,s〉 :=
max(tr, ts) or t〈r,s〉 ≥ tr ∧ t〈r,s〉 ≥ ts.

For result tuples 〈r, s〉 whose generation is driven by an ex-
pedited tuple r, the result time stamp t〈r,s〉 must be greater
or equal to the time stamp tr of r, which we know is greater
or equal to the high water mark tmax ,R. Likewise, when
the generation is driven by an expedited s, we know that
t〈r,s〉 ≥ ts ≥ tmax ,S .

Independent of what kind of tuple drove the output gen-
eration, the minimum high water mark min (tmax ,R, tmax ,S)
is a safe bet. Any newly generated tuple 〈r, s〉 will have a
time stamp t〈r,s〉 ≥ min (tmax ,R, tmax ,S).

6.1.3 Collector Thread and Punctuations
We can use this reasoning over time stamps to implement

a result collector that generates correct and tight punctua-
tions. To this end, we implement the collector as follows:

1. Read high water marks tmax ,R/tmax ,S and determine
minimum high water mark tp := min (tmax ,R, tmax ,S).

2. Read out (“vacuum”) all result queues Qi and forward
all previously generated result tuples to overall join
output stream.

3. Place a punctuation dtpe in the overall join output
stream.

4. Repeat.

6.2 Ordered Result Streams
Generating punctuations this way causes virtually no pro-

cessing overhead. The effect, however, can be significant.

Original Handshake Join Algorithm. If strict time
stamp ordering is required in the overall output stream, ei-
ther algorithm must temporarily buffer output tuples to fix
up the generated disorder. In case of the original hand-
shake join algorithm, we already saw that individual tuple
latencies are in the order of the total window size. Thus, to
produce correctly sorted output, handshake join will have to
delay and buffer generated result tuples for time scales up
to the window length (|WR| or |WS |).

Besides adding another delay to the already-high latency
of handshake join, buffering such tuple amounts can cause a
significant resource overhead. To illustrate, the benchmark
configuration that we consider in Section 7 assumes tuple
rates in the order of 3000 tuples/sec, window sizes of 15 min-
utes, and join hit rates of 1 : 250, 000. This corresponds to
an output data rate of more than 60,000 tuples/sec. For
a 7.5-minute delay, the system will thus need a buffer of
almost 30 million output tuples.

This space overhead is complemented by a very high CPU
overhead, because periodically the full buffer must be (par-
tially) sorted and old tuples must be written to the join
output.

1It is quite likely, however, that some cores are still busy
generating output for tuples r′/s′ with tr′ = tmax ,R or
ts′ = tmax ,S . The fast-forwarding mechanism of low-latency
handshake join, in fact, makes this the common case.

Low-Latency Handshake Join. The situation looks rad-
ically different when punctuations in low-latency handshake
join are used to optimize the sorting of output data. Buffers
must now only be maintained until the next punctuation.
In practice, this leads to a saving in memory space of sev-
eral orders of magnitude. In addition, as indicated above,
smaller buffers save precious CPU cycles and reduce overall
algorithm latency.

We will experimentally verify the effects of punctuations
in Section 7.

7. EXPERIMENTS
We ran the experiments on a 2.2 GHz AMD Opteron 6174

“Magny Cours” machine [5], the same machine that is used
in [20]. The machine contains 48 real x86-64 cores, dis-
tributed over 8 NUMA regions which are connected through
a set of point-to-point HyperTransport links. The data flow
of the algorithm can be laid out over the available CPU cores
such that only short-distance communication is needed and
no congestion occurs on any link or at any NUMA site. Our
prototype implementation uses libnuma library and an asyn-
chronous FIFO implementation similar to that of [4]. The
system was running Ubuntu Linux 12.04 LTS. We used GCC
4.6.3 version to compile the code.

7.1 Experimental Setup
For ease of comparison, we used the same benchmark

setup that was used to evaluate CellJoin [9] and handshake
join [20]. Two streams R = 〈 x : int, y : float, z : char[20] 〉
and S = 〈 a : int, b : float, c : double, d : bool 〉 are joined via
the two-dimensional band join

WHERE r.x BETWEEN s.a− 10 AND s.a + 10
AND r.y BETWEEN s.b− 10. AND s.b + 10. .

The join attributes contain uniformly distributed random
data from the interval 1–10,000, which results in a join hit
rate of 1 : 250, 000. As in [9], we ran all experiments with
symmetric data rates, that is |R| = |S|.2 All the workers
including the driver and collector threads are implemented
as Linux threads.

7.2 Throughput and Scalability
Firstly, we want to make sure that low-latency handshake

join does not lose the throughput and scalability character-
istics of the handshake join. We ran the experiment where
we varied the core count from 4 to 40 and for each config-
uration we determined the maximum throughput that the
system could sustain without dropping any data for both of
the algorithms. It is shown in the Figure 17.

The experiment shows that the changes made in low-
latency handshake join have negligible impact on scalability
and absolute throughput. In fact, we found that for ho-
mogeneous hardware environments, the assignment of home
nodes typically leads to a better load distribution than the
self-balancing code of [20]. In Figure 17, this leads to a slight
throughput improvement, especially for large core counts.

7.3 Latency
To compare the latency of the low-latency handshake join

and handshake join in the same scale, we plot the average

2Workload and output data rates grow with |R| × |S| or
quadratically with the reported stream rate.
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latency for both algorithms in Figure 18, computed over a
15-minute window with increasing core count. Low-latency
handshake join achieves almost four orders of magnitude
better average latency in comparison to handshake join. In-
creasing number of cores do not have much impact on the
average latency of handshake join as the latency mainly de-
pends on the window sizes.

As the core count increases, low-latency handshake join
exhibits a noticeable drop in latency. The source of this is a
batching mechanism in our code (and in that of [20]). The
driver thread batches 64 tuples before it pushes them to-
gether into the join pipeline. For handshake join the impact
of batching is completely hidden because of the high values
of the latencies. In contrast, for low-latency handshake join
this becomes visible because of the small values of latencies.
For a throughput of our 8-core configuration, a new batch is
submitted approximately every 46 milliseconds; experimen-
tally, we observed an average latency of 32 ms per tuple.
With 40 cores, due to increased throughput, the batch dis-
tance drops to about 20 milliseconds, or an average latency
of 15 ms.

A more detailed latency analysis is illustrated in Fig-
ure 19. The two graphs repeat the earlier experiment of
Figure 5, but for low-latency handshake join.

Tuple expedition brought the average latency down be-
low 10 ms, with maximum latencies of 30 ms and below—an
improvement of more than three orders of magnitude (note
the different axis scales in Figures 19 and 5). Further, laten-
cies have become much less sensitive to the configuration of
the join window; both evaluated configurations resulted in
comparable latency values. Even in these two cases the main
source of latencies is the batching delay (which is about 9 ms
on an average).

7.3.1 With Reduced Batching Effect
Latency can further be reduced by minimizing the batch-

ing size of the implementation. Vectorized processing (an
important source of performance of handshake join [20]) re-
quires a batch size of at least four tuples. Therefore, we
reduced the batch size of low-latency handshake join to this
value and re-ran the latency analysis experiment (see Fig-
ure 20).

In this configuration, a batch will be issued every 1.2 ms.
This is consistent with the average result latency, which is
about 1 ms in Figure 20; worst-case latency is now around
3–4 ms (spikes in Figure 20 are a result of scheduling effects
that are outside the control of our code).

Aside from batching (which still remains the main source
of latency), latency is caused by two effects that will add up
in practice: (a) tuples must be fast-forwarded through the
pipeline, with an overall delay that depends on the pipeline
length; (b) each tuple must, in parallel on all nodes, be
compared to node-local windows (this effect is independent
of the pipeline length). Both effects are too small to be vis-
ible in Figure 20. Core-to-core messaging is extremely fast
in modern architectures. Baumann et al. [4], for instance,
report a single-hop latency below 1µs. Even for very long
processing pipelines, this latency will not be noticeable.

7.4 Effect of Punctuation
Punctuations incur additional overhead on the join work-

ers. Especially the first and the last core i.e. C1 and Cn

in the join pipeline need to send additional messages in the
form of markers to the collector thread. Figure 17 also in-
cludes throughput numbers when we turned on the genera-
tion of punctuations in low-latency handshake join (shown
as ).

With punctuations turned on, throughput stays only mar-
ginally below the throughput we achieved with the plain low-
latency handshake join code. This confirms our expectations
in Section 6.1, where we designed punctuation generation to
be a lightweight operation over the low-latency handshake
join.

7.5 Generation of Sorted Output
Although the latency variance for output tuples for low-

latency handshake join is small, generation of a completely
sorted output for the down stream operator from a non-
punctuated result stream is a difficult task, as we detailed
in Section 6.2.

Even with punctuations, a downstream sorting operator
needs to buffer tuples until it receives the punctuation. We
implemented such a sorting functionality and tracked the
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Figure 19: Latency distribution of low-latency handshake join. Each data point represents 200,000 output
tuples.
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throughput
algorithm (tuples/sec)

handshake join [20] 5125
low-latency handshake join 5117
low-latency handshake join with index 225234

Table 2: Throughput comparison of the 40 core con-
figuration of handshake join, low-latency handshake
join with and without indices; 15 min window.

maximum size of its internal buffer, i.e., the maximum num-
ber of tuples that buffer had at any point in time. This is
shown in the Figure 21. The figure confirms that sorted
output can be generated with only a small overhead (to
compare, without low-latency handshake join’s punctuation
mechanism, the operator would have to buffer and re-sort
many millions of tuples).

7.6 Looking Forward: Index Acceleration
A virtue of low-latency handshake join is that it can play

well together with node-local index structures to accelerate
searching. In ongoing work, we are studying the perfor-
mance advantages that such access structures may have to
speed-up processing whenever join predicates permit the use
of an index.

Table 2 hints at the potential of additional index struc-
tures. To this end, we changed the join predicate of our
benchmark to allow for hash-based processing and imple-
mented a local hash table within each processing node. Ta-
ble 2 lists the throughput numbers that we achieved for
handshake join, low-latency handshake join, and our hash-
accelerated prototype.

8. RELATED WORK
With the omnipresence of many-core and heterogeneous

machines, it has become more important than ever to design
algorithms tuned to the underlying architecture to achieve
certain guarantees. A recent work on main memory join [3]
has shown that the relational database join algorithm that
is carefully tuned to the underlying hardware achieves the



best throughput. Nevertheless, the handshake join [20] algo-
rithm is also carefully tuned to the underlying architecture
to achieve the best throughput but largely ignores the op-
timisation of the latency characteristics. Latency is an im-
portant parameter of goodness for streaming application [2,
1]. Especially in trading application such features are of
utmost importance [19, 22], as the algorithm should de-
tect and report about anomalies as early as possible. There
are also several database join algorithms that try to reduce
the latency and produce results as early as possible mainly
to support the pipeline query model as well as to support
streaming applications [17, 21, 8]. In this work, we achieved
both very high throughput and very small latency by care-
fully tuning the algorithm to the underlying hardware so
that the latency and throughput requirement of streaming
application can be satisfied.

Punctuations were introduced by Tucker et al. [14] to
break the infinite semantics of streaming data to allow cer-
tain database operators to avoid infinite memory consump-
tion and indefinite blocking. There have been several works
that use punctuations in join to mark the end of appearance
of some tuple in the input e.g., PJoin [6]. A subsequent work
is PWJoin [7] that improves the performance of PJoin utiliz-
ing both the window semantics and punctuation semantics.
Low-latency handshake join also uses punctuations in an in-
novative way to guarantee certain feature of the future result
tuples with respect to timestamp.

9. CONCLUSION
We built on top of the handshake join algorithm and

present the algorithm low-latency handshake join that cir-
cumvents the shortcomings of handshake join. The algo-
rithm allows us to get the best of both worlds. It exhibits the
scalability and throughput characteristics like handshake join
and as well as reduces latency and enables us to produce a
punctuated result stream. This, in turn, allows to produce
result tuples in complete order. In addition, we have suc-
cessfully characterized the latency behavior of handshake
join algorithm.

As part of our future work, we plan to investigate the
performance of both of these algorithms with different kinds
of indices. As well as we will explore the impact of different
kinds of partitioning on the input data.
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