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ABSTRACT
While the performance opportunities of field-programmable
gate arrays (FPGAs) for high-volume query processing are
well-known, system makers still have to compromise between
desired query expressiveness and high compilation effort.
The cost of the latter is the primary limitation in building
efficient FPGA/CPU hybrids.

In this work we report on an FPGA-based stream process-
ing engine that does not have this limitation. We provide a
hardware implementation of XML projection [14] that can
be reconfigured in less than a micro-second, yet supports a
rich and expressive dialect of XPath. By performing XML
projection in the network, we can fully leverage its filtering
effect and improve XQuery performance by several factors.

These improvements are made possible by a new design
approach for FPGA acceleration, called skeleton automata.
Skeleton automata separate the structure of finite-state au-
tomata from their semantics. Since individual queries only
affect the latter, with our approach query workload changes
can be accommodated fast and with high expressiveness.

Categories and Subject Descriptors
H.2 [Database Management]: Systems

Keywords
FPGA, XML, XQuery, Projection, Skeleton Automaton

1. INTRODUCTION
With the looming end of microprocessor scaling [4], mak-

ers of databases are starting to prepare and explore field-
programmable gate arrays (FPGAs) as an escape from the
inherent limitations of commodity hardware. Systems such
as IBM Netezza [18], Glacier [17], or fpga-ToPSS [20, 21]
have demonstrated exceptional throughput rates while keep-
ing energy consumption low.

Processing queries on bare hardware is compelling. But
building tailor-made circuits is a complex task that has forced
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major concessions in all of the existing systems. On one
end of the spectrum, systems like Glacier compile full SQL
query expressions into dedicated hardware, a strategy that
offers high flexibility and maximum processing throughput.
But query compilation is highly CPU-intensive, and compile
times of several hours are not an exception. The other ex-
treme are systems like Netezza, where quick compile times
have to be paid for with very rigid limitations on query ex-
pressiveness (selections and projections only).

In this work, we do not want to trade expressiveness for
speed. Rather, the skeleton automata design technique that
we propose enables interactive querying for a language as
complex as XPath. Automata generated this way can oper-
ate at full Gigabit Ethernet line rate, but do not need hours
of query compilation like existing approaches (e.g., [15, 17]).

More specifically, we use skeleton automata here to imple-
ment XML projection [14] in hardware. The effectiveness of
XML projection—essentially input filtering based on XPath
expressions—is well-known. But in existing work, the bene-
fit has always been off-set by the high XML parsing overhead
that a software-based implementation would face.1 By off-
loading XML projection to dedicated hardware, we avoid
this cost and enable XML processing at true line rate.

We present our system as a closed-box solution that trans-
parently filters XML data streams in the network. This way,
our filter can be paired with any existing XQuery processor
or act as a semantic firewall that strips off sensitive infor-
mation as XML passes the network (in the spirit of [7]).

Like most interesting filtering tasks, XPath evaluation can
be expressed using finite-state automata. Such automata are
known to run very efficiently on FPGA hardware (e.g., [23,
27]), but are also known to be very costly to compile. Plac-
ing and routing states and transitions on the FPGA chip is
highly compute-intensive, resulting in the long compilation
times that we mentioned already.

A skeleton automaton separates the automaton’s struc-
ture—which is the difficult part to compile—from its tran-
sition conditions. The latter can be realized as simple con-
figuration parameters and altered even after the main au-
tomaton has been instantiated on the chip. Much of this
automaton structure is determined alone by the XPath lan-
guage semantics [3]. We exploit this observation and stati-
cally compile a skeleton automaton that can universally rep-
resent any legal projection path query. At runtime, we only
modify the automaton’s transition conditions, which can be
performed in a micro-second or less.

1XML parsing is highly CPU-intensive, to the extent that it
has been considered a“threat to database performance” [19].



Contributions. Our main contribution is a new approach to
FPGA-assisted database processing. We leave behind the
typical query-to-hardware compilation strategy that incurs
very high compilation overhead in existing work. Instead, we
offer truly interactive query workload modifications, even for
tasks as difficult as XML processing. This report discusses
the new “skeleton automaton” approach, but also contains
enough implementation details to reproduce our work and
adopt it to other use cases.

In addition, our work puts automaton-based XPath eval-
uation and XML projection into a new perspective. By per-
forming projection in hardware, we are the first to actually
benefit from the filtering technique that had been discov-
ered already years ago. Our observations on the structure
of automata for XPath evaluation may further guide others
toward new execution strategies also in software systems.

This paper is structured as follows. Sections 2 and 3 give
the necessary background on XML projection and FPGAs.
Our main contributions are covered in Sections 4 and 5,
where we detail the skeleton automaton concept and its run-
time (re)configuration, respectively. Sections 6 and 7 discuss
optimization techniques and evaluate our system. Section 8
relates our work to others’, before we wrap up in Section 9.

2. XML PROJECTION
Our work provides a hardware implementation for XML

projection. To understand the idea of XML projection, con-
sider the following query, which is based on XMark [22] data:

for $i in //regions//item
return <item>

{ $i/name }
<num-categories>
{ count ($i/incategory) }

</num-categories>
</item>

(Q1)

This query looks up all auction items2 and prints their name
together with the number of categories they appear in.

2.1 Projection Paths
Out of a potentially large XMark instance, Query Q1 will

need to touch only a small fraction that has to do with
items and their categories. What is more, this fraction can
be described using a set of very simple projection paths:

{ //regions//item,
//regions//item/name #,
//regions//item/incategory }

Only nodes that match any of the paths in this set are needed
to evaluate Query Q1; all other pieces of the input document
can safely be discarded without affecting the query outcome.

Since our aim is to reduce data volumes, by default we
keep only the matching node itself in the projected docu-
ment, but discard any descendant nodes that do not match
any projection path as well. Whenever the query demands
to keep the entire subtree below some matched path, we
annotate this path explicitly with a trailing # symbol (con-
sistent with the notation in [14]). In our example this is
needed to include full name elements into the query result.

2xmlgen (the XMark data generator) produces XML docu-
ments that model an auction website.

:::::
<site>

:::::::
<regions>

...

:::::::
<africa>

...

::::
<item id="item42">

::::::::::
<name>vapour

::::
wept

::::::
became

:::::
empty

:::::::
</name>

:::::::::
<incategory category="category3"

::
/>

:::::::::
<incategory category="category1"

::
/>

::::::
</item>
...

::::::::
</africa>
...

::::::::
</regions>
...
<open_auctions>

<open_auction id="open_auction0">
...

</open_auction>
...

</open_auctions>
...

::::::
</site>

Figure 1: XML projection. Only the
::::::::::
underlined

parts are needed to evaluate Query Q1.

Figure 1 illustrates the process for an XMark excerpt.
Only the

:::::::::
underlined parts of the document are needed to

evaluate Query Q1. Everything else will be filtered out dur-
ing XML projection.

Path Inference and Supported XPath Dialect. Mar-
ian and Siméon describe a procedure to statically infer the
set of projection paths for any given query Q. We adopt this
procedure and refer to [14] for details.

Paths emitted by the inference procedure adhere to a sim-
ple subset of the XPath language. Most importantly, the
subset only permits downward navigation, i.e., the self,
child, descendant, and descendant-or-self axes.

projpath ::= path #?

path ::= fn:root() | path/step

step ::= axis :: test

axis ::= child | descendant | self
| descendant-or-self

test ::= * | text() | node() | NCName

Figure 2: Supported dialect for projection paths.

Figure 2 lists the XPath dialect that our hardware im-
plementation supports. This dialect essentially covers all
features of the projection path language in [14] (we do not
support namespaces at this point, however). Although our
prototype includes experimental support for attribute-based
filter predicates, which may even further increase filter selec-
tivity, in this text we will not further elaborate on attribute-
based filter predicates and all of our experiments were con-
ducted without this enhancement.

For illustration purposes, in this paper we frequently make
use of the abbreviated notation in XPath, where, for ex-
ample, ‘//’ stands for ‘/descendant-or-self::node()/’ (in
our restricted dialect this is the same as ‘/descendant::’).

2.2 Path Evaluation (Previous Work)
For evaluation, projection paths are often viewed as reg-

ular expressions, evaluated over each node’s path starting
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Figure 3: Finite-state automata (deterministic and
non-deterministic variants) to implement query
fn:root()//a/b/a/c//d.

from the root node. Thereby, the projection path/regular
expression is compiled into a finite-state automaton that is
driven by a SAX-style XML parser.

Finite-State Automata. Figure 3 illustrates this approach
for the projection path fn:root()//a/b/a/c//d. This ex-
pression can be compiled into either a deterministic (Fig-
ure 3(a)) or a non-deterministic finite-state automaton (Fig-
ure 3(b)). Observe how, in the latter case, each * corre-
sponds to a // descendant step in the input query.

In deterministic finite-state automata, only a single state
can be active at any given point in time. This significantly
eases implementation in software (and requires only a single
〈state, symbol〉 7→ state lookup per input symbol). XFil-
ter [1], a publish/subscribe system for XML, is thus based
on a set of deterministic automata, one for each registered
query. Since XFilter is intended to support very large num-
bers of registered queries, a query index accelerates process-
ing by only advancing those automata that may actually be
affected by the current input symbol.

On the flip side, non-deterministic finite-state automata
are significantly easier to construct and maintain. In YFil-
ter [9], this allowed the use of a single non-deterministic
finite-state automaton that simultaneously matches all reg-
istered input queries. The automaton structure is changed
whenever a query is (un)registered.

Backtracking. Either automaton type is to be evaluated
on every root-to-node path. To this end, automata are ad-
vanced upon every seen opening tag. On closing tags, the
system must backtrack to the originating automaton state.
To implement this functionality, systems maintain a stack
that holds a history of automata states. It is populated dur-
ing the handling of opening tags and consumed when the
corresponding closing tag is encountered.

Hardware Acceleration. Finite-state automata can be
implemented very efficiently in hardware (more details later).
In [15, 16], this was used by Moussalli et al. to implement
hardware-accelerated XML filtering. Essentially, their sys-
tem compiles a set of path expressions into a YFilter-like
NFA, which is then run on an FPGA. Similarly, in our own
work [27] we used FPGAs to perform complex event detec-

tion based on regular expressions in hardware, again by gen-
erating a dedicated per-query circuit and reprogramming the
FPGA to run it. As indicated before, both approaches incur
a high compilation cost (of up to several hours) that has to
be invested for every change of the query workload.

Conversely, BaRTS [25] is an implementation technique
for finite-state automata in hardware that can be updated at
runtime (a use case is the ZuXA XML parsing engine [26]).
The key idea is an elegant encoding scheme for transition ta-
bles that can be stored and altered in on-chip memory. Un-
fortunately, the technique is bound to deterministic finite-
state automata and queries cannot be (un)registered to/from
a single deterministic finite-state automaton easily.

In this work we can have our cake and eat it, too. To
efficiently deal with (changing) XML projection workloads
and high expressiveness, our system is based on non-deter-
ministic finite-state automata, which support fast runtime
(re)configuration enabled by our skeleton automata design
technique.

3. SOME HARDWARE BACKGROUND
Virtually any hardware circuit consists of the same two

fundamental ingredients:

(i) Combinational logic, which is composed of basic logic
gates (‘and’, ‘or’, etc.). Each (Boolean-valued) output
fi(x̄) of a combinational circuit depends solely on its
input signals xj .

(ii) Memory elements, e.g., flip-flop registers, which are
1-bit storage cells that allow a circuit to save and main-
tain state. For larger storage needs, circuits may fur-
ther include dedicated RAM, which has a higher inte-
gration density and thus a lower cost but is less flexible.

The actual behavior of a circuit is determined by the Boolean
functions f of its combinational parts and by the wiring
between combinational logic and flip-flop registers.

In addition to the actual input data, most circuits depend
on a clock signal, a periodically changing high/low signal, to
synchronize all circuit components. The speed of a hardware
circuit is determined by the clock frequency, but also by the
amount of work that the circuit can perform within each
clock cycle.

3.1 Field-Programmable Gate Arrays
Field-programmable gate arrays (FPGAs) are also con-

sidered “sea of gate” devices that provide a large amount of
generic logic gates (so-called lookup tables) as well as flip-
flop registers. An FPGA can be programmed3 by defining
(a) the logic function f for each lookup table and (b) the
signal wiring in the on-chip interconnect network.

Dedicated RAM is available on FPGAs in terms of so-
called Block RAM (or BRAM ). BRAM blocks can be allo-
cated and integrated into a user circuit in chunks of a few
kbits. For instance, the Xilinx XC5VLX110T FPGA chip we
used for our experiments contains 296× 18 kbit of BRAM.

In this work we do not actually exploit the reprogramma-
bility of the FPGA. Rather, we compile and upload a generic

3FPGAs blur the distinction between “program” and “con-
figuration.” In this text, we “program” our chip once to
determine the circuit it implements. When we only change
parameters at runtime, we refer to this as “configuration.”
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Figure 4: Hardware implementation of the non-deterministic finite-state automaton in Figure 3(b).

circuit once, i.e., we program the FPGA once. The query
workload, including any workload changes, then only affects
configuration parameters within this circuit. Economic as-
pects aside (tailor-made chips have substantial manufactur-
ing costs), our system could be implemented equally well as
an application-specific integrated circuit (ASIC).

In fact, the given FPGA hardware imposes rather tight
constraints on the available resources and their distribution
on the chip. Managing these constraints adds to the chal-
lenge of building a hardware circuit. In [13], the authors
found that ASICs typically run more than three times faster
than FPGAs, yet they dissipate only 1/14 of the power. Sim-
ilar advantages could be expected from an ASIC implemen-
tation of our work.

3.2 Finite-State Automata in Hardware
Finite-state automata can be mapped mechanically to a

corresponding (but hard-wired) hardware implementation,
which after compilation can be uploaded onto an FPGA.
Figure 4 illustrates this for the non-deterministic finite-state
automaton that we saw earlier in Figure 3(b). For realistic
automata, compiling and routing the respective circuit typ-
ically takes several minutes or even up to several hours.

In a circuit generated this way, every automaton state is
represented by a flip-flop register (labeled ‘FF’ in Figure 4).
Wires between flip-flops implement state transitions. An
‘and’ gate along these wires ensures that the transition is
taken whenever the originating state is active and a match-
ing input symbol is seen. * transitions are not conditioned
on the input symbol (thus, there is no ‘and’ gate along their
path). Whenever multiple transitions can activate a state,
these must be combined using an ‘or’ gate, as can be seen
at the inputs to states q0 and q4.

The automaton is driven by a tag decoder that parses the
XML input. Whenever it sees a tag named a, . . . , d, it
sets the corresponding output signal to ‘1’. The tag decoder
itself is implemented as a finite-state automaton as well.

Not shown in Figure 4 is the clock circuitry that ensures
that the automaton state is advanced on every clock tick.
A stack data structure, needed to support the XML tree
structure, can be attached to the finite-state automaton.
States q0 through q5 are pushed/popped to/from this stack
during start/end element events then (refer to [15, 16] for
details).

Though slightly simplified, the described procedure quite
well describes the state of the art in hardware-based pattern
matching. Optimized construction algorithms for FPGA
targets exist (e.g., [29]) but their main concern is the con-
sumption of on-chip resources. The immense routing effort
is inherent to the concept and arises in any scheme that
compiles automata from scratch.
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Figure 5: XML projection engine. After parsing,
the XML stream passes through a skeleton automa-
ton, which controls what the serializer emits as the
projection result.

4. DYNAMIC XML PROJECTION
Here we propose a new approach to automaton imple-

mentation on FPGAs that avoids the high cost of on-line
automaton routing. We achieve this by separating the au-
tomaton structure from its semantics. The structural as-
pects of the automaton can then be compiled off-line into
a skeleton automaton. At runtime, the skeleton only has to
be parameterized to obtain a complete automaton for the
particular query workload.

4.1 System Overview
Figure 5 illustrates how the skeleton automaton partici-

pates in a complete XML filtering data flow. Raw XML data
enters the system at the left end of the figure, where an XML
parser analyzes the syntactical structure of the stream. En-
riched with parsing information (“cooked”), the XML stream
passes through the configured automaton, which determines
a match state for each item in the stream. Finally, the se-
rializer at the right end of the figure copies matches to the
circuit output and ensures a well-formed XML result.

4.2 XML Parsing
The input XML byte stream enters our system on the left

side of Figure 5 and is fed into the hardware XML parser.
Much like a SAX parser in the software world, this parser
identifies lexical elements in an input stream. While doing
so, the parser annotates the raw XML input stream with a
token field that makes the lexical structure of the stream ac-
cessible to subsequent processing units. We refer to an XML
stream with token annotations as a cooked XML stream.

The behavior of the XML parser component is illustrated
in Figure 6 as a timing diagram. The token signal carries
values of an enumeration type, whose symbolic names we
listed at the bottom of the figure.

We implemented the XML parser in our system with the
help of the Snowfall hardware parser generator tool [24].
Snowfall reads in the grammar of any (regular) language,



data < a b c > x y z < / a b c >

token

time

τ1 τ2 τ3 τ4 τ1 τ5 τ2 τ6

τ1: TagStart τ4: Text
τ2: TagNameChar τ5: ClosingTagSlash
τ3: OpeningTagEnd τ6: ClosingTagEnd

Figure 6: Timing diagram of XML parser output.
The XML stream is enriched with a token signal to
make lexical information explicit.

computes the corresponding finite-state automaton, and emits
a VHDL specification of a hardware circuit that recognizes
that language. Here we provided Snowfall with a slightly
modified version of the XML language specification.

To the cooked XML stream, the configured automaton
adds a match flag to identify matching pieces in the data
stream. This flag is interpreted by the serializer to produce
the projected XML document.

4.3 XML Serialization
Our engine is designed to support XML projection in a

fully transparent manner, where the receiving query proces-
sor need not even know that it operates on pre-filtered XML
data. Thus, the document must be filtered in such a way
that an oblivious back-end processor will still produce the
same query output (provided that all its projection paths
have been configured in our engine).

To exemplify, the document filter must preserve site,
regions, and africa elements in Figure 1, even though they
are not themselves matched by any projection path. Other-
wise, Query Q1 will miss its regions elements and return an
empty result or—even worse—fail entirely because the pro-
jected document contains more than a single root element.

Therefore, the serializer component of our circuit ensures
that the root-to-node paths of all matching nodes are pre-
served in the circuit’s output. As the input stream is pro-
cessed, the serializer writes all opening tag names into ded-
icated RAM. When a match is found, this information is
read back and used to serialize full root-to-node paths.

4.4 Skeleton Automaton
Compiling individual automata into FPGA circuits is ex-

pensive because the placement and routing of states and
transitions on the two-dimensional chip space is a highly
compute-intensive task. Once the structure of an automa-
ton and its placement on the chip is known, however, work-
load adaptations that only affect transition conditions can
be realized with negligible effort.

Here we exploit this characteristic and build a generic
skeleton automaton. The skeleton is provisioned for any
transition and condition that would be permitted by the re-
spective query language (in our case a dialect of XPath).
Placeholders in the skeleton automaton (we illustrate them
as �) are filled with parameter values at runtime to enable or
disable (by putting a false condition on the edge) transitions
or to reflect query-dependent conditions.

4.4.1 Skeleton Segments
In the case of XPath, we build the skeleton automaton

from a large number of segments. Each segment consists of a

segment core

ax.

tag matcher

tag predicate

history

skeleton
segment

din

match in

dout

match out
current state

Figure 7: Hardware implementation of a single
skeleton segment. blocks hold configuration pa-
rameters (axis and node test).

�

�

single state and two parameterized conditions as
shown here on the right. Additional parameters,
omitted here for ease of presentation, determine
whether a state is accepting or help us correctly
handle some specifics of XPath (see later).

Skeleton segments are connected to form a chain much
like we sketched it already in Figure 5. Observe how this
structure coincides with the one that we saw earlier for our
example query (Figure 3(b)). In fact, skeleton segments are
sufficient as basic blocks to construct a finite-state automa-
ton for any legal XML projection path.

To support backtracking, each segment also includes a
history stack (also not shown in the illustration), so back-
tracking is wrapped into the basic skeleton building blocks
and scales trivially with the overall automaton size.

4.4.2 Compiling Queries
Compiling a projection path into a set of segment param-

eters is particularly simple. Each step in the path is mapped
to one segment in the skeleton automaton. Much like we saw
in the example in Figure 3(b), each node test is set as a tran-
sition condition on a segment-to-segment edge. Axes (child
or descendant) result in conditions false or * annotated to a
back loop � (we discuss -self variants later). Somewhat
counterintuitive to the notion of XPath location steps, each
skeleton segment corresponds to one ‘nodetest/axis::’ pair
(not ‘/axis::nodetest ’), as we had already indicated earlier
on the bottom of Figure 4.

4.4.3 Implementing a Skeleton Automaton
Skeleton segments are the basic building blocks of our

matching engine. Finding a proper hardware implementa-
tion for them is what now remains to realize scalable and
efficient XML projection in hardware.

As illustrated in Figure 7, each segment consists of three
sub-components (segment core, tag matcher, and history
unit) that interpret the two query parameters axis and tag
predicate. The two signals match in and match out represent
the in- and outgoing transition edges of the segment, the din
signal gives the circuit access to the input data stream (seg-
ments are daisy-chained so all segments have access to the
stream).

The segment core is what ultimately implements the au-
tomaton segment. Based on the setting of the axis parame-
ter, it will enable the respective logic gates to allow * loops
in the effective automaton.

Like in the traditional scheme, the actual automaton state,
which is part of each segment, is implemented using a flip-
flop register. In Figure 5, this register is illustrated as a



1 switch din.token do
2 case OpeningTagEnd
3 if (tag matches and match in)
4 or (axis = desc and history[last]) then
5 match := true;

6 else
7 match := false;

8 push (history, match);

9 case ClosingTagEnd
10 pop (history);

Algorithm 1: Pseudo code for segment core.

gray box . To support backtracking, the flip-flop is embed-
ded inside a history unit, which replaces the global stack of
previous hard- or software-based XPath engines.

In hardware, the history unit is implemented using a shift
register whose contents can be shifted left/right as the parser
moves down/up in the XML tree structure (e.g., upon open-
ing and closing tag events). The rightmost bit of this shift
register corresponds to the current state and is propagated
to the outside in terms of the match out signal. In the
software world, the history unit would best compare to a
stack for single-bit values, where the stack top determines
the match out signal.

The size of the history unit is a compile-time parameter
that limits the XML tree depth up to which matches can be
tracked (currently set to 16 in our implementation). Cases
where this depth is exceeded by a given XML instance will
still not fail, because deeper document fragments can always
be passed on to the software side and handled there.

In contrast with the traditional compile-by-query scheme,
our circuit does not use an external tag decoder. Instead,
dedicated sub-circuits (‘tag matcher’) in each segment pro-
vide information about matched tag names. We will detail
those sub-circuits in a moment.

Algorithm 1 summarizes in pseudo code the behavior of
a segment core.4 Matching occurs when an opening XML
tag is fully consumed. Lines 3–7 then combine the axis
parameter, tag match information, the input match flag,
and (to implement * loops) the existing match state to
determine a new match state. This new match state is
then pushed/shifted into the history shift register (line 8),
which implicitly makes the information also available on the
match out port. The match state is restored from the history
shift register when a closing tag is consumed (lines 9–10).

The pseudo code in Algorithm 1 can straightforwardly
be translated into a VHDL circuit description. Note that
in hardware this code is not executed as sequential code.
Rather, the code is compiled into combinational logic that
drives the control signals of the hardware shift register.

4.4.4 Distributed Tag Decoding
Input to the segment core is a signal indicating whether

an element with corresponding tag name was seen in the
input. The classical approach to this sub-problem was shown
in Figure 4. There, a dedicated tag decoder was compiled
along with the main NFA. It included a hard-wired set of

4For ease of presentation we simplified to only child or
descendant axes.

1 switch din.token do
2 case TagStart
3 pos ← 0;
4 partial match ← true;

5 case TagNameChar
6 if din.char 6= tag[pos] then
7 partial match ← false;

8 pos ← pos + 1;

9 tag match ← partial match and (pos = taglen);

Algorithm 2: Tag matching. Parameters tag and
taglen hold the tag name of an XPath name test and
its length.
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Figure 8: Multiple paths can be matched within a
single processing chain.

tag names, and produced a separate output signal for each
tag name in the set. These signals were wired to segments
in the NFA as needed (top part of Figure 4).

Two fundamental problems render this approach unsuited
for our scenario: (a) the set of all relevant tag names must
be known at circuit compilation time (no runtime-(re)confi-
guration) and (b) routing the output signals of the tag de-
coder may require long signal paths which will deteriorate
performance. In our system, tag name matching is wrapped
inside each skeleton segment (cf. Figure 7), which keeps sig-
nal lengths short and independent of the overall circuit size.

A consequence is that each tag matcher has to watch out
for exactly one tag predicate (a tag name or a node test).
Rather than building an automaton that could recognize
a set of tag names, we can now implement tag matching
as a simple string comparison circuit. This simplifies the
hardware implementation and allows for higher clock speeds.

Each tag matcher is connected to a dedicated RAM which
holds the tag predicate that should be matched (i.e., the
tag name of a node test). In-silicon block RAMs on Xilinx
FPGAs are 18 kbit in size. Thus, a single block is sufficient
to store tag predicates.

The tag matcher signals true on its tag match output when
its local tag predicate was recognized and false otherwise.
Algorithm 2 formalizes this behavior: the input data stream
is compared character-by-character; tag match is set to true
when all seen characters matched and the length of the tag
name is correct.

4.5 Matching Multiple Paths
Besides maintaining its own match state, each skeleton

segment passes the (cooked) input XML stream directly on
to its right neighbor. We can use this property to evaluate
multiple projection paths within the same processing chain.

Figure 8 illustrates the idea. As the XML input is streamed
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through, sections of the entire chain of segments are respon-
sible for evaluating different projection paths pj . To realize
this setting, all we have to do is ensure proper behavior at
both ends of a chain section. We do so by introducing an
explicit fn:root () implementation and with help of match
merging at the right end of a chain section.

Implementing fn:root (). A segment for the XPath built-
in function fn:root () is the only one that does not depend
on any previous matches. By placing it in front of every
projection path, we break the finite-state automaton into
separate automata that evaluate paths independently.

To evaluate fn:root (), a segment must (a) enter a match-
ing state exactly when parsing is at the XML root level and
(b) become active in no other situation. We already have the
tools available to implement both aspects of this behavior.

To implement (a), we can initialize the history shift regis-
ter such that history[last] ≡ true (so far we silently assumed
that history[last] is initialized to false). The true flag will
automatically be shifted accordingly such that the matching
state re-appears whenever parsing moves back up to the root
level. Property (b) can be assured by keeping the match in
signal low at the input of every chain section. The matcher
will then match no tag in the document (Algorithm 1, line 3),
but still follow a * transition if it is configured to do so
(i.e., if fn:root () is followed by a descendant step; line 4
in Algorithm 1).

Match Merging. At its right end, each chain section will
compute the match state for its corresponding projection
path. The serializer at the end of the processing chain must
be informed whenever any of the paths along the chain found
a match.

To establish this mechanism, we differentiate between lo-
cal matches (for each of the pj) and a global match. The
former corresponds to the match out signal that we used so
far to find single-path matches. To implement the latter,
we propagate an additional match flag along the chain and
merge it with the local match result at the end of each chain
section (using a Boolean ‘or’ gate).

Figure 9 illustrates how match merging can be realized
with only few additional logic gates in each skeleton seg-
ment. At the end of each chain section (signified with an
end-of-chain-section (eoc) configuration parameter), the lo-
cal match state is merged into the global signal.

Resource Allocation. Note that the division of the en-
tire chain into sections is not static. Rather, a sequence of
segments is allocated as needed for each projection path.
This lets us make efficient use of resources and utilize the
same circuit to match either many short paths or fewer paths
that are very long. In either case, the number of segments
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Figure 10: Configuration logic changes workload pa-
rameters outside the main processing and data path.

n provisioned in the skeleton automaton limits the amount
of projection paths that can be processed simultaneously.
The total number of steps in all paths must not exceed n.
To illustrate, the twenty XMark queries that we look at
in Section 7 use projection path sets with 3–15 paths per
benchmark query (median: 4). In total, each query requires
between n = 7 and n = 79 (median: n = 15) path steps.

5. RUNTIME (RE)CONFIGURATION
Now that we have seen how individual skeleton segments

interpret configuration parameters to match sets of projec-
tion paths, it is time to look at the mechanisms to set those
parameters at runtime.

5.1 Parameter Storage
Our skeleton automaton for XML projection depends on

two flavors of query workload information: (a) the XPath
axis of each navigation step and (b) the tag predicate that
has to be evaluated along with the step, i.e., a tag name
or some information that encodes a node test. Both pieces
of information could be placed either in flip-flop registers
or in dedicated RAM (block RAM). To use the available
capacities efficiently, we use both storage types, namely flip-
flop registers for the XPath axis and block RAM for the tag
predicate of each navigation step.

Flip-flop registers can be allocated at a granularity of a
single bit. This is a good fit for small-sized pieces of informa-
tion, such as the configured XPath axis or the fn:root ()/
end-of-chain-section flags. The benefit is two-fold: (a) we
can allocate the exact number of bits really needed for those
parameters and (b) flip-flops are directly woven into the re-
maining FPGA fabric, which lets them efficiently interact
with lookup tables that, e.g., implement the gates in a seg-
ment core.

Tag predicates, by contrast, can become much larger. Thus,
we choose dedicated RAM to store them. Virtex-5 FPGAs
contain hundreds of built-in BRAM blocks, each of which is
18 kbit in size. This is suitable for storing tag predicates
and leaves some room to accommodate even large query
tag names. By default, we allocate one BRAM block for
each skeleton segment but we will shortly see how resource
utilization and circuit performance can be improved if this
allocation strategy changes.

5.2 Changing Parameters at Runtime
Since all sub-circuits in an FPGA can operate in parallel

and independently of each other, we can keep query work-
load updates completely outside the main processing and
data path. As illustrated in Figure 10, separate configura-
tion logic can maintain both configuration parameters with-
out interfering with the processing logic.
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(top) requires long signal paths. Pipelining (bot-
tom) reduces signal paths by inserting registers .

As parts of the query workload information (namely XPath
steps) map almost one-to-one to the configuration parame-
ters of individual skeleton segments (cf. Section 4.4.2), com-
piling input queries and inferring parameter values is simple
enough to be performed directly on the FPGA chip.

The best way to provide query workload information to
the chip depends on the particular system design (e.g., Eth-
ernet, PCI, or USB). To keep our system self-contained, we
chose to communicate projection paths also via Ethernet.
More specifically, our system can be configured via XML
processing instructions that can be injected into the input
XML data stream. For instance, the processing instruction

<?query fn:root()/descendant::item/child::name #?>

registers the new projection path //item/name in the engine.
Workload changes become effective immediately and will

be considered for any data that follows the processing in-
struction in the input stream. The time needed by the pro-
cessing instruction within the XML stream may thus be in-
terpreted as the workload reconfiguration time. The 50-byte
processing instruction above, for instance, requires 50 FPGA
clock cycles to be processed, or 300 ns at an FPGA clock
speed of 166 MHz.

6. TUNING FOR PERFORMANCE
As in software-based systems, the observable performance

of an FPGA-based solution hinges on a proper low-level im-
plementation that matches the characteristics of the under-
lying hardware. Most importantly in FPGA design, a circuit
must (a) meet tight timing constraints (such that it can be
operated at high clock speeds) and (b) be economic on chip
space (to support real-world problem sizes at low cost). In
this work we use pipelining and BRAM sharing to address
both aspects.

6.1 Pipelining
The standard approach to hardware-based finite-state au-

tomata is to forward incoming stream tokens simultaneously
to all involved automaton states. In Figure 4, for instance,
the output of the tag decoder was sent to all ‘and’ gates at
the same time. Figure 11(a) emphasizes the same concept
but hides the inner details of circuit segments segi.

Figures 4 and 11(a) both also show the problem that this
incurs. For larger automata, the length of the ‘input stream’
communication paths will increase. In general, the process-

ing speed of any hardware circuit is determined by its longest
signal path.

NFAs for XML Projection. When arbitrary automata
shapes must be supported, long signal paths are inevitable,
since a new value of a state qi might depend on any other
state qj . Non-deterministic finite-state automata generated
from XML projection paths, however, will always follow a
very particular pattern. Their shape is strictly sequential
and all data flows in the same direction.

Pipelining. The corresponding circuits are thus amenable
to pipelining, a very effective circuit optimization technique.
Figure 11(b) illustrates the idea. The one-directional data
flow is broken up into disjoint pipeline stages (indicated with
a dotted line). Whenever any signal crosses a stage bound-
ary, a register (marked as ) is inserted.

With the registers in place, the longest signal path is now
reduced to the longest path between any two registers. In
contrast to the original design, the longest path length no
longer depends on the overall circuit size, but remains un-
changed even if the automaton size is scaled up. This way,
in an n-stage pipeline the available FPGA hardware par-
allelism is turned into a parallel processing of n successive
input data items (i.e., input bytes).

Throughput vs. Latency. Pipelining primarily increases
the throughput of a hardware circuit. The clock frequency is
increased and, in a fully pipelined circuit, a new input item
can enter the circuit every clock cycle. This benefit comes
at the expense of a small latency penalty that increases pro-
portionally to the pipeline depth. In general this penalty is
negligible: with a 6 ns clock period, even a 500-stage pipeline
will have a latency of only 3µs—far less than, say, the same
data item traveling over the network in a client-server setup.

Pipelining in our System. Pipelining is particularly ef-
fective in FPGA designs. In FPGA hardware, each lookup
table is co-located with a flip-flop register (together they are
packed into so-called slices). Thus, by enabling those regis-
ters, throughput can be improved at very little cost (as the
flip-flop register would remain unused otherwise).

In our system, we place a pipeline register after every
skeleton segment. As we will see in the next section, this
leads to signal lengths that are well within the range of clock
frequencies that the FPGA hardware has been designed for
(around 150–200 MHz).

XPath Semantics. At this point we would like to note an
interesting side effect of pipelining to the semantics of XPath
evaluation. Consistent with the original work on XML pro-
jection [14], our supported language dialect covers the XPath
self and descendant-or-self axes. These axes cannot be
expressed using a standard hardware automaton like the one
shown in Figure 4, because a segment circuit segi will report
a new match state only after an input item x has been con-
sumed; this is too late for the successor segi+1 to perform a
match on the same input item x.

In a pipelined circuit x is processed by segi+1 one cy-
cle later. This gives us the opportunity to fast-forward the
match state of segi in case of a self or descendant-or-self
axis. A fast-forwarded state bypasses one intermediate reg-
ister to make up for the missing clock cycle needed to im-
plement the ‘self’ functionality.

Existing automaton-based XPath engines either do not
support -self axes at all (to our knowledge, no existing sys-
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tem does), or they compile -self axes into complex multi-
way predicates, e.g., a sub-path child::τ1/self::τ2 would
translate into a conjunctive predicate ‘matches τ1 ∧ matches
τ2’; descendant-or-self axes become even more complex.
Without an upper bound on the number of conjunctions,
resources for predicate evaluation have to be allocated dy-
namically. This tends to be even more expensive on FP-
GAs than it is in software-based systems and should thus be
avoided whenever possible.

6.2 BRAM Sharing
As discussed before, we use dedicated RAM to store tag

predicate configuration parameters for all skeleton segments.
This may lead to an upper limit on the number of segments
that can be instantiated (and thus the supported size of pro-
jection path sets), because the available number of RAM
blocks is fixed. The Virtex-5 chip that we used in our ex-
periments, for instance, contains 296 blocks of RAM, which
would limit the number of segments to 296 (minus a few
BRAM blocks that are needed for the serializer and sur-
rounding glue logic).

At the same time, we are underutilizing the available RAM
blocks. The full 18 kbit of a Virtex-5 BRAM unit are rarely
needed for a tag predicate in the real world, and we read out
only one character at a time, even though BRAMs would
support a (configurable) word size of up to 36 bits.

BRAM usage can be improved by sharing each BRAM
unit between two or more segments, which effectively multi-
plies the supported NFA size. Figure 12 illustrates how this
idea can be realized in FPGA hardware. Since there is only
one port to each BRAM block, some segments act as media-
tors for the communication information of their neighbors.5

BRAM sharing is useful only up to the point where the
number of segments is bound by the amount of logic re-
sources (lookup tables and flip-flop registers) available. As
we will see in Section 7, BRAM and logic resources are in
balance on our hardware when three segments share one
BRAM unit.

7. EVALUATION
We implemented and tested our system on widely avail-

able and low-cost ($750 academic price) FPGA hardware.
The Xilinx XUPV5 development board is equipped with a
Virtex-5 XC5VLX110T FPGA (69,120 LUTs, 69,120 flip-
flops; 296×18 kbit BRAM) and has a number of I/O connec-
tors to communicate with outside systems. In the following
Section 7.1 we first characterize the core XML projection
engine, before in Section 7.2 we show how the engine could
be used in a working system.

5The maximum word size for each BRAM block is 36 bits.
Up to four segments can thus share one BRAM block by
simply merging their 8-bit data into one large word.
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Figure 13: FPGA chip resource consumption of var-
ious engine configurations. BRAM sharing allows to
balance the use of logic and BRAM resources to ob-
tain a larger overall engine size.

7.1 Core Engine
To analyze the characteristics of our core XML projection

engine, we compiled it to actual FPGA circuits in various
configurations. Besides an obvious expectation of sufficient
data throughput, two aspects are particularly interesting to
judge the quality of an FPGA design:

economic resource utilization The given FPGA hardware im-
poses strict limits on the types and amounts of available
hardware resources. A good FPGA design is properly bal-
anced to make near-optimal use of the available resources.

scalability An FPGA circuit should provide stable perfor-
mance even when its size is scaled up (e.g., when it is
ported to larger and more powerful FPGA hardware).

Economic Resource Utilization. Using our available
hardware, we implemented various configurations of the XML
projection engine (varying number of skeleton segments; with
and without BRAM sharing enabled). For each configura-
tion we determined the amount of FPGA resources the re-
sulting circuit uses.

Figure 13 illustrates the utilization of BRAM units (filled
markers) and logic blocks (slices; empty markers) as a per-
centage of the total available BRAMs/slices on the chip. The
results are consistent with the expectations that we stated in
Section 6.2. Without BRAM sharing, all BRAM resources
are used up for circuit configurations beyond ≈ 275 segments
(while more than 1/3 of the available logic resources are un-
used).

BRAM sharing can bring resource utilization into balance.
With 3-way BRAM sharing (diamond symbols in plot), the
maximum number of segments is now limited by logic re-
sources (lookup tables for that matter) and we can instan-
tiate up to 750 segments on our chip, i.e., we can support
more than two times as many concurrent projection paths.

Scalability. To evaluate the scalability criterion, we used
the FPGA design tools to determine the maximum clock
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frequency at which each of our engine configurations could
be operated.6 Figure 14 illustrates the numbers we obtained.

The clock frequency directly determines the maximum
speed of the XML projection engine. One input byte can
be processed on every clock cycle (independent of the query
workload). With clock frequencies around 180 MHz, our sys-
tem could thus sustain 180 MB/s XML throughput. This
is more than enough for the use cases our system is de-
signed for: it could easily, for instance, keep up with an
XML stream that is served from disk or via a network link.

The clock frequencies shown in Figure 14 are also a good
indicator for the scalability characteristics of our system.
Since chip space and parallelism are the main asset of FP-
GAs, the achievable clock frequency should not (significantly)
drop when the circuit size is scaled up. Only then can a
circuit really benefit from expected advances in hardware
technology (Moore’s law predicts that the transistor count
per chip doubles approximately every two years).

In our case we see that the achievable clock frequency
stays high even for configurations that significantly exceed
the 70-80 % chip utilization, beyond which performance of-
ten decreases [8]. It is reasonable to expect that our sys-
tem will keep its performance characteristics even when it
is scaled up to 6000 or more segments on current Virtex-7
chips [28].

7.2 XML Projection in the Network
FPGAs may offer significant advantages over software-

based systems in terms of performance and/or power con-
sumption.7 Their main benefit, however, lies in system in-
tegration opportunities that cannot be matched with com-
modity hardware. To demonstrate this advantage, we con-
nected our engine directly to the Ethernet interface. The
so-obtained system can perform XML filtering in the net-
work as data is sent from a network server to a client.

In the resulting system, the client will not only bene-
fit from reduced memory overhead during query processing
(which was the main incentive in [14]). Moreover, filtering

6Physical constraints on FPGA hardware (clock frequencies
are generated by a phase-locked loop) restrict allowable fre-
quencies to n/m×100 MHz (i.e., 150, 160, 166, 175, 180 MHz,
200 MHz, and 225 MHz).
7The Xilinx Power Analyzer tool reports a power consump-
tion of less than 3 Watts for our projection engine.
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Figure 15: Speedup and improvement in memory
consumption due to XML projection for the first ten
XMark queries. Software projection for Q9 failed.

in the network also saves much of the parsing cost, which is
an important cost factor in typical XML applications [19].

We verified this on the basis of Saxon-EE (version 9.4.0.3),
a state-of-the-art XQuery processor for in-memory process-
ing, and the XMark benchmark suite [22]. We used an
XMark instance of scale factor 1 and measured parsing time,
query execution time, and memory consumption of Saxon
when running the 20 XMark queries. Since Saxon cannot di-
rectly process the streaming XML protocol of our engine, we
measured the filtering throughput of our FPGA and Saxon
performance independently (and ran all Saxon experiments
from a memory-cached file).

Filtering Throughput. Our system operates in a strict
streaming mode and processes one input character per clock
cycle. Thus, by design the filtering throughput of our system
is independent of the query workload. As detailed above,
our system can sustain throughput rates of 180 MB/s. This
is more than the Gigabit Ethernet link of our system can
provide, so effectively our system is limited by the physical
network speed.

This was confirmed by the measurements we performed on
real hardware. We observed a maximum payload through-
put of 109 MB/s on a 110 MB XMark instance. With proto-
col overhead accounted for, this corresponds to a bandwidth
of 123 MB/s on the physical network link, or 98.4 % of its
maximum capacity. To fully saturate our filtering engine,
we would have to connect our chip to a faster network (e.g.,
10 Gb/s Ethernet) or to a different I/O channel (e.g., 3 Gb/s
SATA Gen 2).

Application Speedup. On the application side, in-network
filtering mainly reduces parsing cost and memory consump-
tion. On raw data, Saxon requires 2.23 sec for input pars-
ing (independent of the query), which dominates the overall
query answer time for most XMark queries (actual query
execution times were 68 ms–41 sec; median: 390 ms). Main-
memory consumption is query-dependent and amounted to
363–685 MB on our system (median: 518 MB).

Figure 15 illustrates the effect of in-network filtering for
the first 10 XMark queries (gray bars ). Parsing times and
memory consumption are significantly reduced for all twenty
queries. We measured parsing times of 31 and 599 ms (me-



dian: 283 ms), which correlates well with the filter selectivi-
ties of the individual queries. Filtering has even more effect
on Saxon’s main-memory consumption, which went down to
12–207 MB (median: 25.6 MB) with filtering. Both effects
manifest themselves even for those queries that lead to a
significant number of projection paths (cf. Section 4.5).

By contrast, filtering has much less effect on the actual
query execution time (which excludes parsing cost). Here we
measured 45 ms–18 s (median: 346 ms) after filtering, which
is in line with previous reports on document projection in
Saxon [11].

Figure 15 also puts in-network filtering in relation to soft-
ware-based projection (shown as ), a feature of Saxon’s
enterprise edition.

Software-based projection, however, even slightly increases
input parsing cost (now 2.3–3.7 sec; median: 2.36 sec). The
evaluation of projection paths during input parsing causes
additional CPU load that cannot be compensated by a re-
duced build-up cost for Saxon’s internal tree representation.
Since XML parsing is an inherently sequential task that
dominates overall execution cost, Amdahl’s law indicates
that there is little room to improve XMark performance
with software-only solutions (such as multi-core parallelism
or distribution).

Interestingly, Saxon’s software-based projection mecha-
nism does not lead to the same memory savings as in-network
filtering. We attribute this to garbage collection-based mem-
ory management (Saxon is written in Java). Intuitively,
XML projection should reduce the in-memory tree sizes by
the same amount, whether computed in hard- or software.

8. MORE RELATED WORK
After Marian and Siméon proposed the concept of XML

projection in [14], the idea was expanded into different di-
rections by the research community.

On the path evaluation side, Koch et al. [12] suggested an
interesting alternative to the automaton-based path match-
ing as we discussed in Section 2.2. The key insight is the
problem’s similarity to string matching. This allows the use
of proven-efficient string matching algorithms for the match-
ing task, such as the classical Boyer-Moore [5] algorithm
or—to match sets of paths—the string matching algorithm
of Commentz-Walter [6]. The ideas of Koch et al. are similar
to our work in the sense that they exploit specific character-
istics of the XPath matching problem. But unlike our work,
their approach depends on in-memory pointer navigation,
which is contrary to the truly stream-oriented processing
model of our system.

The work of Benzaken et al. [2] primarily improves the
query analysis part. The proposed type-based XML projec-
tion looks at type information rather than plain child/de-
scendant paths. This allows building a more selective pro-
jection filter, which further reduces the size of the projected
XML document.

In the runtime part, Benzaken et al. push much of the
matching complexity into type annotation (as a preprocess-
ing step to the actual projection). Type annotation again
can be implemented with help of finite-state automata and,
therefore, could be realized using skeleton automata much
like the one that we described in this paper.

FPGAs are an increasingly attractive alternative to over-
come the architectural limitations of commodity hardware.

Commercial systems like IBM/Netezza [18], but also a num-
ber of research prototypes [15, 16, 17, 20, 21, 27] demon-
strate this for a wide range of use cases.

All these systems were forced to compromise between query
expressiveness and interactivity. On one end of the spec-
trum, systems like Netezza provide full interactivity, but can
use their FPGAs for only very basic operations (such as se-
lection and projection). Others (such as most of the research
prototypes) went for the opposite extreme. They offer much
higher expressiveness, but at the cost of very high compila-
tion overhead for each user query. The work of Sadoghi et
al. [20, 21] stands in the middle and explicitly analyzes the
existing trade-offs. For the same use case (publish/subscribe
for algorithmic trading), they propose different FPGA im-
plementations that are tuned for (and named) “flexibility,”
“adaptability,”“scalability,” or “performance.”

The focus of our work is to not make any compromises.
Rather, we support XML and a rich subset of XPath, yet
offer micro-second reactivity to query workload changes.

9. SUMMARY
To avoid the critical trade-off between query expressive-

ness and capability for ad-hoc querying, we propose a new
implementation strategy for FPGA-based database acceler-
ators. Rather than building hard-wired circuits or templates
for only narrow query types, we statically compile a skeleton
automaton that can be configured at runtime to implement
query-dependent state automata. The so-constructed and
configured automata run as fast as existing hard-wired au-
tomata, yet offer high expressiveness and complexity (e.g.,
hundreds of parallel XPath steps on one low-end chip).

Our use case for this work is XML projection, a proven-
effective method to reduce processing and main-memory over-
head of XML processors. As such, we make the architec-
tural advantages—like in-network processing—and perfor-
mance benefits of FPGAs accessible to XML processing. We
demonstrated both aspects with a micro-benchmark of the
main projection engine and by pairing our system with a
state-of-the-art XQuery processor.8

The system that we describe shows favorable scalability
properties making our work ready for upcoming chip gener-
ations that will provide significantly more chip space.

Looking forward, we think that skeleton automata can
play an important role in the quest for novel system designs
that leverage (rather than suffer from) on-going development
in hardware technology. Our goal for this line of work is to
build a hybrid CPU/FPGA database engine that fully sup-
ports runtime resource optimization and ad-hoc querying.

Outside our main research interest, we think that some of
the observations that we made in this paper—e.g., automata
for XML projection exhibit a very uniform structure—could
be inspiring also for software-only systems. Similar observa-
tions have already lead, e.g., to the use of string-matching
techniques for XPath evaluation in the past [12].
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