
Parallel Computation of Skyline Queries

Louis Woods Gustavo Alonso
Systems Group, Dept. of Computer Science

ETH Zurich, Switzerland
{firstname.lastname}@inf.ethz.ch

Jens Teubner
DBIS Group, Dept. of Computer Science

TU Dortmund University, Germany
jens.teubner@cs.tu-dortmund.de

Abstract—Due to stagnant clock speeds and high power
consumption of commodity microprocessors, database vendors
have started to explore massively parallel co-processors such
as FPGAs to further increase performance. A typical approach
is to push simple but compute-intensive operations (e.g., pre-
filtering, (de)compression) to FPGAs for acceleration. In this
paper, we show how a significantly more complex operation—
the computation of the skyline—can be holistically implemented
on an FPGA. A skyline query computes the pareto optimal
set of multi-dimensional data points. These queries have been
studied in software extensively over the last decade but this
paper is the first to examine skyline computation in hardware.
We propose a methodology that interleaves data storage and
computation, allowing multiple operations to be executed on
the same working set in parallel, while accounting for all
data dependencies. Our experiments show that we achieve very
promising results compared to CPU-based solutions.

Keywords-FPGA, database, pareto optimal, skyline query

I. INTRODUCTION

Recently, a number of projects have suggested to exploit
FPGAs for database processing, e.g. [1], [2], [3]. On the
commercial side, so-called appliances such as [4], [5] suc-
cessfully use FPGAs to both improve performance and save
energy. However, while FPGAs provide high aggregated
compute power, it is often difficult to turn their inherent
parallelism into true performance for a given database
task. Thus, the state-of-the-art is to push only relatively
simple operations (e.g., projection/selection-based filtering,
(de)compression) to configurable hardware and let commod-
ity CPUs take care of the remaining processing, which is the
case, e.g., in IBM/Netezza’s data warehouse appliance [4].
Unfortunately, this approach tends to leave much of the true
hardware potential unused.

A skyline query [6] is a good example of a complex
database task that could greatly benefit from hardware
acceleration due to its compute-intensive nature. Yet, as we
will see, it is not at all obvious how to implement skyline
computation on an FPGA in an efficient way. Skyline queries
reduce large multi-dimensional data sets to smaller sets of
interest by eliminating items that are dominated by others,
i.e., by computing the set of pareto optimal items. Skyline
queries are relevant in several areas, e.g., search pruning,
decision making, and personalized services. Furthermore,
they are related to several other well-known problems such
as convex hull, top-K queries, and nearest-neighbor search.

The classical example of a two-dimensional skyline query,
is a search for hotels that are cheap and close to the
beach. Hotels that are more expensive and further away
from the beach are referred to as dominated and do not
need to be further inspected by the user. Since any hotel
could potentially dominate any other hotel, there exist data
dependencies across the entire data set. This is a challenge,
in particular, for an implementation on an FPGA because it
requires keeping track of a potentially large state, but on-
chip storage resources are limited on FPGAs.

Contributions. We present a solution for solving skyline
queries on FPGAs that can handle an arbitrary number
of dependencies and has no restrictions on the size of
intermediate results. In our approach, it is sufficient to
keep a small working set of skyline candidate tuples inside
the FPGA (with the actual size determined by the avail-
able FPGA resources), while the rest of the input tuples
are treated as a data stream that propagates through the
FPGA. We use pipeline-parallelism and nearest neighbor
communication for concurrent manipulation of the active
working set, combining data organization, computational
power, and synchronization into a parallel processing model
that naturally leverages the characteristics of FPGAs.

Our solution exhibits high throughput and very good
scalability. In our experiments, we show that throughput
scales linearly with the amount of FPGA resources allocated.
Using a low-end Virtex-5 FPGA, we clearly outperform
a single-threaded CPU-based skyline operator and achieve
performance close to the fastest known parallel implemen-
tation [7], running on a high-performance 64-core server.

II. SKYLINE QUERIES

In this section, we will define skyline queries, a popular
software algorithm to solve skyline queries (the BNL algo-
rithm [6]), and our modified version of BNL for parallel
execution on an FPGA. Our intention, here, is to picture
our approach of parallelizing BNL on a high level, before
we discuss technical details later. To do so, we will take the
liberty of digressing into the world of Lemmings1.

A. The Lemming Skyline

Lemmings are primitive creatures that go on migrations in
masses. On Lemmings Planet every year a challenge takes

1As in the video game “Lemmings”: http://www.dmadesign.org/

place among the Lemmings with the goal to identify the
“best” Lemmings. Every Lemming has different skills: some
are very strong but slow and clumsy, others are agile but
neither strong nor fast, then again others are generalists that
do not have a particular skill that they are best in but have
multiple skills they are pretty good in. As the committee of
the competition could not agree on a weighting function that
would determine the best Lemmings, all Lemmings that are
not dominated (cf. Definition 1) by any other Lemming are
considered best. In other words, the winners are the (pareto
optimal) Lemmings that are part of the Lemming skyline (cf.
Definition 2).

Definition 1. A Lemming li dominates (≺) another Lemming
lj iff every skill (dimension) of li is better or equal than the
corresponding skill of lj and at least one skill of li is strictly
better than the corresponding skill of lj .

Definition 2. Given a set of Lemmings L = {l1, l2, . . . ln},
the skyline query returns a set of Lemmings S, such that any
Lemming li ∈ S is not dominated by any other Lemming
lj ∈ L.

B. The Competition—1st Year (Best)

When the competition took place for the first time, the
committee did have a formal definition for the set of best
Lemmings but it was still unclear how to determine this
set. Thus, in the absence of sophisticated logistic means,
one committee member suggested the following simple
algorithm. Initially, all Lemmings queue up in front of a
bridge, as illustrated in Figure 1.

qi dominated

p0qi+1 requeue

queue

Figure 1. Lemming skyline with Best [8].

The first Lemming in the queue q0 is considered a
potential skyline Lemming p0 and can advance onto the
bridge. There, the candidate Lemming has to battle all other
Lemmings in the queue q1 . . . qn−1. A battle can have three
possible outcomes. (1) p0 dominates qi. In this case, qi will
be pushed from the bridge and p0 remains on its position
to combat qi+1. (2) qi dominates p0. Now, p0 falls from
the bridge and qi becomes the new candidate Lemming p0,
i.e., has to battle qi+1. (3) If neither of the two Lemmings
dominates the other, they are considered incomparable. In
this case, p0 stays on the bridge and qi has to requeue.

The candidate Lemming p0 has to remain on the bridge
until it has fought all queued Lemmings once. When a
challenger qj confronts p0 for the second time, we know
that p0 is not dominated by any other Lemming. Hence,

p0 is part of the Lemming skyline and can leave the bridge
safely and qj becomes the new p0. The algorithm terminates
when the queue is empty, i.e., all dominated Lemmings have
fallen from the bridge. The Lemmings still alive all belong
to the Lemming skyline. This algorithm, known as Best, has
been formally described in [8].

C. The Competition—2nd Year (BNL)

The following year many new Lemmings were born and it
was time to redetermine the Lemming skyline. The previous
year some Lemmings complained that they had to spend
too much time queuing. In particular, requeing was time-
consuming and delayed the entire competition. To improve
on this drawback, the set of candidate Lemmings was
increased from 1 to w. The modified version of the algorithm
is known as block-nested-loops (BNL) [6] and illustrated in
Figure 2.

qi dominated

[p0, pw−1]qi+1 requeue

queue

Figure 2. Lemming skyline with BNL [6].

On the bridge there is room for a window of w candidate
Lemmings. A challenging Lemming qi from the queue has
to battle all candidate Lemmings on the bridge. If the
challenging Lemming survives all battles, there are two
possibilities. (1) If there are already w other candidate
Lemmings on the bridge, qi has to requeue. (2) Otherwise,
qi becomes a candidate Lemming pi.

Unfortunately, now it is unclear when exactly a candidate
Lemming has been on the bridge long enough to qualify as
a true skyline Lemming. Luckily, the competition committee
found a simple solution to this problem. After a Lemming qi
survives all candidate Lemmings on the bridge, it receives a
timestamp independent of whether it becomes a candidate
Lemming or has to requeue. A candidate Lemming pi
becomes a true skyline Lemming (and leaves the bridge)
when it either encounters the first challenging Lemming qj
that has a larger timestamp or when the queue is empty.
When Lemmings initially queue up for the first time, this
timestamp is set to zero. A larger timestamp indicates
that two Lemmings must have already competed against
each other and since the queue is ordered, all following
Lemmings in the queue will also have larger timestamps.
More formally, the BNL algorithm is given in Figure 3.

D. The Competition—3rd Year (Parallel BNL)

While the BNL algorithm used in the 2nd year signif-
icantly reduced the number of times that Lemmings had
to requeue, there were new complaints coming from some

1 foreach Lemming qi ∈ queue do
2 isDominated = false;
3 foreach Lemming pj ∈ bridge do
4 if qi.timestamp > pj .timestamp then

/* pj ∈ Lemming skyline */
5 bridge.movetoskyline(pj);

6 else if qi ≺ pj then
7 bridge.drop(pj);

8 else if pj ≺ qi then
9 isDominated = true;

10 break;

11 if not isDominated then
12 timestamp(qi);
13 if bridge.isFull() then
14 queue.insert(qi);

15 else
16 bridge.insert(qi);

Figure 3. BNL Algorithm (≺ means dominates).

Lemmings. In particular, candidate Lemmings criticized that
most of the time on the bridge they were idle, waiting
for their turn to battle the next challenger. Thus, in favor
of higher throughput, the competition committee decided
to slightly modify the BNL algorithm. The basic idea is
that instead of one challenger qi now up to w challengers
q(i+w−1) . . . qi are allowed on the bridge, and each chal-
lenger can battle a different candidate Lemming in parallel.
This version of the algorithm is illustrated in Figure 4.

pk
qj

queue

q(i+w−1) requeue

Figure 4. Lemming skyline: parallel BNL for FPGAs.

To avoid chaos on the bridge the procedure is as fol-
lows: In each iteration there is a shift phase followed
by a evaluation phase. In the shift phase all challenger
Lemmings q(i+w−1) . . . qi move one position to the right to
face their next opponent (indicated by the lower arrows in
the figure). This frees the leftmost position on the bridge
and allows a new Lemming from the queue to step on
the bridge every iteration. Then in the evaluation phase
all w pairs of Lemmings battle concurrently. As can be
seen in the figure, in some situations a Lemming will not
have an opponent because the corresponding Lemming was
previously dominated, i.e., fell from the bridge. In that case,
the Lemming does not need to battle in this iteration.

PE 0 PE 1 PE 2

n-dimensional tuple message channels

Figure 5. Working set items (i.e., tuples with several dimensions) are
distributed over a pipeline of processing elements. Neighboring processing
elements are connected via 32-bit message channels.

Once a challenging Lemming qi safely reaches the right
end of the bridge, it qualifies as a candidate Lemming if
there is room on the bridge, otherwise it has to requeue. If
during the evaluation phase a candidate Lemming pi falls
from the bridge, the other Lemmings pi+1 . . . pw−1 to the
right of that Lemming have to move up in the subsequent
shift phase and fill the gap (indicated by the upper arrows in
the figure), making room for new candidate Lemmings that
reach the right end of the bridge.

Again, we can use timestamping to decide when candidate
Lemmings turn into true skyline Lemmings and can leave the
bridge. Since the order among the Lemmings on the bridge is
maintained, it is always the leftmost candidate Lemming that
may become the newest skyline member. Thus, candidate
Lemmings begin on the right end of the bridge and then
gradually move towards the left end, where they need to wait
until they encounter a challenger with a larger timestamp.

III. IMPLEMENTATION—PARALLEL BNL WITH FPGAS

The parallelized BNL version, sketched in the previous
section, exhibits properties such as pipeline-parallelism and
nearest neighbor communication, which make the algorithm
amenable to an FPGA implementation that is efficient and
highly scalable, as we will discuss in this section.

A. Pipeline-Parallelism

In BNL, each input tuple needs to be compared against
the tuples of the active working set. The working set may
consist of several hundred tuples but we want to spend only
a minimal number of clock cycles on each input tuple in
order to achieve high throughput. Hence, we distribute the
tuples of the working set over a pipeline of daisy-chained
processing elements, as illustrated in Figure 5.

A processing element stores a single tuple of the working
set, consisting of multiple 32-bit dimensions. An input tuple
is submitted to the first processing element in the pipeline
from where it is forwarded to the neighboring processing
element after evaluation via the specified message channel.
For the sake of argument, let us assume that for now tuples
are processed and forwarded atomically.

B. Causality Guarantees

We organized the processing elements such that input
tuples are evaluated in a strictly feed-forward oriented way.
This has important consequences that we can exploit in

order to parallelize the execution over many processing
elements while preserving the causality of the corresponding
sequential algorithm.

Feed-forward processing implies that the global working
set is scanned exactly once in a defined order. What is more,
once an input tuple xi has reached a processing element νh,
its evaluation cannot be affected by any later input tuple
xj that is evaluated over a preceding processing element
νd (conversely, the later xj is guaranteed to see all effects
caused by the earlier xi).

? ?

PE νd PE νh

xj xi

· · ·

Figure 6. Causality guarantees. The earlier xi will see no effects caused
by the later xj but xj sees all effects of xi.

These causality guarantees hold even if we let the execu-
tions of xi on νh and xj on νd run in parallel on independent
compute resources, as illustrated in Figure 6. For example,
once an input tuple xi reaches the last processing element,
we can safely assume that it has been compared against all
other working set tuples and invoke appropriate actions.

C. Parallel BNL as Two-Phase Algorithm
As mentioned in Section II-D, we can divide skyline

computation into two phases: (i) an evaluation phase (ii) and
a shift phase. During the evaluation phase, a new state is
determined for each processing element; but these changes
are not applied before the shift phase, which is the phase that
allows nearest neighbor communication. In our FPGA-based
implementation, those two phases will run synchronously
across the chip, as depicted in Figure 7.

eval. shift eval. shift eval. shift eval. shift eval. shift

Figure 7. Two-phase processing in parallel BNL.

Evaluation Phase. The partial algorithm executed locally
on each processing element in the evaluation phase very
closely resembles the global algorithm, i.e., standard BNL.
As shown in Figure 8, the only changes to the original
algorithm (cf. Figure 3) are that all side effects are now
handled by the shift phase (cf. Figure 9), and we handle
boundary cases more explicitly here.

Shift Phase. All interactions between neighboring process-
ing elements are performed in the shift phase, displayed in

1 on each processing element do
2 q ← current input tuple ;
3 p← local working set contents ;
4 s← state of processing element ;
5 if q.valid then /* next challenger */
6 if s = working set then /* valid candidate */
7 if q.timestamp > p.timestamp then
8 s ← output ; /* found skyline tuple */

9 else if q.data ≺ p.data then
10 s ← deleted ; /* drop window tuple */

11 else if p.data ≺ q.data then
12 q.valid ← false ; /* drop input tuple */

13 else if s = free then /* add input to window */
14 timestamp(q) ;
15 p.data ← q.data ;
16 s ← working set ;
17 q.valid ← false ;

Figure 8. Evaluation phase executed on each processing element.

Figure 9, which updates the global algorithm state based on
the outcome of the evaluation phase. In essence, all input
tuples are forwarded one processing element toward the
right, whereas candidate results (working set tuples) move
toward the left if there is space available. Since skyline
candidates move toward the left, we report them on the left-
most processing element ν0 once their timestamp condition
has been satisfied. Likewise, on the rightmost processing
element νw−1, we write input tuples to the overflow queue in
DRAM if they were not invalidated during their move along
the pipeline of processing elements, and cannot be inserted
into the active working set because there is no space.

D. The State Automaton inside a Processing Element

While in Figures 8 and 9, we phrased parallel BNL
as an algorithm in pseudo code, its implementation in
hardware boils down to the simple state automaton de-
picted in Figure 10. In this state automaton, each pro-
cessing element can be in any of four states: F (free),
W (working set), X (deleted), and O (output). Initially, all
processing elements are in state F . The dashed transitions
enable shifting of processing elements toward the end or
the beginning of the pipeline. To implement shifting, two
adjacent processing elements swap their state and working
set contents. Processing elements in state O are shifted to
the beginning of the pipeline, whereas processing elements
in state X are shifted to the end, where automatically the
(dotted) transition X → F is executed. Note that we cannot
directly perform the transition W → F because that would
violate the causality guarantees that we mentioned earlier,
i.e., processing elements in state F are required to be at the

1 foreach processing element νi do
/* all skyline results are emitted on ν0 */

2 if i = 0 ∧ νi.state = output then
3 emit νi.working set.tuple as result ;
4 νi.state ← deleted ;

5 if i < w − 1 then /* not last processing element */
6 if νi.state = deleted then

/* move up candidates to left */
7 νi.working set ← νi+1.working set ;
8 νi.state ← νi+1.state ;
9 νi+1.state = deleted ;

/* challengers move one position to right */
10 νi+1.input tuple ← νi.input tuple ;

11 else /* the last processing element (physically) */
12 if νi.state = deleted then
13 νi.state ← free ;

14 if νi.input tuple.valid then
15 timestamp(νi.input tuple) ;
16 write νi.input tuple to overflow queue ;

Figure 9. Shift phase. Results are reported on ν0; candidates and input
tuples move to the left and right, respectively; tuples after the last processing
element are written to the overflow queue in DRAM.

end of the pipeline. The solid transitions labeled ‘insert’,
‘output’, and ‘delete’ are followed when a corresponding
condition (listed below) is satisfied:

(i) Insert: when an input tuple reaches the first processing
element in state F , it is inserted into the active working
set and the respective processing element changes its
state accordingly (F →W).

(ii) Output: when the timestamp condition of a working
set tuple has been met (cf. Figure 8), that tuple is a
skyline tuple and is ready for output (W → O).

(iii) Delete: working set tuples are deleted when they are
dominated by an input tuple (W → X). Output tuples
(i.e., skyline tuples) are deleted after they have been
output, i.e., processing elements in state O first are
shifted to the beginning of the pipeline, where the tuple
is output and the state of the processing element is
changed (O → X).

E. BRAM-based Component-wise Processing

Up to now, we have assumed atomic processing and
forwarding of tuples. However, for performance reasons
and because our implementation is based on BRAM, we
stream all data one dimension at a time through the chain
of processing elements. Figure 11 illustrates this for the case
of three-dimensional tuples and eight processing elements.
Notice that after each tuple, we pass meta data such as
timestamp information or the tuple valid flag.

Fstart W

XO

insert

deleteoutput

delete

Figure 10. State diagram: processing element.

M ′

1
2
3
0

3′

1
2
3
1

2′

1
2
3
2

1′

1
2
3
3

M

1
2
3
4

3

1
2
3
5

2

1
2
3
6

1

1
2
3
7

Figure 11. Two tuples streaming by eight processing elements.

We use BRAM for tuple storage within a processing
element since potentially large tuples need to be saved in
the working set. A BRAM block is big enough to store
tuples of any realistic size. As a side-effect, the number of
dimensions has minor impact on resource consumption.

To swap two adjacent processing elements, we cannot
copy entire chunks of memory from one BRAM block to
another in a single clock cycle—we have to do this word
by word. Nevertheless, as illustrated in Figure 12, copying
is still possible without reducing throughput.

1

2

3

w

X

3

1

2

3

r

W

2

≺
copy

1

≺

Figure 12. BRAM copy mechanism: three processing elements with a
three-dimensional input tuple streaming by above.

In this example, the first processing element, is in state X
(deleted), while the subsequent one is in state W (working
set), which means they need to be swapped so that the
deleted processing element can propagate to the end of the
pipeline. For the BRAM block of the first processing element
the write enable signal is asserted (w-flag). As data is read
from BRAM of the second processing element (r-flag) for
the dominance test, this data is written proactively to the
BRAM of the ‘deleted’ predecessor processing element. At
the end of the dominance test, the relevant BRAM contents
have been entirely copied, and the state of both processing
elements can be updated appropriately, also taking into
account the outcome of the dominance test.

Please note that with this approach it is sufficient to
instantiate single-ported BRAM, as opposed to dual-ported
BRAM, which provides twice as many available BRAM
blocks, enabling a longer pipeline of processing elements.

IV. EXPERIMENTS

After discussing FPGA resource consumption, we experi-
mentally compare our FPGA-based skyline operator against
a single-threaded software implementation, as well as a
state-of-the-art multi-threaded skyline implementation [7].

A. Experimental Setup

All experiments were run from main memory. We used the
Xilinx XUPV5 development platform with a Virtex-5 FPGA
(XC5VLX110T) clocked at 150 MHz and 256 MiB on-board
DDR2 memory. The single-threaded CPU experiments were
carried out on an Intel Xeon 2.26 GHz server processor
(Gainestown, L5520, DDR3 memory). The multicore ex-
periments were conducted on the same 8-core Intel Xeon
server, as well as on a 64-core (AMD Bulldozer, 2.2 GHz,
DDR3 memory) PowerEdge R815 Server from Dell.

B. Resource Consumption

In Table I, we display resource consumption for different
configurations of our circuit using pipelines of 4, 64 and 192
processing elements. A single processing element consumes
one out of 296 available single-ported BRAM blocks and
roughly 320 LUTs, i.e., 80 slices (post-map measurement).

Table I
RESOURCE CONSUMPTION ON THE VIRTEX-5 (XC5VLX110T)

Slices Flip-Flops LUTs

available 17,280 100.0% 69,120 100.0% 69,120 100.0%
4 PEs 3,385 20% 6,371 9% 8,501 12%

64 PEs 9,204 53% 15,495 22% 27,385 40%
192 PEs 17,151 99% 34,951 51% 67,398 98%

A configuration with only four processing elements con-
sumes 20% of the available slices because the measurements
also include resources used for the DRAM controller [9] and
the Ethernet-based communication framework [10] that we
use to move data in and out of the FPGA board.

Furthermore, Table I shows that we are LUT-bound, and
that a configuration with 192 processing elements saturates
our FPGA. Notice, that even with 99% slice utilization, we
were still able to operate the circuit at 150 MHz.

C. Performance Measurements

We now compare our FPGA-based skyline operator
against a single-threaded software implementation using
three different data distributions to give a better understand-
ing of the performance characteristics of BNL versus our
parallel implementation. Synthetic input data was generated
with the data generator provided by [6] according to the

three different distributions: (1) random, (2) correlated, and
(3) anti-correlated. These distributions are commonly used
to evaluate skyline operators. The input data consists of
1,024,000 input tuples. A tuple consists of seven dimensions
and a timestamp resulting in a total width of 32 bytes, i.e.,
the size of the entire input set is 31.25 MiB.

Randomly Distributed Data. For our randomly distributed
data set, the skyline consists of 15,154 tuples, i.e., 1.48 %
of the input data are skyline tuples. This measure is called
the density of skyline tuples. On the y-axis we display
throughput (input tuples/sec) and on the x-axis we vary the
size of the window used in the BNL algorithm.

0 4 8 16 32 64 128 256

105

106

107 2.28 M tuples/sec
0.45 sec exec. time

0.23 M tuples/sec
4.37 sec exec. time

BNL Software
BNL FPGA

window size : number of tuples
th

ro
ug

hp
ut

(t
up

le
s/

se
c)

Figure 13. Randomly distributed dimensions → tuples/sec.

As can be seen in Figure 13, the size of the BNL
window has little effect in the CPU-based version. On the
FPGA, however, throughput increases linearly with the size
of the window because a larger window also means more
processing elements, i.e. a higher degree of parallelism.

Correlated Data. The dimensions of a tuple are correlated
if there is a high probability that the values in all dimension
are similar. This means that a tuple that is “good” in one
dimension is likely to be “good” also in the other dimensions
and therefore dominates many tuples. As a result, the skyline
is very small, e.g., in this experiment, the skyline consists
of only 135 tuples, corresponding to a density of 0.013%.

In Figure 14, the CPU-based version of BNL is faster
than the FPGA-based one. Low skyline density favors the
CPU-based implementation because parallel compute power
no longer is the key criteria for a fast execution. Rather, the
CPU-based implementation here benefits from the more ef-
ficient memory subsystem: DDR3 plus caches versus DDR2
and no caches. In Figure 14, we display the upper bounds
for throughput by dashed lines labeled CPU (63 million
tuples/sec) and FPGA (17 million tuples/sec), respectively.
These bounds were computed using a data set where the
first input tuple is the only skyline tuple, which eliminates
all other tuples. This results in a minimal number of tuple
comparisons of n−1, where n is the number of input tuples,
which is in line with the known best case complexity of
O(n) for BNL [11].

0 4 8 16 32 64 128 256

107

108

109

CPU

FPGA

41 M tuples/sec
25 ms exec. time

17 M tuples/sec
61 ms exec. time

BNL Software
BNL FPGA

window size : number of tuples

th
ro

ug
hp

ut
(t

up
le

s/
se

c)

Figure 14. Correlated dimensions → tuples/sec.

While we cannot beat the CPU skyline operator with our
FPGA implementation when the skyline tuples have a very
low density, it is important to note that in absolute numbers
both versions are very fast when dealing with correlated data.
For instance, the fastest execution (window size = 4) of the
above query on the CPU takes 18 milliseconds and on the
FPGA (window size = 192) 61 milliseconds.

Anti-Correlated Data. This experiment is the opposite of
the previous one. Anti-correlated means that a tuple, which
is “good” in one dimensions, is likely to be “bad” in the
other dimensions. In this case, a lot more tuples are part of
the skyline, e.g., now the skyline consists of 202,701 tuples,
which corresponds to a density of 19.80%.

0 4 8 16 32 64 128 256

103

104

105 32 K tuples/sec
32 sec exec. time

1.8 K tuples/sec
579 sec exec. time

BNL Software
BNL FPGA

window size : number of tuples

th
ro

ug
hp

ut
(t

up
le

s/
se

c)

Figure 15. Anti-correlated dimensions → tuples/sec.

The computation of the skyline is now significantly more
expensive, e.g., the best execution time of the CPU-based
version has gone from 18 milliseconds to almost 10 minutes.
This slowdown is due to the increased number of compar-
isons since all skyline tuples have to be pairwise compared
with each other. The number of comparisons among skyline
tuples alone is 1

2s(s+1), where s is the size of the skyline—
hence, the worst case complexity for BNL is O(n2) [11].

The Curse of Dimensionality. Besides data distribution
also dimensionality severely affects performance of skyline
queries. Increasing the number of dimensions of the input tu-
ples naturally increases the size of the skyline. For example,

in an experiment with 102,400 15-dimensional input tuples
following a random distribution, the density of the skyline
was 74.86%. As can be seen in Figure 16, with a window
size of 192, the FPGA executes the query in 5 seconds while
it takes the software implementation 115 seconds, resulting
in a speedup of 23X.

0 4 8 16 32 64 128 256
102

103

104

105
20 K tuples/sec

5 sec exec. time

0.9 K tuples/sec
115 sec exec. time

BNL Software
BNL FPGA

window size : number of tuples

th
ro

ug
hp

ut
(t

up
le

s/
se

c)

Figure 16. 15 dimensions (randomly distributed) → tuples/sec.

D. FPGA versus Multicore Server

We also compared our FPGA results to PSkyline [7],
which is the fastest published skyline algorithm for multicore
architectures.2 We ran PSkyline on the same data sets as in
the previous experiments that consisted of 1,024,000 seven-
dimensional input tuples. We measured the performance of
PSkyline on the 8-core (plus hyper-threading) Intel Xeon
server used previously, as well as on a 64-core PowerEdge
R815 Server from Dell. The FPGA was configured with 192
processing elements. The results are depicted in Table II.

Table II
EXECUTION TIME: FPGA VERSUS MULTICORE.

Data Distribution FPGA Intel Xeon PowerEdge

Random 0.445 sec 0.722 sec 0.433 sec
Correlated 0.061 sec 0.003 sec 0.005 sec
Anti-correlated 31.633 sec 55.104 sec 18.574 sec

On the Intel Xeon server and on the PowerEdge server,
best results were obtained using 16 and 64 threads, respec-
tively. Notice that the performance for the compute-intensive
workload (anti-correlated) achieved by our $750 (academic
price) FPGA is not so far from the performance we measured
on the $12,000 PowerEdge 64-core server.

Moreover, with 192 processing elements a throughput of
32,000 tuples/sec (anti-correlated distribution) is reached on
the FPGA. This is more than two orders of magnitude below
the upper bound of 17 million tuples/sec (cf. Figure 14), i.e.,
with more real estate, there is still a lot of leeway to further
increase performance by adding more processing elements.

2We would like to thank H. Im for providing the PSkyline code.

V. RELATED WORK

In recent years, there have been several approaches to
execute standard SQL queries on FPGAs (e.g., [1], [2]).
Furthermore, FPGA solutions in the context of databases
have been proposed for sorting [12], XML filtering [13],
or high-speed event processing [14]. Given the potential of
FPGAs for data processing, we believe that a number of
other database tasks would benefit from FPGA-acceleration.

The introduction of skyline queries in 2001 [6] has created
a new direction for research (a comprehensive overview is
given in [11]). Recently, there have been a few attempts to
exploit parallelism for skyline query processing, e.g., using
SIMD instructions [15] or multiple threads [7] on multicore
machines. However, the compute-intensive nature of skyline
queries suggests that even higher degrees of parallelism are
required to effectively tackle this type of problem.

Our approach to solving skyline queries is based on
well-studied FPGA concepts such as stream processing,
nearest neighbor communication, and pipeline-parallelism
(see, e.g., [16], [17]). In this work, we have combined these
fundamental techniques into a parallel processing model for
skyline queries. However, we are convinced that a number
of other (database) problems can be solved in a very similar
way, e.g., as was done for frequent item counting with
FPGAs in [18]. Thus, in future work, we want to define
an abstraction that comprises the parallel processing model
used here, and exactly characterize the class of problems
that can be efficiently solved this way.

VI. CONCLUSIONS

FPGAs are becoming increasingly popular in large all-in-
one-box database systems for data warehousing—so-called
appliances. While simpler database tasks, (e.g., pre-filtering,
(de)compression) are already successfully off-loaded to FP-
GAs, hardware implementations of more complex operators
like the skyline operator still need further investigation.
Finding good implementation strategies for such operators
can lead to significant gains, as we demonstrated for skyline
computation in this paper.

Our experiments show that our implementation on a
rather low-end FPGA can significantly outperform a single-
threaded software version of BNL and delivers performance
results close to those obtained from a highly-optimized
parallel skyline algorithm [7] on a modern multicore server
using all 64 cores. Our design is very scalable, suggesting
that on a larger FPGA significantly higher performance gains
could be achieved due to the direct relationship between
throughput and the number of processing elements.

ACKNOWLEDGEMENTS

This work was supported by the Swiss National Science
foundation via an Ambizione grant for Jens Teubner at ETH
Zurich and by the Enterprise Computing Center (ECC) of
ETH Zurich (http://www.ecc.ethz.ch/).

REFERENCES

[1] C. Dennl, D. Ziener, and J. Teich, “On-the-fly Composition
of FPGA-Based SQL Query Accelerators Using A Partially
Reconfigurable Module Library,” in FCCM’12, Toronto, ON,
Canada, 2012.

[2] B. Sukhwani et al., “Database Analytics Acceleration using
FPGAs,” in PACT’12, Minneapolis, MN, USA, 2012.

[3] G. Alonso, D. Kossmann, and T. Roscoe, “SwissBox: An
Architecture for Data Processing Appliances,” in CIDR’11,
Asilomar, CA, USA, 2011.

[4] IBM/Netezza. [Online]. Available: http://www.redbooks.ibm.
com/abstracts/redp4725.html

[5] T. C. Scofield et al., “XtremeData dbX: An FPGA-Based Data
Warehouse Appliance.” Computing in Science and Engineer-
ing, vol. 12, no. 4, pp. 66–73, 2010.

[6] S. Börzsönyi, D. Kossmann, and K. Stocker, “The Skyline
Operator,” in ICDE’01, Heidelberg, Germany, 2001.

[7] S. Park, T. Kim, J. Park, J. Kim, and H. Im, “Parallel Sky-
line Computation on Multicore Architectures,” in ICDE’09,
Shanghai, China, 2009.

[8] R. Torlone and P. Ciaccia, “Which Are My Preferred Items?”
in Workshop on Recommendation and Personalization in
eCommerce (RPEC), Malaga, Spain, 2002.

[9] R. Bittner, “The Speedy DDR2 Controller For FPGAs,” in
ERSA, Las Vegas, NV, USA, 2009.

[10] K. Eguro, “SIRC: An Extensible Reconfigurable Computing
Communication API,” in FCCM’10, Charlotte, NC, USA,
2010.

[11] P. Godfrey, R. Shipley, and J. Gryz, “Maximal Vector Compu-
tation in Large Data Sets,” in VLDB’05, Trondheim, Norway,
2005.

[12] D. Koch and J. Torresen, “FPGASort: A High Performance
Sorting Architecture Exploiting Run-time Reconfiguration on
FPGAs for Large Problem Sorting,” in FPGA’11, Monterey,
CA, USA, 2011.

[13] R. Moussalli et al., “Massively Parallel XML Twig Filter-
ing Using Dynamic Programming on FPGAs,” in ICDE’11,
Hannover, Germany, 2011.

[14] H. Inoue, T. Takenaka, and M. Motomura, “20Gbps C-
Based Complex Event Processing,” in FPL’11, Chania, Crete,
Greece, 2011.

[15] S.-R. Cho et al., “VSkyline: Vectorization for Efficient Sky-
line Computation,” SIGMOD Rec., 2010.

[16] A. Hormati et al., “Optimus: efficient realization of streaming
applications on FPGAs,” Atlanta, GA, USA, 2008.

[17] G. Kahn, “The Semantics of Simple Language for Parallel
Programming,” in IFIP Congress, Stockholm, Sweden, 1974.

[18] J. Teubner, R. Müller, and G. Alonso, “FPGA Acceleration
for the Frequent Item Problem,” in ICDE’10, Long Beach,
CA, USA, 2010.

