
Less Watts, More Performance:
An Intelligent Storage Engine for Data Appliances

Louis Woods Gustavo Alonso
Systems Group, Dept. of Computer Science

ETH Zurich, Switzerland
{firstname.lastname}@inf.ethz.ch

Jens Teubner
DBIS Group, Dept. of Computer Science

TU Dortmund University, Germany
jens.teubner@cs.tu-dortmund.de

ABSTRACT
In this demonstration, we present Ibex , a novel storage en-
gine featuring hybrid, FPGA-accelerated query processing.
In Ibex , an FPGA is inserted along the path between the
storage devices and the database engine. The FPGA acts
as an intelligent storage engine supporting query off-loading
from the query engine. Apart from significant performance
improvements for many common SQL queries, the demo will
show how Ibex reduces data movement, CPU usage, and
overall energy consumption in database appliances.

Categories and Subject Descriptors
H.2 [Database Management]: Systems

Keywords
Storage, Intelligent, Data Appliance, Energy, FPGA, Ibex

1. INTRODUCTION
Modern data appliances such as IBM’s Netezza [6] and

Oracle’s Exadata [10] are moving toward architectures with
widespread query off-loading to different elements of the sys-
tem. The goal is both to speed up query processing and to
reduce data movement since the network bandwidth is still
one of the dominant bottlenecks in cluster-based appliances.
An important component in these systems is an intelligent
storage engine, i.e., a storage engine that already filters data
before sending it to the query processor, by executing queries
in part or whole on behalf of the processing nodes.

In this demonstration, we present Ibex , an intelligent stor-
age engine for a data appliance that we are building at ETH
Zurich [1] that is based on field-programmable gate arrays
(FPGAs). FPGAs are massively parallel semiconductor de-
vices that have attractive properties for data processing,
which has been shown in a number of recent research pa-
pers [2, 7, 8, 11]. Unlike existing approaches, Ibex supports
off-loading of more complex operators than simply selection
and projection, e.g., GROUP BY aggregation. As far as we are

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’13, June 22–27, 2013, New York, New York, USA.
Copyright 2013 ACM 978-1-4503-2037-5/13/06 ...$10.00.

MySQL Server

M
yI

SA
M

IN
NODB

. . .
IB

EX

Software

Hardware

SQL interface
Management services

Parser

Optimizer

Figure 1: Ibex as a pluggable storage engine.

aware, this is the first demonstration of an intelligent stor-
age engine at a database conference, and thus will serve to
illustrate an important architectural database trend.

The demonstration will allow attendees to see how off-
loading query processing to an FPGA-based accelerator im-
proves performance and also reduces energy consumption.
Query processing in relational databases may cause substan-
tial CPU-activity [3]. As the low-power FPGA1 is doing
work for the CPU, the CPU can switch to a sleep state,
consuming less power. Alternatively, the CPU has spare cy-
cles for other work, and with extensive off-loading even a
less powerful CPU would suffice for equivalent performance.

For the purposes of this demonstration, we chose MySQL
as the database engine. MySQL 5.1 has introduced a plug-
gable storage engine architecture that makes it particularly
easy to develop new storage engines (Figure 1). However,
the ideas behind Ibex can be applied to many different en-
gines from OLTP to OLAP and from row to column stores.

Integrating an FPGA into a DBMS requires profound
knowledge of both the database and the FPGA domain. We
have been working in this area for quite some time now,
gathering many insights. As such, the work we demonstrate
here combines many elements developed over the years, in-
volving compiling query plans to circuits (Glacier [9]), tech-
niques for runtime-reconfiguration of FPGAs (skeleton au-
tomata [12]), as well as low-level hardware components such
as a SATA controller for FPGAs (Groundhog [13]).

Goals. The demonstration has two objectives. One is to
discuss performance improvements and energy savings on a
per-query basis. The fact that MySQL supports multiple
storage engines makes live comparisons of Ibex with My-
ISAM and INNODB possible. The other is to provide at-
tendees with a better understanding of intelligent storage
engines, from a software as well as a hardware perspective.

1An FPGA consumes between one and two orders of mag-
nitude less power than a server processor under full load.

2. THE SOFTWARE ARCHITECTURE
MySQL implements the Volcano iterator model [5]. To

scan a table, MySQL repeatedly calls the storage engine
method rnd_next (uchar *buf), which fetches the next row
of a table. Typically, query execution tasks such as selec-
tion, aggregation, and projection are performed in higher-
level components above the storage engine. However, the
MySQL storage engine interface already provides a mecha-
nism to push selection down to the storage engine, which is
used, for example, by the NDB storage engine designed for
cluster environments.

MySQL Storage Engine Interface. Besides selection
we would like to to push projection and GROUP BY aggrega-
tion down to the Ibex storage engine. Therefore, we have
extended the existing storage engine interface of MySQL
with two additional methods, namely proj_push (...) and
grpby_push (...). The query optimizer can detect whether
these methods are implemented by a given storage engine
and optimize queries appropriately. On the other hand, a
storage engine that implements these methods receives ad-
ditional preprocessing information from MySQL.

Software Storage Engine FPGA Interface. There
are several ways to physically connect an FPGA to a host
machine running a database. For our FPGA board, this can
be done using PCI Express or Ethernet—for this demo we
will use Ethernet because it allows us to take the FPGA
board out of the PC, making the demo more ostensive.

We base our interface to the FPGA on MSR’s SIRC (sim-
ple interface for reconfigurable computing [4]), which pro-
vides a uniform communication interface to the FPGA, hid-
ing from the application the physical communication channel
used and low-level protocol details. In essence, SIRC pro-
vides access to the input and output buffers on the FPGA,
depicted in Figure 3, by means of a few C++ methods. Aux-
iliary methods to access a register file are used for control
flow and parametrization of the hardware engine.

On top of this low-level communication interface to the
FPGA, we built a higher-level class that enables accessing
persistent storage via the FPGA. Apart from providing ba-
sic read/write block (a number of 512-byte sectors) methods,
we also support scanning an entire table with projection,
GROUP BY aggregation, and selection possibly pushed down
to the FPGA, as depicted in Figure 2.

1 s e tP r o j e c t i o n (columns) ;
2 setGroupByAgg (columns , aggtype , groupbykey) ;
3 s e t S e l e c t i o n (columns , p r ed i ca t e s , t t) ;
4 scanTable (startLBA) ;
5 while (f e t chResu l t ()) { . . . }

Figure 2: Full-table scan with multiple operators
pushed down to the FPGA (tt = truth table).

Before scanning a table, we need to specify the computa-
tion that we want to push down to the FPGA. For projec-
tion, we simply indicate, which columns we want to retrieve.
For GROUP BY aggregation, besides the aggregate columns
we also need to specify the aggregation type (COUNT, SUM,
etc.) for every column, as well as the GROUP BY key. Finally,
for selection, we need to submit the columns that need to
be evaluated against a WHERE-clause predicate together with
the corresponding predicates for each column and a truth ta-
ble (tt) that represents the Boolean concatenation of multi-
ple predicates in the same WHERE-clause (see Section 3.1 for

input
buffer

register
file

output
buffer

Control FSM

Ibex Software

Ib
ex

H
a
rd

w
a
re projection

aggregation

selection

parser

Groundhog : SATA interface

Figure 3: Query engine on the FPGA.

more details). The table scan is then initiated by calling
scanTable (startLBA), which submits the first logical block
address (LBA) of the corresponding table to the FPGA. The
results are then retrieved in multiple chunks by repeatedly
calling fetchResult ().

3. THE HARDWARE ARCHITECTURE
The high-level hardware architecture of Ibex is shown in

Figure 3. Communication between the software side and
the FPGA is realized via input and output buffers, as well
as a register file for control flow and parametrization of the
hardware query engine.

The demonstration focuses on read-only queries. Nev-
ertheless, Ibex also supports updates bypassing the FPGA
through Groundhog [13], an open-source SATA controller
for FPGAs.

When a table is read, the data passes through a series
of pipelined hardware components (parser, selection, aggre-
gation, and projection), before it reaches the output buffer,
from which it is sent to the software component. The parser
component is the first in the pipeline. It consumes 16 bits
per clock cycle of the raw byte stream delivered by Ground-
hog [13] and separates the columns of a row from each other
by writing the respective values to different FIFO buffers.
We only need to buffer the data for the relevant columns
of a given query. The selection component concurrently
evaluates (potentially) multiple predicates on a record and
then computes the Boolean expression corresponding to the
WHERE-clause. If the Boolean result is false, the respective
record is discarded at this stage. Otherwise, the record is
forwarded to the next stage. The aggregation component
performs the necessary aggregations on the records that have
passed the selection component, in the event of a GROUP BY

query. The projection component, finally, materializes the
projected columns and writes the projected result record to
the output buffer for transmission to the Ibex software.

At the demonstration, the inner workings of all of these
components will be presented in detail. Here, for lack of
space, we will only discuss the selection component and the
aggregation component in the two sections below.

3.1 Selection Component
Instead of hard-wiring predicate evaluation, we created

a template circuit for every supported column type, which

>21

age

=‘M’

gender

&
Addr. Value

00 0

01 0

10 0

11 1

Figure 4: Truth table for the evaluation of complex
Boolean expressions versus hard-wiring.

hash aggregator/
16

dual-ported BRAM block

Figure 5: Dual-ported BRAM-based hash table.

can be parameterized at runtime—similar to the skeleton au-
tomata technique that we described in [12]. For instance, to
evaluate table.age > 21, we simply need to store the value
21 as well as the desired comparator > (∈ {=,<>,<,>,<=,>=})
in local memory of the template circuit. String and regu-
lar expression matching on VARCHAR and TEXT columns can
be performed with parameterizable finite-state machines,
again using similar techniques as discussed in our previous
work [12].

The problem that remains is combining multiple predi-
cates into a single Boolean expression. Consider, for exam-
ple, the following query:

SELECT * FROM table WHERE age > 21 AND gender = ‘M’

Hard-wiring the Boolean AND operator, as illustrated on
the left-hand side in Figure 4, is not an option since we need
to change this wiring at runtime, e.g., without having to
reprogram the entire FPGA. A template-based approach,
as we proposed for evaluating individual predicates, is also
not feasible since the Boolean expressions in a WHERE-clause
are unpredictable and can be arbitrarily complex.

Instead of wiring the output of the predicate evaluation
circuits through series of gates we can combine those wires
into a single address bus to an on-chip memory block, which
then serves as a look-up table to evaluate a given Boolean
expression—an example is displayed on the right-hand side
in Figure 4 (here, for a single AND operator). Thus, before
we run a query on the FPGA, we compute the truth table
for the WHERE-clause in software and load that truth table
into the dedicated on-chip memory on the FPGA.

3.2 Aggregation Component
Aggregation in GROUP BY queries quickly becomes a costly

operation in existing relational databases. Using a hash-
based scheme our aggregation component is able to compute
multiple aggregates on the fly at line rate, as data is loaded
from persistent storage. To achieve this, we use established
techniques to leverage hardware parallelism. In particular,
in Ibex , we aggressively use pipeline parallelism and parallel
collision resolution.

Pipeline parallelism. Once a SATA read command has been
issued, data needs to be processed at line rate, i.e., every
clock cycle the next 16 bits of data have to be consumed.

This seems to be a problem because to process a key, we
need to probe the hash table, update the aggregate, write
it back to memory, and in the next clock cycle be ready
to process the next key. Fortunately, on an FPGA all these
steps can be pipelined, as illustrated in Figure 5. In addition,
dual-ported BRAM blocks allow us to read and write data
from/to the same BRAM block simultaneously. Thus, as we
are probing one key, we can write back the aggregate for a
different key.2

Parallel collision resolution. Since we are using hashing
there exists the possibility of a collision, i.e., two keys could
be mapped to the same BRAM address. Typically collisions
are resolved by finding an alternative address in the hash
table using techniques such as linear probing, double hash-
ing, etc. But such a strategy would make the time it takes
to process a key unpredictable—a situation that should be
avoided in FPGA designs.

However, if we construct our hash table from multiple par-
allel BRAM blocks, then we can proactively and in parallel
look up an alternative address in each of the BRAM blocks
and resolve collisions without delaying processing. While
this technique significantly reduces the probability of a col-
lision, n alternative addresses might still not be sufficient for
each and every case. If a tuple causes a collision that cannot
be resolved with n parallel lookups, that tuple is forwarded
to the Ibex software component, where it can be taken care
of later.

4. DEMONSTRATION SETUP
We bring a MySQL server installed on a high-end laptop,

which communicates to an FPGA via Gigabit Ethernet us-
ing the SIRC framework [4] (see Section 2). The FPGA has
a direct SATA link to an SSD, as illustrated in Figure 6.
Additionally, we bring an electricity meter to measure the
power consumption of the laptop during query execution.

We run the MySQL client on the laptop, and attendees
will be able to execute either a set of predefined queries
or type their own SQL queries at the MySQL prompt. A
number of large tables using the MyISAM, INNODB and
Ibex storage engine will be pre-installed. Tables that use
Ibex will be stored on the SDD connected to the FPGA
board, whereas tables using other storage engines are stored
on an (equivalent) local SDD of the laptop. If time allows,
visitors can even create and populate their own tables using
Ibex or another storage engine.

4.1 Storage Engine Performance
Query execution times are reported directly by MySQL

and displayed on the client terminal. Our test database
will contain tables which are replicated among the different
storage engines. Thus, the performance of different engines
can be directly compared for a particular query. For many
SQL queries, Ibex will significantly outperform the other
storage engines in MySQL. To give an example, running
the following simple GROUP BY aggregation query

SELECT id, count(id) FROM table GROUP BY id

on a one-gigabyte table with a single column of type INT,
consisting of four different groups, was executed in 54.18
seconds with MyISAM, in 179.27 seconds with INNODB,

2Potential race conditions that could occur when two iden-
tical keys directly follow each other are avoided by an extra
circuit that detects and handles this situation.

MySQL
(Ibex)

p
ow

er
su

p
p
ly

S
IR

C
ov

er
E

th
er

n
et

SATA II

laptop

electricity
meter

FPGA board

SSD

Figure 6: Hybrid MySQL Server Setup.

Figure 7: CPU usage during query execution: stor-
age engine MyISAM (left) versus Ibex (right).

and in only 3.71 seconds with Ibex . For 1 GB of data, 3.71
seconds correspond to a throughput of 270 MB/s, which is
about the maximum sequential read speed on a SATA II
SSD.

4.2 CPU Usage and Power Consumption
Besides performance improvements, we also demonstrate

how our system improves energy consumption. At the demo,
we will monitor CPU usage of the laptop running the MySQL
server. Figure 7 displays two screenshots of the CPU usage
monitor on our dual core laptop during execution of the
same GROUP BY query used in the previous section.

While the CPU is involved quite significantly when the
query is executed using the MyISAM storage engine, it is
virtually idle with Ibex since almost the entire computation
is pushed down to the FPGA.

The reduced CPU usage with Ibex directly translates to
less power consumption of the host system, which is visi-
ble on our electricity meter that measures the wall power
consumed by the laptop. During query execution with the
MyISAM storage engine, our laptop consumes 45 watts of
power, whereas with Ibex power consumption is only 31.5
watts. The FPGA itself running the hardware component
of Ibex only consumes 2.8 watts of power.3

Since Ibex not only consumes less power but also exe-
cutes queries faster than MyISAM, energy savings are even
more significant. For the GROUP BY query above, the system
roughly needs E = 45× 54.18 = 2438 joules of energy us-
ing MyISAM, whereas only E = 31.5 × 3.71 = 117 joules
are required with Ibex to execute the same query.

3FPGA power consumption was estimated using the Xilinx
Power Analyzer tool.

4.3 Understanding the System
We have added a number of hooks to our system that allow

visitors to better understand the inner workings of our sys-
tem. The MySQL server can be run in verbose mode, such
that for every query on tables using the Ibex storage engine
the parts of the query that are pushed down to the FPGA
are displayed on the server console. On the FPGA side, our
circuits are equipped with monitoring circuitry that allow
us to inspect and display data passing through the FPGA
at runtime. Finally, there will also be the possibility to look
at C++ source code of the Ibex storage engine, as well as
the VHDL and Verilog code of its hardware counterpart.

Acknowledgements
This work was done while Jens Teubner was a postdoc at
ETH Zurich, funded by the Swiss National Science founda-
tion (Ambizione grant for project Avalanche). The work
was further supported by the Enterprise Computing Center
(ECC) of ETH Zurich (http://www.ecc.ethz.ch/).

5. REFERENCES
[1] Gustavo Alonso, Donald Kossmann, and Timothy

Roscoe. SwissBox: An Architecture for Data
Processing Appliances. In CIDR’11, Asilomar, CA,
USA, 2011.

[2] Arvind Arasu et al. Orthogonal Security With
Cipherbase. In CIDR’13, Asilomar, CA, USA, 2013.

[3] Peter Boncz, Marcin Zukowski, and Niels Nes.
MonetDB/X100: Hyper-Pipelining Query Execution.
In CIDR’05, Asilomar, CA, USA, 2005.

[4] Ken Eguro. SIRC: An Extensible Reconfigurable
Computing Communication API. In FCCM’10,
Charlotte, NC, USA, 2010.

[5] Goetz Graefe. Volcano - An Extensible and Parallel
Query Evaluation System. IEEE Transactions on
Knowledge and Data Engineering, 1994.

[6] IBM/Netezza. Whitepaper. http:
//www.redbooks.ibm.com/abstracts/redp4725.html.

[7] Dirk Koch and Jim Torresen. FPGASort: A High
Performance Sorting Architecture Exploiting Run-time
Reconfiguration on FPGAs for Large Problem Sorting.
In FPGA’11, Monterey, CA, USA, 2011.

[8] Roger Moussalli et al. Massively Parallel XML Twig
Filtering Using Dynamic Programming on FPGAs. In
ICDE’11, Hannover, Germany, 2011.

[9] R. Müller, Jens Teubner, and Gustavo Alonso.
Streams on Wires—A Query Compiler for FPGAs. In
VLDB’09, Lyon, France, 2009.

[10] Oracle. Whitepaper. http:
//www.oracle.com/technetwork/database/exadata/

exadata-technical-whitepaper-134575.pdf.

[11] Mohammad Sadoghi et al. Multi-query Stream
Processing on FPGAs. In ICDE’12, Washington, DC,
USA, 2012.

[12] Jens Teubner et al. Skeleton Automata for FPGAs:
Reconfiguring without Reconstructing. In
SIGMOD’12, Scottsdale, AZ, USA, 2012.

[13] Louis Woods and Ken Eguro. Groundhog—A Serial
ATA Host Bus Adapter (HBA) for FPGAs. In
FCCM’12, Toronto, Canada, 2012.

