
New Hardware Architectures
for Data Management

Cagri Balkesen, Louis Woods, and Jens Teubner
ETH Zurich, Systems Group

{firstname.lastname}@inf.ethz.ch

March 12, 2013

c© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner · New Hardware Architectures for Data Management 1

CMOS Technology

1965: “Moore’s Law”: [Moore 1965]
Number of transistors/chip doubles every two years.
→ Microarchitecture→ 40 % faster (Pollack’s rule)

1974: “Dennard Scaling”: [Dennard et al. 1974]
Reduced CMOS gate length:
→ faster switching (higher frequency)
→ reduced supply voltage and capacity
→ power/area remains constant!

→ Performance doubles every two years “at not cost.”

c© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner · New Hardware Architectures for Data Management 2

Dennard Scaling

Dennard scaling is reaching its limits.

Supply Voltage↘ → Threshold Voltage↘

Threshold Voltage↘ → Leakage Current↗

Leakage Current↗ → power consumption↗

All modern chip designs are power-limited!

c© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner · New Hardware Architectures for Data Management 3

Constrained by Power

contributed articles

MAy 2011 | vOl. 54 | nO. 5 | CommunICatIons of the aCm 71

cessor-performance scaling faces new
challenges (see Table 1) precluding
use of energy-inefficient microarchi-
tecture innovations developed over the
past two decades. Further, chip archi-
tects must face these challenges with
an ongoing industry expectation of a
30x performance increase in the next
decade and 1,000x increase by 2030
(see Table 2).

As the transistor scales, supply
voltage scales down, and the thresh-
old voltage of the transistor (when
the transistor starts conducting) also
scales down. But the transistor is not
a perfect switch, leaking some small
amount of current when turned off,
increasing exponentially with reduc-
tion in the threshold voltage. In ad-
dition, the exponentially increasing
transistor-integration capacity exacer-
bates the effect; as a result, a substan-
tial portion of power consumption is
due to leakage. To keep leakage under
control, the threshold voltage cannot
be lowered further and, indeed, must
increase, reducing transistor perfor-
mance.10

As transistors have reached atomic
dimensions, lithography and variabil-
ity pose further scaling challenges, af-
fecting supply-voltage scaling.11 With
limited supply-voltage scaling, energy
and power reduction is limited, ad-
versely affecting further integration
of transistors. Therefore, transistor-
integration capacity will continue with
scaling, though with limited perfor-
mance and power benefit. The chal-
lenge for chip architects is to use this
integration capacity to continue to im-
prove performance.

Package power/total energy con-
sumption limits number of logic tran-
sistors. If chip architects simply add
more cores as transistor-integration
capacity becomes available and oper-
ate the chips at the highest frequen-
cy the transistors and designs can
achieve, then the power consumption
of the chips would be prohibitive (see
Figure 7). Chip architects must limit
frequency and number of cores to keep
power within reasonable bounds, but
doing so severely limits improvement
in microprocessor performance.

Consider the transistor-integration
capacity affordable in a given power
envelope for reasonable die size. For
regular desktop applications the pow-

er envelope is around 65 watts, and
the die size is around 100mm2. Figure
8 outlines a simple analysis for 45nm
process technology node; the x-axis is
the number of logic transistors inte-
grated on the die, and the two y-axes
are the amount of cache that would fit
and the power the die would consume.
As the number of logic transistors on
the die increases (x-axis), the size of the
cache decreases, and power dissipa-
tion increases. This analysis assumes
average activity factor for logic and

cache observed in today’s micropro-
cessors. If the die integrates no logic at
all, then the entire die could be popu-
lated with about 16MB of cache and
consume less than 10 watts of power,
since caches consume less power than
logic (Case A). On the other hand, if it
integrates no cache at all, then it could
integrate 75 million transistors for log-
ic, consuming almost 90 watts of pow-
er (Case B). For 65 watts, the die could
integrate 50 million transistors for
logic and about 6MB of cache (Case C).

traditional wisdom suggests investing maximum transistors in the 90% case, with
the goal of using precious transistors to increase single-thread performance that can
be applied broadly. In the new scaling regime typified by slow transistor performance
and energy improvement, it often makes no sense to add transistors to a single core
as energy efficiency suffers. Using additional transistors to build more cores produces
a limited benefit—increased performance for applications with thread parallelism.
In this world, 90/10 optimization no longer applies. Instead, optimizing with an
accelerator for a 10% case, then another for a different 10% case, then another 10%
case can often produce a system with better overall energy efficiency and performance.
We call this “10×10 optimization,”14 as the goal is to attack performance as a set of
10% optimization opportunities—a different way of thinking about transistor cost,
operating the chip with 10% of the transistors active—90% inactive, but a different 10%
at each point in time.

historically, transistors on a chip were expensive due to the associated design
effort, validation and testing, and ultimately manufacturing cost. But 20 generations
of Moore’s Law and advances in design and validation have shifted the balance.
Building systems where the 10% of the transistors that can operate within the energy
budget are configured optimally (an accelerator well-suited to the application) may
well be the right solution. the choice of 10 cases is illustrative, and a 5×5, 7×7, 10×10,
or 12×12 architecture might be appropriate for a particular design.

Death of
90/10 Optimization,
Rise of
10×10 Optimization

figure 8. transistor integration capacity at a fixed power envelope.

Case B

Case A, 0 Logic, 8W

Case A, 16MB of Cache

Case C
50MT Logic
6MB Cache

Power Dissipation

Cache size

100

80

60

40

20

0

18

16

14

12

10

8

6

4

2

0

0 20 40 60 80

to
ta

l P
ow

er
 (

W
at

ts
)

Logic transistors (millions)

2008, 45nm, 100mm2

C
ac

h
e

(m
B

)

So
ur

ce
:B

or
ka

ra
nd

Ch
ie

n.
Th

e
Fu

tu
re

of
M

ic
ro

pr
oc

es
so

rs
.C

AC
M

20
11.

c© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner · New Hardware Architectures for Data Management 4

Moore’s Law

Moore’s Law still prevails.
→ More and more transistors to spend.
→ But how (without exceeding the energy budget)?

c© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner · New Hardware Architectures for Data Management 5

Design Space

1 Parallelism
→ Lower clock, better energy efficiency

2 Locality
→ Moving data costs a lot of energy

3 Heterogeneous Hardware
→ Specialized hardware orders of magnitude

more energy efficient
; Dark silicon [Esmaeilzadeh et al. 2013]

Today:
1 Join Processing on Multi-Cores
2 Graphics Processors (GPUs)
3 Field-Programmable Gate Arrays (FPGAs)

c© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner · New Hardware Architectures for Data Management 6

Part II

Multi-Core Architectures

c© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner · New Hardware Architectures for Data Management 7

Key Challenges

Key challenges:
memory wall
parallelism
→ task-level parallelism (SMT, multi-core)
→ data-level parallelism (SIMD)

Today:
in-memory joins on modern multi-core machines

c© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner · New Hardware Architectures for Data Management 8

Approach 1: Sort (and Merge)

R S

sort sort

merge

R 1 S

X Can be done as external sort
X O

(
N log N

)
c© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner · New Hardware Architectures for Data Management 9

Approach 2: Hash

R
sc

an h

b1

b2

...

bk

hash table

...

1© build

S

sc
anh...

2© probe

X O
(
N
)

(approx.)
X Easy to parallelize

c© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner · New Hardware Architectures for Data Management 10

Modern Hardware?

c© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner · New Hardware Architectures for Data Management 11

Parallel Hash Join

Parallel Hash Join (“no partitioning” join of [Blanas et al. 2011])

R

h

...
h

b1

b2

...

bk

shared
hash table

S

h

...

h

1© build 2© probe

X Protect using locks; very low contention

c© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner · New Hardware Architectures for Data Management 12

Modern Hardware

/ Random access pattern
→ Every hash table access a cache miss

Cost per tuple (build phase):
34 assembly instructions hash join

is severely
latency-bound

1.5 cache misses
3.3 TLB misses

c© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner · New Hardware Architectures for Data Management 13

Partitioned Hash Join
Thus: partitioned hash join [Shatdal et al. 1994]

R

sc
an h1

r4

r3

r2

r1

cache-sized
chunks

h2

...

...

h2 ...

one hash table
per partition

...

...

s4

s3

s2

s1

h2

...

...

h2

h1 sc
an

S

1© partition 1© partition2© build 3© probe

(parallelism: assign partitions to threads→ no locking needed)
c© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner · New Hardware Architectures for Data Management 14

Cache Effects

Build/probe now contained within caches:
15/21 instructions per tuple (build/probe)
≈0.01 cache misses per tuple
almost no TLB misses X

� Partitioning is now critical

→ Many partitions, far apart
→ Each one will reside on its own page
→ Run out of TLB entries (100–500)

c© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner · New Hardware Architectures for Data Management 15

Cost of Partitioning

4 5 6 7 8 9 10 11 12 13 14 15 16
radix bits

0

25

50

75

100

125

th
ro

ug
hp

ut
[m

ill
io

n
tu

pl
es

/s
ec

]

want to
be here

for all input tuples t do
h← hash (t.key)
out[pos[h]]← t
pos[h]← pos[h]+ 1

end for

→ Expensive beyond≈ 28–29 partitions.
c© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner · New Hardware Architectures for Data Management 16

Multi-pass partitioning (“radix partitioning”)

R

sc
an h1,1

h1,2

h1,2

r4

r3

r2

r1

h2

...

...

h2 ...

one hash table
per partition

...

...

s4

s3

s2

s1

h2

...

...

h2

h1,2

h1,2

S

sc
anh1,1

1© partition 1© partition2© build 3© probe

pass 2pass 1 pass 2 pass 1

c© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner · New Hardware Architectures for Data Management 17

Two-pass partitioning

4 5 6 7 8 9 10 11 12 13 14 15 16
radix bits

0

25

50

75

100

125

th
ro

ug
hp

ut
[m

ill
io

n
tu

pl
es

/s
ec

]

single-pass partitioning
two-pass partitioning

c© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner · New Hardware Architectures for Data Management 18

�

Hash join isO
(
N log N

)
!

c© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner · New Hardware Architectures for Data Management 19

for all input tuples t do
h← hash (t.key)
copy t to out[pos[h]]

memory access

pos[h]← pos[h]+ 1
end for

Näıve
partitioning
(cf. slide 16)

for all input tuples t do
h← hash (t.key)
buf[h][pos[h] mod bufsiz]← t
if pos[h] mod bufsiz = 0 then

copy buf[h] to out[pos[h]− bufsiz]

memory access
end if
pos[h]← pos[h]+ 1

end for

Software-
Managed
Buffers

→ TLB miss only every bufsiz tuples
→ Choose bufsiz to match cache line size

c© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner · New Hardware Architectures for Data Management 20

Software-Managed Buffers

4 5 6 7 8 9 10 11 12 13 14 15 16
radix bits

0

25

50

75

100

125

th
ro

ug
hp

ut
[m

ill
io

n
tu

pl
es

/s
ec

]

single-pass partitioning
two-pass partitioning
sw-managed buffers

c© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner · New Hardware Architectures for Data Management 21

Plugging it Together

0

20

40

60

80

cy
cl

es
pe

ro
ut

pu
tt

up
le

n-part rdx n-part rdx n-part rdx n-part rdx
Nehalem Sandy Bridge AMD Niagara T2

partition build probe

N
eh

al
em

:4
co

re
s/

8
th

re
ad

s;
2.

26
G

H
z·

Sa
nd

yB
rid

ge
:8

co
re

s/
16

th
re

ad
s;

2.
7G

H
z

AM
D

Bu
lld

oz
er

:1
6

co
re

s;
2.

3G
H

z·
N

ia
ga

ra
2:

8
co

re
s/

64
th

re
ad

s;
1.2

G
H

z

977 MiB 1 977 MiB
e.g., Nehalem: 25 cy/tpl≈ 90 million tuples per second

c© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner · New Hardware Architectures for Data Management 22

A Word on “Scalability”

1 2 3 4 5 6 7 8
number of threads

2

4

6

8

sp
ee

du
p

[Blanas et al. 2011]
[Balkesen et al. 2013]

580 cy/tpl

86 cy/tpl

112 cy/tpl

32.5 cy/tpl
29 cy/tpl

c© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner · New Hardware Architectures for Data Management 23

Sort-Merge Join

Critical part of sort-merge join is sorting.
Method of choice: merge sort
→ two parts: run generation and merging

merge
merge

runinput
runinput

merge
runinput
runinput

→ Both are good candidates for SIMD acceleration

c© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner · New Hardware Architectures for Data Management 24

Sorting networks

→ branch free, support data parallelism

E.g., network for four elements (“even-odd network”):

6 9

3 6

5 5

9 3

→ Build larger networks by merging sorted runs.

c© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner · New Hardware Architectures for Data Management 25

SIMD instructions

E.g., four words per SIMD register:

a1

b1

max(a1, b1)

a2

b2

max(a2, b2)

a3

b3

max(a3, b3)

a4

b4

max(a4, b4)

xmm0

xmm1

simd_max (xmm0, xmm1)

� Operations across registers, not within

→ But: Can shuffle across and within

c© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner · New Hardware Architectures for Data Management 26

Run generation

12 21 4 13
9 8 6 7
1 14 3 0
5 11 15 10

sort across

1 8 3 0
5 11 4 7
9 14 6 10
12 21 15 13

transpose
(shuffle)

1 5 9 12
8 11 14 21
3 4 6 15
0 7 10 13

10 min/max, 8 shuffle, 8 load/store
64 bytes in, 64 bytes out (128-bit SIMD)

c© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner · New Hardware Architectures for Data Management 27

Merging

Two sorted runs, four items each:
a1
a2
a3
a4
b4
b3
b2
b1

out1
out2
out3
out4
out5
out6
out7
out8

Input: two SIMD registers a and b, sorted
6 min/max, 10 shuffle, 4 load/store

c© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner · New Hardware Architectures for Data Management 28

1 Load SIMD set from both runs in registers a and b.

2 Perform SIMD merge of a and b (→ result in [a,b]).
3 Write a to output.
4 Fetch next SIMD set from run where head is

smaller; replace a.
5 Goto 2 while there is still input to process.

E.g.,

3 7 14 29 9 11 16 213 7 9 11 14 16 21 2914 16 21 2925 39 46 71 14 16 21 2914 16 21 25 29 39 46 7129 39 46 7137 48 52 67 29 39 46 7129 37 39 46 48 52 67 7148 52 67 7169 74 89 91 48 52 67 7148 52 67 69 71 74 89 9171 74 89 9179 86 88 95 71 74 89 9171 74 79 86 88 89 91 9588 89 91 95

run 1: 3, 7, 14, 29, 37, 48, 52, 67, 69, 74, 89, 91
run 2: 9, 11, 16, 21, 25, 39, 46, 71, 79, 86, 88, 95
output: 3, 7, 9, 11, 14, 16, 21, 25, 29, 37, 39, 46, 48, 52,
67, 69, 71, 74, 79, 86, 88, 89, 91, 95

c© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner · New Hardware Architectures for Data Management 29

Sorting and NUMA

input relation

local sort local sort local sort local sort

merge

local merge

c© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner · New Hardware Architectures for Data Management 30

Problem: Merging is bandwidth-bound.
→ Merge multiple runs (from NUMA regions) at once
→ Might need more instructions, but brings

bandwidth and compute into balance.

buf

buf

buf

NUMA3

buf

NUMA2

buf

buf

NUMA1

buf

NUMA0

one thread
cache-resident

c© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner · New Hardware Architectures for Data Management 31

Sorting vs. Hashing

0
50

100
150

200
250
300
350

th
ro

ug
hp

ut
[M

tu
pl

es
/s

ec
]

hash

“näıve”

sort-merge

sort-merge

SIMD m-way“näıve” radix

12.8 GB 1 12.8 GB
Intel E5-4640 (“Sandy Bridge”), 2.4 GHz, 32 cores

c© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner · New Hardware Architectures for Data Management 32

Part III

Graphics Processors (GPUs)

c© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner · New Hardware Architectures for Data Management 33

Graphics Processors (GPUs)↔ CPUs

Cache

Control
ALU ALU
ALU ALU

CPU GPU

CPU: Optimize for instruction latency (→ control logic and caches)
Decreasing die share performs actual work (ALUs).

GPU: Use chip space to perform work, not for infrastructure
Simple logic, massive parallelism; optimize for throughput.

c© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner · New Hardware Architectures for Data Management 34

Parallelism

CPU: task parallelism
heavyweight threads
10s of threads, 10s of cores

threads managed explicitly
threads run different code

GPU: data parallelism
lightweight threads
10,000s of threads, 100s of
cores
scheduled in batches
all threads run same code
→ SPMD, single program,

multiple data

c© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner · New Hardware Architectures for Data Management 35

High-Degree Parallelism

Rationale for high-degree parallelism:

Don’t try to reduce latency, but hide it.

→ While a thread is waiting for memory, execute other threads
to hide that latency.

→ Hardware thread scheduling (simple, in-order).
→ Schedule in batches (“warps”) to reduce hardware cost.

c© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner · New Hardware Architectures for Data Management 36

Scheduling in Batches

Threads are scheduled in units of 32, called warps.

→ Warp: Set of 32 threads that
run identical code and start
at same program address.

→ SIMT: Single Instruction
Multiple Threads.

→ e.g., NVIDIA Kepler: up to
15×64 warps = 30 k threads warp (dt. Kett- oder Längsfaden)

→ Scoreboard tracks which warps are ready to execute.

c© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner · New Hardware Architectures for Data Management 37

SPMD / SIMT Processing
tim

e

SIMT instruction scheduler

SP SP SP SP SP SP SP SP

...

warp 0 instruction @addr 15

warp 1 instruction @addr 8

warp 2 instruction @addr 4

warp 0 instruction @addr 16

warp 1 instruction @addr 9

All threads in one warp
execute the same
instruction.
At each time step scheduler
selects warp ready to
execute (i.e., all its data are
available).
Scheduling decided at
instruction level.
NVIDIA Fermi: dual issue;
Kepler: quad issue.

� branch divergence

c© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner · New Hardware Architectures for Data Management 38

Warps and Latency Hiding
Some runtime characteristics (CUDA 1.3):

Issuing a warp instruction takes 4 cycles.
Register write-read latency: 24 cycles.
Global (off-chip) memory access: ≈ 400 cycles.

Threads are executed in-order.
→ Hide latencies by executing other warps when one is paused.
→ Need enough warps to fully hide latency.

E.g.,
Need 24/4 = 6 warps to hide register dependency latency.
Need 400/4 = 100 instructions to hide memory access
latency. If every 8th instruction is a memory access,
100/8 ≈ 13 warps would be enough.

c© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner · New Hardware Architectures for Data Management 39

NVIDIA Kepler Architecture

so
ur

ce
:N

VI
D

IA
Ke

pl
er

G
K1

10
W

hi
te

Pa
pe

r

c© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner · New Hardware Architectures for Data Management 40

NVIDIA Streaming Multiprocessors (SMX)

source: NVIDIA Kepler GK110 White Paper

NVIDIA Kepler:
15 SMX per chip
192 “cores” per SMX
(=̂ ALU; integer and
single-precision float)
64 double-precision units
32 “special function
units” (sine, cosine, etc.)
issue four warps, two
instructions per warp

c© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner · New Hardware Architectures for Data Management 41

Computation Model (OpenCL)

Host Device (GPU)

Kernel 1

Kernel 2

copy data
launch

sync
launch

sync

w
or

k
w

ai
t

w
or

k
w

ai
t

copy data

Host system and co-processor
(GPU is only one possible
co-processor.)
Host triggers

data copying
host↔ co-processor,
invocations of compute
kernels.

Host interface: command
queue.

c© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner · New Hardware Architectures for Data Management 42

Processing Model: (Massive) Data Parallelism
A traditional loop

for (i = 0; i < nitems; i++)

do_something (i);

becomes a data parallel kernel invocation in OpenCL (; map):

status = clEnqueueNDRangeKernel (

commandQueue,

do_something_kernel, ..., &nitems, ...);

__kernel void do_something_kernel (...) {

int i = get_global_id (0);

...;

}

c© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner · New Hardware Architectures for Data Management 43

Compute Kernels

OpenCL defines a C99-like language for compute kernels.
Compiled at runtime to particular core type.
Additional set of built-in functions:

Context (e.g., get_global_id ()), math routines, . . .

__kernel void square (__global float *in,

__global float *out)

{

int i = get_global_id (0);

out[i] = in[i] * in[i];

}

Very limited thread interaction (eases parallel execution)

c© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner · New Hardware Architectures for Data Management 44

OpenCL Memory Model

global memory

compute unit 1

local memory

private
memory

private
memory

work
item 1

work
item 2

compute unit 2

local memory

private
memory

private
memory

work
item 1

work
item 2

compute device

host memory

host

c© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner · New Hardware Architectures for Data Management 45

Part IV

Field-Programmable Gate Arrays

c© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner · New Hardware Architectures for Data Management 46

Field-Programmable Gate Arrays (FPGAs)

Array of logic gates
Functionality fully
programmable
Re-programmable after
deployment (“in the field”)

Technology already invented in the 80s
Today’s chip sizes allow designs of serious complexity
Projected FPGA revenue in 2013: USD 3.5 billion

c© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner · New Hardware Architectures for Data Management 47

Reconfigurable Hardware

Logic Layer

Configuration Layer

Configuration Layer:
Configuration,
stored in SRAM.

Logic Layer:
Actual hardware logic
(LUTs and flip-flops)

→ Reconfiguration≡ SRAM update

c© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner · New Hardware Architectures for Data Management 48

Hardware Circuits

Electronic circuits consist
of three fundamental in-
gredients:

combinational logic
(gates)
memory elements
wiring (interconnect)

AND

sel

In
ve

rt
er

AND

OR

in0

in1

out

c© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner · New Hardware Architectures for Data Management 49

Reprogrammable Logic : Lookup Tables

AND

Input Output
00 0
01 0
10 0
11 1

4-input LUT

16
bi

ts
of

SR
AM

in0 in1 in2 in3

01

01

01

01

01

01

01

01

01

01

01

01

01

01

01 out

c© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner · New Hardware Architectures for Data Management 50

Elementary Logic Unit (Slice)

elementary
logic unit

4-LUT carry
logic

carry-out

D Q

4-LUT carry
logic

carry-in

D Q

c© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner · New Hardware Architectures for Data Management 51

Basic FPGA Architecture

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

DCM

DCM

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

chip layout: 2D array
Components

CLB: Configurable Logic Block
(collection of slices)
IOB: Input/Output Block
DCM: Digital Clock Manager

Interconnect Network
signal lines
configurable switch boxes

c© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner · New Hardware Architectures for Data Management 52

Configurable Wires (Interconnect)

programmable
Switch Box and
bundle of lines

programmable
intersection

point

SRAM
cell

programmable
switch with
memory cell

c© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner · New Hardware Architectures for Data Management 53

Programming FPGAs

FPGA reconfiguration≡ SRAM update
Generate new SRAM content (as a “bitstream”) using design
tools.
Input: high-level circuit description
Typically: using a hardware description language (HDL)

Verilog
VHDL

HDL design tools bitstream
upload
to FPGA

foo.vhd foo.bit

c© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner · New Hardware Architectures for Data Management 54

Example: VHDL

architecture Behavioral of compare is

begin

process (A, B)

begin

if (A = B) then

C <= ’1’;

else

C <= ’0’;

end if;

end process;

end Behavioral;

�
This is not a sequential program!

c© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner · New Hardware Architectures for Data Management 55

FPGA Design Flow

HDL code

synthesis

translate/map

place & route

bitstream

constraints

device-independent netlist (RTL)

device-specific netlist

allocation of individual LUTs, paths,. . .

c© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner · New Hardware Architectures for Data Management 56

FPGA Design Cost

Notes:
The FPGA design flow is heavily compute-intensive

Think of minutes, even hours
Cost increases dramatically with design size
Full circuit re-compilation is something you’ll want to do
off-line only

Device reconfiguration is faster
After all, it’s changing a few bits in SRAM only
Think of milli-seconds (however, current hardware is not
optimized for fast re-configuration)

c© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner · New Hardware Architectures for Data Management 57

Circuit Simulation

Circuits can be simulated in software:
cycle-accurate simulation
at any design stage (“behavioral” vs. “post-routing”
simulation)

In practice, you rarely need a physical device even

c© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner · New Hardware Architectures for Data Management 58

What To Use FPGAs For

FPGAs are good at:

massive throughput
→ leverage high pin count

data flow-style processing
→ data “flows through chip,” flows and tasks map

naturally to wires and components

meeting tight performance guarantees
→ Often, the performance of a circuit is fully predictable.
→ important, e.g., for real-time tasks

regular expressions, state machines
→ FPGA≡ generic hardware state machine

c© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner · New Hardware Architectures for Data Management 59

What NOT To Use FPGAs For

FPGAs are not so good at:

floating point operations
→ floating point requires lots of chip space
→ Use a GPU if you really need floating point.

branching and runtime flexibility
→ low clock speed makes runtime decisions rather slow

likewise: complex and long algorithms
→ If you need a full-fledged instruction set processor, use

an instruction set processor.

c© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner · New Hardware Architectures for Data Management 60

Use Case: Sorting with FPGAs

Sorting Networks (Revisited) [Mueller et al. 2012]
. High-througput sorting for small working sets
. Data parallelism
. Pipeline parallism

FIFO-based Merge Sort [Koch et al. 2010]
. Using embedded RAM blocks for larger problems

External Large Problem Sorting [Koch et al. 2010]
. Resorting to DRAM for even larger problems

c© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner · New Hardware Architectures for Data Management 61

Compare-and-Swap Element

The compare-and-swap element is the basic building block of
hardware sorting networks
It consists of a comparator circuit and two wide multiplexers

>

32

32
0
1

B B’

0
1

A A’

c© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner · New Hardware Architectures for Data Management 62

Even-odd Sorting Network

Sorts eight values using 19 compare-and-swap elements

5
8
3
1
2
7
4
6

1
3

1

5
3

8

6

7

4
6

7

8

2

5
4

7

2
3

6
7

1
2
3
4
5
6
7
8

c© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner · New Hardware Architectures for Data Management 63

Pipeline Parallelism

Longest signal path via six compare-and-swap elements

x1

x2

x3

x4

x5

x6

x7

x8

y0

y1

y2

y3

y4

y5

y6

y7

Pipelined version→ fclk = 267 MHz, 8× 32 bit→ 8.5 GB/s

c© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner · New Hardware Architectures for Data Management 64

Sorting Larger Working Sets

CLB BRAM DSP unit

BRAM = fast embedded
RAM blocks (∼ 4 KB)
Programmable size and
word width
Dual-ported
Can be configured as FIFO
queues

c© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner · New Hardware Architectures for Data Management 65

FIFO-based Merge Sorter

>

0
1

Select-Value Component

sorted runs

merged run

c© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner · New Hardware Architectures for Data Management 66

Cascade of FIFO-based Merge Sorters

>

0
1

1

2

>

0
1

1

2

>

0
1

Processing at each stage can start once first FIFO is filled
Only one FIFO is read per cycle at each stage
BRAM-based FIFOs allow simultaneous reading and writing
. one FIFO should be enough
. need to be able to read from different positions in FIFO
. when done right→ streaming is possible
. problem size∼ 40K 64-bit keys→ 2 GB/s [D. Koch et. al.]

c© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner · New Hardware Architectures for Data Management 67

Merge Sorter Tree

What if problem size exeeds BRAM capacity?
For larger problems we can resort to external memory
Merge sorter tree using the same select-value component

memory

host
FIFO
merge

tree
merge

memory

load unit

c© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner · New Hardware Architectures for Data Management 68

Partial Reconfiguration

ro
w

n
ro

w
n
−

1
ro

w
n
−

2

logic frame BRAM frame DSP frame FPGA

static region

partially
reconfigurable

region A

partially
reconfigurable

region B

internal configuration access port

partial bitstream A1
partial bitstream A2
partial bitstream B1
partial bitstream B2

large (external) storage

c© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner · New Hardware Architectures for Data Management 69

Sorting with Partial Reconfiguration

memory

host
FIFO
merge

memory

host
tree
merge

dynamic reconfiguration

Max. reconfiguration speed = 400 MB/s
Reconfiguration data (here) = 3 MB
Reconfiguration cost≡ sorting 15 MB (2 GB/s)
Trade-off: larger problems favor dynamic reconfiguraiton!

c© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner · New Hardware Architectures for Data Management 70

Part V

Summary

c© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner · New Hardware Architectures for Data Management 71

Summary

Hardware technology is hitting limits.

Frequency scaling halted years ago.
Multi-Core scaling not sustainable either (power!)

Specialize to further benefit from Moore’s Law:

→ Leverage parallelism and locality.
→ Hardware/software co-design

Moore’s Law?

Might slow down for economic reasons (but not yet).
c© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner · New Hardware Architectures for Data Management 72

Summary

Today:
1 Modern Multi-Core Systems

Leverage parallelism (SIMD, multi-core)
Preserve locality (cache awareness, NUMA)

2 Graphics Processors (GPUs)
Throughput instead of instruction latency
Restricted form of parallelism (; locality)

3 Field-Programmable Gate Arrays (FPGAs)
Tailor-made hardware, re-configure at runtime
Low frequency (; low power); high bandwidth

c© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner · New Hardware Architectures for Data Management 73

Advertisement

Interested in these topics?

I’m hiring PhD students

Contact me:
Jens Teubner, jens.teubner@cs.tu-dortmund.de

Seite 6

01 Das Logo

Das Logo der Technischen Universität Dortmund ist eine kombinierte Wort-/Bildmarke,
es repräsentiert die Kompetenz und den hohen Anspruch der TU Dortmund.
Deshalb steht das Logo in allen Medien und Kommunikationsmitteln immer solitär und
an herausgehobener Position. Konkurrierende Logos von Fakultäten oder Instituten
sollten nicht, bzw. nur zurückhaltend im vorgegebenen Farbraum eingesetzt werden.

Technische Universität Dortmund > Corporate Design > 02 Basiselemente > Logo

c© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner · New Hardware Architectures for Data Management 74

Cagri Balkesen, Jens Teubner, and Gustavo Alonso.
Main-memory hash joins on multi-core CPUs: Tuning to the
underlying hardware.
In Proc. of the 29th IEEE Conf. on Data Engineering (ICDE),
Brisbane, Australia, April 2013.

Spyros Blanas, Yinan Li, and Jignesh M. Patel.
Design and evaluation of main memory hash join algorithms
for multi-core CPUs.
In Proc. of the 2011 ACM SIGMOD Conf. on Management of
Data, pages 37–48, Athens, Greece, May 2011.

Robert H. Dennard, Fritz H. Gaensslen, Hwa-Nien. Yu, V. Leo
Rideout, Ernest Bassous, , and Andre R. LeBlanc.
Design of ion-implanted MOSFETS with very small physical
dimensions.
IEEE Journal of Solid State Circuits, SC-9(5):256–268, October
1974.

c© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner · New Hardware Architectures for Data Management 74

Hadi Esmaeilzadeh, Emily R. Blem, Renée St. Amant,
Karthikeyan Sankaralingam, and Doug Burger.
Power challenges may end the multicore era.
Communications of the ACM, 56(2):93–102, 2013.

Dirk Koch and Jim Torresen.
FPGASort: A high-performance sorting architecture exploiting
run-time reconfiguration on FPGAs for large problem sorting.
In Proc. of the 19th ACM SIGDA Int’l Symposium on
Field-Programmable Gate Arrays (FPGA), pages 45–54,
Monterey, CA, USA, February 2011.

Gordon E. Moore.
Cramming more components into integrated circuits.
Electronics Magazine, 38(8), April 1965.

René Müller, Jens Teubner, and Gustavo Alonso.
Sorting networks on FPGAs.

c© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner · New Hardware Architectures for Data Management 74

The VLDB Journal, 21(1), February 2012.

Ambuj Shatdal, Chander Kant, and Jeffrey F. Naughton.
Cache conscious algorithms for relational query processing.
In Proc. of the 20th Int’l Conf. on Management of Data (VLDB),
pages 510–521, Santiago, Chile, September 1994.

c© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner · New Hardware Architectures for Data Management 74

	Introduction
	Multi-Core Architectures
	Graphics Processors (GPUs)
	Field-Programmable Gate Arrays
	Summary

