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While offering unique performance and energy saving advantages, the use of field-programmable gate ar-
rays (FPGAs) for database acceleration has demanded major concessions from system designers. Either the
programmable chips have been used for very basic application tasks (such as implementing a rigid class of
selection predicates), or their circuit definition had to be completely re-compiled at runtime—a very CPU-
intensive and time-consuming effort.

This work eliminates the need for such concessions. As part of our XLynx implementation—an FPGA-
based XML filter—we present skeleton automata, which is a design principle for data-intensive hardware
circuits that offers high expressiveness and quick re-configuration at the same time. Skeleton automata
provide a generic implementation for a class of finite-state automata. They can be parameterized to any
particular automaton instance in a matter of micro-seconds or less (as opposed to minutes or hours for
complete re-compilation).

We showcase skeleton automata based on XML projection [Marian and Siméon 2003], a filtering technique
that illustrates the feasibility of our strategy for a real-world and challenging task. By performing XML
projection in hardware and filtering data in the network, we report on performance improvements of several
factors while remaining non-intrusive to the back-end XML processor (we evaluate XLynx using the Saxon
engine).
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1. INTRODUCTION

Field programmable gate arrays (FPGAs)—and hardware-accelerated database pro-
cessing in general—have gained a lot of momentum in past years. The opportunlty to
implement tailor-made functionality directly in hardware is a very promising research
and development direction to overcome the inherent limitations of commodity hard-
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ware. As recent research has shown, FPGAs can perform database tasks with higher
throughput, lower latency, and lower energy consumption than pure software systems
(e.g., [Moussalli et al. 2011; Mueller et al. 2009; Netezza 2012; Sadoghi et al. 2010;
Sidhu and Prasanna 2001; Woods et al. 2010]).

Unfortunately, previous FPGA-based solutions often had a tendency to be rather
inflexible. Designing good hardware circuits is tedious and difficult, and hardware-
based solutions can only excel when the respective circuit is carefully tuned to the
problem at hand. In previous work, this has forced system designers to face critical
trade-offs:

(a) Systems like IBM’s Netezza [Netezza 2012] use FPGAs only for a small part of
the system’s overall functionality. Selection and projection are implemented in the
Netezza system by means of a statically compiled circuit that is parameterized
at runtime within very tight bounds (e.g., only basic “SARGable”! selection predi-
cates).

(b) Several research prototypes (including [Moussalli et al. 2011; Mueller et al. 2009;
Sadoghi et al. 2010; Woods et al. 2010]) instead opted to compile a dedicated circuit
for each user query. Such an approach provides expressiveness, however, at a very
high cost. Re-compiling a hardware circuit for each user query is a complex and
CPU-intensive task, with typical compilation times ranging from minutes to even
hours. Such a per-query startup cost seems only bearable for a very narrow set of
applications (such as algorithmic trading [Sadoghi et al. 2010] or network intrusion
detection [Sidhu and Prasanna 2001]).

In this work, we do not want to trade speed for expressiveness. Rather, we show a
system design strategy that offers high expressiveness (sufficient to support an impor-
tant subset of XPath), and yet does not require expensive re-compilation at runtime.
Our system, XLynx, offers the same throughput characteristics as previous approaches
that required per-query compilation. By contrast, however, XLynx also supports in-
stant query workload changes with reconfiguration times in the micro-second range.

The heart of XLynx—and a core contribution of this work—is the skeleton automa-
ton design pattern. A skeleton automaton is a generic implementation of a non-
deterministic finite-state automaton (NFA) that can be tailored to implement a par-
ticular automaton instance with only few (and fast-to-realize) configuration changes.
Skeleton automata are made possible by separating the structure of a finite-state
automata—which is the difficult part to (re-)compile on-line—from its semantics, e.g.,
number of states, transition conditions, etc. This allows us to perform all structure-
related compilation steps off-line and only once, while at runtime we only modify con-
figuration parameters.

This article describes the inner workings of XLynx, as well as the skeleton automa-
ton design principle. We give sufficient details for readers to follow and reproduce all
important building blocks of XLynx, and non-FPGA experts are provided with back-
ground information on hardware/FPGA technology.

We use the skeleton automaton concept to implement XML projection, a task that
is meaningful and at the same time challenging from a hardware perspective. XML
projection was proposed by Marian and Siméon [2003] almost ten years ago. But be-
cause XML parsing is the dominating cost factor in real-world systems [Nicola and
John 2003], XML projection remained little more than an academic curiosity. By off-
loading the projection task to dedicated hardware, however, XLynx can truly unleash
the potential of XML pre-filtering, leading to query speedups of several factors.

Lhttp://en.wikipedia.org/wiki/Sargable
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Parts of this work have been published earlier as a conference paper [Teubner et al.
2012]. This article emphasizes how a complete system can be built from the skeleton
automaton principle. To this end, we discuss integration aspects that will be needed
to leverage skeleton automata in a full system design. This includes a more in-depth
discussion of XML parsing—a task which alone has challenged hard- and software
makers for a long time [Leventhal and Lemoine 2009; Dai et al. 2010]—; XML serial-
ization to interface with a software-based back-end; and runtime reconfiguration. New
sections on runtime query removal and on-line defragmentation offer the dynamism
necessary for real-world use. All these parts are carefully engineered to operate in
concert. The article also includes a significantly extended experimental evaluation of
XLynx, which demonstrates the advantages with respect to system integration, perfor-
mance, and energy consumption.

We present XLynx in the following order. Section 2 refreshes the relevant parts of
the XML projection concept. Section 3 gives a quick hardware background for non-
expert readers, with a focus on the implementation of finite-state automata. Skeleton
automata are introduced in Section 4, complemented by runtime configuration and au-
tomatic defragmentation in Sections 5 and 6, respectively. Section 7 gives hints on the
low-level optimization of skeleton automata, before we evaluate our work in Section 8,
discuss related work in Section 9, and wrap up in Section 10.

2. XML PROJECTION

Our work provides a hardware implementation for XML projection. To under-
stand the idea of XML projection, consider the following query, which is based on
XMark [Schmidt et al. 2002] data (XMark models an auction website):

for $i in //regions//item
return <item>
{ $i/name }
<num-categories> Q1)
{ count ($i/incategory) }
</num-categories>
</item>

This query looks up all auction items and prints their name together with the number
of categories they appear in.

2.1. Projection Paths

Out of a potentially large XMark instance, Query @); will need to touch only a small
fraction that has to do with items and their categories. What is more, this fraction can
be described using a set of very simple projection paths:

{ //regions//iten,
//regions//item/name #,
//regions//item/incategory } .

Only nodes that match any of the paths in this set are needed to evaluate Query Q;
all other pieces of the input document can safely be discarded without affecting the
query outcome.

Since our aim is to reduce data volumes, by default we keep only the matching node
itself in the projected document, but discard any descendant nodes that do not match
any projection path as well. Whenever the query demands to keep the entire subtree
below some matched path, we annotate this path explicitly with a trailing # symbol
(consistent with the notation in [Marian and Siméon 2003]). In our example this is
needed to include full name elements in the query result.
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<site>
<regions>
<africa>
<item id="item42">
<name>vapour wept became empty </name>
<incategory category="category3"/>
<incategory category="categoryl"/>
</item>
<fafrica>
</regions>

<open_auctions>
<open_auction id="open_auction0">

</open_auction>
</open_auctions>
</site>

Fig. 1. XML projection. Only the underlined parts are needed to evaluate Query Q1.

projpath = path #?

path u= fn:root() | path/step

step = axis:: test

axis = child | descendant | self | descendant-or-self
test s= x| text() | node() | NCName

Fig. 2. Supported dialect for projection paths.

Figure 1 illustrates the process for an XMark excerpt. Only the underlined parts of
the document are needed to evaluate Query ;. Everything else will be filtered out
during XML projection.

Path Inference and Supported XPath Dialect. Marian and Siméon describe a proce-
dure to statically infer the set of projection paths for any given query Q. We adopt
this procedure and refer to [Marian and Siméon 2003] for details. Several XQuery pro-
cessors readily implement the inference procedure, including MXQuery [Botan et al.
2007] and Galax [Fernandez et al. 2003]. The commercial version of Saxon, Saxon-EE,
implements XML projection, too.

Paths emitted by the inference procedure adhere to a simple subset of the XPath
language. Most importantly, the subset only permits downward navigation, i.e., the
self, child, descendant, and descendant-or-self axes.

Figure 2 lists the XPath dialect that our hardware implementation supports. This
dialect essentially covers all features of the projection path language as proposed by
Marian and Siméon [2003] (we do not support namespaces at this point, however). For
illustration purposes, in this paper we frequently make use of the abbreviated notation
in XPath, where, for example, ‘//’ stands for ‘/descendant-or-self: :node()/’ (in our
restricted dialect this is the same as ‘/descendant: :’).
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(a) Deterministic finite-state automaton (DFA).

ﬂa'b'aﬁcgd‘
* *
(b) Non-deterministic finite-state automaton (NFA).

Fig. 3. Finite-state automata (deterministic and non-deterministic variants) to implement query

fn:root()//a/b/a/c//d.

2.2. Path Evaluation (Previous Work)

For evaluation, projection paths are often viewed as regular expressions, evaluated
over each node’s path starting from the root node. Thereby, the projection path/regular
expression is compiled into a finite-state automaton that is driven by a SAX-style XML
parser.

Finite-State Automata. Figure 3 illustrates this approach for the projection path
fn:root()//a/b/a/c//d. This expression can be compiled into either a deterministic
(Figure 3(a)) or a non-deterministic finite-state automaton (Figure 3(b)). Observe how,
in the latter case, each 1) corresponds to a // descendant step in the input query.

In deterministic finite-state automata, only a single state can be active at any given
point in time. This significantly eases implementation in software (and requires only
a single (state, symbol) — state lookup per input symbol). XFilter [Altinel and Franklin
2000], a publish/subscribe system for XML, is thus based on a set of deterministic
automata, one for each registered query. Since XFilter is intended to support very large
numbers of registered queries, a query index accelerates processing by only advancing
those automata that may actually be affected by the current input symbol.

However, only non-deterministic finite-state automata exhibit the tight correspon-
dence between automaton structure and query pattern. This makes them significantly
easier to construct and maintain under workload changes. In YFilter [Diao et al. 2003],
this allowed the use of a single non-deterministic finite-state automaton that simulta-
neously matches all registered input queries. Workload changes (i.e., (un)registering
queries) can be realized in YFilter by changing only local fragments of the whole au-
tomaton.

Backtracking. Either automaton type is to be evaluated on every root-to-node path.
To this end, automata are advanced upon every seen opening tag. On closing tags, the
system must backtrack to the originating automaton state. To implement this function-
ality, systems maintain a stack that holds a history of automata states. It is populated
during the handling of opening tags and consumed when the corresponding closing
tags are encountered.

Hardware Acceleration. Finite-state automata can be implemented very efficiently
in hardware (more details later). In [Moussalli et al. 2010; 2011], this was used to im-
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plement hardware-accelerated XML filtering. Essentially, their system compiles a set
of path expressions into a YFilter-like NFA, which is then run on an FPGA. Similarly,
in our own work [Woods et al. 2010] we used FPGAs to perform complex event detection
based on regular expressions in hardware, again by generating a dedicated per-query
circuit and reprogramming the FPGA to run it. As indicated before, both approaches
incur a high compilation cost (of up to several hours) that has to be invested for every
change of the query workload.

Conversely, BARTS [van Lunteren 2001] is an implementation technique for finite-
state automata in hardware that can be updated at runtime (a use case is the ZUXA
XML parsing engine [van Lunteren et al. 2004]). The key idea is an elegant encoding
scheme for transition tables that can be stored and altered in on-chip memory. Un-
fortunately, the technique is bound to deterministic finite-state automata and queries
cannot be (un)registered to/from a single deterministic finite-state automaton easily.
The BARTS technique is used today in IBM’s wire-speed processor [Franke et al. 2010]
to implement XML parsing and accelerate network packet filtering.

The skeleton automaton technique that we describe in this work does not need to
make compromises between expressiveness and workload re-configurability. To effi-
ciently deal with (changing) XML projection workloads and high expressiveness, our
system is based on non-deterministic finite-state automata, which support fast run-
time (re)configuration enabled by our skeleton automata design technique.

3. SOME HARDWARE BACKGROUND

Before we delve into the inner workings of our prototype system XILynx, this section
provides a very short introduction into FPGA technology and the implementation of
finite-state automaton in hardware. Virtually any hardware circuit consists of the
same three fundamental ingredients:

(i) Combinational logic, which is composed of basic logic gates (‘AND’, ‘OR’, etc.). Each
(Boolean-valued) output f;(Z) of a combinational circuit depends solely on its in-
put signals z;.

(ii) Memory elements, such as flip-flop registers, are 1-bit storage cells that allow a
circuit to save and maintain state. For larger storage needs, circuits may further
include dedicated RAM, which has a higher integration density and thus a lower
cost but is less flexible.

(iii) A wiring interconnect combines logic and memories into a functional circuit.

The actual behavior of a circuit is determined by the Boolean functions f of its combi-
national parts and by the wiring between combinational logic and flip-flop registers.

In addition to the input data, most circuits depend on a clock signal, a periodically
changing high/low signal, to synchronize all circuit components. The speed of a hard-
ware circuit is determined by the clock frequency, but also by the amount of work that
the circuit can perform within each clock cycle.

3.1. Field-Programmable Gate Arrays

Field-programmable gate arrays (FPGAs) are also considered “sea of gate” devices that
provide a large amount of generic logic gates (so-called lookup tables) as well as flip-
flop registers. An FPGA can be programmed? by defining (a) the logic function f for
each lookup table and (b) the signal wiring in the on-chip interconnect network.

2FPGAs blur the distinction between “program” and “configuration.” In this text, we “program” our chip
once to determine the circuit it implements. When we only change parameters at runtime, we refer to this
as “configuration.”
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tag @
XML — decoder 4
a b a
qo0 q1 qz q3
L L L
start I'l
P P P P
fn:root()/desc:: a/child:: b/child:: a/child:: c/desc:: d

Fig. 4. Hardware implementation of the non-deterministic finite-state automaton in Figure 3(b).

Dedicated RAM is available on FPGAs in terms of so-called Block RAM (or BRAM).
BRAM blocks can be allocated and integrated into a user circuit in chunks of a few
kbits. For instance, the Xilinx XC5VLX110T FPGA chip we used for our experiments
contains 296 x 18 kbit of BRAM.

In this work we do not actually exploit the reprogrammability of FPGAs. Rather, we
compile and upload a generic circuit once, i.e., we program the FPGA once. The query
workload, including any workload changes, then only affects configuration parameters
within this circuit. Economic aspects aside (tailor-made chips have substantial man-
ufacturing costs), our system could be implemented equally well as an application-
specific integrated circuit (ASIC).

In fact, the given FPGA hardware imposes rather tight constraints on the avail-
able resources and their distribution on the chip. Managing these constraints adds to
the challenge of building a hardware circuit. Kuon and Rose [2007] found that ASICs
typically run more than three times faster than FPGAs, yet they dissipate only Y14 of
the power. Similar advantages could be expected from an ASIC implementation of our
work.

3.2. Finite-State Automata in Hardware

Finite-state automata can be mapped mechanically to a corresponding (but hard-
wired) hardware implementation, which after compilation can be uploaded onto an
FPGA. Figure 4 illustrates this for the non-deterministic finite-state automaton that
we saw earlier in Figure 3(b). For realistic automata, compiling and routing the respec-
tive circuit typically takes several minutes or even up to several hours. We observed
such compilation times, e.g., when generating finite-state automata for our work in
[Woods et al. 2010].

In a circuit generated this way, every automaton state is represented by a flip-flop
register (labeled ‘FF’ in Figure 4). Wires between flip-flops implement state transi-
tions. An ‘AND’ gate along these wires ensures that the transition is taken whenever
the originating state is active and a matching input symbol is seen. {) transitions
are not conditioned on the input symbol (thus, there is no ‘AND’ gate along their path).
Whenever multiple transitions can activate a state, these must be combined using an
‘OR’ gate, as can be seen at the inputs to states qg and ¢4.

The automaton is driven by a tag decoder that parses the XML input. Whenever it
sees a tag named a, ..., d, it sets the corresponding output signal to ‘1’. The tag decoder
itself is implemented as a finite-state automaton as well.

Not shown in Figure 4 is the clock circuitry that ensures that the automaton state is
advanced on every clock tick. A stack data structure, needed to support the XML tree
structure, can be attached to the finite-state automaton. Then, states ¢y through ¢; are
pushed/popped to/from this stack during start/end element events. Refer to Moussalli
et al. [2010; 2011] for details.
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Fig. 5. XML projection engine. After parsing, the XML stream passes through a skeleton automaton, which
controls what the serializer emits as the projection result.

Though slightly simplified, the explained procedure quite well describes the state
of the art in hardware-based pattern matching. Optimized construction algorithms
for FPGA targets exist (e.g., those of Yang et al. [2008]) but their main concern is
the consumption of on-chip resources. The immense routing effort is inherent to the
concept and arises in any scheme that compiles automata from scratch.

4. DYNAMIC XML PROJECTION

Here we propose a new approach to automaton implementation on FPGAs that avoids
the high cost of on-line automaton routing. We achieve this by separating the automa-
ton structure from its semantics. The structural aspects of the automaton can then be
compiled off-line into a skeleton automaton. At runtime, the skeleton only has to be
parameterized to obtain a complete automaton for the particular query workload.

4.1. System Overview

The high-level structure of XLynx is illustrated in Figure 5. Raw XML data enters the
system at the left end of the figure, where a hardware XML parser analyzes the syn-
tactical structure of the stream. Enriched with parsing information, the XML stream
passes through a series of skeleton segments—which together form a skeleton automa-
ton—that performs the actual path matching. Finally, the serializer at the right end of
the figure copies matches to the circuit output and ensures a well-formed XML result.
We detail the inner workings of each building block in the following.

The XLynx design exploits an important characteristic of non-deterministic finite-
state automata that are built from projection paths: each such automaton will al-
ways have a strictly linear structure, only interspersed with () transitions for each
descendant step in the path. Every segment (marked at the bottom of Figure 4) of the
linear automaton corresponds to one part of the path expression that is evaluated.

The chain of skeleton segments in our system realizes this structure in a generic
fashion, whereby skeleton segments can be runtime-(re)configured to include a {)loop
or not.

4.2. XML Parsing

The input XML byte stream enters our system on the left side of Figure 5 and is fed into
the hardware XML parser. As mentioned before, parsing is in itself a major throughput
challenge for many XML processing systems [Leventhal and Lemoine 2009], but it is a
prerequisite to perform effective XML projection. Only recently, Dai et al. [2010] were
the first to report on a hardware XML parser that could sustain a 1 Gb/s Ethernet line
rate.

Parsing can be done very efficiently in hardware if the language to recognize is regu-
lar. The language can then be implemented as a finite-state automaton, which matches
the capabilities of electronic circuits well. Fortunately, XML is “almost regular”: only
the proper nesting of element tags and the test for well-formedness (tag names in start
and end tags must match) cannot be expressed using regular patterns. XML parsing
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PITarget = Name; # 17 *
PI = ’<?7’ PITarget (S (Char* - (Char* ’7>’ Charx*)))? # 16
’?>’ @pi_or_comment_end;

Comment = ’<1--> ((Char - ’-’) | (-’ (Char - ’-’)))x # 15
’==>’ @pi_or_comment_end ;

AttValue = ( >" (["<&"] | Reference)x* ’"’ ) # 10
| (u:n ([~<&7] | Reference)* non );

Attribute = Name Eq AttValue; # 41

STag = ’<’ >tag_start Name @tag_name (S Attribute)* S7 # 40
’>’ >opening_tag_end;

ETag = <’ >tag_start ’/’ >closing_tag_start # 42
Name @tag_mame ’>’ >closing_tag_end;

EmptyElemTag = ’<’ >tag_start Name @tag_name (S Attribute)* S7? # 44
>/’ @empty_tag_slash ’>’ @empty_tag_end;

content = ( PI | ConfPI | CharData | EmptyElemTag | STag | ETag

| Comment )x*;

Fig. 6. Excerpt of actual XLynx source code: XML grammar specification (Snowfall input file). Comments
on the right refer to XML grammar production rules in the W3C XML Recommendation [Bray et al. 2006].
Action code invocations are italicized.

becomes expressible as a finite-state automaton once we take such features out of the
language specification (in XLynx they are handled outside the main parser logic).

The flip side is that the resulting automaton is potentially huge. Writing and main-
taining a state automaton with hundreds of states in plain VHDL code is close to im-
possible. This is why we developed Snowfall [Teubner and Woods 20111, a parser gen-
erator tool that companions the development of XLynx. With help of Snowfall, parsers
for real-world languages can be written and maintained efficiently.

Snowfall. Snowfall takes as input a grammar specification of the input language.
The specification typically contains action code annotations to call user-defined VHDL
routines whenever a particular (sub)pattern has been matched (this is similar in spirit
to the lex/yacc tools in the software world). Figure 6 shows an excerpt of the actual
XLynx source code. Large parts of the W3C XML Recommendation [Bray et al. 2006]
can be copied literally into the input of the Snowfall parser generator, with only action
code annotations added (numbers in comments on the right refer to production rules
in [Bray et al. 2006]).

Internally, Snowfall converts the regular grammar into a finite-state automaton,
then implements/emits this automaton as VHDL code. The complexity of such au-
tomata had severely limited the language support in previous work on FPGA-based
XML filtering. For instance, the parser of Moussalli et al. [2011] can only accept XML
tags with a length of two characters, and their paper leaves open which additional lim-
itations their parser imposes. Snowfall allows us to include a full-fledged XML parser
(with the exception of validation and namespace support). In addition, we used Snow-
fall’s high-level notation to recognize configuration commands directly in the parser,
which we will discuss later in Section 5.

Parser Output. The output of our hardware XML parser is an annotation to the input
XML data stream. A token field makes the lexical structure of the stream accessible to
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data
token ™
time
71: TAGSTART 73: OPENINGTAGEND 75: CLOSINGTAGSLASH
79: TAGNAMECHAR 74: TEXT 76: CLOSINGTAGEND

Fig. 7. Timing diagram of XML parser output. The XML stream is enriched with a token signal to make
lexical information explicit.

subsequent processing units. We refer to an XML stream with token annotations as a
parsed XML stream.

The behavior of the XML parser component is illustrated in Figure 7 as a timing di-
agram. The token signal carries values of an enumeration type, whose symbolic names
we listed at the bottom of the figure. The main purpose of the XML parser component
is to centralize the parsing task into a single hardware unit. This greatly simplifies the
overall circuit design and reduces the size and complexity of the remaining hardware
components.

To the parsed XML stream, the configured automaton adds a match flag to identify
matching pieces in the data stream. This flag is interpreted by the serializer to produce
the projected XML document.

4.3. Skeleton Automaton

Compiling individual automata into FPGA circuits is expensive because the placement
and routing of states and transitions on the two-dimensional chip space is a highly
compute-intensive task. Once the structure of an automaton and its placement on the
chip is known, however, workload adaptations that only affect transition conditions
can be realized with negligible effort.

Here we exploit this characteristic and build a generic skeleton automaton. The
skeleton is provisioned for any transition and condition that would be permitted by
the respective query language (in our case a dialect of XPath). Placeholders in the
skeleton automaton (we illustrate them as 0) are filled with parameter values at run-
time to enable or disable (by putting a false condition on the edge) transitions or to
reflect query-dependent conditions.

4.3.1. Skeleton Segments. In the case of XPath, we build the skeleton

automaton from a large number of segments. Each segment consists O

of a single state and two parameterized conditions as shown here on >

the right (Figure 8). The actual implementation contains additional

parameters that determine whether a state is accepting or handle O

specifics of XPath (such as self axis). For ease of presentation, we

omit such parameters from the discussion here and in the following. Fig. 8. Skeleton
Skeleton segments are connected to form a chain much as we segment.

sketched it already in Figure 5. Observe how this structure coincides

with the one that we saw earlier for our example query (Figure 3(b)). In fact, skeleton

segments are sufficient as basic building blocks to construct a finite-state automaton

for any legal XML projection path.

To support backtracking, each segment also includes a history stack (also not shown
in the illustration), so backtracking is wrapped into the basic skeleton building blocks
and scales trivially with the overall automaton size.
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skeleton
H tag predicate H segment
1
’ tag matcher ‘
din % j dout

match_in —ﬁ segment core ‘

_current state
[ax.] | history EH—+— match_out

Fig. 9. Hardware implementation of a single skeleton segment. [ blocks hold configuration parameters
(axis and node test).

4.3.2. Compiling Queries. Compiling a projection path into a set of segment parameters
is particularly simple. Each step in the path is mapped to one segment in the skele-
ton automaton. Much as we saw in the example in Figure 3(b), each node test is set
as a transition condition on a segment-to-segment edge. Axes (child or descendant)
result in conditions false or * annotated to a back loop () (we discuss -self variants
later). Somewhat counterintuitive to the notion of XPath location steps, each skeleton
segment corresponds to one ‘nodetest/axis: :’ pair (not ‘/ axis: : nodetest’), as we already
indicated earlier on the bottom of Figure 4.

4.3.3. Implementing a Skeleton Automaton. Skeleton segments are the basic building
blocks of our matching engine. Finding a proper hardware implementation for them
is what now remains to realize scalable and efficient XML projection in hardware.

As illustrated in Figure 9, each segment consists of three sub-components (segment
core, tag matcher, and history unit) that interpret the two query parameters axis and
tag predicate. The two signals match_in and match_out represent the in- and outgoing
transition edges of the segment, the din signal gives the circuit access to the input data
stream (segments are daisy-chained so all segments have access to the stream).

The segment core is what ultimately implements the automaton segment. Based on
the setting of the axis parameter, it will enable the respective logic gates to allow )
loops in the effective automaton.

As in the traditional scheme, the actual automaton state, which is part of each seg-
ment, is implemented using a flip-flop register. In Figure 9, this register is illustrated
as a gray box [l. To support backtracking, the flip-flop is embedded inside a history unit,
which replaces the global stack of previous hard- or software-based XPath engines.

In hardware, the history unit is implemented using a shift register whose contents
can be shifted left/right as the parser moves down/up in the XML tree structure (e.g.,
upon opening and closing tag events). The rightmost bit of this shift register corre-
sponds to the current state and is propagated to the outside in terms of the match_out
signal. In the software world, the history unit would best compare to a stack for single-
bit values, where the stack top determines the match_out signal.

The size of the history unit is a compile-time parameter that limits the XML tree
depth up to which matches can be tracked (default is 16 in our implementation). Cases
where this depth is exceeded by a given XML instance will still not fail. XML projection
is, by definition, a best-effort strategy to reduce input sizes prior to the actual query
processing. If the hard limit for history tracking is reached, we can always pass those
parts on to the software side and handle them there.

In contrast with the traditional compile-by-query scheme, our circuit does not use an
external tag decoder. Instead, dedicated sub-circuits (‘tag matcher’) in each segment
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ALGORITHM 1: Pseudo code for segment core.

switch din.token do
case OPENINGTAGEND
if (tag matches and match_in)
or (aris = desc and history[last]) then
| match = true;

else
L match := false;

push (history, match);

case CLOSINGTAGEND
| pop (history);

provide information about matched tag names. We will detail those sub-circuits in a
moment.

Algorithm 1 summarizes in pseudo code the behavior of a segment core.? Matching
occurs when an opening XML tag is fully consumed. Lines 3-7 then combine the axis
parameter, tag match information, the input match flag, and (to implement ) * loops)
the existing match state to determine a new match state. This new match state is
then pushed/shifted into the history shift register (line 8), which implicitly makes the
information also available on the match_out port. The match state is restored from the
history shift register when a closing tag is consumed (lines 9-10).

The pseudo code in Algorithm 1 can straightforwardly be translated into a VHDL
circuit description. Note that in hardware this code is not executed as sequential code.
Rather, the code is compiled into combinational logic that drives the control signals of
the hardware shift register.

4.3.4. Distributed Tag Decoding. Input to the segment core is a signal indicating whether
an element with corresponding tag name was seen in the input. The classical approach
to this sub-problem was shown in Figure 4. There, a dedicated tag decoder was com-
piled along with the main NFA. It included a hard-wired set of tag names, and pro-
duced a separate output signal for each tag name in the set. These signals were wired
to segments in the NFA as needed (top part of Figure 4). Some earlier accelerators for
XML filtering support tag decoding only in a very restricted form (e.g., [Moussalli et al.
2011]) or push it to the software side altogether [Moussalli et al. 2011].

Two fundamental problems render dedicated tag decoding unsuited for our scenario:
(a) the set of all relevant tag names must be known at circuit compilation time (no
runtime-(re)configuration) and (b) routing the output signals of the tag decoder may
require long signal paths which will deteriorate performance. In our system, tag name
matching is wrapped inside each skeleton segment (cf. Figure 9), which keeps signal
lengths short and independent of the overall circuit size.

Each tag matcher is connected to a dedicated RAM which holds the tag predicate that
should be matched (i.e., the tag name of a node test). In-silicon block RAMs on Xilinx
FPGAs are 18 kbit in size. Thus, a single block is sufficient to store tag predicates.

The tag matcher signals true on its tag_match output when its local tag predicate
was recognized and false otherwise. Algorithm 2 formalizes this behavior: the input
data stream is compared character-by-character; tag_match is set to true when all seen
characters matched and the length of the tag name is correct.

3For ease of presentation we simplified the algorithm to only child or descendant axes.
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ALGORITHM 2: Tag matching. Parameters tag and taglen hold the tag name of an XPath name
test and its length.

switch din.token do
case TAGSTART

L pos <« 0;

partial_match « true;

case TAGNAMECHAR
if din.char # tag[pos] then
| partial_-match « false;

pos < pos + 1;

taZ],match <+ partial_match and (pos = taglen);

i)

= = = = =
XML 0 0 5} 5} 5} ol
— — e serializer —
parser @ % % % go
wn wn 1] 1] n
path p; path p;

Fig. 10. Multiple paths can be matched within a single processing chain. Braces indicate the chain sections
for projection paths pi/p2.

4.4. Matching Multiple Paths

Besides maintaining its own match state, each skeleton segment passes the (parsed)
input XML stream directly on to its right neighbor. We can use this property to evalu-
ate multiple projection paths within the same processing chain.

Figure 10 illustrates the idea. As the XML input is streamed through, sections of
the entire chain of segments are responsible for evaluating different projection paths
p;. To realize this setting, all we have to do is ensure proper behavior at both ends of a
chain section. We do so by introducing an explicit fn:root () implementation and with
help of match merging at the right end of a chain section.

Implementing fn:root (). A segment for the XPath built-in function fn:root () is
the only one that does not depend on any previous matches. By placing it in front of
every projection path, we break the finite-state automaton into separate automata that
evaluate paths independently.

To evaluate fn:root (), a segment must (a) enter a matching state exactly when
parsing is at the XML root level and (b) become active in no other situation. We already
have the tools available to implement both aspects of this behavior.

To implement (a), we can initialize the history shift register such that history[last] =
true (so far we silently assumed that history[last] is initialized to false). The true flag will
automatically be shifted accordingly such that the matching state re-appears when-
ever parsing moves back up to the root level. Property (b) can be assured by keeping
the match_in signal false at the input of every chain section. The matcher will then
match no tag in the document (Algorithm 1, line 3), but still follow a ) x transition if
it is configured to do so (i.e., if fn:root () is followed by a descendant step; line 4 in
Algorithm 1).
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Fig. 11. Match merging to support multiple projection paths. Local matches are merged into the global
match state if the parameter end-of-chain-section (eoc) is set.

Match Merging. At its right end, each chain section will compute the match state
for its corresponding projection path. The serializer at the end of the processing chain
must be informed whenever any of the paths along the chain found a match.

To establish this mechanism, we differentiate between local matches (for each of the
p;) and a global match. The former corresponds to the match_out signal that we used
so far to find single-path matches. To implement the latter, we propagate an additional
match flag along the chain and merge it with the local match result at the end of each
chain section (using a Boolean ‘OR’ gate).

Figure 11 illustrates how match merging can be realized with only a few additional
logic gates in each skeleton segment. At the end of each chain section (signified with
an end-of-chain-section (eoc) configuration parameter), the local match state is merged
into the global signal.

Resource Allocation. Note that the division of the entire chain into sections is not
static. Rather, a sequence of segments is allocated as needed for each projection path.
This lets us make efficient use of resources and enables high flexibility at the same
time. Since segments are allocated on-demand, the same circuit can match either many
short paths or fewer paths that are very long. The only limit is the aggregate number
of XPath location steps in a set of projection paths, which must not exceed the number
of segments n.

To illustrate this point, the twenty XMark queries that we look at in Section 8 use
projection path sets with 3-15 paths per benchmark query (median: 4). The longest
path in the XMark benchmark set contains 12 location steps. An allocation scheme
where the per-path size is fixed would thus require at least 15 x 12 = 180 segment
matchers, and no paths longer than 12 steps could ever be supported in such a design.
With on-demand allocation, workloads are only limited by the total number of steps for
a single projection path set, which ranges between n = 7 and n = 79 (median: n = 15)
for the XMark benchmark. That is, 79 segment matchers would suffice to support the
XMark workload (without individual constraints on path count or path size).

4.5. XML Serialization

Our engine is designed to support XML projection in a fully transparent manner, where
the receiving query processor need not even know that it operates on pre-filtered XML
data. Thus, the document must be filtered in such a way that an oblivious back-end
processor will still produce the same query output (provided that all its projection
paths have been configured in our engine).

To exemplify, in Figure 1 the document filter must preserve site, regions, and
africa elements, even though they are not themselves matched by any projection path.
Otherwise, Query ; will miss its regions elements and return an empty result or—
even worse—fail entirely because the projected document contains more than a single
root element.

ACM Transactions on Database Systems, Vol. 38, No. 4, Article XX, Publication date: December 2013.
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ALGORITHM 3: The serializer makes sure that full root-to-node paths are preserved for all
output nodes. To this end, opening tags are copied to on-chip BRAM.

if match then

while printed_level < curr_level do
printed_level « printed_level + 1;
print_opening _tag (printed_level);

| copy din.char to dout;

switch din.token do
case TAGSTART
| opening_tag « true;
case CLOSINGTAGSLASH
| opening tag « false;
case TAGNAMECHAR
if opening_tag then
copy din.char to tagmem[mempos];
mempos < mempos + 1;

ase OPENINGTAGEND
push (tagstack, mempos);
| current_level < current_level + 1;

ase CLOSINGTAGEND
if not match then
| print_closing tag (printed_level);

printed_level « printed_level - 1;
mempos < pop (tagstack);
current_level + current_level - 1;

<]

[«]

Therefore, the serializer component of our circuit ensures that the root-to-node paths
of all matching nodes are preserved in the circuit output. As the input stream is pro-
cessed, the serializer writes all opening tag names into a dedicated RAM block. When
a match is found, this information is read back and used to serialize full root-to-node
paths.

Algorithm 3 sketches the idea of serialization. When a match is discovered by the
path matching engine, the input data stream is copied to the output, but not before
opening tags were printed (from RAM), which is needed to ensure the root-to-node
property (lines 1-5). In lines 7-17, opening tag names are copied from the input stream
to the dedicated RAM tagmem. In lines 19-20, the printing of closing tags is enforced
even when they are not fully contained in any matched document region (lines 21-23
do the necessary bookkeeping to prepare for coming opening tags).

In contrast to all other algorithms listed in this article, Algorithm 3 cannot straight-
forwardly be mapped to a VHDL circuit description. In the push-based design of XLynx,
the serializer must be ready to accept a new input token every clock cycle. However,
only one 8-bit symbol can be put back on the network wire at every clock tick, leaving
no room to inject missing tags, as indicated with print_opening tag () in line 4.

Therefore, the serializer component uses a FIFO-based queueing mechanism (placed
between “skeleton automaton” and “serializer” in Figure 5) to buffer incoming XML
tokens while missing tags are printed. In this buffer, input tokens might queue up
while the serializer fills in necessary start tags. The queue will drain, e.g., whenever
discarded XML content (which did not match any projection path) leaves “holes” in the
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(a) Freshly configured XLynx projection engine.
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(b) Same XLynx instance after having read the input ‘<art><x><art><ba’.

Fig. 12. Walk-through example for an XILynx instance that matches the two projection paths p; =
fn:root//art/bar//d # and ps = fn:root()/art//bar/xyz.

input stream. Overall, the buffer will never grow larger than the concatenation of all
currently open XML tags—a single BRAM block (approx. 4 kB) suffices to buffer this
much data for any real-world XML instance.

4.6. Walk-Through Example

To better understand how the bits and pieces of XLynx work together, Figure 12 shows
two snapshots of an XLynx instance while processing input.

Figure 12(a) shows the state of the projection engine right after configuration. Input
is waiting on the left end of the engine, but no character has been processed, yet. For
all segments seg;, tag predicates have been configured to the respective tag name. A
special root marker enforces match_in = false to implement fn:root (), as motivated in
Section 4.4. Axis predicates have been configured to either ¢ (child) or d (descendant).*
Match mergers (on the bottom-right of each segment) contain end-of-chain = 0/1
(“false”/“true”) flags to indicate the end of a segment chain. All history units are ini-
tialized to O (indicating false), except history[last] = 1 (or true) for fn:root () segments.
In the serializer, printed_level and curr_level both point to the top of an empty stack.

Figure 12(b) shows the same XILynx instance after it has processed the XML byte
sequence ‘<art><x><art><ba’ (characters on the left indicate the input stream). The
two starting ‘art’ tags have triggered matches in segments seg, and segg, leading to
1s being shifted into the corresponding history units. seg; has been configured to a
successive descendant step. Hence, a sequence of 1s was shifted into the history unit
of segg. By contrast, seg, is followed by a child step, such that only tags labeled ‘art’
lead to a 1 in the history unit, interspersed with Os for remaining tags (cf. Algorithm 1).

Up to this point, no matches have been found (the global match flag on the bottom
is 0 to indicate false). Hence, printed_level in the serializer still points to the stack
bottom. Opening tags from the input stream have been copied into the serializer’s
BRAM, however (pushing curr_level to the new stack top). Once a match is discovered,
the serializer will emit all opening tags between printed_level and curr_level to ensure
complete root-to-leaf paths (cf. Section 4.5). Closing tags are always forwarded to the
output, pushing printed_level and curr_level toward the stack bottom again.

4The axis predicate of the last segment of any path (i.e., seg, and segg in our example) implements the
presence of a # in the projection path specification.
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Fig. 13. Configuration logic changes workload parameters outside the main processing and data path.

5. RUNTIME (RE)CONFIGURATION

Now that we have seen how individual skeleton segments interpret configuration pa-
rameters to match sets of projection paths, it is time to look at the mechanisms to set
those parameters at runtime. First, however, we need to briefly discuss suitable on-
chip storage technology for each of the different flavors of configuration parameters.

5.1. Parameter Storage

Our skeleton automaton for XML projection depends on two flavors of query workload
information: (a) the XPath axis of each navigation step and (b) the tag predicate that
has to be evaluated along with the step, i.e., a tag name or some information that en-
codes a node test. Both pieces of information could be placed either in flip-flop registers
or in dedicated RAM (block RAM). To use the FPGA resources efficiently, we use both
storage types, namely flip-flop registers for the XPath axis and block RAM for the tag
predicate of each navigation step.

Flip-flop registers can be allocated at a granularity of a single bit. This is a good
fit for small-sized pieces of information, such as the configured XPath axis or the
fn:root ()/end-of-chain-section flags. The benefit is two-fold: (a) we can allocate the
exact number of bits really needed for those parameters and (b) flip-flops are directly
woven into the remaining FPGA fabric, which lets them efficiently interact with lookup
tables that, e.g., implement the gates in a segment core.

Tag predicates, by contrast, can become much larger. Thus, we choose dedicated
RAM to store them. Virtex-5 FPGAs contain hundreds of built-in (concurrently acces-
sible) BRAM blocks, each of which is 18 kbit in size. This is suitable for storing tag
predicates and leaves some room to accommodate even large query tag names. BRAM
is single-ported. That is, it must be wired to exactly one logic module. In XLynx, we
pair one BRAM block with each skeleton segment.

5.2. Changing Parameters at Runtime

Since all sub-circuits in an FPGA can operate in parallel and independently of each
other, we can keep query workload updates completely outside the main processing
and data path. As illustrated in Figure 13, separate configuration logic can maintain
both configuration parameters without interfering with the processing logic.

The best way to provide query workload information to the chip depends on the par-
ticular system design (e.g., Ethernet, PCI, or USB). To keep our system self-contained,
we chose to communicate projection paths also via Ethernet. As illustrated in Fig-
ure 14, we inject the query workload directly into the input XML stream. Special pro-
cessing instructions <7query ... 7> distinguish the query workload from the actual XML
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<?xml version="1.0"7>

<?7query reset?>

<?query fn:root()/descendant::regions/descendant::item?>

<?query fn:root()/descendant::regions/descendant::item/child: :name #7>
<?query fn:root()/descendant::regions/descendant::item/child::incategory?>

<site>
<regions>
</regions>
</site>
Fig. 14. XML document with projection processing instructions <?query ...?> included.
- skeleton
H tag predicate H segment
din— !
left_conf_state 71 config. logic }—tﬂour,conf,state
! - conf_state
flag

Fig. 15. Configuration logic for runtime query workload (re)configuration.

stream. For instance, the processing instruction
<?query fn:root()/descendant::regions/descendant::item/child::incategory?>

registers the new projection path //regions//items/incategory in the engine. These
processing instructions are recognized by a small set of XML parser extensions. In
the parsed XML data stream they are represented as special token values, which are
interpreted by configuration logic. The configuration logic is wrapped into the indi-
vidual skeleton segments of our system (see Figure 15). This makes the semantics of
query workload changes deterministic, since the order between data stream items and
workload changes becomes explicit in the parsed stream.

As parts of the query workload information (namely XPath steps) map almost one-to-
one to the configuration parameters of individual skeleton segments (cf. Section 4.3.2),
compiling input queries and inferring parameter values is simple enough to be per-
formed directly on the FPGA chip. This is a significant deviation from previous ap-
proaches, where large amounts of CPU resources were needed to re-compile hardware
circuits at runtime.

5.3. Configuration Logic and Segment Allocation

The configuration logic itself is distributed and integrated into the skeleton segments
(again, this keeps on-chip signal paths short). The logic snoops the bypassing XML
stream on the din signal line and writes configuration information into the respective
storage units.

Figure 15 illustrates this interaction. Configuration logic in the middle interprets
the din signal and updates tag predicates as well as the flip-flop-based configuration
flags. Workload changes become effective immediately and will be considered for any
data that follows the processing instruction in the input stream.

Segment Allocation. The left_conf_state and our_conf_state signals are used to coor-
dinate segment allocation between segments. For new query workloads, skeleton seg-
ments are allocated and configured from left to right (that is, the first workload query
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ALGORITHM 4: Semantics of configuration logic.

if din.type = CONFRESET then
| conf_state < unconfigured;

if conf_state = unconfigured and left_conf_state = configured then
switch din.token do
case AXISCHILD

| axis < child;

case NAMETESTCHAR
| update tag[...];

case FNRooT

| history[last] < true;
case COLONCOLON

L conf_state < configured;

case ENDOFPATH
L end_of_chain_section « true;

p1 will occupy an automaton subset just after the XML parser; later p; will follow the
processing chain toward the serializer, cf. Figure 10).

To implement this behavior, the distributed pieces of the configuration logic synchro-
nize between themselves with the help of a conf_state flag (implemented using flip-flop
registers, see Figure 15) and left_conf_state/our_conf_state signals that are propagated
from left to right. A local piece of configuration logic reacts to configuration tokens
whenever it finds itself unconfigured and sees that its predecessor has changed its con-
figuration state to configured. Once the local configuration is complete, the baton is
passed to the right by setting the conf_state register to configured (which is also passed
to the successor segment via the our_conf_state port).

Writing the Local Configuration. Parameters are written into local configuration
storage while the parser tokens are passed through (tokens arrive in the same order
as they are seen in the processing instruction, i.e., in the XPath language format). As
shown in Algorithm 4, different tokens will trigger writes to different storage locations
(lines 1-3 and 13 implement the aforementioned synchronization).

The <?query reset?> processing instruction clears all configured projection paths.
Lines 1-2 in Algorithm 4 implement this by re-setting the conf_state flag when the
CONFRESET token is seen in the stream.

Reconfiguration Speed. The time needed by the processing instruction within the
XML stream may thus be interpreted as the workload reconfiguration time. The 70-
byte processing instruction above, for instance, requires 70 FPGA clock cycles to be
processed, or 422 ns at an FPGA clock speed of 166 MHz.

6. WORKLOAD UPDATES AND AUTOMATIC DEFRAGMENTATION

The baton-passing mechanism described in the previous section works well to allocate
skeleton segments from left to right when a set of projection paths is loaded into an
initially empty segment automaton. In practice, users will demand the possibility to
load or unload projection paths dynamically (without wiping out the entire existing
configuration via <7query reset?>). In this section we describe a deletion mechanism

ACM Transactions on Database Systems, Vol. 38, No. 4, Article XX, Publication date: December 2013.



XX:20 J. Teubner et al.

to unload projection paths at runtime and a defragmentation mechanism to reclaim
automaton space that was occupied by unloaded projection paths.

6.1. Unloading Individual XPath Expressions

Unloading a projection path from the workload set presupposes that individual projec-
tion paths can be identified once loaded into XLynx. To this end, we extend our syntax
for query registration to carry a path id as follows:

<?query 42 fn:root()/descendant::item/child::incategory?> .

Every skeleton segment that implements a part of this projection path will memorize
the path id (here: 42) in local configuration registers (implemented as flip-flops).

Once path ids have been associated with skeleton segments, a processing instruction
like

<?query 42 remove?> .

can be used to remove the respective projection path from the workload set.

Internally, the remove command will only deactivate all skeleton segments that
match the given path id. Deactivated segments will still occupy space in the XLynx
processing chain. But they no longer react to incoming XML data or raise any of their
match flags. Deactivation can be realized by adding

2a if din.type = CONFREMOVE and path_id matches then
2b | conf state < deactivated;

to Algorithm 4 after line 2. In addition, any path matching (Algorithms 1 and 2)
must be conditioned on conf_state = configured. Effectively, the deactivated skeleton
segments become a gap in the segment chain that no longer actively participates in
matching.

In principle, segments in this gap could immediately be re-used to register new pro-
jection paths. However, we are now experiencing the down sides of on-demand segment
allocation. The size occupied by a registered projection path is not a pre-defined con-
stant, resulting in a situation where a newly registered path might not fit into the
gap left behind by a previous remove command. This is why path removal puts seg-
ments into a deactivated (rather than unconfigured) state. A defragmentation mecha-
nism, which we will describe next, reclaims deactivated segments in a proper way to
enable full dynamism for path registration and removal.

6.2. Automatic Defragmentation

If an XPath expression is deactivated in an existing segment chain, this first creates a
gap of unused segments. This is illustrated in Figure 16(a), where path 42 (previously
covering segments seg, through seg,) has been deactivated using a remove instruction
(indicated using gray color).

Intuitively, we would like to reclaim the segments that were previously occupied by
the removed path. By “pushing” deactivated segments toward the end of the segment
chain, the set of unused segments would become contiguous and thus available for
re-use by new projection paths.

Idea: Configuration Copying. Figure 16(b) illustrates how this can be achieved. If
a deactivated segment is followed by a configured one, we can copy all configuration
settings from right to left, and then swap the states of the two segments. By repeating
this process, unused segments gradually move toward the right where they become
available for re-use.
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Fig. 16. Automatic defragmentation exemplified.

Figure 16(b) illustrates the chain of skeleton segments just after path 42 has been
removed and the first swap (between the segments marked seg, and seg;) has been
performed. Next, segment seg, will swap with seg, and segment seg; will swap with
segg. Eventually, swapping will lead to the situation shown in Figure 16(c), where all
unused segments have been pushed all the way to the right. They are now ready for
re-use by newly loaded projection paths.
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Fig. 17. BRAM copying as a side effect of input processing. While the (configured) segment seg;, ; pro-
cesses the first tag name characters of the input “<hello- - - ”, the deactivated segment seg; copies the BRAM
content of seg, , ; character by character.

Semantics. Pushing unused segments this way leads to situations where a se-
quence of segments that implements one projection path is interspersed with segments
marked as deactivated. For instance, in Figure 16(b), the deactivated segment seg; sits
in-between the two active segments seg, and seg;. To make sure such sub-automata
still correctly implement their projection path, deactivated segments always propa-
gate all match_out signals unchanged to the right. This way, such segments become
transparent to their surrounding projection path.

6.3. Implementing Automatic Defragmentation

A challenge in realizing the idea in actual hardware is that swapping has to be per-
formed while input data is being processed. To guarantee line-rate performance, the
input stream cannot, for instance, be blocked while the skeleton automaton is being
defragmented. This bears a high risk of race conditions when a segment state changes
just while configuration and state are being swapped.

Furthermore, swapping is—at FPGA time scales—a rather time-consuming process.
In particular, tag names cannot be copied from one segment to another as an atomic
operation, but must be copied one word per FPGA clock cycle. What is more, there is
only a single access port to each BRAM block. And since the configured skeleton seg-
ment seg;  , is still processing data, the deactivated segment seg, cannot independently
read out BRAM contents to implement word-by-word copying.

Copying as a Side Effect. However, BRAM copying can be performed as a side effect
to input processing. To this end, a deactivated skeleton segment seg; passively “listens”
to BRAM reads initiated by its configured neighbor seg, ;. As soon as the next XML
start tag passes by from the input stream, seg,,; will read out its BRAM content,
automatically making the information available also to seg;.

BRAM copying as a side effect of input processing is illustrated in Figure 17, assum-
ing that the skeleton automaton just parses the character sequence “<hello---” (i.e.,
an opening XML tag). To process the two leading tag name characters h and e, seg-
ment seg, ., reads out the first two characters from its local BRAM. While doing so, it
copies all BRAM output to segment seg;, which is in deactivated state. seg, writes this
information into its own BRAM. As soon as all contents of seg;,,’s BRAM have been
copied, seg; and seg;,; can swap their states, making seg; then in charge of matching
foo tags.

Helper Scans. To read out BRAM contents, a deactivated segment always needs the
assistance of the segment that “owns” the BRAM. This is because that segment might
need to read out tag names to process input data that just flows by. If implemented
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Fig. 18. Standard hardware NFA implementation (top) requires long signal paths. Pipelining (bottom) re-
duces signal paths by inserting registers |.

as described in the previous paragraph, this would mean that contents are only copied
whenever an opening tag (of sufficient length) occurs in the input stream. In practice,
this might delay automatic defragmentation or even prevent copying altogether.

There are also situations, however, when a node like seg; , ; in the illustration above
does not strictly need its access port to the BRAM, e.g., while processing text node con-
tent or other node types. As an optimization, we can set segments to perform “helper
scans” on their BRAM in such situations. Simply by scanning their BRAM, they make
BRAM contents available to a potentially listening predecessor segment. In practice,
we found “helper scans” to be a sufficient mechanism to quickly defragment the skele-
ton automaton even for very dynamic workloads.?

7. TUNING FOR PERFORMANCE

As in software-based systems, the observable performance of an FPGA-based solution
hinges on a proper low-level implementation that matches the characteristics of the
underlying hardware. Most importantly in FPGA design, a circuit must (a) meet tight
timing constraints (such that it can be operated at high clock speeds) and (b) utilize
chip space efficiently (to support real-world problem sizes at low cost). In this work we
use pipelining and BRAM sharing to address both aspects.

7.1. Pipelining

The standard approach to hardware-based finite-state automata is to forward incom-
ing stream tokens simultaneously to all involved automaton states. In Figure 4, for
instance, the output of the tag decoder was sent to all ‘AND’ gates at the same time. Fig-
ure 18(a) emphasizes the same concept but hides the inner details of circuit segments
seg;.

Signal Paths. Figures 4 and 18(a) both also show the problem that this incurs. For
larger automata, the length of the ‘input stream’ communication paths will increase.
In general, the processing speed of any hardware circuit is determined by its longest
signal path between any two clock synchronization points.

When arbitrary automata shapes must be supported, long signal paths are in-
evitable. The new value of a state ¢; might depend on any other state ¢;, hence, ¢; must
be reachable from ¢; within one clock cycle. Non-deterministic finite-state automata

5When operating XLynx over Ethernet, packet headers and inter-frame gaps lead to enough idle time, such
that defragmentation appears to happen almost instantaneously (order of micro-seconds).

ACM Transactions on Database Systems, Vol. 38, No. 4, Article XX, Publication date: December 2013.



XX:24 J. Teubner et al.

a Segy S€go Segs3 S€g4 5€gs S€g6 segr Segs

< |[root ]| |[art ]| |[bar ]| |[_d4 ]| |[root ]| |[ art ]| |[ bar || | xyz |

(>i E kU [1‘1 < [1‘1 uk ks [1‘1 e [1‘1 > [1‘1 1.gd [1‘1 < [1‘1 >

/ OA*TI ] | *TI ] | *TI ] ( | 9(TI ] ( | 9(TI ] | *TI ] | *TI ]1 *TI ] ( |

< |dAT »|j[o16 »J@[oo% ij@loofn »|J[006 »IJEHHH »|j[0061 aljloof) o
o Ly o e

Fig. 19. Skeleton automaton with pipelining enabled; pipeline registers indicated as |. Illustrated is the au-
tomaton after the byte sequence ‘<art><x><art><bar><d>ef</d’ has been consumed from the input. (History
units in seg; through segg have overflown; to keep the illustration readable we printed only the last four
bits of every history stack.)

generated from XML projection paths, however, will always follow a very particular
pattern. Their shape is strictly sequential and all data flows in the same direction.

Pipelining. The corresponding circuits are thus amenable to pipelining, a very ef-
fective circuit optimization technique. Figure 18(b) illustrates the idea. The one-
directional data flow is broken up into disjoint pipeline stages (indicated with a dotted
line). Whenever any signal crosses a stage boundary, a register (marked as |) is in-
serted. Every register will buffer its input signals in clock cycle i and make the values
available to the successor segment in clock cycle i + 1.

Registers act as a synchronization point. The longest signal path is now reduced
to the longest path between any two registers. In contrast to the original design, the
longest path length no longer depends on the overall circuit size, but remains un-
changed even if the automaton size is scaled up. This way, in an n-stage pipeline (n is
also called the pipeline depth) the available FPGA hardware parallelism is turned into
a parallel processing of n successive input data items (i.e., input bytes).

Throughput vs. Latency. Pipelining primarily increases the throughput of a hard-
ware circuit. The clock frequency is increased and, in a fully pipelined circuit, a new
input item can enter the circuit every clock cycle. This benefit comes at the expense of
a small latency penalty that increases proportionally to the pipeline depth. In general
this penalty is negligible: with a 6 ns clock period, even a 500-stage pipeline will have a
latency of only 3 us—far less than, say, the same data item traveling over the network
in a client-server setup.

Pipelining in Action. Figure 19 illustrates the XLynx instance of Figure 12 with
pipeline registers installed. Input bytes are no longer broadcast to all segments in
parallel, but propagate through the pipeline stage-by-stage. Pipeline registers are in-
dicated as [; at every register output, we indicate the current register value.

Segment seg, in this figure has finished processing all bytes up to ‘e’, hence has
discovered a match for p;. This match is indicated via the glob_match_out line on the
bottom, but the matching information was so far only forwarded until seg; (the suc-
cessful match is indicated together with the >’ byte of the matching <d> tag). Once
the matching information has been forwarded until the serializer component, the se-
rializer will first emit opening tags from the root-to-leaf path that have not yet been
printed to the output. Then it will let all input bytes pass to the output as long as
glob_match_out = true.

XPath Semantics. Pipelining has an interesting side effect with respect to the se-
mantics of XPath evaluation. Consistent with the original work on XML projec-
tion [Marian and Siméon 2003], our supported language dialect covers the XPath self
and descendant-or-self axes. These axes cannot be expressed using a standard hard-
ware automaton like the one shown in Figure 4, because a segment circuit seg, will

ACM Transactions on Database Systems, Vol. 38, No. 4, Article XX, Publication date: December 2013.



XLynx—An FPGA-based XML Filter for Hybrid XQuery Processing XX:25

o [ {ew] [w]{ww] [} {ew]

Fig. 20. BRAM sharing. Two segments store their tag predicates in the same RAM block. Since each block
has only one interface, segments seg,; _; mediate traffic for segments seg,.

report a new match state only after an input item 2« has been consumed; this is too late
for the successor seg;, ; to perform a match on the same input item z.

In a pipelined circuit z is processed by seg;  ; one cycle later. This gives us the oppor-
tunity to fast-forward the match state of seg; in case of a self or descendant-or-self
axis. A fast-forwarded state bypasses one intermediate register. This way, input item
x arrives together with the matching state of seg; at segment seg,, |, leaving enough
time to implement the ‘self’ functionality.

Existing automaton-based XPath engines either do not support -self axes at all
(to our knowledge, no existing system does), or they compile -self axes into complex
multi-way predicates, e.g., a sub-path child:: 7 /self: : 75 would translate into a con-
junctive predicate ‘matches 71 A matches 7»’; descendant-or-self axes become even
more complex. Without an upper bound on the number of conjunctions, resources for
predicate evaluation have to be allocated dynamically. By avoiding a second case of
dynamic resource allocation, we can save precious chip space, which allows our circuit
to scale better for larger workload sizes.

7.2. BRAM Sharing

As discussed before, we use dedicated RAM to store tag predicate configuration pa-
rameters for all skeleton segments. This may lead to an upper limit on the number of
segments that can be instantiated (and thus on the supported size of projection path
sets), because the available number of RAM blocks is fixed. The Virtex-5 chip that we
used in our experiments, for instance, contains 296 blocks of RAM, which would limit
the number of segments to 296 (minus a few BRAM blocks that are needed for the
serializer and surrounding glue logic).

At the same time, we are underutilizing the available RAM blocks. The full 18 kbit
of a Virtex-5 BRAM unit are rarely needed for a tag predicate in the real world, and we
read out only one byte at a time, even though BRAMs would support a (configurable)
word size of up to 36 bits.

BRAM usage can be improved by sharing each BRAM unit between two or more
segments, which effectively multiplies the supported NFA size. Figure 20 illustrates
how this idea can be realized in FPGA hardware. Since there is only one port to each
BRAM block, some segments act as mediators for the communication information of
their neighbors.b

BRAM sharing is useful only up to the point where the number of segments is bound
by the amount of logic resources (lookup tables and flip-flop registers) available. As we
will see in Section 8, BRAM and logic resources are in balance on our hardware when
three segments share one BRAM unit.

8. EVALUATION

We implemented and tested XLynx on widely available and low-cost ($750 academic
price) FPGA hardware. The Xilinx XUPV5 development board is equipped with a
Virtex-5 XC5VLX110T FPGA (69,120 LUTs, 69,120 flip-flops; 296 x 18 kbit BRAM) and

6The maximum word size for each BRAM block is 386 bits. Up to four segments can thus share one BRAM
block by concatenating their 8-bit data into one large (32-bit) word.
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Fig.21. FPGA chip resource consumption of engine configurations with and without BRAM sharing. BRAM
sharing allows to balance the use of logic and BRAM resources to obtain a larger overall engine size.

has a number of high-speed I/O connectors to communicate with outside systems. The
Virtex-5 chip series has been released already in 2006. More recent chip series—Xilinx’
most recent series is Virtex-7—offer substantially more chip resources and better tim-
ing/speed characteristics. When evaluating XLynx in a full system setting, we assume
an Intel Sandy Bridge system, equipped with an i7-2700k CPU (3.5 GHz; 8 MB L3
cache) and running Ubuntu Linux.

In the following Section 8.1, we first characterize XLynx, i.e., the core XML projection
engine running on the FPGA. Then, in Section 8.2, we show how the engine could be
used in a working system, together with a full-blown XQuery engine such as Saxon-
EE. As a workload, we use a 116 MB XMark instance ([Schmidt et al. 2002]; scale
factor 1) and the twenty XMark queries.

8.1. XLynx: Core XML Projection Engine

To analyze the characteristics of XLynx, we compiled it to actual FPGA circuits in
various configurations. Besides an obvious expectation of sufficient data throughput,
two aspects are particularly interesting to judge the quality of an FPGA design:

economic resource utilization The given FPGA hardware imposes strict limits on the
types and amounts of available hardware resources. A good FPGA design is properly
balanced to make near-optimal use of the available resources.

scalability An FPGA circuit should provide stable performance even when its size is
scaled up, e.g., when it is ported to larger and more powerful FPGA hardware.

Economic Resource Utilization. Using our available hardware, we implemented var-
ious configurations of the XML projection engine, varying the number of skeleton seg-
ments; with and without BRAM sharing enabled. For each configuration we deter-
mined the amount of FPGA resources the resulting circuit uses.

Figure 21 illustrates the utilization of BRAM units (denoted by filled markers) and
logic blocks (i.e., slices, denoted by empty markers) as a percentage of the total avail-
able BRAMs/slices on the chip. The results are consistent with the expectations that
we stated in Section 7.2. Without BRAM sharing, all BRAM resources are used up
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Fig. 22. The depth of the history unit may affect the logic resource consumption of the XML projection
engine. With 3-way BRAM sharing enabled, changing a 16-bit history configuration to 64 bits results in a
space overhead of 20-30 %.

for circuit configurations beyond approximately 275 segments. At the same time, more
than ¥3 of the available logic resources are unused.

BRAM sharing can bring resource utilization into balance. With 3-way BRAM shar-
ing (diamond symbols in the plot), the maximum number of segments is now limited by
logic resources (specifically, lookup tables) and we can instantiate more than 800 seg-
ments on our chip, i.e., we can support three times as many concurrent projection
paths.

Effect of Configuration Parameters. The resources reported in Figure 21 assume a
circuit configuration where the history unit in each skeleton segment is 16 bits in
size. Increasing this value may increase the filtering accuracy of our projection engine,
though only when matches need to be tracked in XML sub-trees deeper than 16 levels.

Increasing the depth of the history shift register will have no effect on the through-
put of the XML projection engine (shift registers can easily be implemented in a scal-
able manner; we verified this with a separate set of experiments). But larger shift
registers will require additional flip-flops (to hold the additional state) as well as as
additional lookup tables, which will drive the added registers.

Figure 22 illustrates this effect for configurations where we set the shift register
depth to 16, 32, and 64 bits. As can be seen in the figure, increasing the depth from 16
to 64 bits increases the overall chip slice consumption by about 20-30 %. It seems very
unlikely, however, that any real-world use case will use XML documents this deep and
require matches to be accurately tracked in those deep sub-trees.

Scalability. To evaluate the scalability criterion, we used the FPGA design tools to
determine the maximum clock frequency at which each of our engine configurations
could be operated.” Figure 23 illustrates the numbers we obtained.

The clock frequency directly determines the maximum speed of the XML projec-
tion engine. One input byte can be processed on every clock cycle (independent of the

"Physical constraints on FPGA hardware (clock frequencies are generated by a phase-locked loop) restrict
allowable frequencies to »/m x 100 MHz (i.e., 150 MHz, 160 MHz, 166 MHz, 175 MHz, 180 MHz, 200 MHz,
and 225 MHz).
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Fig. 23. Maximum clock frequency for various engine configurations. Frequency is not strongly influenced
by circuit size, which indicates scalability to support also newer or future chip devices.

query workload). With clock frequencies around 180 MHz, our system could thus sus-
tain 180 MB/s XML throughput. This is more than enough for the use cases our sys-
tem is designed for: it could easily, for instance, keep up with an XML stream that is
served from disk or via a network link. 180 MB/s is the guaranteed throughput rate at
the XML input side. It will be sustained independent of the XML document character-
istics and/or the set of projection paths being matched. Hard performance guarantees
are one of the key properties that make FPGA accelerators for data processing so ap-
pealing.

The clock frequencies shown in Figure 23 are also a good indicator for the scalability
characteristics of our system. Since chip space and parallelism are the main asset of
FPGAs, the achievable clock frequency should not (significantly) drop when the circuit
size is scaled up. Only then can a circuit really benefit from expected advances in
hardware technology (Moore’s law predicts that the transistor count per chip doubles
approximately every two years).

In our case we see that the achievable clock frequency stays high even for configura-
tions that significantly exceed the 70-80 % chip utilization, beyond which performance
often decreases [DeHon 1999]. It is reasonable to expect that our system will keep its
performance characteristics even when it is scaled up to 6000 or more segments on
current Virtex-7 chips [Xilinx Inc. 2011].

8.2. XLynx Integration with an XQuery Engine (Saxon Enterprise Edition)

FPGAs may offer significant advantages over software-based systems in terms of per-
formance and/or power consumption. Even more attractive are their unique system in-
tegration opportunities that cannot be matched with commodity hardware. To demon-
strate this advantage, we connected our engine directly to the Ethernet interface. The
so-obtained system can perform XML filtering in the network as data is sent from a
network server to a client.

Thus, we inserted XLynx in the data path between the data storage and the XQuery
engine. Rather than replying directly to the XML processor, the server sends the raw
XML stream to the FPGA pre-filter. There, the data is projected and forwarded to the
XQuery engine. Figure 24 illustrates how a query is processed in such a setup. First,
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Fig. 24. A hybrid system with XLynx inserted in the data path. For each query, projection path information
is sent to the FPGA (1) and a data request to the server (2). Data is sent back and filtered on the FPGA (3).
All communication is using Gigabit Ethernet.

Table |. Effect of FPGA-based XML projection on overall power consumption. The
FPGA has a fixed power consumption of 16.7 nano-Joule per input byte. CPU
power consumption was computed as execution time x 30 W.

software only XLynx FPGA/CPU hybrid
Query CPU FPGA CPU total saving
QI 71.5J 1.83J 12.6J 14.5J 80 %
Q8 97.0J 1.83J 39.1J 40.9J 58 %
Q11 1363.5dJ 1.83dJ 570.1J 571.9J 58 %
Q15 69.0J 1.83J 24J 4.2J 94 %

the software system sends projection path information to the FPGA (1), then requests
the XML data from the server (2). The reply is sent via the FPGA (3), which filters the
data “in the network.”

Power Efficiency. FPGAs are clocked at significantly lower rates than main-stream
processors (e.g., in our case: 180 MHz vs. 3.5 GHz). On top of that, a dedicated cir-
cuit for a specific problem can spend much less transistors for control logic and many
more transistors for the task itself. This makes them consume only a fraction of the
power that a general-purpose CPU would need to perform the same task. Heteroge-
neous CPU/FPGA systems thus promise lower costs for energy and cooling. More im-
portantly, all modern processor designs are power-limited [Borkar and Chien 2011].
In a modern system, any savings in power become immediately available to increase
overall performance.

Power consumption is notoriously hard to measure accurately. The CPU that we use
on the software side is rated at 95 W TDP2, but there is no public information about
its actual power consumption, which will depend on the type of load that is running on
the CPU. As a conservative estimate, in this paper we assume a power consumption
of only 30 W at 100 % system load (less than a third of the rated maximum power
dissipation). Power measurements at the external wall plug confirmed that the actual
power consumption at full load is much higher. Hence, for a real system the power
advantage of using an FPGA will be even higher than reported here.

Our FPGA hardware is not equipped with power measurement facilities either. But
software design and simulation tools can very accurately determine the maximum
power consumption that a specific FPGA design will exhibit at a particular clock fre-
quency. For our designs, Xilinx Power Analyzer reported a maximum power consump-
tion of 3W.

With a clock rate of 180 MHz, this means that our XML projection engine consumes
about 16.7nd (nano-Joule) per XML input byte, independent of the XML projection
workload. The energy consumed by the back-end CPU depends on the amount of
work that it has to perform. Table 8.2 lists the total energy consumption needed to

8“Thermal Design Power”
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Fig. 25. Parsing time and query execution time (XMark scale factor 1; 116 MB XML): no projection versus
software-only projection of Saxon-EE. Software-only projection for query Q9 produced an incorrect result.
Runtimes for Q11 and Q12 exceed scale (actual values printed above).

run four of the XMark queries in a CPU-only setting and when using XLynx’s hybrid
FPGA/CPU architecture. As can be seen in the figure, pre-filtering in hardware sub-
stantially reduces the overall energy consumption for all queries.

Filtering Throughput. XLynx operates in a strict streaming mode and processes one
input character per clock cycle. Thus, by design the filtering throughput of our system
is independent of the query workload. As detailed above, XLynx can sustain through-
put rates of 180 MB/s. This is more than the Gigabit Ethernet link of our system can
provide, so effectively our system is only limited by the physical network speed.

In measurements on real hardware we validated that XLynx can sustain full Gigabit
Ethernet line rate. We observed a maximum payload throughput of 109 MB/s. With
protocol overhead accounted for, this corresponds to a bandwidth of 123 MB/s on the
physical network link, or 98.4 % of its maximum capacity. To fully saturate our filtering
engine, we would have to connect our chip to a faster network (e.g., 10 Gb/s Ethernet)
or to a different I/O channel (e.g., 3 Gb/s SATA Gen 2).

8.3. Effects of Projection on Memory Consumption and Performance

To judge the runtime characteristics of a hybrid FPGA/CPU system, we plugged XLynx
in front of Saxon-EE (version 9.4.0.3), a state-of-the-art XQuery processor for in-
memory processing. We measured parsing time, query execution time, and memory
consumption of Saxon when running the 20 XMark queries. Since Saxon cannot di-
rectly process the streaming XML protocol of our engine, we measured the filtering
throughput of our FPGA (previous section) and Saxon performance independently (and
ran all Saxon experiments from a memory-cached file).

Feasibility of XML Projection. The light bars in Figure 25 illustrate the processing
speed of an off-the-shelf Saxon-EE processor for the twenty XMark queries, broken
down into time spent on XML input parsing ([J) and actual query execution time ([3). For
all queries, except for join queries Q11 and Q12, which are known to be complex, input
parsing dominates the total execution time. On raw data, Saxon requires 2.23 sec for
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input parsing, independent of the query, and actual query execution times were 68 ms—
41 sec, with a median value of 390 ms. These measurements confirm the observation
of Nicola and John [2003] that processing speed for XML data is often limited by the
system’s parsing cost, not by query execution per se.

Unfortunately, this situation is hard to address by software-only solutions. Any
software-based XML processor will have to parse the input document, and—due to
the sequential nature of XML—the opportunities to accelerate XML parsing are very
limited.

XML Projection in Software. Under these premises, it is not surprising that
software-based projection brings only limited benefit for end-to-end processing speed.
The Enterprise Edition of Saxon (Saxon-EE) includes such a software-based projection
feature. After enabling the feature, we obtained the performance numbers shown in
dark gray in Figure 25 (again broken up into parsing time [l and query execution time
B.

In a software implementation, projection is performed while parsing the input docu-
ment. As can be seen in the figure, enabling projection thus even increases the parsing
cost for all twenty queries (now 2.3-3.7 sec; median: 2.36 sec), resulting in an overall
slowdown for most of them. The evaluation of projection paths during input parsing
causes additional CPU load that cannot be compensated by a reduced cost to build
Saxon’s internal tree representation. Since XML parsing is an inherently sequential
task that dominates overall execution cost, Amdahl’s law indicates that there is little
room to improve XMark performance with software-only solutions, such as multi-core
parallelism or distribution, as suggested by Cameron et al. [2008].

For most queries, input projection has very little effect on the time spent on the
query execution part, which is consistent with the observations of Kay [2008]. Saxon
is very good at touching only those parts out of the whole document that are actually
relevant to the given query. Any XML data that projection could filter away might
occupy memory resources, but they will not typically cause any processing overhead.

XML Projection in Hardware. The game changes when we perform XML projection
in hardware. Hardware-based projection reduces the amount of XML data seen by the
back-end processor by as much as 63-99.9 % (average: 97.0 %; median: 98.3 %). The
reduced amount immediately translates into a reduced parsing overhead.

The effect is illustrated in Figure 26 (shown in dark gray next to the baseline situ-
ation without projection). Parsing times now range between 31 and 599 ms (median:
283 ms), a significant reduction over the software-only situation.

As with software projection, filtering has less effect on the actual query execution
time. Here we measured 45 ms—18 s (median: 346 ms) after filtering. Again, this is in
line with previous reports on document projection in Saxon [Kay 2008]. Nevertheless,
for most queries, where parsing time is the dominant factor, total execution time can
be significantly reduced.

Memory Consumption. Our experiments confirm that XML projection is an effective
technique to reduce memory overhead during query processing. This was one of the in-
centives for XML projection [Marian and Siméon 2003]. Our measurements regarding
memory savings are displayed in Figure 27.

Main-memory consumption is query-dependent and amounted to 363—685 MB on
our system (median: 518 MB), when no projection was used. With hardware projection
main-memory consumption could be significantly reduced for all 20 XMark queries—
memory consumption went down to 12-207 MB (median: 25.6 MB). This effect mani-
fests itself even for those queries that lead to a significant number of projection paths
(cf. Section 4.4).
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Fig. 26. Parsing time and query execution time: no projection versus hardware projection with XLynx.
Runtimes for Q11 and Q12 (without projection) exceed scale.
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Fig. 27. Memory consumption of Saxon-EE with no projection ([J), Saxon’s software projection ([]), and hard-
ware projection ([l)).

Intuitively, XML projection should reduce the in-memory tree sizes by the same
amount, whether computed in hard- or software. However, when we tested Saxon’s
software-based projection mechanism, the memory savings were less than the results
we obtained with hardware-based filtering. We attribute this to the way how garbage
collection is realized in the Java runtime (Saxon is written in Java), which introduces
some non-determinism in the memory consumption. We even found situations where

memory consumption increases after we enabled software-only projection (Queries Q1
and Q10).
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Fig. 28. Effect of hardware-based XML projection on parsing and query execution times when using small
input documents (xmlgen -f 1 -s 1000).

Collections of Small XML Instances. XML projection was invented originally to han-
dle also large XML instances in memory-limited, stream-oriented XML processors, a
situation that is well reflected by the experimental setup above. Arguably, however,
large sets of small XML documents might be more appropriate in stream-based envi-
ronments.

To see how XLynx reacts to such environments, we instructed the XMark data gener-
ator to produce a collection of small XML documents, rather than a single file. Invoked
with the command line option -s 1000, the XMark document generator xmlgen pro-
duces XML files which vary between 280 kB and 3.3 MB in size (average: 1.7 MB). On
this XML collection, again we ran Saxon with and without hardware-based projection
applied.

The results are illustrated in Figure 28. The general picture of this graph resem-
bles the one we saw for larger XMark instances (Figure 26). For most XMark queries,
parsing and query execution depend linearly on the input document size. An exception
are the value-based joins in Queries Q11 and Q12, which exhibit quadratic complexity
with growing document sizes. As can be seen in the figure, this eliminates the dom-
inance of the query execution part, making both queries benefit even stronger from
hardware-based projection.

8.4. Comparison with Existing Work

Given the importance of the XML in many application areas, various types of accel-
erators have been proposed to (pre-)process XML on non-CPU hardware. The exact
way how that hardware is used—and under which parameter setting it runs most
efficiently—is highly application-specific. Nevertheless, in this section we try to com-
pare XLynx to alternative approaches that use (a) FPGAs and (b) graphics processors
(GPUs) for acceleration.

FPGA-Based Solutions. The FPGA solution of Moussalli et al. [2011] targets pub-
lish /subscribe scenarios. A (possibly very large) number of subscribers registers
queries with a publisher system. The publisher matches incoming documents (often
very small) against those queries and forwards documents only to matching sub-
scribers. The role of the FPGA in [Moussalli et al. 2011] is to perform XML matching,
then forward a bit vector to a host CPU to indicate which paths/subscriptions have
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matched the current document. This avoids the need to re-serialize matches from the
XML input. But it bears a risk of volume amplification: previous systems have as-
sumed document sizes of 1-100 kB [Kwon et al. 2005] or even less (77 XML element
nodes according to [Diao et al. 2003]) and up to 150,000 subscriptions; the FPGA will
actually increase the communication volume under such parameters.

The system of Moussalli et al. [2011] currently supports at most 4,000 subscriptions
on a Virtex-5 LX330 FPGA (which is three times as large as our chip). The system is
further limited in its support for XML: tag names must be two characters in size and
there must be at most 64 distinct tag names. Under these constraints, their matching
engine achieves a throughput around 200-250 MB/s, significantly less if the design
is scaled to more than 50 % chip space utilization. As expected, per-query compilation
offers better XML throughput and a higher resource efficiency than the dynamic XLynx
approach (on LX330 hardware, XLynx could host about 2,500 skeleton segments or
~ 625 four-step subscriptions). Given the above limitations, however, this advantage is
less than one might expect.

The price for the runtime efficiency of [Moussalli et al. 2011] is the need to re-compile
the full FPGA circuit upon every workload change. The time required to re-compile is
not explicitly stated in [Moussalli et al. 2011], but amounts to “several hours” according
to the authors. XLynx can embrace workload changes within micro-seconds instead.

Graphics Processors (GPUs). The same authors also implemented publish/subscribe-
style matching on graphics processors (GPUs) [Moussalli et al. 2011], exploiting the
hardware parallelism available in modern GPUs. The proposed implementation deliv-
ers its maximum throughput of about 20-25 MB/s only for small subscription counts
(up to 512 subscriptions).

In this implementation, however, the GPU accelerator does not operate on raw XML
input data (as XLynx does). Rather, a CPU-based pre-processor “compresses” the XML
input into a representation where only opening and closing XML tags are preserved,
each encoded as a one-byte “entry” (one bit for opening/closing information, seven bits
for a tag name id; tag names are limited to 128 distinct tag names). In effect, for
the given benchmark data (DBLP), the GPU “sees” only Y21 of the raw data stream—
resulting in an actual throughput of only about 1 MB/s of raw XML on the GPU.

A similar design would significantly simplify also the design of XLiynx. In particular,
the availability of tag identifiers should reduce logic and memory consumption by sig-
nificant amounts. At the same time, there is no reason why one-byte “entries” would
lead to a reduced clock frequency (in fact, the simplified logic would likely improve
the clock rate), so likely XLynx would sustain 180 MB/s when operating on one-byte
“entries”—or close to 4 GB/s in the metric of Moussalli et al. [2011].°

A key challenge in XML processing, parsing in particular, is context dependence.
Graphics processors, however, depend on very pure data parallelism to leverage their
SIMT-based execution engine. Generally, it is not clear whether GPUs are a good exe-
cution platform for workloads like XML/XPath.

Index-Based XQuery Processing. The target of XLynx clearly are streaming scenar-
ios, where no access structures (indexes) can be constructed over the data ahead of
time. Index structures—if chosen and generated properly—can accelerate a known
query workload by several factors, unbeatable by any mechanism that cannot prepro-
cess its data. Nevertheless, it is interesting to relate the performance improvement
through hardware acceleration to the execution characteristics of well-engineered
disk-based engines.

94 GB of raw XMark data contain about 180 x 10 XML tags and thus compress to about 180 x 106 one-byte
“entries,” which could be processed in one second using a clock frequency of 180 MHz.
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Fig. 29. Performance of a Saxon instance that operates on data prefiltered with XLynx, versus execution
times reported for BaseX and eXist. Numbers for the latter two systems taken from [Griin 2010]. Some
numbers exceed scale.

Such a comparison is illustrated in Figure 29. In this figure, we show the perfor-
mance of an XLynx-accelerated Saxon instance side-by-side with execution times re-
ported for BaseX (http://www.basex.org/) and eXist (http:/www.exist-db.org/). Num-
bers for the latter two systems were taken from [Griin 2010]. They were measured on
dual core T7300 Intel CPU.

9. MORE RELATED WORK

After Marian and Siméon [2003] proposed the concept of XML projection, the idea was
expanded into different directions by the research community.

On the path evaluation side, Koch et al. [2008] suggested an interesting alternative
to the automaton-based path matching, as discussed in Section 2.2. The key insight
is the problem’s similarity to string matching. This allows the use of string match-
ing algorithms that have proven efficient for the matching task, such as the classical
Boyer-Moore algorithm [Boyer and Moore 1977] or—to match sets of paths—the string
matching algorithm of Commentz-Walter [1979]. The ideas of Koch et al. are similar to
our work in the sense that they exploit specific characteristics of the XPath matching
problem. But unlike our work, their approach depends on in-memory pointer naviga-
tion, which is contrary to the truly stream-oriented processing model of our system.

The work of Benzaken et al. [2006] primarily improves the query analysis part.
Their proposed type-based XML projection looks at type information rather than plain
child/descendant paths. This allows building a more selective projection filter, which
further reduces the size of the projected XML document. In the runtime part, Benza-
ken et al. push much of the matching complexity into type annotation as a preprocess-
ing step to the actual projection. Type annotation again can be implemented with the
help of finite-state automata and, therefore, could be realized using skeleton automata
much as we described it in this paper. The effectiveness of type-based projection on
filtering selectivity is data-dependent: the concept should benefit hard- and software
implementations alike.

FPGAs are an increasingly attractive alternative to overcome the architectural limi-
tations of commodity hardware. Commercial systems like IBM/Netezza [Netezza 2012]
as well as a number of research prototypes [Moussalli et al. 2010; 2011; Mueller et al.
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2009; Sadoghi et al. 2010; Sadoghi et al. 2011; Woods et al. 2010] demonstrate this for
a wide range of use cases.

All these systems were forced to compromise between query expressiveness and in-
teractivity. On one end of the spectrum, systems like Netezza provide full interac-
tivity, but can use their FPGAs for only very basic operations (such as selection and
projection). Others (such as most of the research prototypes) opted for the opposite
extreme. They offer much higher expressiveness, but at the cost of very high compi-
lation overhead for each user query. The work of Sadoghi et al. [2010; 2011] stands
in the middle and explicitly analyzes the existing trade-offs. For the same use case
(publish/subscribe for algorithmic trading), they propose different FPGA implementa-
tions that are tuned for (and named) “flexibility,” “adaptability,” “scalability,” or “per-
formance.” The reported trade-offs are significant: “performance” is about 70 x faster
than “flexibility,” but requires expensive hardware re-compilation for every workload
change (Sadoghi et al. [2011] do not report compilation times; they usually range from
several minutes to hours).

The focus of our work is not to make any compromises. Rather, we support XML and
a rich subset of XPath, and yet also offer micro-second reactivity to query workload
changes.

We believe the skeleton automaton idea could be combined also with existing ap-
proaches, for instance on hardware-accelerated SQL processing. Netezza [Netezza
2012] offers selection and projection predicates that can be parameterized for a given
query, but lacks flexibility to construct complex predicates. Glacier, our own prototype
with per-query circuit construction [Mueller et al. 2009], allows for such predicates,
but requires expensive re-compilation. Skeleton automata could be used to construct
complex networks of Netezza-style operators, thus allow for complex predicates with-
out expensive re-compilation.

Many FPGA solutions face the trade-off between flexibility and performance. High-
frequency trading (HFT), for instance, is a race for ultra-low latency [Schneider 2012].
To minimize latency, many developers tend toward building new, tailor-made circuits
for each application; but the competitive market does not allow long development cy-
cles to build these circuits. Lockwood et al. [2012] proposes to counter the problem
with help of an IP (intellectual property) library with pre-built components for individ-
ual tasks in the application domain.

Pre-built libraries can also be used to implement faster workload updates by ex-
ploiting the partial re-configuration capabilities of modern FPGA chips.!® Dennl et al.
[2012] showed how this idea can be used to improve the flexibility of a Glacier-like
query processing system (Glacier is our own prototype of an execution platform with
per-query compilation [Mueller et al. 2009]). Partial re-configuration is appealing to
solve the flexibility/performance trade-off. But its use brings in another level of com-
plexity into the development process (such as additional tools needed at runtime),
which so far has kept system makers from using partial reconfiguration in real-world
systems.

One way of looking at XLynx is that it leverages the XML projection idea of Mar-
ian and Siméon [2003] and hardware-based parsing to reduce the high parsing cost
that bottlenecks many real-world XML processors. XML parsing has been studied sep-
arately by Dai et al. [2010]. Their system, XML Parsing Accelerator (XPA), reaches
similar throughput rates as our input parser. In addition to our work, however, XPA
also includes facilities to build up (DOM-based) in-memory data structures that could

10Using partial re-configuration, parts of an FPGA chip can be updated at runtime, rather than stopping
and re-loading the entire FPGA chip.
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directly be handed over to a software XML processor. Given the modular designs of
both XLynx and XPA, we think that those facilities could also be integrated into XLynx,
completely avoiding the serialization/parsing cycle along the FPGA — CPU path.!!

Several research projects have addressed the parsing of XML in software-only sys-
tems, by leveraging available hardware parallelism in the form of SIMD (vector-
oriented processing) or multi-core processors. The crux in parallelizing the parsing
task is context dependence. Pan et al. [2007; 2008] thus suggested to pre-parse the
XML input into a skeleton where suitable boundaries for document partitioning are ex-
plicitly identified. After parsing these partitions in parallel, a simple post-processing
steps suffices to integrate partial results into an overall DOM tree. Pan et al. [2008]
report an almost perfect scaling of this PXP strategy to at least 30 CPU cores, though
no absolute numbers are given for the achieved parsing speed.

Parabix leverages SIMD functionality in modern processors to identify the key syn-
tactic elements of XML (e.g., angle brackets </> or ampersands &) in a parallel fashion.
As such, we think that Parabix might not only be attractive for standalone XML pars-
ing, but also for use as a pre-parser in setups like PXP.

Shah et al. [2009] demonstrated that pre-parsing can be avoided by exploiting known
numbering schemes for XML. Independent threads create, for arbitrary chunks of input
data, local preorder ranks for all nodes in the chunk. By exchanging parsing stacks be-
tween threads, the overall DOM tree can afterward be obtained through a lightweight
post-processing step. Shah et al. [2009] report a speedup of around 2.5 for 4 CPU cores,
with absolute performance in the order of 100—160 MB/s (i.e., close to the 180 MB/s that
we achieve in hardware).

The (de)fragmentation issues discussed in Section 6 resemble the problem of
free space management experienced in operating systems [Wilson et al. 1995],
databases [McAuliffe et al. 1995], or file systems. However, we avoid many of the prob-
lems that affected OS, database, or file system implementors in the past. In particular,
in XLynx we are free to move segments after allocation, which is in contrast to main
memory allocation or record-id allocation. Further, copying segment contents to a new
destination does not cause any overhead or slowdown, as experienced by file systems.
Rather, the copying work is performed only by segments that would be idle otherwise.
Once again this adds flexibility without deteriorating processing performance.

10. SUMMARY

To avoid the critical trade-off between query expressiveness and the capability for ad-
hoc querying, we propose a new implementation strategy for FPGA-based database
accelerators. Rather than building hard-wired circuits for only narrow query types, we
statically compile a skeleton automaton that can be configured at runtime to implement
query-dependent state automata. The so-constructed and configured automata run as
fast as existing hard-wired automata, yet offer high expressiveness and complexity
(e.g., hundreds of parallel XPath steps on one low-end chip).

Our use case for this work is XML projection, a method that has proven effective to
reduce processing and main-memory overhead of XML processors. As such, we make
the architectural advantages (e.g., in-network processing); the lower energy consump-
tion; and the performance benefits of FPGAs accessible to XML processing. We demon-
strated all three aspects with a micro-benchmark of the core projection engine (XLynx)
and by pairing our system with a state-of-the-art XQuery processor (Saxon Enterprise
Edition).

11As a down side, we would lose the back-end independence of XLynx, since the DOM representation will be
a back-end-dependent data structure.
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On the micro-architectural side, the skeleton automaton design principle scales fa-
vorably with the available chip space, making our work ready for upcoming chip gen-
erations that will provide significantly more real estate. The XML projection that we
propose runs at throughput rates of about 180 MB/s of XML input—more than enough
to realize “in-network filtering,” a scenario that we used to exemplify our approach.

On the full system scale, XLynx leads to significant savings (up to 94 %) of electrical
power consumption, hence we address the key limitation in modern system designs.
In-network filtering with XLynx significantly eases the XML parsing burden on the
back-end XML processor. Since parsing is the main bottleneck for many real-world sce-
narios, reducing the parsing cost directly translates to an overall speedup of the total
query execution time. The effect is independent of the XML processor used as XLynx’s
back-end and leads to a performance improvement of several factors with Saxon-EE
as the back-end system.

The role of FPGAs in a complete system is part of our ongoing research project
Avalanche. In this project, we currently are working on strategies to leverage the po-
tential of FPGAs in hybrid FPGA/CPU system designs. XLynx is one example, designed
to integrate in a complete end-to-end system. In this article, we illustrated how the
skeleton principle elegantly interplays with dynamic query additions and removals
and how resource allocation can be implemented in a dynamic fashion. XLynx con-
sumes and produces real XML data. It can thus be paired with arbitrary back-end
processors.
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