New Hardware Architectures

for Data Management

Cagri Balkesen, Louis Woods, and Jens Teubner
ETH Zurich, Systems Group
{firstname.lastname}@inf.ethz.ch

March 12, 2013

(© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner - New Hardware Architectures for Data Management

CMOS Technology

1965: “Moore’s Law”: [Moore 1965]
m Number of transistors/chip doubles every two years.
— Microarchitecture — 40 % faster (Pollack’s rule)

1974: “Dennard Scaling”: [Dennard et al. 1974]
m Reduced CMOS gate length:

— faster switching (higher frequency)
— reduced supply voltage and capacity
—» power/area remains constant!

— Performance doubles every two years “at not cost.”

Dennard Scaling

Dennard scaling is reaching its limits.

m Supply Voltage \, — Threshold Voltage ™\,
m Threshold Voltage \, — Leakage Current ~

m Leakage Current /4 — power consumption

All modern chip designs are power-limited!

(© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner - New Hardware Architectures for Data Management

Constrained by Power

2008, 45nm, 100mm?

100 18
— Case A 16MB of Cache 16
- 80 I— 14
g 12
% 60 |—
[10
% 50MT Logic
o 6MB Cache 8
% 40 | —
s
e > 6
20 |— 4
' 2
9 ? Case A, 0 Logic, 8W
0 | | | 0
0 20 40 60 CUSEBT 80

Logic Transistors (Millions)

Cache (MB)

Source: Borkar and Chien. The Future of Microprocessors. CACM 2011.

(© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner - New Hardware Architectures for Data Management

Moore’s Law

Moore’s Law still prevails.

— More and more transistors to spend.
— But how (without exceeding the energy budget)?

(© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner - New Hardware Architectures for Data Management

Design Space

Parallelism
— Lower clock, better energy efficiency
Locality
— Moving data costs a lot of energy
B Heterogeneous Hardware
— Specialized hardware orders of magnitude
more energy efficient
~ Dark silicon [Esmaeilzadeh et al. 2013]
Today:
Join Processing on Multi-Cores
B Graphics Processors (GPUs)
5 F|eId Programmable Gate Arrays (FPGAs)

Part |l

Multi-Core Architectures

(© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner - New Hardware Architectures for Data Management

Key Challenges

Key challenges:
m memory wall
m parallelism

— task-level parallelism (SMT, multi-core)
— data-level parallelism (SIMD)

Today:
® in-memory joins on modern multi-core machines

(© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner - New Hardware Architectures for Data Management

Approach 1: Sort (and Merge)

sort sort
—) (—
\ /
merge
pVave
RXS

v Can be done as external sort
v O(NlogN)

(© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner - New Hardware Architectures for Data Management

Approach 2: Hash

hash table

b, S
R /bz\ ‘
=dibE
l
\bk/ l
(M build (2 probe

v O(N) (approx.)
v' Easy to parallelize

(© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner - New Hardware Architectures for Data Management

Modern Hardware?

ens Teubner - New Hardware Architectures for Data Managem

Parallel Hash Join

Parallel Hash Join (“no partitioning” join of [Blanas et al. 2011])

shared
hash table
R b >
L |—h b, h— l
- |
0 : |
1
—h e l
by
(M build (2 probe

v' Protect using locks; very low contention

(© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner - New Hardware Architectures for Data Management

Modern Hardware

® Random access pattern
— Every hash table access a cache miss

Cost per tuple (build phase):
m 34 assembly instructions

hash join
m 1.5 cache misses is severely
m 3.3 TLB misses latency-bound

(© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner - New Hardware Architectures for Data Management

Partitioned Hash Join

Thus: partitioned hash join

cache-sized

[Shatdal et al. 1994]

one hash table

chunks per partition
R - hzé khz — 5 -‘g
é /_> E L "k c
S |— h1 h1 — §
! iﬁ : R S 7 3
_) hzz >h2 < 54 l
@ partition @ build 3 probe @ partition

(parallelism: assign partitions to threads — no locking needed)

(© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner - New Hardware Architectures for Data Management

Cache Effects

Build/probe now contained within caches:
m 15/21instructions per tuple (build/probe)
m ~ 0.01cache misses per tuple
m almost no TLB misses \/

Many partitions, far apart

@ Partitioning is now critical

_>

— Each one will reside on its own page
%

Run out of TLB entries (100-500)

(© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner - New Hardware Architectures for Data Management

Cost of Partitioning

for all input tuples t do

o

QA sl h < hash (t.key)
& outlpos[hl] <+t
S 100+ pos[h] < pos[h] +1
+

c end for

2 757

E

-+ 500

>

=

o 20

3

= (@] + + + + + + + + + + + + +
= 4 5 6 7 8 9 10 1M 12 13 14 15 16

radix bits

— Expensive beyond = 28-29 partitions.

(© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner - New Hardware Architectures for Data Management

Multi-pass partitioning (“radix partitioning”)

one hash table
per partition

AN

] S
R , /\—>h2< ;h2<— Sq ,\hm(_ i
=2]

L /5 \ !
15 _>h1,1 _ h1,1‘_ 1S
l \ _)hm/'—) : / \ : (_5:3\/’)1,2« /

\'—>h2/ : \h2<— Sy L]

pass 1 pass 2 \ / pass 2 pass 1
(D partition @ build (3 probe (D partition

(© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner - New Hardware Architectures for Data Management

Two-pass partitioning

e

[}

g 1 . T
= 125 —=— single-pass partitioning
o] U
2 —— two-pass partitioning
5 100+t

-+

<

2 757

E ol

— 5

>

Q.

N 1

@

o

= O t t t t t t t t t t t t t
= 4 5 6 7 8 9 10 M 12 13 14 15 16

radix bits

(© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner - New Hardware Architectures for Data Management

Hash join is O (N log N)!

(© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner - New Hardware Architectures for Data Manager

forall input tuples t do .
h < hash (t.key) memory access Na'V.e. '
copy t to out [pos[h]] partitioning

pos[h] « pos[h] +1 (cf. slide 16)
end for

for all input tuples t do
h < hash (t.key) Software-
bufTh] [pos [h] mod bufsiz] <t Managed
if pos [h] mod bufsiz = o then Buffers
copy buf[h] to out [p&[h] — bufsiz]
end if
pos[h] < pos[h] +1
end for

[memory access}

— TLB miss only every bufsiz tuples
— Choose bufsiz to match cache line size

(© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner - New Hardware Architectures for Data Management

Software-Managed Buffers

o 1254 —s— single-pass partitioning
$ —— two-pass partitioning
2 1004 —e— Sw-managed buffers
-+

-

2 757

£ ol

— 5

>

Q.

N 1

w 2

3

= o : : ; : f : : : : : : : ;
= 4 5 6 7 8 9 10 M 12 13 14 15 16

radix bits

(© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner - New Hardware Architectures for Data Management

Plugging it Together

W partition ®build ® probe

cycles per output tuple

n-part rdx n-part rdx n-part rdx
Nehalem SandyBridge = AMD

n-part rax
Niagara T2

m 977 MiB X 977 MiB
m e.g., Nehalem: 25 cy/tpl =~ 9o million tuples per second

Nehalem: 4 cores/8 threads; 2.26 GHz - Sandy Bridge: 8 cores/16 threads; 2.7 GHz
AMD Bulldozer: 16 cores; 2.3 GHz - Niagara 2: 8 cores/64 threads; 1.2 GHz

(© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner - New Hardware Architectures for Data Management

A Word on “Scalability”

gl
—e— [Blanas et al. 2011] 26 cv/tpl
—o— [Balkesen et al. 2013] cy/tp
a 671
<
8 41 29 cy/tpl
v
580 cy/tpl
2--
<12 cy/tpl

N
number of threads

(© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner - New Hardware Architectures for Data Management

Sort-Merge Join

Critical part of sort-merge join is sorting.

m Method of choice: merge sort
— two parts: run generation and merging

input — run
_ P . merge
input — run ~

' merge
input — run =
merge

\

input — run

— Both are good candidates for SIMD acceleration

(© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner - New Hardware Architectures for Data Management

Sorting networks

— branch free, support data parallelism

E.g., network for four elements (“even-odd network”):

SO w1 O
*—90

[—

o———0
*—90

O O U1 w

— Build larger networks by merging sorted runs.

(© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner - New Hardware Architectures for Data Management

SIMD instructions

E.g., four words per SIMD register:

| a, | a: | ds | Gy | xmm0

| b, | b, | b, | b, | xmm1

| max(a,, b)) | max(a,, b,) | max(ay, b;) | max(a,, b,) |

simd_max (xmmO, xmm1)

@ Operations across registers, not within

— But: Can shuffle across and within

(© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner - New Hardware Architectures for Data Management

Run generation

12 21 4 13 15'8‘530 1 5 9 12

9 8 6 7| [5mi4 7] {8 1 14 2]
114 3 O 9514§610 3 4 6 15
5 11 15 10 12 1211 15 13 o 7 10 13

~_ ~__

sort across transpose

(shuffle)

m 10 min/max, 8 shuffle, 8 load/store
m 64 bytes in, 64 bytes out (128-bit SIMD)

(© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner - New Hardware Architectures for Data Managemen

Two sorted runs, four items each:

a, . out,
ad, » To I out,
a; —¢ l outs
a, —o o I out,
b, ® * outs
b, ® T I outg
b, ® ® out,
b, —e l I outs

m Input: two SIMD registers a and b, sorted
m 6 min/max, 10 shuffle, 4 load/store

(© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner - New Hardware Architectures for Data Management

Load SIMD set from both runs in registers a and b.

Perform SIMD merge of a and b (— result in [a, b]).
B Write a to output.

| Fetch next SIMD set from run where head is
smaller; replace a.

| Goto mwhile there is still input to process.

Eg., | | |
W run: 3,714, 29,37, 48, 52, 67,69, 74, 89, 91
B run2:9, 11,16, 21, 25, 39, 46, 71, 79, 86, 88, 95

m output: 3,7, 9, 1,14, 16, 21, 25, 29, 37, 39, 46, 48, 52,
67,69, 71,74, 79, 86, 88, 89, 91, 95

(© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner - New Hardware Architectures for Data Management

II

v

[N [

S Y - o o o T o o o T DD

+

oo\ __

i ol e N At

v

[N [W

PSS Py

+

<
=
-
Z
o
-
&
Q0
-
=
@)
N

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

(© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner - New Hardware Architectures for Data Management

Problem: Merging is bandwidth-bound.

— Merge multiple runs (from NUMA regions) at once

— Might need more instructions, but brings
bandwidth and compute into balance.

P L b L

‘| buf buf buf buf|:

N N

buf\ buf| .-~
buf /’é/rlle thread

i cache-resident

(© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner - New Hardware Architectures for Data Management

Sorting vs. Hashing

o
sort-merge
2 350/ hash g
~
w
L 3004
Q.
2 2504
= 2001
5 150
32 15O
<
o 1001
>
© 507t
<
+ 0
“naive” radix “naive” SIMD m-way

m 12.8 GBX12.8 GB
m Intel E5-4640 (“Sandy Bridge”), 2.4 GHz, 32 cores

(© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner - New Hardware Architectures for Data Management

Part IlI

Graphics Processors (GPUs)

(© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner - New Hardware Architectures for Data Management

Graphics Processors (GPUs) <+ CPUs

U AN EEEEEE e
Control ==
AU AL | EEEEEEEe

= (o o o

== (o o o
—_— 5 [o o
= (o o o

= (o o o o

CPU GPU

CPU: Optimize for instruction latency (— control logic and caches)
m Decreasing die share performs actual work (ALUs).

GPU: Use chip space to perform work, not for infrastructure
m Simple logic, massive parallelism; optimize for throughput.

(© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner - New Hardware Architectures for Data Management

Parallelism

CPU: task parallelism GPU: data parallelism
m heavyweight threads m lightweight threads
m 10s of threads, 10s of cores m 10,0005 of threads, 100s of
cores
m threads managed explicitly m scheduled in batches
m threads run different code m all threads run same code

— SPMD, single program,
multiple data

(© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner - New Hardware Architectures for Data Management

High-Degree Parallelism

Rationale for high-degree parallelism:

Don't try to reduce latency, but hide it.

— While a thread is waiting for memory, execute other threads
to hide that latency.

— Hardware thread scheduling (simple, in-order).
— Schedule in batches (“warps”) to reduce hardware cost.

(© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner - New Hardware Architectures for Data Management

Scheduling in Batches

Threads are scheduled in units of 32, called warps.

— Warp: Set of 32 threads that
run identical code and start
at same program address.

— SIMT: Single Instruction
Multiple Threads.

— e.g., NVIDIA Kepler: up to o I
15 X 64 warps = 30 k threads warp (dt. Kett- oder Langsfaden)

— Scoreboard tracks which warps are ready to execute.

(© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner - New Hardware Architectures for Data Management

SPMD / SIMT Processing

time

| SIMT instruction scheduler |

Lottt

|warp o instruction @addr 15|

UUNRARARARAAARAARA AR AR ARRARAAAAARAS

Lot

| warp 1 instruction @addr 8 |

UUNRARARARARAARA AR AR AR RAAAAARAS

Loty

warp 2 instruction @addr 4

UUNARARARAAARAARARAARARRARAAAAARAS

LeLer ettt

\warp o instruction @addr1lé|

UUNRRARARAAARAARA AR AR AARARAAAAARAS

Lererer ettt

| warp 1 instruction @addr 9

T T

m All threads in one warp
execute the same
instruction.

m At each time step scheduler
selects warp ready to
execute (i.e., all its data are
available).

m Scheduling decided at
instruction level.

m NVIDIA Fermi: dual issue;
Kepler: quad issue.

@ branch divergence

(© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner - New Hardware Architectures for Data Management

Warps and Latency Hiding

Some runtime characteristics (CUDA 1.3):
m Issuing a warp instruction takes 4 cycles.
m Register write-read latency: 24 cycles.
m Global (off-chip) memory access: ~ 400 cycles.

Threads are executed in-order.
— Hide latencies by executing other warps when one is paused.
— Need enough warps to fully hide latency.

Eg.,
m Need 24/4 = 6 warps to hide register dependency latency.
m Need 400/4 = 100 instructions to hide memory access
latency. If every 8th instruction is a memory access,
100/8 ~ 13 warps would be enough.

(© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner - New Hardware Architectures for Data Management

NVIDIA Kepler Architecture

PCI Express 3.0 Host Interface

01000 Alowon

2
3
=)
°
<
a
H
s
3

Jpjjonuon Kiowep
sanenuog Kouisy
source: NVIDIA Kepler GK110 White Paper

Jsjjonuoy Aowew
JsjjonuoD Asowap

(© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner - New Hardware Architectures for Data Management 40

NVIDIA Streaming Multiprocessors (SMX)

Warp Scheduler
Dispatch
+

Warp Scheduler
Dispatch | Dispatch
+ F

Warp Scheduler

Dispatch Dispatch Dispatch Dispatch Dispatch
2 + ES * T

Register File (65,536 x 32-bit)
3 3 s 3 3 3 + 3 3 3 3 3 + 3 3 3 + 3

R 5

] o [o e o R = 5 v o) v [e o) = s
o o [G o o e e B
"Ll FEEl BEEC Ll FEEl EBb
Sl EEEl Bl CEE EBE
Tl Tl BEE L El FEEl Bb
CEEl EEEl BEEEE Bl B
FEEl EEl L L CEEl B
CEEl TRl BEE LRl FEEl Br
o e [v v cor [> 57 v o) v [v o cord
| [e -~ o e

o o [cr v cor R <1 57] o v [v o cord
T Pl BEE Ll FEET
e | o o o [

o] o o [R5 v o] v [RRR cor v cor) ER s
CEEl Rl BEE Ll FEEl EBb
T EELLEl EEEl EBE

‘nterconnect Network

| KB Shared Memory / L1 Cache.
| 48 KB Read-Only Data Cache

Core Core Core

Core Core Cor

Core Core Cor

NVIDIA Kepler:

15 SMX per chip

192 “cores” per SMX
(= ALU; integer and
single-precision float)

64 double-precision units

32 “special function
units” (sine, cosine, etc.)

issue four warps, two
instructions per warp

Computation Model (OpenCL)

Host Device (GPU)
copy data

launch

m Host system and co-processor
Kernel 1 (GPU is only one possible
CO-processor.)
§§ § §§ m Host triggers
= m data copying

host ¢+ co-processor,
zgg m invocations of compute

kernels.

‘waitH work ‘_ ‘WaitH work ‘
)
c
>
(@)
>

m Hostinterface: command

% copy data queue.

(© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner - New Hardware Architectures for Data Management

Processing Model: (Massive) Data Parallelism

A traditional loop

for (i=0; i<nitems; i++)
do_something (i) ;

becomes a data parallel kernel invocation in OpenCL (~ map):

status = clEnqueueNDRangeKernel (
commandQueue,
do_something_kernel, ..., &nitems, ...);

__kernel void do_something kernel (...) {
int i=get_global_id (0);

)

(© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner - New Hardware Architectures for Data Management

Compute Kernels

OpenCL defines a C99-like language for compute kernels.
m Compiled at runtime to particular core type.
m Additional set of built-in functions:
m Context (e.g., get_global_id ()), math routines, ...

__kernel void square (__global float *in,
__global float *out)
{
int i=get_global_id (0);
out[i] =in[i] *in[i];

by

m Very limited thread interaction (eases parallel execution)

(© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner - New Hardware Architectures for Data Management

Memory Model

compute device

private || private private || private
memory|| memory|| || memory|| memory
T T T T
work work work work
item 1 item 2 item 1 item 2
compute unit1 compute unit 2
local memory local memory

global memory

host

host memory

(© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner - New Hardware Architectures for Data Management

Part [V

Field-Programmable Gate Arrays

Field-Programmable Gate Arrays (FPGAs)

m Array of logic gates

m Functionality fully
programmable

m Re-programmable after
deployment (“in the field”)

m Technology already invented in the 8os
m Today’s chip sizes allow designs of serious complexity
m Projected FPCA revenue in 2013: USD 3.5 billion

(© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner - New Hardware Architectures for Data Management

Reconfigurable Hardware

Configuration Layer:

m Configuration,
stored in SRAM.

Configuration Layer

8

Logic Layer:

m Actual hardware logic
(LUTs and flip-flops)

| Logic Layer

— Reconfiguration = SRAM update

(© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner - New Hardware Architectures for Data Management

Hardware Circuits

Electronic circuits consist
of three fundamental in-

gredients: g
! o out
| A E

m combinational logic

(gates) in; || AND
m memory elements T -
m wiring (interconnect)
sel

(© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner - New Hardware Architectures for Data Management

Reprogrammable Logic : Lookup Tables

ino II’71 Inz in3

D)]
E ji—L B
ey I
‘-luj I I —i}—» out
Input |[Output ° 7 I 1
o | o e 1 Ll
10 0
11 1 B B QI
] B 4-input LUT

Elementary Logic Unit (Slice)

carry-out
— D O_ %Df—)
——
| 4UT = [Tcarry
L,
- logic
— D Q —)D*—)
—
| 4LUT — carry
— .
- logic
elementary
logic unit
I
carry-in

(© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner - New Hardware Architectures for Data Management

Basic FPGA Architecture

108 | 108 | 108 [pcm| 108 | 108 [108| ® chip layout: 2D array

108 | lcgl || [cusl || [cel || lcesl [108| ™ Components

OB o8 m CLB: Co'nﬂgural.ole Logic Block
CLB || [CLB || CLB || CLB (collection of slices)

108 108 m |0B: Input/Output Block
CLB || LB || [ctB || [ctB .

0B 0B m DCM: Digital Clock Manager

loB | CtB || cLB || cB || ctB [,0g| m Interconnect Network

I0B | 108 | 10B |DCM| 108 | I0B | I0B m signal lines

m configurable switch boxes

(© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner - New Hardware Architectures for Data Management

Configurable Wires (Interconnect)

programmable
Switch Box and

: programmable
bundle of lines intersection

point

[|

programmable
switch with
memory cell

|
N -
SRR
SDEEES
sEEEES

(© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner - New Hardware Architectures for Data Management

Programming FPGAs

m FPGA reconfiguration = SRAM update

m Generate new SRAM content (as a “bitstream”) using design
tools.

m Input: high-level circuit description
m Typically: using a hardware description language (HDL)

m Verilog
m VHDL
: upload
—> design tools —>—>
to FPGA
foo.vhd foo.bit

(© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner - New Hardware Architectures for Data Management

Example: VHDL

architecture Behavioral of compare is

begin
process (A, B)
begin
if (A =B) then
C <=1,
else
C <= 0’;
end if;

end process;
end Behavioral;

@ This is not a sequential program!

(© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner - New Hardware Architectures for Data Management

l

synthesis
[device-independent netlist (RTL)
translate/map [——
| device-specific netlist
place & route A
e — allocation of individual LUTs, paths,...

(© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner - New Hardware Architectures for Data Management

FPGA Design Cost

Notes:

m The FPGA design flow is heavily compute-intensive
m Think of minutes, even hours
m Costincreases dramatically with design size
m Full circuit re-compilation is something you’ll want to do
off-line only

m Device reconfiguration is faster
m After all, it's changing a few bits in SRAM only
m Think of milli-seconds (however, current hardware is not
optimized for fast re-configuration)

(© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner - New Hardware Architectures for Data Management

Circuit Simulation

Circuits can be simulated in software:
m cycle-accurate simulation

m at any design stage (“behavioral” vs. “post-routing”
simulation)

In practice, you rarely need a physical device even

(© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner - New Hardware Architectures for Data Management

What To Use FPGASs For

FPGAs are good at:

m massive throughput
— leverage high pin count

m data flow-style processing

— data “flows through chip,” flows and tasks map
naturally to wires and components

m meeting tight performance guarantees

— Often, the performance of a circuit is fully predictable.
— important, e.g., for real-time tasks

m regular expressions, state machines
— FPGA = generic hardware state machine

(© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner - New Hardware Architectures for Data Management

What NOT To Use FPGAs For

FPGAs are not so good at:

m floating point operations

— floating point requires lots of chip space
— Use a GPU if you really need floating point.

m branching and runtime flexibility
— low clock speed makes runtime decisions rather slow

m likewise: complex and long algorithms

— If you need a full-fledged instruction set processor, use
an instruction set processor.

(© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner - New Hardware Architectures for Data Management

Use Case: Sorting with FPGAs

m Sorting Networks (Revisited) [Mueller et al. 2012]

> High-througput sorting for small working sets

> Data parallelism

> Pipeline parallism
m FIFO-based Merge Sort [Koch et al. 2010]

> Using embedded RAM blocks for larger problems
m External Large Problem Sorting [Koch et al. 2010]

> Resorting to DRAM for even larger problems

(© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner - New Hardware Architectures for Data Management

Compare-and-Swap Element

m The compare-and-swap element is the basic building block of
hardware sorting networks
m It consists of a comparator circuit and two wide multiplexers

s

=B

(© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner - New Hardware Architectures for Data Management

Even-odd Sorting Network

m Sorts eight values using 19 compare-and-swap elements |

—

2—2
3—3

7/ 4 4
2 - L5 T I 5
7 6-9-4 - L7I6—6
4 6 ® 1—7
6 L7 -8 8

(© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner - New Hardware Architectures for Data Management

Pipeline Parallelism

m Longest signal path via six compare-and-swap elements

X Yo
X5 Vi
X3 V2
X, V3
Xs Y
X6 Vs
X7 Ve
X3 V7

m Pipelined version — fox = 267 MHz, 8 x 32 bit — 8.5GB/s

(© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner - New Hardware Architectures for Data Management

Sorting Larger Working Sets

oCLB @BRAM 8DSP unit

m BRAM = fast embedded
RAM blocks (~ 4 KB)

m Programmable size and
word width

m Dual-ported

m Can be configured as FIFO
queues

Oo0o0O0o0ooooOooOoooOoooo

(© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner - New Hardware Architectures for Data Management

FIFO-based Merge Sorter

merged run
>

|

sorted runs i —

I

Select-Value Component

(© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner - New Hardware Architectures for Data Management

Cascade of FIFO-based Merge Sorters

e i e
ARSI e

m Processing at each stage can start once first FIFO is filled

m Only one FIFO is read per cycle at each stage

m BRAM-based FIFOs allow simultaneous reading and writing
> one FIFO should be enough
> need to be able to read from different positions in FIFO
> when done right — streaming is possible
> problem size ~ 40K 64-bit keys — 2 GB/s [D. Koch et. al.]

(© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner - New Hardware Architectures for Data Management

Merge Sorter Tree

m What if problem size exeeds BRAM capacity?
m For larger problems we can resort to external memory
m Merge sorter tree using the same select-value component

[memory | | memory |
Ix L1 1‘1 ’ |Oad Uﬂit ‘
| : i T v 1 v v 1 v ¢
1)) 5EEEB8EGEE S
_ 4 | - T ¢ 4L 1 4 L1
host : C 0 v 1 1
1 FIFO ! tree L L
7 merge 1 merge 4

(© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner - New Hardware Architectures for Data Management

Partial Reconfiguration

m

o logicframe = BRAM frame DSP frame

FPGA

static region

row n

partially partially
reconfigurable reconfigurable
region A region B

%—’r

internal configuration access port

T

partial bitlstream A1
partial bitstream A2
partial bitstream B1
partial bitstream B2

large (external) storage

rown —1

rown—2

OooodgooodoOoooodgog
OooodgooodoOoooodgod
o o o | e o o e o e e e
o o | e o o e o e e e
o o | o e o o e o e e e

OOooooooooogooogod)
OOoOoooooooogooogod)
Oooooooooogooooog)

OooodgooodoOoooodgog
OooodgooodoOoooodgod
o o o o o e o e o o e e

o o | o e o o e o e e e
o o o | e o o e o e e e
[
OOooooooooogooogod)

000D OOOoOOoOoOOoooo

© 2013 Cagri k , Louis Woods, and Jens Teubner - New Hardware Architectures for Data Manager

Sorting with Partial Reconfiguration

| memory | | memory |
} dynamic reconfiguration }
host —" ' host <" '
1, FIFO C K tree W
4 merge | |- 4 merge | |-

m Max. reconfiguration speed = 400 MB/s

m Reconfiguration data (here) =3 MB

m Reconfiguration cost = sorting 15 MB (2 GB/s)

m Trade-off: larger problems favor dynamic reconfiguraiton!

(© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner - New Hardware Architectures for Data Management

PartV

Summary

(© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner - New Hardware Architectures for Data Manager

Hardware technology is hitting limits.

m Frequency scaling halted years ago.

m Multi-Core scaling not sustainable either (power!)

Specialize to further benefit from Moore’s Law:
— Leverage parallelism and locality.

— Hardware/software co-design

Moore’s Law?

m Might slow down for economic reasons (but not yet).

(© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner - New Hardware Architectures for Data Management

Today:
Modern Multi-Core Systems
= Leverage parallelism (SIMD, multi-core)
m Preserve locality (cache awareness, NUMA)

Graphics Processors (GPUs)
= Throughput instead of instruction latency
m Restricted form of parallelism (~ locality)

| Field-Programmable Gate Arrays (FPGAs)
= Tailor-made hardware, re-configure at runtime
= Low frequency (~ low power); high bandwidth

(© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner - New Hardware Architectures for Data Management

Advertisement

Interested in these topics?

m I'm hiring PhD students

m Contact me:
Jens Teubner, jens.teubner@cs.tu-dortmund.de

technische universitat
dortmund

(© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner - New Hardware Architectures for Data Management

E Cagri Balkesen, Jens Teubner, and Gustavo Alonso.
Main-memory hash joins on multi-core CPUs: Tuning to the
underlying hardware.

In Proc. of the 29th IEEE Conf. on Data Engineering (ICDE),
Brisbane, Australia, April 2013.

[8 Spyros Blanas, Yinan Li, and Jignesh M. Patel.
Design and evaluation of main memory hash join algorithms
for multi-core CPUs.
In Proc. of the 2011 ACM SIGMOD Conf. on Management of
Data, pages 37-48, Athens, Greece, May 2011.

[d Robert H. Dennard, Fritz H. Gaensslen, Hwa-Nien. Yu, V. Leo
Rideout, Ernest Bassous, , and Andre R. LeBlanc.
Design of ion-implanted MOSFETS with very small physical
dimensions.
IEEE Journal of Solid State Circuits, SC-9(5):256—268, October

1974.

(© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner - New Hardware Architectures for Data Management

[4 Hadi Esmaeilzadeh, Emily R. Blem, Renée St. Amant,
Karthikeyan Sankaralingam, and Doug Burger.
Power challenges may end the multicore era.
Communications of the ACM, 56(2):93—102, 2013.

[@ Dirk Koch and Jim Torresen.
FPGASort: A high-performance sorting architecture exploiting
run-time reconfiguration on FPGAs for large problem sorting.
In Proc. of the 19th ACM SIGDA Int’l Symposium on
Field-Programmable Gate Arrays (FPGA), pages 45-54,
Monterey, CA, USA, February 2011.

[1 Gordon E. Moore.
Cramming more components into integrated circuits.
Electronics Magazine, 38(8), April 1965.

[1 René Muller, Jens Teubner, and Gustavo Alonso.
Sorting networks on FPGAs.

(© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner - New Hardware Architectures for Data Management

The VLDB Journal, 21(1), February 2012.

[Ambuj Shatdal, Chander Kant, and Jeffrey F. Naughton.
Cache conscious algorithms for relational query processing.
In Proc. of the 20th Int’l Conf. on Management of Data (VLDB),
pages 510-521, Santiago, Chile, September 1994.

(© 2013 Cagri Balkesen, Louis Woods, and Jens Teubner - New Hardware Architectures for Data Management

	Introduction
	Multi-Core Architectures
	Graphics Processors (GPUs)
	Field-Programmable Gate Arrays
	Summary

