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CMOS Technology

1965: “Moore’s Law”: [Moore 1965]
Number of transistors/chip doubles every two years.
→ Microarchitecture→ 40 % faster (Pollack’s rule)

1974: “Dennard Scaling”: [Dennard et al. 1974]
Reduced CMOS gate length:
→ faster switching (higher frequency)
→ reduced supply voltage and capacity
→ power/area remains constant!

→ Performance doubles every two years “at not cost.”
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Dennard Scaling

Dennard scaling is reaching its limits.

Supply Voltage↘ → Threshold Voltage↘

Threshold Voltage↘ → Leakage Current↗

Leakage Current↗ → power consumption↗

All modern chip designs are power-limited!
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Constrained by Power
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cessor-performance scaling faces new 
challenges (see Table 1) precluding 
use of energy-inefficient microarchi-
tecture innovations developed over the 
past two decades. Further, chip archi-
tects must face these challenges with 
an ongoing industry expectation of a 
30x performance increase in the next 
decade and 1,000x increase by 2030 
(see Table 2). 

As the transistor scales, supply 
voltage scales down, and the thresh-
old voltage of the transistor (when 
the transistor starts conducting) also 
scales down. But the transistor is not 
a perfect switch, leaking some small 
amount of current when turned off, 
increasing exponentially with reduc-
tion in the threshold voltage. In ad-
dition, the exponentially increasing 
transistor-integration capacity exacer-
bates the effect; as a result, a substan-
tial portion of power consumption is 
due to leakage. To keep leakage under 
control, the threshold voltage cannot 
be lowered further and, indeed, must 
increase, reducing transistor perfor-
mance.10 

As transistors have reached atomic 
dimensions, lithography and variabil-
ity pose further scaling challenges, af-
fecting supply-voltage scaling.11 With 
limited supply-voltage scaling, energy 
and power reduction is limited, ad-
versely affecting further integration 
of transistors. Therefore, transistor-
integration capacity will continue with 
scaling, though with limited perfor-
mance and power benefit. The chal-
lenge for chip architects is to use this 
integration capacity to continue to im-
prove performance. 

Package power/total energy con-
sumption limits number of logic tran-
sistors. If chip architects simply add 
more cores as transistor-integration 
capacity becomes available and oper-
ate the chips at the highest frequen-
cy the transistors and designs can 
achieve, then the power consumption 
of the chips would be prohibitive (see 
Figure 7). Chip architects must limit 
frequency and number of cores to keep 
power within reasonable bounds, but 
doing so severely limits improvement 
in microprocessor performance. 

Consider the transistor-integration 
capacity affordable in a given power 
envelope for reasonable die size. For 
regular desktop applications the pow-

er envelope is around 65 watts, and 
the die size is around 100mm2. Figure 
8 outlines a simple analysis for 45nm 
process technology node; the x-axis is 
the number of logic transistors inte-
grated on the die, and the two y-axes 
are the amount of cache that would fit 
and the power the die would consume. 
As the number of logic transistors on 
the die increases (x-axis), the size of the 
cache decreases, and power dissipa-
tion increases. This analysis assumes 
average activity factor for logic and 

cache observed in today’s micropro-
cessors. If the die integrates no logic at 
all, then the entire die could be popu-
lated with about 16MB of cache and 
consume less than 10 watts of power, 
since caches consume less power than 
logic (Case A). On the other hand, if it 
integrates no cache at all, then it could 
integrate 75 million transistors for log-
ic, consuming almost 90 watts of pow-
er (Case B). For 65 watts, the die could 
integrate 50 million transistors for 
logic and about 6MB of cache (Case C). 

traditional wisdom suggests investing maximum transistors in the 90% case, with 
the goal of using precious transistors to increase single-thread performance that can 
be applied broadly. In the new scaling regime typified by slow transistor performance 
and energy improvement, it often makes no sense to add transistors to a single core 
as energy efficiency suffers. Using additional transistors to build more cores produces 
a limited benefit—increased performance for applications with thread parallelism. 
In this world, 90/10 optimization no longer applies. Instead, optimizing with an 
accelerator for a 10% case, then another for a different 10% case, then another 10% 
case can often produce a system with better overall energy efficiency and performance. 
We call this “10×10 optimization,”14 as the goal is to attack performance as a set of 
10% optimization opportunities—a different way of thinking about transistor cost, 
operating the chip with 10% of the transistors active—90% inactive, but a different 10% 
at each point in time. 

historically, transistors on a chip were expensive due to the associated design  
effort, validation and testing, and ultimately manufacturing cost. But 20 generations  
of Moore’s Law and advances in design and validation have shifted the balance. 
Building systems where the 10% of the transistors that can operate within the energy 
budget are configured optimally (an accelerator well-suited to the application) may  
well be the right solution. the choice of 10 cases is illustrative, and a 5×5, 7×7, 10×10,  
or 12×12 architecture might be appropriate for a particular design. 

Death of  
90/10 Optimization,  
Rise of  
10×10 Optimization

figure 8. transistor integration capacity at a fixed power envelope. 
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Moore’s Law

Moore’s Law still prevails.
→ More and more transistors to spend.
→ But how (without exceeding the energy budget)?
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Design Space

1 Parallelism
→ Lower clock, better energy efficiency

2 Locality
→ Moving data costs a lot of energy

3 Heterogeneous Hardware
→ Specialized hardware orders of magnitude

more energy efficient
; Dark silicon [Esmaeilzadeh et al. 2013]

Today:
1 Join Processing on Multi-Cores
2 Graphics Processors (GPUs)
3 Field-Programmable Gate Arrays (FPGAs)
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Part II

Multi-Core Architectures
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Key Challenges

Key challenges:
memory wall
parallelism
→ task-level parallelism (SMT, multi-core)
→ data-level parallelism (SIMD)

Today:
in-memory joins on modern multi-core machines
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Approach 1: Sort (and Merge)

R S

sort sort

merge

R 1 S

X Can be done as external sort
X O

(
N log N

)
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Approach 2: Hash

R
sc

an h

b1

b2

...

bk

hash table

...

1© build

S

sc
anh...

2© probe

X O
(
N
)

(approx.)
X Easy to parallelize
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Modern Hardware?
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Parallel Hash Join

Parallel Hash Join (“no partitioning” join of [Blanas et al. 2011])

R

h

...
h

b1

b2

...

bk

shared
hash table

S

h

...

h

1© build 2© probe

X Protect using locks; very low contention
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Modern Hardware

/ Random access pattern
→ Every hash table access a cache miss

Cost per tuple (build phase):
34 assembly instructions hash join

is severely
latency-bound

1.5 cache misses
3.3 TLB misses
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Partitioned Hash Join
Thus: partitioned hash join [Shatdal et al. 1994]

R

sc
an h1

r4

r3

r2

r1

cache-sized
chunks

h2

...

...

h2 ...

one hash table
per partition

...

...

s4

s3

s2

s1

h2

...

...

h2

h1 sc
an

S

1© partition 1© partition2© build 3© probe

(parallelism: assign partitions to threads→ no locking needed)
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Cache Effects

Build/probe now contained within caches:
15/21 instructions per tuple (build/probe)
≈0.01 cache misses per tuple
almost no TLB misses X

� Partitioning is now critical

→ Many partitions, far apart
→ Each one will reside on its own page
→ Run out of TLB entries (100–500)
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Cost of Partitioning
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be here

for all input tuples t do
h← hash (t.key)
out[pos[h]]← t
pos[h]← pos[h]+ 1

end for

→ Expensive beyond≈ 28–29 partitions.
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Multi-pass partitioning (“radix partitioning”)

R

sc
an h1,1

h1,2

h1,2

r4

r3
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r1
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...

...

h2 ...

one hash table
per partition

...

...

s4

s3

s2

s1

h2

...

...

h2

h1,2

h1,2

S

sc
anh1,1

1© partition 1© partition2© build 3© probe

pass 2pass 1 pass 2 pass 1
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Two-pass partitioning
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single-pass partitioning
two-pass partitioning
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�

Hash join isO
(
N log N

)
!
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for all input tuples t do
h← hash (t.key)
copy t to out[pos[h]]

memory access

pos[h]← pos[h]+ 1
end for

Näıve
partitioning
(cf. slide 16)

for all input tuples t do
h← hash (t.key)
buf[h][pos[h] mod bufsiz]← t
if pos[h] mod bufsiz = 0 then

copy buf[h] to out[pos[h]− bufsiz]

memory access
end if
pos[h]← pos[h]+ 1

end for

Software-
Managed
Buffers

→ TLB miss only every bufsiz tuples
→ Choose bufsiz to match cache line size
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Software-Managed Buffers
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Plugging it Together
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A Word on “Scalability”

1 2 3 4 5 6 7 8
number of threads

2

4

6

8

sp
ee

du
p

[Blanas et al. 2011]
[Balkesen et al. 2013]

580 cy/tpl

86 cy/tpl

112 cy/tpl

32.5 cy/tpl
29 cy/tpl
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Sort-Merge Join

Critical part of sort-merge join is sorting.
Method of choice: merge sort
→ two parts: run generation and merging

merge
merge

runinput
runinput

merge
runinput
runinput

→ Both are good candidates for SIMD acceleration
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Sorting networks

→ branch free, support data parallelism

E.g., network for four elements (“even-odd network”):

6 9

3 6

5 5

9 3

→ Build larger networks by merging sorted runs.
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SIMD instructions

E.g., four words per SIMD register:

a1

b1

max(a1, b1)

a2

b2

max(a2, b2)

a3

b3

max(a3, b3)

a4

b4

max(a4, b4)

xmm0

xmm1

simd_max (xmm0, xmm1)

� Operations across registers, not within

→ But: Can shuffle across and within
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Run generation

12 21 4 13
9 8 6 7
1 14 3 0
5 11 15 10

sort across

1 8 3 0
5 11 4 7
9 14 6 10
12 21 15 13

transpose
(shuffle)

1 5 9 12
8 11 14 21
3 4 6 15
0 7 10 13

10 min/max, 8 shuffle, 8 load/store
64 bytes in, 64 bytes out (128-bit SIMD)
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Merging

Two sorted runs, four items each:
a1
a2
a3
a4
b4
b3
b2
b1

out1
out2
out3
out4
out5
out6
out7
out8

Input: two SIMD registers a and b, sorted
6 min/max, 10 shuffle, 4 load/store
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1 Load SIMD set from both runs in registers a and b.

2 Perform SIMD merge of a and b (→ result in [a,b]).
3 Write a to output.
4 Fetch next SIMD set from run where head is

smaller; replace a.
5 Goto 2 while there is still input to process.

E.g.,

3 7 14 29 9 11 16 213 7 9 11 14 16 21 2914 16 21 2925 39 46 71 14 16 21 2914 16 21 25 29 39 46 7129 39 46 7137 48 52 67 29 39 46 7129 37 39 46 48 52 67 7148 52 67 7169 74 89 91 48 52 67 7148 52 67 69 71 74 89 9171 74 89 9179 86 88 95 71 74 89 9171 74 79 86 88 89 91 9588 89 91 95

run 1: 3, 7, 14, 29, 37, 48, 52, 67, 69, 74, 89, 91
run 2: 9, 11, 16, 21, 25, 39, 46, 71, 79, 86, 88, 95
output: 3, 7, 9, 11, 14, 16, 21, 25, 29, 37, 39, 46, 48, 52,
67, 69, 71, 74, 79, 86, 88, 89, 91, 95
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Sorting and NUMA

input relation

local sort local sort local sort local sort

merge

local merge
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Problem: Merging is bandwidth-bound.
→ Merge multiple runs (from NUMA regions) at once
→ Might need more instructions, but brings

bandwidth and compute into balance.

buf

buf

buf

NUMA3

buf

NUMA2

buf

buf

NUMA1

buf

NUMA0

one thread
cache-resident
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Sorting vs. Hashing
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Part III

Graphics Processors (GPUs)
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Graphics Processors (GPUs)↔ CPUs

Cache

Control
ALU ALU
ALU ALU

CPU GPU

CPU: Optimize for instruction latency (→ control logic and caches)
Decreasing die share performs actual work (ALUs).

GPU: Use chip space to perform work, not for infrastructure
Simple logic, massive parallelism; optimize for throughput.
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Parallelism

CPU: task parallelism
heavyweight threads
10s of threads, 10s of cores

threads managed explicitly
threads run different code

GPU: data parallelism
lightweight threads
10,000s of threads, 100s of
cores
scheduled in batches
all threads run same code
→ SPMD, single program,

multiple data
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High-Degree Parallelism

Rationale for high-degree parallelism:

Don’t try to reduce latency, but hide it.

→ While a thread is waiting for memory, execute other threads
to hide that latency.

→ Hardware thread scheduling (simple, in-order).
→ Schedule in batches (“warps”) to reduce hardware cost.
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Scheduling in Batches

Threads are scheduled in units of 32, called warps.

→ Warp: Set of 32 threads that
run identical code and start
at same program address.

→ SIMT: Single Instruction
Multiple Threads.

→ e.g., NVIDIA Kepler: up to
15×64 warps = 30 k threads warp (dt. Kett- oder Längsfaden)

→ Scoreboard tracks which warps are ready to execute.
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SPMD / SIMT Processing
tim

e

SIMT instruction scheduler

SP SP SP SP SP SP SP SP

...

warp 0 instruction @addr 15

warp 1 instruction @addr 8

warp 2 instruction @addr 4

warp 0 instruction @addr 16

warp 1 instruction @addr 9

All threads in one warp
execute the same
instruction.
At each time step scheduler
selects warp ready to
execute (i.e., all its data are
available).
Scheduling decided at
instruction level.
NVIDIA Fermi: dual issue;
Kepler: quad issue.

� branch divergence
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Warps and Latency Hiding
Some runtime characteristics (CUDA 1.3):

Issuing a warp instruction takes 4 cycles.
Register write-read latency: 24 cycles.
Global (off-chip) memory access: ≈ 400 cycles.

Threads are executed in-order.
→ Hide latencies by executing other warps when one is paused.
→ Need enough warps to fully hide latency.

E.g.,
Need 24/4 = 6 warps to hide register dependency latency.
Need 400/4 = 100 instructions to hide memory access
latency. If every 8th instruction is a memory access,
100/8 ≈ 13 warps would be enough.
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NVIDIA Kepler Architecture
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NVIDIA Streaming Multiprocessors (SMX)

source: NVIDIA Kepler GK110 White Paper

NVIDIA Kepler:
15 SMX per chip
192 “cores” per SMX
(=̂ ALU; integer and
single-precision float)
64 double-precision units
32 “special function
units” (sine, cosine, etc.)
issue four warps, two
instructions per warp

c© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner · New Hardware Architectures for Data Management 41



Computation Model (OpenCL)

Host Device (GPU)

Kernel 1

Kernel 2

copy data
launch

sync
launch

sync

w
or

k
w

ai
t

w
or

k
w

ai
t

copy data

Host system and co-processor
(GPU is only one possible
co-processor.)
Host triggers

data copying
host↔ co-processor,
invocations of compute
kernels.

Host interface: command
queue.
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Processing Model: (Massive) Data Parallelism
A traditional loop

for (i = 0; i < nitems; i++)

do_something (i);

becomes a data parallel kernel invocation in OpenCL (; map):

status = clEnqueueNDRangeKernel (

commandQueue,

do_something_kernel, ..., &nitems, ...);

__kernel void do_something_kernel (...) {

int i = get_global_id (0);

...;

}
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Compute Kernels

OpenCL defines a C99-like language for compute kernels.
Compiled at runtime to particular core type.
Additional set of built-in functions:

Context (e.g., get_global_id ()), math routines, . . .

__kernel void square (__global float *in,

__global float *out)

{

int i = get_global_id (0);

out[i] = in[i] * in[i];

}

Very limited thread interaction (eases parallel execution)
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OpenCL Memory Model

global memory

compute unit 1

local memory

private
memory

private
memory

work
item 1

work
item 2

compute unit 2

local memory

private
memory

private
memory

work
item 1

work
item 2

compute device

host memory

host
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Part IV

Field-Programmable Gate Arrays
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Field-Programmable Gate Arrays (FPGAs)

Array of logic gates
Functionality fully
programmable
Re-programmable after
deployment (“in the field”)

Technology already invented in the 80s
Today’s chip sizes allow designs of serious complexity
Projected FPGA revenue in 2013: USD 3.5 billion
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Reconfigurable Hardware

Logic Layer

Configuration Layer

Configuration Layer:
Configuration,
stored in SRAM.

Logic Layer:
Actual hardware logic
(LUTs and flip-flops)

→ Reconfiguration≡ SRAM update
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Hardware Circuits

Electronic circuits consist
of three fundamental in-
gredients:

combinational logic
(gates)
memory elements
wiring (interconnect)

AND

sel

In
ve

rt
er

AND

OR

in0

in1

out
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Reprogrammable Logic : Lookup Tables

AND

Input Output
00 0
01 0
10 0
11 1

4-input LUT

16
bi

ts
of

SR
AM

in0 in1 in2 in3

01

01

01

01

01

01

01

01

01

01

01

01

01

01

01 out
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Elementary Logic Unit (Slice)

elementary
logic unit

4-LUT carry
logic

carry-out

D Q

4-LUT carry
logic

carry-in

D Q
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Basic FPGA Architecture

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

DCM

DCM

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

chip layout: 2D array
Components

CLB: Configurable Logic Block
(collection of slices)
IOB: Input/Output Block
DCM: Digital Clock Manager

Interconnect Network
signal lines
configurable switch boxes
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Configurable Wires (Interconnect)

programmable
Switch Box and
bundle of lines

programmable
intersection

point

SRAM
cell

programmable
switch with
memory cell
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Programming FPGAs

FPGA reconfiguration≡ SRAM update
Generate new SRAM content (as a “bitstream”) using design
tools.
Input: high-level circuit description
Typically: using a hardware description language (HDL)

Verilog
VHDL

HDL design tools bitstream
upload
to FPGA

foo.vhd foo.bit
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Example: VHDL

architecture Behavioral of compare is

begin

process (A, B)

begin

if ( A = B ) then

C <= ’1’;

else

C <= ’0’;

end if;

end process;

end Behavioral;

�
This is not a sequential program!
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FPGA Design Flow

HDL code

synthesis

translate/map

place & route

bitstream

constraints

device-independent netlist (RTL)

device-specific netlist

allocation of individual LUTs, paths,. . .
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FPGA Design Cost

Notes:
The FPGA design flow is heavily compute-intensive

Think of minutes, even hours
Cost increases dramatically with design size
Full circuit re-compilation is something you’ll want to do
off-line only

Device reconfiguration is faster
After all, it’s changing a few bits in SRAM only
Think of milli-seconds (however, current hardware is not
optimized for fast re-configuration)
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Circuit Simulation

Circuits can be simulated in software:
cycle-accurate simulation
at any design stage (“behavioral” vs. “post-routing”
simulation)

In practice, you rarely need a physical device even
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What To Use FPGAs For

FPGAs are good at:

massive throughput
→ leverage high pin count

data flow-style processing
→ data “flows through chip,” flows and tasks map

naturally to wires and components

meeting tight performance guarantees
→ Often, the performance of a circuit is fully predictable.
→ important, e.g., for real-time tasks

regular expressions, state machines
→ FPGA≡ generic hardware state machine
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What NOT To Use FPGAs For

FPGAs are not so good at:

floating point operations
→ floating point requires lots of chip space
→ Use a GPU if you really need floating point.

branching and runtime flexibility
→ low clock speed makes runtime decisions rather slow

likewise: complex and long algorithms
→ If you need a full-fledged instruction set processor, use

an instruction set processor.
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Use Case: Sorting with FPGAs

Sorting Networks (Revisited) [Mueller et al. 2012]
. High-througput sorting for small working sets
. Data parallelism
. Pipeline parallism

FIFO-based Merge Sort [Koch et al. 2010]
. Using embedded RAM blocks for larger problems

External Large Problem Sorting [Koch et al. 2010]
. Resorting to DRAM for even larger problems
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Compare-and-Swap Element

The compare-and-swap element is the basic building block of
hardware sorting networks
It consists of a comparator circuit and two wide multiplexers

>

32

32
0
1

B B’

0
1

A A’
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Even-odd Sorting Network

Sorts eight values using 19 compare-and-swap elements

5
8
3
1
2
7
4
6

1
3

1

5
3
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4
6

7

8

2

5
4

7
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2
3
4
5
6
7
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Pipeline Parallelism

Longest signal path via six compare-and-swap elements

x1

x2

x3

x4

x5

x6

x7

x8

y0

y1

y2

y3

y4

y5

y6

y7

Pipelined version→ fclk = 267 MHz, 8× 32 bit→ 8.5 GB/s
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Sorting Larger Working Sets

CLB BRAM DSP unit

BRAM = fast embedded
RAM blocks (∼ 4 KB)
Programmable size and
word width
Dual-ported
Can be configured as FIFO
queues
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FIFO-based Merge Sorter

>

0
1

Select-Value Component

sorted runs

merged run
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Cascade of FIFO-based Merge Sorters

>

0
1

1

2

>

0
1

1

2

>

0
1

Processing at each stage can start once first FIFO is filled
Only one FIFO is read per cycle at each stage
BRAM-based FIFOs allow simultaneous reading and writing
. one FIFO should be enough
. need to be able to read from different positions in FIFO
. when done right→ streaming is possible
. problem size∼ 40K 64-bit keys→ 2 GB/s [D. Koch et. al.]
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Merge Sorter Tree

What if problem size exeeds BRAM capacity?
For larger problems we can resort to external memory
Merge sorter tree using the same select-value component

memory

host
FIFO
merge

tree
merge

memory

load unit
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Partial Reconfiguration

ro
w

n
ro

w
n
−

1
ro

w
n
−

2

logic frame BRAM frame DSP frame FPGA

static region

partially
reconfigurable

region A

partially
reconfigurable

region B

internal configuration access port

partial bitstream A1
partial bitstream A2
partial bitstream B1
partial bitstream B2

large (external) storage
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Sorting with Partial Reconfiguration

memory

host
FIFO
merge

memory

host
tree
merge

dynamic reconfiguration

Max. reconfiguration speed = 400 MB/s
Reconfiguration data (here) = 3 MB
Reconfiguration cost≡ sorting 15 MB (2 GB/s)
Trade-off: larger problems favor dynamic reconfiguraiton!
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Part V

Summary
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Summary

Hardware technology is hitting limits.

Frequency scaling halted years ago.
Multi-Core scaling not sustainable either (power!)

Specialize to further benefit from Moore’s Law:

→ Leverage parallelism and locality.
→ Hardware/software co-design

Moore’s Law?

Might slow down for economic reasons (but not yet).
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Summary

Today:
1 Modern Multi-Core Systems

Leverage parallelism (SIMD, multi-core)
Preserve locality (cache awareness, NUMA)

2 Graphics Processors (GPUs)
Throughput instead of instruction latency
Restricted form of parallelism (; locality)

3 Field-Programmable Gate Arrays (FPGAs)
Tailor-made hardware, re-configure at runtime
Low frequency (; low power); high bandwidth
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