
Shifter Lists—A Data Structure for Massive Parallelism

Louis Woods Jens Teubner Gustavo Alonso
Systems Group, Department of Computer Science, ETH Zurich, Switzerland

{louis.woods,jens.teubner,gustavo.alonso}@inf.ethz.ch

ABSTRACT
A wide range of technology trends are creating the opportu-
nity to use highly parallel co-processors next to conventional
CPUs to improve the performance of data processing sys-
tems. However, it is often difficult to exploit the inherent
parallelism in these devices. Most systems available focus
on ad-hoc implementations of single operators. Rather than
trying to parallelize a given operator, in this paper, we pro-
pose a new data structure—shifter lists—designed to sup-
port data processing on massively parallel hardware (hun-
dreds to thousands of processing elements). A shifter list can
be customized to accommodate different algorithms while
guaranteeing throughput-optimized communication among
processing elements. In the paper, we present shifter lists,
characterize their behavior, show a first implementation (on
an FPGA, for large-scale parallelism), apply the result to a
use case (skyline queries), and show how shifter lists can be
used to implement other operators.

1. INTRODUCTION
There has been an increasing amount of research and

commercial systems that exploit heterogeneous, low power,
and massively parallel co-processors to accelerate data pro-
cessing operations. For instance, server vendors such as
Netezza [21] (acquired by IBM in 2010) and Convey [7]
equip their systems with configurable hardware accelerators
known as field-programmable gate arrays (FPGAs), which
are inherently parallel devices.

This new hardware provides a large aggregated compute
power but it is difficult to turn the hardware’s parallelism
into true performance. A common answer to this challenge is
to build specialized implementations focused on one specific
application task, e.g., by fitting the problem to an input
data partitioning scheme and then fixing problem-specific
bottlenecks as they arise. This tends to leave much of the
true hardware potential unused. In addition, the lack of
suitable abstractions prevents the invested efforts to carry
over from one application to another.

In this work we provide one such abstraction. We pro-
pose a new data structure—shifter lists—that helps in the
design of massively parallel and scalable algorithms for a
number of different problems. Shifter lists combine data or-
ganization, computational power, and synchronization into
a new parallel processing model that naturally supports the
characteristics of emerging parallel hardware. In our model,
we think of input data as a data stream that propagates
through the shifter list, which itself is distributed over many
processing elements. The processing elements are arranged
as a pipeline and locally update the shifter list as input
data flows by. The only communication required is between
neighboring processing elements.

We illustrate shifter lists based on a common database
operator, skyline. Skyline computation is a good exam-
ple where straightforward input data partitioning neither
matches the complexity properties of the problem—linear
in the input data volume, but quadratic in the (interme-
diate) skyline result—, nor does it fit the characteristics of
modern parallel hardware. With shifter lists, by contrast, we
partition the working set of a block-nested-loops (BNL) [4]
variant and leverage the data structure’s lightweight parti-
tioning mechanisms across many parallel processing units.

Shifter lists are a generic data structure that can be used
at different levels of granularity. In this paper, we aim at
scalability to very high degrees of parallelism. For evalua-
tion, we thus use field-programmable gate arrays (FPGAs),
where we can experiment with degrees of parallelism far
beyond those of commodity multi-core hardware (on our
FPGA hardware, we could accommodate almost two hun-
dred parallel processing units). Though absolute perfor-
mance is not the main focus of this paper, our experiments
show that we outperform a CPU-based solution by almost
a factor of 20, even on low-end FPGA hardware. As such,
our prototype could readily be used as a co-processor to
accelerate skyline applications.

We present shifter lists as follows. Section 2 motivates our
work and relates it to existing ideas. In Section 3, we in-
troduce shifter lists. Section 4 illustrates using shifter lists
for skyline computation. We realize the idea on concrete
(FPGA) hardware in Section 5, and evaluate our implemen-
tation in Section 6. Additionally, in Section 7, we briefly
sketch a shifter list implementation for (i) frequent item
computation and (ii) top-k queries to demonstrate the gen-
erality of shifter lists, before we wrap up in Section 8.

2. RELATED WORK AND MOTIVATION
The prevalence of parallel hardware is pushing the soft-

ware side harder and harder to come up with efficient par-
allel problem solutions. Berkeley researchers phrased this
provocatively in a recent article [1] in Communications of
the ACM : “If researchers meet the parallel challenge, the
future of IT is rosy. If they don’t, it’s not.”

2.1 Parallel Hardware & Heterogeneity
The trend toward increasing degrees of parallelism is com-

plemented with a notion of hardware heterogeneity. Special-
ized co-processors and even programmable logic are already
used successfully to assist general-purpose cores on compute-
or data-intensive tasks.

A particular instance of this trend are field-programmable
gate arrays (FPGAs), which proved already very successful
in the database domain. FPGAs are digital logic devices
that can be used to realize a circuit by a mere (software-
based) device (re)configuration. The configured hardware
logic can then solve a particular problem at very high speeds
and with favorable energy consumption properties.

IBM/Netezza’s 1000 (formerly Twinfin) [21] is probably
the most prominent example of a commercial FPGA-pow-
ered database appliance. On the research side, FPGA so-
lutions have been proposed, e.g., for sorting [20], XML fil-
tering [19], or high-speed event processing [23]. Neverthe-
less, those examples all confirm the observation of Chung et
al. [6]: FPGAs still lack essential abstractions that have be-
come pervasive in general-purpose computers; rather, most
systems are developed in an ad-hoc manner for just one par-
ticular problem setting. With shifter lists, we work towards
such an abstraction that aids in building parallel solutions
for difficult database tasks that demand high performance.

From a research perspective, FPGAs are particularly in-
teresting because of their inherent massive parallelism. The
degree of parallelism is limited mainly by the amount of
available chip space on the given FPGA. At the same time,
the observed effects of increased parallelism are representa-
tive for what we can expect from future commodity hard-
ware. Thus, FPGAs can be used already today to illustrate
the interplay of communication and high degrees of paral-
lelism on hardware yet to come.

2.2 Parallel Data Processing
The database community has investigated parallel data

processing techniques already long before the current multi-
core race. A good overview of parallel databases has been
published, e.g., by DeWitt and Gray [9]. Parallelism, thereby,
was used in essentially two ways: (i) data partitioning, large
input data is partitioned to run parallel instances of the
same operator on many nodes (e.g., [17]), and (ii) inter-
operator pipelining, where pipelined query plans are taken
literally and individual operators are assigned to distinct
processing resources (e.g., [12, 16]). As noted in [9], inter-
operator pipelining bears a risk of uneven load distribution
because different operators within the same pipeline may
have significant differences in cost.

Modern Hardware. All of the above techniques (and re-
search on parallel databases in general) were a good fit for
the available hardware at the time. Meanwhile, however,
hardware characteristics—in particular with respect to the
availability of parallelism—have changed considerably. In
this work, we thus propose to re-think parallel algorithm

Scatter-gather Pipeline of cores

· · ·

· · ·

· · ·

Figure 1: Scatter-gather versus pipeline of cores.

design and devise a new programming model that matches
the actual trends in hardware.

Most importantly, this affects the interplay of parallelism
with communication. With increasing core counts, the av-
erage on-chip distance grows between arbitrary communica-
tion partners, which requires additional energy and increases
latency [3]. What is more, the necessary routing logic scales
quadratically in the number of compute nodes, which limits
the observed bandwidth for many communication patterns.

2.3 Communication Patterns
As illustrated in Figure 1, algorithms based on scatter-

gather mechanisms are strongly affected by the cost of com-
munication. However, negative effects, e.g., long communi-
cation paths or high fan-in/-out, can be avoided if the com-
munication follows very simple topologies, such as pipelining
along a series of parallel units (Figure 1), or ring and tree
topologies.

Most existing algorithms for parallel database process-
ing barely reflect these effects induced by communuication.
Most recently, for instance, Kim et al. [15] or Blanas et al. [2]
devised parallel variants of join algorithms for multi-core
hardware. While the primary focus of these techniques—
cache awareness—can be viewed as one particular type of
communication (to main memory), neither technique is re-
ally aware of the implied inter-core communication.

One of the first works that addressed core-to-core com-
munication in databases is QPipe by Gao et al. [12]. QPipe
places database operators on individual cores and explicitly
pipelines data between cores. However, the proposed scheme
was designed for inter-operator pipelining only and is hence
limited to rather coarse-grained parallelism.

Inter-operator pipelining has been discussed in a few re-
cent papers. In cyclo-join [11], the join operator is mapped
to a ring topology, where the inner relation is stationary
and fragments of the outer relation are rotated in the ring.
Handshake join [24] is a stream join algorithm devised for
many-core systems that distributes the join operator over
available parallel compute resources. Each parallel unit per-
forms a local join while the two join relations flow through
a series of such units in opposite directions. From these
works, shifter lists adopt the (pipelined) dataflow process-
ing paradigm. Yet, shifter lists are better viewed as a data
structure for highly parallel hardware. As such, they are
more related to—and in fact a generalization of—the data
structures in our earlier work [25, 29]. Shifter list-like con-
structs were used in [29] to perform efficient key-value search
in the context of GROUP BY, and in [25] to solve the frequent
item problem (see Section 7).

?

current input item

input data set

working set

Figure 2: Typical application pattern for a shifter
list: For each input item, the working set is accessed
and possibly modified.

With shifter lists, we address the design of parallel database
algorithms in two important ways: (i) shifter lists can be
used as a generic implementation strategy to build parallel
algorithms—no need to re-start platform optimization for
each new problem instance; (ii) shifter lists have the aware-
ness of communication cost built-in. It is applied by bringing
pipelining to the inside of individual operators.

2.4 Skyline Processing
After skyline queries were first introduced in 2001 [4], a

decade of research has produced a variety of different ap-
proaches to solving skyline queries (a comprehensive overview
of the general directions of approaches is given in [14]).
To demonstrate shifter lists, we revisit block-nested-loops
(BNL) [4], one of the early skyline algorithms, which is sim-
ple and yet still effective today.

Recently, there have also been some approaches to ex-
ploit parallelism for skyline queries. On multi-core ma-
chines, the main problem is that multi-threaded skyline al-
gorithms using traditional approaches often only scale up to
a few cores [22]. Using SIMD, the dominance test of skyline
queries [5] can be improved. However, maximal theoretical
speedup is limited by the vector size of the SIMD registers.

3. SHIFTER LISTS
The main target of our shifter list data structure are ap-

plication patterns as illustrated in Figure 2. From a given
input data set, all items are consumed in turn. The single
input item is evaluated against many or even all the items in
an in-memory working set. Possibly, this evaluation results
in an update to the working set, such as adding the cur-
rent input item to the set or removing others. Many com-
mon database tasks match this pattern, e.g., skyline queries,
top-k queries, k-nearest neighbor searches (k-NN), and find-
ing frequent items, just to name a few.

In this work, we use skyline computation to showcase
shifter lists. We are going to base our work on the block
nested loops (BNL) algorithm [4] that, for each input item,
examines and updates a working set—consistent with the
pattern in Figure 2.

Note that for some algorithms used in the examples given
above the processing order may influence the final result.
Many applications demand that this causality implied by
in-order processing is preserved also in a parallel execution
scheme.

3.1 A Shifter List is a Data Structure
The high-level structure of shifter lists is illustrated in

Figure 3. Working set items are held in a number of shifter
list nodes (each of which we will later assign to a separate
compute resource). There is a defined total order among all

node 0 node 1 node 2

working set items message channels

Figure 3: Shifter lists group working set items into
nodes. Neighboring nodes are connected via mes-
sage channels.

nodes νi in a shifter list. Oftentimes, node contents them-
selves will have a defined order, resulting in a total order
across all working set items.

Nodes are organized independently, but communicate with
each other through well-defined message channels. As illus-
trated in Figure 3, these channels constrain communication
to neighbor-to-neighbor messaging. Besides for application-
defined messages, the channels will also be used to propa-
gate input data and to exchange (swap) working set items
between nodes (which ultimately results in a dynamic re-
partitioning of the working set).

Ready for Modern Hardware. A working set orga-
nized as in Figure 3 is well prepared for the runtime char-
acteristics of modern and future hardware. Grouping and
neighbor-to-neighbor communication both ensure spacial lo-
cality. Awareness of communication locality is exactly among
the properties that Borkar and Chien demand from the soft-
ware side if we want to see continuous performance growth
on future hardware generations [3].

A possible way to implement messaging channels on com-
modity systems is to use asynchronous FIFO queues. Such
queues were shown to match the capabilities of modern multi-
core systems particularly well [13] and—if organized in a
linear structure like shifter lists—scale to large core counts
almost trivially. In FPGA designs, the point-to-point nature
of the channels avoids costly multiplexing logic and reduces
circuit complexity.

3.2 Shifter Lists are for Data Processing
To process input, we submit each input item to the left-

most shifter list node. There, the item is evaluated against
all local working set items, then shifted on to the right neigh-
bor where the process repeats. Effectively, a sequence of
input items flows through all nodes in a pipeline fashion.

The actions performed at each node depend on the specific
task that is to be solved with the shifter list. Action code
may decide to alter the local working set partition (e.g., by
deleting, inserting, or re-arranging working set items); drop
the input item from the pipeline; or send and/or receive
messages along the message channels.

Self-Similarity. While the concrete action code has to be
written specifically for each shifter list use case, we often see
a “self-similarity” effect. Thereby, the local action code re-
sembles very closely the superordinate algorithm that solves
the overall application task. Typically, only side effects have
to be modified to obtain the code for node-local execution.
For instance, node-local “overflow tuples” in the BNL sky-
line algorithm have to be forwarded to the next shifter list
node, rather than be written to an overflow file (more details
later).

This self-similarity property not only eases application
development. It also means that we can slice the original
task into smaller and smaller units in a hierarchical fashion.
Again, this is in line with what we see on the hardware side
where, e.g., functional units are combined to form one CPU
core, several CPU cores make one chip die, dies are pack-
aged into processors, etc. (e.g., [8]). Conceivably, shifter
lists could be applied across all these levels, and even be-
yond machine boundaries at the network and data center
level.

3.3 Shifter Lists are for Parallelism
As described above, input items are evaluated over the

individual shifter list node contents in a strictly forward-
oriented fashion. This has important consequences that we
can exploit in order to parallelize the execution over many
processing units while preserving the causality of the corre-
sponding sequential algorithm.

Causality Guarantees. Forward-only processing implies
that the global working set is scanned exactly once in a de-
fined order (which may be a desirable property for some al-
gorithms). What is more, once an input item xi has reached
a shifter list node νm, its evaluation cannot be affected by
any later input item xj that is evaluated over a preceding
node νn, n < m (while conversely, the later xj is guaranteed
to see all effects caused by the earlier xi).

? ?

node νn node νm

xj xi

· · ·

Figure 4: Shifter list causality guarantees. The ear-
lier xi will see no effects caused by the later xj but
xj sees all effects of xi.

These causality guarantees hold even if we let the execu-
tions of xi on νm and xj on νn run in parallel on independent
compute resources, as illustrated in Figure 4. To uphold the
guarantees, xj only must never overtake xi in the processing
pipeline, a requirement that is easy to meet if all message
channels are implemented as FIFO queues.

The preservation of causality hides much of the paral-
lelization difficulties from the application developer. But
the two-way interaction between two neighboring shifter list
nodes may still bear a risk for race conditions. More specifi-
cally, an item xi might be affected by the evaluation of xj if
xj follows too closely in the processing pipeline and the in-
teraction code is not engineered carefully. Explicit barriers,
placed between successive input items, are an easy method
to prevent such risks (also see Section 7.1).

Application-Level Guarantees and Invariants. Ap-
plications may use the shifter lists’ causality guarantees to
further establish their own invariants. When solving the sky-
line problem in Section 4, for instance, we add new items to
the working set only on the rightmost position. Since items
never overtake each other, this ensures that the oldest work-
ing set element can always be found at the front of node 0
(the leftmost shifter list node).

3.4 Shifter Lists are Data and Logic
The intended use of shifter lists is to keep chunks of data—

the contents of a node—strictly co-located with the process-
ing logic that uses it. In a sense, this blurs the classical
separation of logic and data.

Releasing this strict separation indeed makes sense in the
light of ongoing hardware trends. There is a general con-
sensus that power and heat dissipation problems will force
a move toward heterogeneous system architectures, which
might even soon be dominated by highly specialized co-
processors or configurable hardware [3, 10]. In such designs,
data structures can be wrapped right into the correspond-
ing processing logic to further improve energy efficiency and
speed.

In the experimental part of this work, we make the in-
tegration of data and logic very explicit by implementing
shifter lists on top of FPGAs. The circuit that we pro-
pose would be ready to become one part of a heterogeneous
multi-core architecture.

4. USE CASE: SKYLINE QUERIES
In a data warehouse appliance equipped with configurable

hardware, e.g., IBM/Netezza’s 1000 (formerly Twinfin) [21],
a significant performance optimization can be achieved when
compute-intensive, long-running queries are outsourced to a
dedicated co-processor previously loaded onto the config-
urable hardware. Skyline queries, discussed in this section,
are typically very compute-intensive and are related to many
other well-known database problems, e.g., computing the
convex hull for a set of points, making skyline queries a
good candidate for shifter lists.

4.1 The Lemming Skyline
To figuratively explain skyline queries, the BNL algorithm

[4], and the modified version of BNL using shifter lists, we di-
gress into the world of Lemmings. Lemmings1 are primitive
creatures that go on migrations in masses. On Lemmings
Planet every year a challenge—Lemmings got Talent—takes
place among the Lemmings with the goal to identify the
“best” Lemmings. Every Lemming has different skills: some
are very strong but slow and clumsy, others are agile but
neither strong nor fast, then again others are generalists
that do not have a particular skill that they are best in
but are pretty good in multiple skills. As the committee
of the competition could not agree on a weighting function
that would determine the best Lemmings, all Lemmings that
are not dominated (see Definition 1) by any other Lemming
are considered best. In other words, the winners are those
Lemmings that are part of the Lemming skyline (see Defi-
nition 2).

Definition 1. A Lemming li dominates (≺) another Lem-
ming lj iff every skill (dimension) of li is better or equal
than the corresponding skill of lj and at least one skill of li
is strictly better than the corresponding skill of lj.

Definition 2. Given a set of Lemmings L = {l1, l2, . . . ln},
the skyline query returns a set of Lemmings S, such that any
Lemming li ∈ S is not dominated by any other Lemming
lj ∈ L.

1As in the video game “Lemmings” originally developed by
DMA Design: http://www.dmadesign.org/

4.2 The Competition—1st Year (Best)
When the competition took place for the first time, the

committee had a definition for the set of best Lemmings
(see previous section) but it was still unclear how to deter-
mine this set. Thus, in the absence of sophisticated logistic
means, one committee member suggested the following sim-
ple algorithm. Initially all Lemmings queue up in front of a
bridge, as illustrated in Figure 5.

qi dominated

p0qi+1 requeue

queue

Figure 5: Lemming Skyline with Best [26].

The first Lemming in the queue q0 is considered a poten-
tial skyline Lemming p0 and can advance onto the bridge.
There, the candidate Lemming has to battle all other Lem-
mings in the queue q1 . . . qn−1. A battle can have three
possible outcomes. (1) p0 dominates qi. In this case, qi will
be pushed from the bridge and p0 remains on its position
to combat qi+1. (2) qi dominates p0. Now, p0 falls from
the bridge and qi becomes the new candidate Lemming p0,
i.e., has to battle qi+1. (3) If neither of the two Lemmings
dominates the other, they are considered incomparable. In
this case, p0 stays on the bridge and qi has to requeue.

The candidate Lemming p0 has to remain on the bridge
until it has fought all queued Lemmings once. When a chal-
lenger qj confronts p0 for the second time, we know that p0
is not dominated by any other Lemming. Hence, p0 is part
of the Lemmings skyline and can leave the bridge safely and
qj becomes the new p0. The algorithm terminates when the
queue is empty, i.e., all dominated Lemmings have fallen
from the bridge. The Lemmings still alive all belong to the
Lemming skyline. This algorithm, known as Best, has been
formally described in [26].

4.3 The Competition—2nd Year (BNL)
The following year many new Lemmings were born and it

was time to redetermine the Lemming skyline. The previ-
ous year some Lemmings complained that they had to spend
too much time queuing. In particular, requeing was time-
consuming and delayed the entire competition. To improve
on this drawback, the set of candidate Lemmings was in-
creased from 1 to w. The modified version of the algorithm
is known as block-nested-loops (BNL) [4] and illustrated in
Figure 6.

qi dominated

[p0, pw−1]qi+1 requeue

queue

Figure 6: Lemming Skyline with BNL [4].

On the bridge there is room for a window of w candidate
Lemmings. A challenging Lemming qi from the queue has

to battle all candidate Lemmings on the bridge. If the chal-
lenging Lemming survives all battles, there are two possibil-
ities. (1) If there are already w other candidate Lemmings
on the bridge, qi has to requeue. (2) Otherwise qi becomes
a candidate Lemming pi.

Unfortunately, now it is unclear when exactly a candidate
Lemming has been on the bridge long enough to qualify as
a true skyline Lemming. Luckily, the competition commit-
tee found a simple solution to this problem. After a Lem-
ming qi survives all candidate Lemmings on the bridge, it
receives a timestamp independent of whether it becomes a
candidate Lemming or has to requeue. A candidate Lem-
mings pi can now be said to be a true skyline Lemming
(and leave the bridge) when it encounters the first challeng-
ing Lemming qj that has a larger timestamp or when the
queue is empty. When Lemmings initially queue up for the
first time, this timestamp is set to zero. A larger timestamp
indicates that the Lemmings must have already competed
against each other and since the queue is ordered, all follow-
ing Lemmings in the queue will also have larger timestamps.
More formally, the BNL algorithm is given in Figure 7.

1 foreach Lemming qi ∈ queue do
2 isDominated = false;
3 foreach Lemming pj ∈ bridge do
4 if qi.timestamp > pj .timestamp then

/* pj ∈ Lemming skyline */
5 bridge.movetoskyline(pj);

6 else if qi ≺ pj then
7 bridge.drop(pj);

8 else if pj ≺ qi then
9 isDominated = true;

10 break;

11 if not isDominated then
12 timestamp(qi);
13 if bridge.isFull() then
14 queue.insert(qi);

15 else
16 bridge.insert(qi);

Figure 7: BNL Algorithm (≺ means dominates).

4.4 The Competition—3rd Year (Shifter List)
While the BNL algorithm used in the 2nd year signifi-

cantly reduced the number of times that Lemmings had to
requeue, there were new complaints coming from some Lem-
mings. In particular, candidate Lemmings criticized that
most of the time on the bridge they were idle, waiting for
their turn to battle the next challenger. Thus, in favor of
higher throughput, the competition committee decided to
slightly modify the BNL algorithm using the shifter list ap-
proach. The basic idea is that instead of one challenger qi
now up to w challengers q(i+w−1) . . . qi are allowed on the
bridge, and each challenger can battle a different candidate
Lemming in parallel. This version of the algorithm is illus-
trated in Figure 8.

To avoid chaos on the bridge the procedure is as fol-
lows: In each iteration there is a shift phase followed by
a battle phase. In the shift phase all challenger Lemmings

pk
qj

queue

q(i+w−1) requeue

Figure 8: Lemming Skyline: BNL & Shifter List.

q(i+w−1) . . . qi move one position to the right to face their
next opponent (indicated by the lower arrows in the figure).
This frees the leftmost position on the bridge and allows a
new Lemming from the queue to step on the bridge every
iteration. Then in the battle phase all w pairs of Lemmings
battle concurrently. As can be seen in the figure, in some
situations a Lemming will not have an opponent because the
corresponding Lemming was previously dominated, i.e., fell
from the bridge. In that case, the Lemming does not need
to battle in this iteration.

Once a challenging Lemming qi safely reaches the right
end of the bridge, it qualifies as a candidate Lemming if
there is room on the bridge, otherwise it has to requeue
(as in standard BNL). If during the battle phase a candi-
date Lemming pi falls from the bridge, the other Lemmings
pi+1 . . . pw−1 to the right of that Lemming should move up
in the subsequent shift phase and fill the gap (indicated by
the upper bent arrows in the figure). This is to make room
for new candidate Lemmings that reach the right end of the
bridge.

As in standard BNL, we can also use timestamping to de-
cide when candidate Lemmings turn into true skyline Lem-
mings and can leave the bridge. Since the order among
the Lemmings on the bridge is maintained, it is always the
leftmost candidate Lemmings that can go first. Thus, can-
didate Lemmings get on the bridge on the right end and
then gradually move towards the left end again, where they
need to wait until they encounter a challenger with a larger
timestamp.

5. PARALLEL BNL WITH FPGAS
When Börzsönyi et al. [4] first proposed the block-nested-

loops (BNL) algorithm, their main motivation was to sup-
port skyline computation for problem sizes that would re-
quire external (and slow) memory. With today’s large main
memories (no need for external storage) and efficient mem-
ory subsystems, the bandwidth to read input or overflow
data limits skyline computation only for extremely small
working set sizes (few candidate skyline tuples). In most
practical cases therefore, CPU load becomes the bottleneck
when computing skylines.

This makes FPGAs a good alternative to conventional
CPUs, because the relevant window sizes (say, 100 skyline
candidates) conveniently fit into on-chip memories. In this
section, we show how shifter lists then help to parallelize the
computation within the FPGA to make best use of its avail-
able compute capacity. As our results in Section 6 demon-
strate, this brings the algorithm back to memory-bound be-
havior, which in turn restores the original characteristics of
the algorithm, where reducing the number of overflow tu-
ples translates into faster execution of the algorithm, i.e.,
the larger the window, the better the performance.

5.1 BNL Using Shifter Lists
Given the opportunity for very fine-granular parallelism

inside FPGAs, we configure our shifter list implementation
such that each node holds only a single working set item.
This allows us to fully leverage the available hardware par-
allelism and also helps us illustrate how shifter lists scale to
very high degrees of parallelism.

eval. shift eval. shift eval. shift eval. shift eval. shift

Figure 9: Two-phase processing of shifter lists.

As mentioned in the previous section, data processing in
shifter lists can be viewed as a two-phase algorithm: during
the evaluation phase (the “battle” phase in the Lemming ex-
ample), a new state is determined for each shifter list node;
but these changes are not applied before the shift phase,
which is the phase that also allows neighbor-to-neighbor
communication. In our FPGA-based implementation, those
two phases will run synchronously across the chip, as de-
picted in Figure 9. A similar concept has been proposed in
the work of Wang et al. [27] on large-scale parallelization
of behavioral simulations. By running parallel code in two
phases (“query phase” and “update phase” in [27]), algo-
rithms can be phrased in a way that is intuitive, and yet
efficient to parallelize.

1 on each node do
2 q ← current input item ;
3 p← local working set content ;
4 s← state of shifter list node ;

5 if q.valid then /* next challenger */
6 if s = working set then /* valid candidate */
7 if q.timestamp > p.timestamp then
8 s ← output ; /* found skyline tuple */

9 else if q.data ≺ p.data then
10 s ← deleted ; /* drop window tuple */

11 else if p.data ≺ q.data then
12 q.valid ← false ; /* drop input tuple */

13 else if s = free then /* add input to window */
14 timestamp(q) ;
15 p.data ← q.data ;
16 s ← working set ;
17 q.valid ← false ;

Figure 10: Shifter list-based BNL: evaluation phase.

Evaluation Phase. Thanks to the self-similarity property
of shifter lists, the partial algorithm executed locally on each
shifter list node in the evaluation phase very closely resem-
bles the global algorithm—BNL in our case. As shown in
Figure 10, the only changes to the original algorithm (Fig-
ure 7) are that all side effects are now handled by the shift
phase (and we handle boundary cases more explicitly here).

1 foreach node νi do
/* all skyline results are emitted on ν0 */

2 if i = 0 ∧ νi.state = output then
3 emit νi.working set.tuple as result ;
4 νi.state ← deleted ;

5 if i < w − 1 then /* any but the last node */
6 if νi.state = deleted then

/* move up candidates to left */
7 νi.working set ← νi+1.working set ;
8 νi.state ← νi+1.state ;
9 νi+1.state = deleted ;

/* challengers move one position to right */
10 νi+1.input item ← νi.input item ;

11 else /* the last node (physically) */
12 if νi.state = deleted then
13 νi.state ← free ;

14 if νi.input item.valid then
15 timestamp(νi.input item) ;
16 write νi.input item to overflow file ;

Figure 11: Shifter list-based BNL: shift phase. Re-
sults are reported on ν0; candidates and input items
move to the left and right, respectively; items after
last node are written to the overflow file.

Shift Phase. All interactions between neighboring nodes
are performed in the following shift phase (Figure 11), which
updates the global algorithm state based on the outcome of
the evaluation phase. In essence, all input items are for-
warded one shifter list node toward the right, whereas can-
didate results (working set items) move toward the left if
there is space available, i.e., the left neighbor node is in
state ‘deleted’. Since skyline candidates move toward the
left, we report them on the leftmost node ν0 once their
timestamp condition has been satisfied. Likewise, on the
rightmost node νw−1, we write input items to the overflow
file if they were not invalidated during their move along the
shifter list pipeline, and cannot be inserted into the shifter
list because it is already full.

5.2 Shifter List Node State Automaton
While in Figures 10 and 11, we phrased BNL with shifter

lists as an algorithm in pseudo code, the implementation in
hardware logic boils down to a state automaton. It turns
out that most of the transitions in this automaton are not
specific to a particular application problem, but are deter-
mined by the general data processing pattern that we saw
in Figure 2. The few transitions that really depend on the
concrete BNL algorithm are labeled ‘insert’, ‘output’, and
‘delete’ in Figure 12. In this state automaton, each shifter
list node can be in any of four states:

F : “free” The current and all following nodes are free. In
BNL, an input item that reaches this point will be ‘in-
serted’ into the shifter list causing the state transition
F →W for the current node.

W : “working set” The current node holds an item of the
working set (in BNL, one candidate tuple). If the can-
didate tuple is dominated by an input tuple, the work-
ing set item is ‘deleted’ (W → X). If the timestamp

Fstart W

XO

insert

d
eleteou

tp
ut

delete

Figure 12: State diagram: shifter list node.

condition in Figure 10 is satisfied the tuple can be
‘output’ as a skyline tuple (W → O).

X: “deleted” The working set item of the current node
has been ‘deleted’. Due to the causality property men-
tioned earlier, we cannot directly perform the transi-
tion W → F but first need to propagate the freed
resource to the end of the pipeline, where transition
X → F can take place.

O: “output” The working set item of the current node is
ready for ‘output’. In BNL, this means that a skyline
tuple has been identified and is shifted to the leftmost
shifter list node, where it is ‘output’. Then the current
resource is freed (O → X).

The dashed transitions are built-in shifter list transitions.
They enable shifting of nodes (more precisely, their working
set content) toward the end or the beginning of the shifter
list. Nodes in state O are shifted to the beginning. On the
other hand, nodes in state X are shifted to the end, where
automatically the transition X → F is executed.

While not required for skyline queries, other algorithms
might need the global working set content of a shifter list
to remain sorted (see Section 7.2). In such a scenario, two
nodes in state W or O might need to swap their working set
content, e.g., based on some sort criteria. Therefore, we also
added the dotted transitions in the state diagram (omitted
between W and O for readability purpose).

5.3 Dimension-at-a-time vs. Tuple-at-a-time
Taken literally, the shift phase illustrated in Figure 11

passes items atomically between adjacent shifter list nodes.
For multi-dimensional input, this would lead to a very high
bandwidth demand (e.g., 15 dimensions× 32 bits× 150 MHz
clock frequency = 9 GB/s in- and outgoing traffic), which is
far out of reach for the hardware that we use. Instead, our
implementation streams all data one dimension at a time.

Data Representation. Figure 13 illustrates this for the
case of three-dimensional data and a shifter list configura-
tion of eight nodes. After each data point, we pass meta
data (such as timestamp information or the data valid flag).

Managing State. So far we have assumed that the work-
ing set content can be stored in memory local to a shifter
list node without saying anything about the type of this
memory. Modern FPGAs ship with two types of on-chip
memory: registers and block RAM (BRAM). Registers are
composed from flip-flops and configurable logic. They pro-
vide flexible usage but have limited storage capacity. Block

M ′

1

2

3
0

3′

1

2

3
1

2′

1

2

3
2

1′

1

2

3
3

M

1

2

3
4

3

1

2

3
5

2

1

2

3
6

1

1

2

3
7

Figure 13: Dimension-at-a-time processing. Two tu-
ples streaming by eight shifter list nodes.

RAM (BRAM), on the other hand, refers to blocks of dedi-
cated memory (distributed across the FPGA) with address,
data, and control ports and much more capacity.

Shifter lists can be implemented using either memory type
depending on the application’s needs. For our BNL imple-
mentation, we used BRAM since entire tuples (consisting of
15 dimensions and more) need to be stored in the working
set. Unfortunately, we cannot copy entire chunks of memory
from one BRAM block to another in a single clock cycle—we
have to do this word by word. Nevertheless, as illustrated in
Figure 14, copying is still possible without reducing through-
put.

1

2

3

w

X

3

1

2

3

r

W

2

≺

copy

1

≺

Figure 14: BRAM copy mechanism.

The first node (on the left), in Figure 14, is in state X
(deleted). The second node is in state W (working set),
which means that by shifter list semantics these two nodes
need to be swapped. The node in state W is performing dom-
inance tests against input tuples streaming by (each num-
bered box above the nodes corresponds to one dimension of
the input tuple). As data is read from BRAM of the node in
state W for the dominance tests, at the same time this data
can be written to the BRAM of the ‘deleted’ predecessor
node. If the input tuple did not dominate the current work-
ing set tuple the two nodes exchange states, otherwise the
second node is also ‘deleted’. Notice that with dual-ported
BRAM this mechanism can also be used to copy data in
both directions simultaneously, e.g., to swap of working set
contents.

6. EXPERIMENTS
In our experiments, we compare the FPGA-based skyline

operator against a software implementation. On the one
hand, we demonstrate the scalability of our approach and
show how throughput increases as we add more shifter list
nodes. On the other hand, our results are put in relation to
throughput measurements of a (faster clocked) CPU-based
BNL implementation.

On the FPGA side we used a low-cost ($750.00 university
price) Virtex-5 FPGA (XC5VLX110T) from Xilinx clocked
at 151.8 MHz. Our CPU-based experiments were carried out

on an Intel Xeon 2.26 GHz server processor (Gainestown,
L5520).

6.1 Characteristics of BNL
Before we present throughput measurements, in the next

section, we first want to explain some characteristics of the
block-nested-loops (BNL) algorithm. The main objective
of original BNL [4] as an external algorithm was to reduce
I/O operations. The larger the window, the fewer runs are
needed, as can be seen in Figure 15, where the number of
overflow tuples decreases almost linearly as we increase the
size of the window. Thus, with I/O being the main bot-
tleneck, a larger window directly translates into a higher
throughput. However, observe that the number of tuple
comparisons (see Figure 15) does not improve with a larger
window. In fact, the number of comparisons might even
slightly increase. Hence, if we run BNL in main memory
the size of the window has little effect on runtime.

0 4 8 16 32 64 128 256
106

107

108

109

106

107

108

109

Overflow Tuples Comparisons

Window Size : Number of Tuples

C
o
m

p
a
ri

so
n
s

O
v
er

fl
ow

T
u
p
le

s

Figure 15: BNL: Comparisons vs. overflow tuples.

Nevertheless, BNL as a main memory algorithm still ex-
hibits reasonable performance. For the experiment in Fig-
ure 15, the skyline was computed over 1,024,000 input tuples
of seven dimensions each following a uniform random distri-
bution. It took 3.7 seconds to compute the resulting skyline
of 15,154 tuples on this data. As a comparison, we also
ran a newer block-nested-loops algorithm designed for fast
in-memory processing called SSkyline, which was recently
presented in [22]. For SSkyline we measured an execution
time of 3.3 seconds. While SSkyline here is indeed a bit
faster (speedup = 1.12X), it is not orders of magnitude bet-
ter than BNL, and if we increase the number of dimensions
or the correlation of the tuple dimensions, the two algo-
rithms run practically at same speed.

In Figure 15 the number of comparisons increases with
a larger window. This would suggest that a window size
of one—BNL with a window size of one is referred to as
an algorithm called Best [26]—should yield the best results.
However, despite more comparisons BNL with a small win-
dow size executes faster than Best . In such a configuration,
the system becomes bottlenecked by memory bandwidth,
because of a very large number of overflow tuples. In the
following measurements we will always indicate for which
window size BNL achieved the best results.

6.2 Effects of Data Distribution
In the following experiments we evaluate throughput per-

formance of our FPGA-based skyline operator versus a CPU-
based block-nested-loops (BNL) implementation. Again,

the input data consists of 1,024,000 seven-dimensional in-
put tuples. Each dimension is represented by a 32-bit in-
teger. Thus, together with a 32-bit sequence number a sin-
gle tuples is 32 bytes wide and the size of the entire input
set is 31.25 MiB. We use synthetic input data with three
different distributions: (1) random, (2) correlated, and (3)
anti-correlated. These distributions are commonly used to
evaluate skyline operators. To generate the data we used
the data generator2 provided by [4].

6.2.1 Randomly Distributed Data
For our randomly distributed data set, the skyline consists

of 15,154 tuples, i.e., 1.48 % of the input data are skyline
tuples. This measure is called the density of skyline tuples.
On the y-axis we display throughput as number of input
tuples processed per second and on the x-axis we vary the
size of the window used in the BNL algorithm.

0 4 8 16 32 64 128 256
104

105

106

107

3.7 sec

0.45 sec

BNL Software

BNL FPGA

Window Size : Number of Tuples

T
h
ro

u
g
h
p
u
t

(T
u
p
le

s/
S
ec

)

Figure 16: Random distr. → tuples/second.

As we already noted before, the size of the BNL win-
dow has little effect in the CPU-based version. On the
FPGA, however, throughput increases linearly with the size
of the window. This is not surprising because in the FPGA
case a larger window also means more shifter list nodes or
higher degrees of parallelism. Since the BNL algorithm here
is compute-bound, we can significantly increase throughput
by performing more dominance tests in parallel. Also notice
that the frequency of the CPU with 2.26 GHz is roughly 15
times higher than that of the FPGA, which is 151.1 MHz.

Here, BNL executes the fastest (3.7 seconds) with a win-
dow size of 32. The best FPGA results are at a window size
of 192 with an execution time of 0.45 seconds. The break-
even-point between the two versions is at a window size of
16.

6.2.2 The Correlated Case
In the second experiment, we compute the skyline on data

that favors the CPU-based implementation. Our CPU runs
at higher clock speed and has a faster memory subsystem
than our FPGA. If the computational effort per input tuple
is very low, aggregated compute power is no longer the key
criteria for a fast execution of the algorithm and the CPU
will be faster than the FPGA. This is the case, when the
dimensions of the input tuples are strongly correlated, i.e.,
when a tuple is “good” in one dimension, it is likely to be

2http://www.pubzone.org/pages/publications/
showWiki.do?task=showComment&commentId=201
&publicationId=298353&versionId=298378

“good” also in the other dimensions. As a result, the skyline
is very small. For example, in our experiment, depicted in
Figure 17, the skyline consists of only 135 tuples, which
corresponds to a skyline tuple density of 0.013%.

0 4 8 16 32 64 128 256
106

107

108

109

18.36 ms

60.73 ms

BNL: Software FPGA

Ideal: Software FPGA

Window Size : Number of Tuples

T
h
ro

u
g
h
p
u
t

(T
u
p
le

s/
S
ec

)

Figure 17: Correlated distr. → tuples/second.

The first observation is that the CPU-based version is in-
deed faster than the FPGA-based version. This is not sur-
prising since the upper bound for throughput is also higher
for the CPU than for the FPGA because of the reasons men-
tioned above. The upper bounds are depicted in the figure
for both CPU and FPGA by a dashed line and a dotted line
respectively. These bounds were computed using a data set
where the first input tuple is the only skyline tuple, which
eliminates all other tuples. This results in a minimal num-
ber of tuple comparisons of n − 1, where n is the number
of input tuples, which is in line with the known best case
complexity of O(n) for BNL [14].

For the CPU version throughput decreases slightly with
a larger window. The reason for this is that a larger win-
dow means that more unnecessary tuple comparisons are
performed. By contrast, in the FPGA case, the additional
comparisons due to the larger window do not hurt since they
are computed in parallel. Therefore throughput increases
until we hit the limits of our memory subsystem.

While we cannot beat the CPU skyline operator with our
FPGA implementation when the skyline tuples have a very
low density, it is important to note that in absolute numbers
both versions are very fast when dealing with correlated
data. For instance, the above query took 18.36 ms on the
CPU and 60.73 ms on the FPGA. Thus, for many use cases
with a reasonable number of input tuples, when the data is
strongly correlated, this performance difference will not be
very noticeable. However, as we will see in the next section,
with an increased density of skyline tuples the computation
of the skyline becomes extremely expensive and calls for an
optimized solution.

6.2.3 The Anti-Correlated Case
This experiment is the inverse of the previous experiment.

Here, the dimensions of the input tuples are anti-correlated
meaning that a tuple, which is “good” in one dimensions, is
likely to be “bad” in the other dimensions. In this case, a
lot more tuples are part of the skyline, e.g., now the skyline
consists of 202,701 tuples, which corresponds to a density
of 19.80%.

Now, the computation of the skyline has become signifi-
cantly more expensive, e.g., the best execution time of the

0 4 8 16 32 64 128 256
102

103

104

105

567 sec

32 sec

BNL Software

BNL FPGA

Window Size : Number of Tuples

T
h
ro

u
g
h
p
u
t

(T
u
p
le

s/
S
ec

)

Figure 18: Anti-correlated distr. → tuples/second.

CPU-based version has gone from 18.36 milliseconds to al-
most 10 minutes, i.e., more than four orders of magnitude
slower than the correlated case. The slowdown can be ex-
plained by the increase in number of comparisons since all
skyline tuples have to be pairwise compared with each other.
The number of comparisons among skyline tuples alone is
1
2
s(s+1), where s is the size of the skyline—hence, the worst

case complexity for BNL is O(n2) [14]. Therefore, the num-
ber of comparisons becomes the dominating factor as the
size of the skyline increases.

With this many comparisons—we measured an average of
∼ 25, 000 comparisons per input tuple—the skyline query
becomes compute-bound. In the FPGA case, this cost can
be reduced with every additional shifter list node. This
observation is also confirmed by the measurements in Fig-
ure 18: y-axis and x-axis are in logarithmic scale and the
throughput increases linearly with the size of the window,
i.e., the number of shifter list nodes.

With a 192 shifter list nodes we reach a throughput of
∼ 32 thousand tuples/second. This is almost two orders
of magnitude below the upper bound of ∼ 16 million tu-
ples/second for throughput (coming from the memory sub-
system). Therefore there is still a lot of leeway to further
increase performance by adding more shifter list nodes. The
number of shifter list nodes that we can put on an FPGA
is limited by FPGA real estate. Our results suggest that a
larger FPGA would further increase throughput, as (below
the upper bound) there is a one-to-one relationship between
chip space and throughput performance.

6.3 The Curse of Dimensionality
By now we know that the size of the skyline severely im-

pacts the performance of the BNL algorithm. Increasing
the number of dimensions of the input tuples naturally in-
creases the size of the skyline. This phenomenon is known
as the curse of dimensionality [28]. Here, we show an exper-
iment with tuples of 15 dimensions each. The dimensions of
every tuple follow a random distribution. Because of the in-
creased computational intensity we had to reduce the input
data set by a factor of ten. Out of the 102,400 input tuples
the skyline here consists of 76,657 tuples which translates to
a density of 74.86%. Our results are displayed in Figure 19.

The graph above looks similar to the one in Figure 18. The
break-even-point has moved even a bit further to the left,
close to a window size of four. Thus, even though the CPU
is clocked about 15 times faster than the FPGA, it cannot

0 4 8 16 32 64 128 256
102

103

104

105

133 sec

7 sec

BNL Software

BNL FPGA

Window Size : Number of Tuples

T
h
ro

u
g
h
p
u
t

(T
u
p
le

s/
S
ec

)

Figure 19: 15 dimensions (random distribution).

do 15 times more comparisons per clock cycle, otherwise
the break-even-point should never be below a window size
of 15. A single comparison of two 15-dimensional tuples on
the FPGA takes 17 clock cycles, i.e., 112.5 ns at a 151.1 MHz
clock. We also measured how long a comparison takes on
our CPU and the result was 34.4 ns. Thus, we need at least
d 112.5

34.4
e = 4 shifter list nodes to achieve better results than

the CPU.

6.4 Concluding Remarks
The important lesson to be learned from the experiments

is that the computational intensity of skyline queries is mainly
driven by the density of the skyline tuples, i.e., the size of
the skyline. The density of skyline tuples depends on how
the dimensions of the tuples are distributed and more impor-
tantly on the number of dimensions. The FPGA-based sky-
line operator improves performance most when the density
of skyline tuples is high as then the parallel compute power
of the FPGA is used most effectively. For instance, with
a density of 74.86% in the experiment in Section 6.3, the
FPGA with 192 shifter list nodes achieves a 17.7X speedup
over the CPU based version.

7. OTHER ALGORITHMS (SKETCHES)
So far, we have focused on how to solve one particu-

lar problem (skyline queries) with shifter lists—so that we
could present the inner workings and performance charac-
teristics of shifter lists in sufficient detail. However, the
goal for developing this data structure was to make it ap-
plicable to more than one algorithm. In this section, we
briefly sketch how shifter lists can be applied to other com-
mon database operators: (i) frequent item computation and
(ii) top-k queries.

7.1 Frequent Item Computation
In [25], the computation of frequent items (in a stream-

ing context) was solved on an FPGA with a variation of
the Space-Saving algorithm [18]. The FPGA-based version
relied heavily on pipelining (achieving three times higher
throughput as the best known results). We now sketch how
this algorithm can be reformulated using shifter lists. The
original Space-Saving algorithm is depicted in Figure 20.

In this algorithm n bins are used to count the frequencies
of the most frequent items in a stream. If a corresponding
bin for a new stream item x exists, that item’s frequency is
increased (lines 3–4 in Figure 20). Otherwise, the bin with

1 foreach stream item x ∈ S do
2 find bin bx with bx.item = x ;
3 if such a bin was found then
4 bx.count← bx.count + 1 ;

5 else
6 bmin ← bin with minimum count value ;
7 bmin.count← bmin.count + 1 ;
8 bmin.item← x ;

Figure 20: Algorithm Space-Saving [18].

the lowest count value gets evicted in favor of the new item
(lines 5–8), which inherits the incremented frequency of its
predecessor (see [18, 25] for details).

For the parallel version of Space-Saving with shifter lists,
each bin is mapped to a shifter list node. We then need
to specify the evaluation phase and the shift phase to im-
plement the algorithm. Given the invariant that the bin
with the minimum count value will always be located at the
last shifter list node (this invariant will be established in
the shift phase), the evaluation phase is straightforward, as
illustrated in Figure 21. Note that bin count values are ini-
tialized to zero (not shown in the figure). As opposed to
BNL, here, we explicitly output all items with frequencies
above a given threshold by submitting a special input item
(stop token) to the shifter list.

1 on each node do
2 q ← current input item ;
3 p← local working set content ;
4 s← state of shifter list node ;

5 if q.valid then
6 if s = working set then
7 if q.terminate then /* stop token */
8 if p.count > q.threshold then
9 s ← output ;

10 else
11 s ← deleted ;

12 else if p.item = q.item then
13 p.count = p.count + 1 ;

14 else if s = free then
15 p.count = p.count+1 ;
16 p.item ← q.item ;
17 s ← working set ;
18 q.valid ← false ;

Figure 21: Frequent item: evaluation phase.

We can use the shift phase (Figure 22) to ensure that the
bin with the minimum count value is always located at the
rightmost shifter list node. To this end, the count values of
adjacent shifter list nodes are compared. If the order invari-
ant (which may depend on state and working set content) of
two nodes has been violated after the evaluation phase, the
working set contents and states of those nodes are swapped
in the subsequent shift phase (lines 11–12 in Figure 22).
As discussed in [25], these swaps may introduce race condi-
tions (which are not present in shifter list-based BNL due

to the naturally enforced order by BNL). Fortunately, these
race conditions can be avoided by leaving gaps in the input
stream and coupling the swap operation with the valid flag
of the input item (line 10 in Figure 22), i.e., k/2 items can
traverse a shifter list of length k simultaneously. Notice,
that we alway update the physically last node of the shifter
list—as specified in the original Space-Saving algorithm—by
setting its state to ‘free’ every time in the shift phase.

1 foreach node νi do
2 if i = 0 ∧ νi.state = output then
3 emit νi.working set.item as result ;
4 νi.state ← deleted ;

5 if i < w − 1 then
6 if νi.state = deleted then
7 νi.working set ← νi+1.working set ;
8 νi.state ← νi+1.state ;
9 νi+1.state = deleted ;

10 else if νi.input item.valid then
11 if not order invariant(νi, νi+1) then
12 swap(νi, νi+1) ;

13 νi+1.input item ← νi.input item ;

14 else
15 νi.state ← free ;

Figure 22: Frequent item: shift phase.

7.2 Top-k Queries
A. Metwally et al. already showed in [18] that the Space-

Saving algorithm could also be used to solve top-k queries,
i.e., return the k items with the highest frequencies instead
of all items with a frequency above a certain threshold. Like-
wise, we can use a shifter list (with k shifter list nodes) for
general top-k selection queries that rank results according
to some compound scoring function over the attributes of
a tuple. For this purpose, we need to modify the shift and
evaluation phases from the previous section only slightly.
Instead of count values we store scores of tuples in the bins,
as shown in Figure 23.

1 on each node do
2 q ← current input item ;
3 p← local working set content ;
4 s← state of shifter list node ;

5 if q.valid then
6 if s = working set then
7 if q.terminate then /* stop token */
8 s ← output ;

9 else if s = free then
10 if p.score < scorefunc(q.item) then
11 p.score ← scorefunc(q.item) ;
12 p.item ← q.item ;
13 s ← working set ;
14 q.valid ← false ;

Figure 23: Top-k: evaluation phase.

The shift phase is virtually identical to the one of the fre-
quent item problem listed in Figure 22. We simply need to
modify the swap condition such that it is based on scores
rather than count values, i.e., we need to replace the or-
der invariant function on line 11. It is possible that the
item with the highest score is inserted last. Thus, to ensure
that the items are output in proper order, we would need
to have the shifter list process n dummy items after every
run. Notice that the swapping mechanism showed here will
eventually sort the shifter list and essentially is equivalent
to a parallel version of bubble sort.

8. CONCLUSIONS
Parallelization of algorithms is often a non-trivial task,

especially, when the problem is not embarrassingly parallel.
In particular, when reasoning about parallelizing a specific
task, the focus is often on the computation while the com-
munication overhead is overlooked. But the communication
overhead can become a severe bottleneck, particularly, as
the core count increases.

The usual way to address the parallelism challenge has
been to build a specialized parallel algorithm for each and
every given problem. With shifter lists, we propose a general-
purpose solution instead. A shifter list is a novel data struc-
ture tailored to tightly-coupled many-core systems. A spe-
cial property of shifter lists is that they can be used to unify
algorithmic data processing components with the data struc-
ture itself. We used an FPGA as a test platform for a many-
core system of up to 192 processing elements and showed by
example of a skyline algorithm how shifter lists help access-
ing this massive parallelism in a highly scalable way.

9. REFERENCES
[1] Krste Asanovic et al. A View of the Parallel

Computing Landscape. Commun. ACM, 2009.

[2] Spyros Blanas, Yinan Li, and Jignesh M. Patel.
Design and Evaluation of Main Memory Hash Join
Algorithms for Multi-Core CPUs. In SIGMOD’11,
Athens, Greece, 2011.

[3] Shekhar Borkar and Andrew A. Chien. The Future of
Microprocessors. Commun. ACM, 2011.

[4] Stephan Börzsönyi, Donald Kossmann, and Konrad
Stocker. The Skyline Operator. In ICDE’01,
Heidelberg, Germany, 2001.

[5] Sung-Ryoung Cho et al. VSkyline: Vectorization for
Efficient Skyline Computation. SIGMOD Rec., 2010.

[6] Eric S. Chung, James C. Hoe, and Ken Mai. CoRAM:
An In-Fabric Memory Architecture for FPGA-based
Computing. In FPGA’11, Monterey, CA, USA, 2011.

[7] Convey Computer Corp.
http://www.conveycomputer.com.

[8] P. Conway et al. Cache Hierarchy and Memory
Subsystem of the AMD Opteron Processor. IEEE
Micro, 2010.

[9] David J. DeWitt and Jim Gray. Parallel Database
Systems: The Future of High Performance Database
Systems. Commun. ACM, 1992.

[10] Hadi Esmaeilzadeh et al. Dark Silicon and the End of
Multicore Scaling. In ISCA’11, San Jose, CA, USA,
2011.

[11] Philip W. Frey et al. A Spinning Join That Does Not
Get Dizzy. In ICDCS’10, Genova, Italy, 2010.

[12] Kun Gao et al. Simultaneous Pipelining in QPipe:
Exploiting Work Sharing Opportunities Across
Queries. In ICDE’06, Atlanta, GA, USA, 2006.

[13] John Giacomoni, Tipp Moseley, and Manish
Vachharajani. FastForward for Efficient Pipeline
Parallelism. In PPoPP’08, Salt Lake City, UT, USA,
2008.

[14] Parke Godfrey, Ryan Shipley, and Jarek Gryz.
Maximal Vector Computation in Large Data Sets. In
VLDB’05, Trondheim, Norway, 2005.

[15] Changkyu Kim et al. Sort vs. Hash Revisited: Fast
Join Implementation on Modern Multi-Core CPUs. In
VLDB’09, Lyon, France, 2009.

[16] Ming-Ling Lo et al. On Optimal Processor Allocation
to Support Pipelined Hash Joins. In SIGMOD’93,
Washington, DC, USA, 1993.

[17] Manish Mehta and David J. DeWitt. Managing
Intra-operator Parallelism in Parallel Database
Systems. In VLDB’95, Zurich, Switzerland, 1995.

[18] Ahmed Metwally, Divyakant Agrawal, and Amr El
Abbadi. An integrated efficient solution for computing
frequent and top-k elements in data streams. ACM
Transactions on Database Systems (TODS), 2006.

[19] Roger Moussalli et al. Massively Parallel XML Twig
Filtering Using Dynamic Programming on FPGAs. In
ICDE’11, Hannover, Germany, 2011.

[20] René Müller, Jens Teubner, and Gustavo Alonso.
Data Processing on FPGAs. In VLDB’09, Lyon,
France, 2009.

[21] Netezza Corp.
http://www.redbooks.ibm.com/abstracts/redp4725.html.

[22] Sungwoo Park, Taekyung Kim, Jonghyun Park, Jinha
Kim, and Hyeonseung Im. Parallel Skyline
Computation on Multicore Architectures. In ICDE’09,
Shanghai, China, 2009.

[23] Mohammad Sadoghi et al. Efficient Event Processing
through Reconfigurable Hardware for Algorithmic
Trading. In VLDB’10, Singapore, 2010.

[24] Jens Teubner and René Müller. How Soccer Players
Would do Stream Joins. In SIGMOD’11, Athens,
Greece, 2011.

[25] Jens Teubner, René Müller, and Gustavo Alonso.
FPGA Acceleration for the Frequent Item Problem. In
ICDE’10, Long Beach, CA, USA, 2010.

[26] R. Torlone and P. Ciaccia. Which Are My Preferred
Items? In Workshop on Recommendation and
Personalization in eCommerce (RPEC), Malaga,
Spain, 2002.

[27] Guozhang Wang et al. Behavioral Simulations in
MapReduce. In VLDB’10, Singapore, 2010.

[28] Roger Weber, Hans-Jörg Schek, and Stephen Blott. A
Quantitative Analysis and Performance Study for
Similarity-Search Methods in High-Dimensional
Spaces. In VLDB’98, New York City, USA, 1998.

[29] Louis Woods, Jens Teubner, and Gustavo Alonso.
Complex Event Detection at Wire Speed with
FPGAs. In VLDB’10, Singapore, 2010.

