
FPGAs for Dynamic (XML) Query Workloads

Chongling Nie Jens Teubner Louis Woods
Systems Group, Department of Computer Science, ETH Zurich

firstname.lastname@inf.ethz.ch

ABSTRACT
While the performance opportunities of field-programmable
gate arrays (FPGAs) for high-volume query processing are
well known, complicated and tedious query compilation pro-
cedures still defeat the use of the technology for dynamic
query workloads, which are relevant in practice.

In this work we report on an FPGA-based stream process-
ing engine that does not have this limitation. We provide a
hardware implementation of XML projection [9] that can be
reconfigured in less than a micro-second and thus supports
even highly dynamic query workloads.

Our work brings the architectural advantages of FPGA
technology to the XML world. Using our system, XML
streams can be filtered in the network, saving network band-
width, client-side parsing, and expensive pre-processing.

1. INTRODUCTION
Thanks to their performance and architectural advantages,

field-programmable gate arrays (FPGAs) have become a com-
pelling technology for high-volume data processing. FPGA-
based stream processors [11, 14] or XML filtering engines [10]
were shown to excel with high throughput at low latency.

The catch in all of these systems is that they were de-
signed for off-line query compilation. Each query workload
must be run through a time-consuming compilation proce-
dure, before the respective dedicated hardware circuit can
be uploaded to the FPGA. Each compilation run may take
up to several hours. As such, the approach is limited to situ-
ations where the query workload is mostly static and where
the task assignment to the FPGA is known ahead of time.

In our ongoing project Avalanche we aim for a hybrid
CPU/FPGA solution that is much more ambitious. An
optimizer decides on the assignment of tasks to process-
ing resources (CPUs or FPGAs) and it may change this
assignment dynamically as queries enter and leave the sys-
tem. Clearly this calls for an FPGA design where the query
workload can be modified on-line.

This work contributes an FPGA solution that allows on-
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line query workload reconfiguration. In contrast to earlier
work, our system considers query workload as a mere con-
figuration parameter to an otherwise hard-wired FPGA cir-
cuit. No prior compilation is needed to register or unregister
queries, and workload changes become effective immediately,
within less than a micro-second.

This is made possible through a generic hardware im-
plementation of a non-deterministic finite-state automaton
(NFA). After the circuit has been uploaded to the FPGA,
the circuit’s physical structure remains fully static. The
language that it accepts—and thus the query workload—is
stored in configuration parameters that can be arbitrarily
changed at runtime. Our system still achieves runtime char-
acteristics comparable to circuits that required expensive
pre-compilation in earlier work. It is fast enough to, e.g.,
process data at full gigabit Ethernet wire speed.

Our target application for this report is high-volume XML
filtering. More specifically, we describe an FPGA implemen-
tation for XML projection [9], a proven and effective method
to off-load computation work in XML streaming scenarios.
Exploiting architectural advantages of FPGA technology,
our system can be used to filter XML streams in the network.
This further improves the effectiveness of XML projection,
because clients no longer need to spend CPU cycles on costly
XML parsing and pre-processing.1

This paper is structured as follows. Sections 2 and 3 give
the necessary background on XML projection and FPGA
hardware. Our main contributions are covered in Section 4,
where we detail our FPGA-based automaton and how it
allows for runtime (re)configuration. Section 5 evaluates our
system, Section 6 relates our work to others’. We wrap up in
Section 7. For the interested reader, an appendix discusses
implementation and optimization aspects.

2. XML PROJECTION
Our work provides a hardware implementation for XML

projection. To understand the idea of XML projection, con-
sider the following query, which is based on XMark [15] data:

for $i in //regions//item return
<item> { $i/name }

<num-categories>
{ count ($i/incategory) }

</num-categories> </item>

(Q1)

This query looks up all auction items and prints their name
together with the number of categories they appear in.
1XML parsing is highly CPU-intensive, to the extent that
it may become a “threat to database performance” [13].



:::::
<site>

:::::::
<regions>

...

:::::::
<africa>

...

::::
<item id="item42">

::::::::::
<name>vapour

::::
wept

::::::
became

:::::
empty

:::::::
</name>

:::::::::
<incategory category="category3"

::
/>

:::::::::
<incategory category="category1"

::
/>

::::::
</item>
...

::::::::
</africa>
...

::::::::
</regions>
...
<open_auctions>

<open_auction id="open_auction0">
...

</open_auction>
...

</open_auctions>
...

::::::
</site>

Figure 1: XML projection. Only the
::::::::::
underlined

parts are needed to evaluate Query Q1, everything
else can be pruned.

projpath ::= path #?

path ::= fn:root() | path/step

step ::= axis :: test

axis ::= child | descendant | self
| descendant-or-self

test ::= * | text() | node() | NCName

Figure 2: Supported dialect for projection paths.

2.1 Projection Paths
Out of a potentially large XMark instance, Query Q1 will

need to touch only a small fraction that has to do with
items and their categories. What is more, this fraction can
be described using a set of very simple projection paths:

{ //regions//item,
//regions//item/name #,
//regions//item/incategory } .

Only nodes that match any of the paths in this set are needed
to evaluate Query Q1; all other pieces of the input document
can safely be discarded without effecting the query outcome
(as in [9], the # symbol indicates that subtrees below name

elements are to be preserved in the output, while all other
subtrees can be discarded).

Figure 1 illustrates the process for an XMark excerpt.
Only the

:::::::::
underlined parts of the document are needed to

evaluate Query Q1. Everything else will be filtered out dur-
ing XML projection.

Path Inference and Supported XPath Dialect. Mar-
ian and Siméon describe a procedure to statically infer the
set of projection paths for any given query Q. We adapt this
procedure and refer to [9] for details.

Paths emitted by the inference procedure adhere to a sim-
ple subset of the XPath language. Most importantly, the
subset only permits downward navigation, i.e., the self,
child, descendant, and descendant-or-self axes. The
complete XPath dialect supported by our hardware imple-

q0 q1 q2 q3 q4 q5

a

*

b a c d

*

Figure 3: Non-deterministic finite-state automaton
to implement query fn:root()//a/b/a/c//d.

mentation is shown in Figure 2. It essentially covers all
features in [9], but without namespace support.

For illustration purposes, in this paper we frequently make
use of the abbreviated notation in XPath, where, for ex-
ample, ‘//’ stands for ‘/descendant-or-self::node()/’ (in
our restricted dialect this is the same as ‘/descendant::’).

2.2 Path Evaluation (Previous Work)
For evaluation, projection paths are often viewed as reg-

ular expressions, evaluated over each node’s path starting
from the root. At runtime, a finite-state automaton is driven
by a SAX-style XML parser to evaluate a path expression.

Finite-State Automata. Figure 3 illustrates this approach
for the projection path fn:root()//a/b/a/c//d, which we
compiled into a non-deterministic finite-state automaton.
Observe how in this automaton each * corresponds to a
// descendant step in the input query.

Software implementations typically prefer deterministic
automata instead, since each input symbol can then be pro-
cessed using a single 〈state, symbol〉 7→ state lookup. This
has been realized, for instance, in the XFilter [1] system,
which creates one deterministic automaton for each regis-
tered query. On the flip side, non-deterministic finite-state
automata are significantly easier to construct and main-
tain. In YFilter [6], this allowed the use of a single non-
deterministic automaton that concurrently matches all reg-
istered input queries. The automaton structure is changed
whenever a query is (un)registered.

Backtracking. Either automaton type is to be evaluated
on every root-to-node path. To this end, automata are ad-
vanced upon every seen opening tag. On closing tags, the
system must backtrack to the originating automaton state.
To implement this functionality, systems maintain a stack
that holds a history of automata states. It is populated dur-
ing the handling of opening tags and consumed when the
corresponding closing tag is encountered.

Hardware Acceleration. Finite-state automata can be
implemented very efficiently in hardware (more details later).
In [10], this was used by Moussalli et al. to implement hard-
ware-accelerated XML filtering. Essentially, their system
compiles a set of path expressions into a YFilter-like NFA,
which is then run on an FPGA. Similarly, in [19] we com-
piled dedicated hardware circuits for complex event detection
queries over data streams. However, either approach incurs
a high compilation cost (of up to several hours) that has to
be invested for every change of the query workload.

Conversely, BaRTS [17] is an implementation technique
for finite-state automata in hardware that can be updated at
runtime (a use case is the ZuXA XML parsing engine [18]).
Its key is an elegant encoding scheme for transition tables
that can be stored and altered in on-chip memory. Unfortu-
nately, the technique is bound to deterministic finite-state
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Figure 4: Hardware implementation of the non-deterministic finite-state automaton in Figure 3.

automata and queries cannot be (un)registered to/from a
single deterministic finite-state automaton easily.

In this work we eat the cake and have it too. To effi-
ciently deal with (changing) XML projection workloads, our
system is based on non-deterministic finite-state automata,
which support fast runtime (re)configuration. We thus re-
fer to these NFAs as “soft” automata, implemented as static
circuits with runtime (re)configurable behavior.

3. SOME HARDWARE BACKGROUND
Virtually any hardware circuit consists of the same two

fundamental ingredients:

(i) Combinational logic, which is composed of basic logic
gates (‘and’, ‘or’, etc.). Each (Boolean-valued) output
fi(x̄) of a combinational circuit depends solely on its
input signals xj .

(ii) Flip-flop registers, which are 1-bit storage cells that
allow a circuit to save and maintain state. For larger
storage needs, circuits may further include dedicated
RAM, which has a higher integration density and thus
a lower cost but is less flexible.

The actual behavior of a hardware circuit is determined by
the Boolean functions f of its combinational parts and by
the wiring between logic and flip-flop registers.

In addition to the input data, most circuits depend on
a clock signal, a periodically changing high/low signal, to
synchronize all circuit components. The speed of a circuit is
determined by the clock frequency, but also by the amount
of work that the circuit can perform within each clock cycle.

3.1 Field-Programmable Gate Arrays
Field-programmable gate arrays (FPGAs) are also con-

sidered “sea of gate” devices that provide a large amount of
generic logic gates (so-called lookup tables) as well as flip-
flop registers. An FPGA can be programmed by defining
(a) the logic function f for each lookup table and (b) the
wiring in the programmable on-chip interconnect network.

Dedicated RAM is available on FPGAs in terms of so-
called Block RAM (or BRAM ). BRAM blocks can be allo-
cated and integrated into a user circuit in chunks of a few
kbits. For instance, the Xilinx XC5VLX110T FPGA chip we
used for our experiments contains 296× 18 kbit of BRAM.

In this work we do not actually exploit the reprogramma-
bility of the FPGA. Rather, we compile and upload a generic
circuit once, i.e., we program the FPGA once. The query
workload, including any workload changes, then only affects
configuration parameters within this circuit. Economic as-
pects aside (tailor-made chips have substantial manufactur-

ing costs), our system could be implemented equally well as
an application-specific integrated circuit (ASIC).

In fact, the given FPGA hardware imposes rather tight
constraints on the available resources and their distribution
on the chip. Managing these constraints adds to the chal-
lenge of building a hardware circuit. In [8], the authors
found that ASICs typically run more than three times faster
than FPGAs, yet they dissipate only 1/14 of the power. Sim-
ilar advantages could be expected from an ASIC implemen-
tation of our work.

3.2 Finite-State Automata in Hardware
Finite-state automata can be mapped mechanically to a

corresponding (but hard-wired) hardware implementation
which, after compilation, can be uploaded onto an FPGA.
Figure 4 illustrates this for the non-deterministic finite-state
automaton that we saw earlier in Figure 3.

In a circuit generated this way, every automaton state is
represented by a flip-flop register (labeled ‘FF’ in Figure 4).
Wires between flip-flops implement state transitions. An
‘and’ gate along these wires ensures that the transition is
taken whenever the originating state is active and a match-
ing input symbol is seen. * transitions are not conditioned
on the input symbol (thus, there is no ‘and’ gate along their
path). Whenever multiple transitions can activate a state,
these must be combined using an ‘or’ gate, as seen at the
inputs to states q0 and q4.

The automaton is driven by a tag decoder that parses the
XML input. Whenever it sees a tag named a, . . . , d, it
sets the corresponding output signal to ‘1’. The tag decoder
itself can be implemented as a finite-state automaton, too.

Not shown in Figure 4 is the clock circuitry that ensures
that the automaton state is advanced on every clock tick.
A stack data structure, needed to support the XML tree
structure, can be attached on the side to the finite-state au-
tomaton. States q0 through q5 are pushed/popped to/from
this stack during start/end element events then (refer to [10]
for details).

4. DYNAMIC XML PROJECTION
The above idea works well if the whole finite-state au-

tomaton including its structure is known in advance, i.e.,
when the circuit is compiled and uploaded to the FPGA. In
this work we aim for dynamic XML projection, where the
query workload can be modified at runtime (after FPGA
programming).

4.1 System Overview
To support runtime (re)configuration, we built a special

FPGA circuit whose high-level design is illustrated in Fig-
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ure 5. Raw XML data enters the system at the left end of
the figure, where an XML parser analyzes the syntactical
structure of the stream. Enriched with parsing informa-
tion (“cooked”), the XML stream passes through a series of
segment matchers that perform the actual path matching.
Finally, the serializer at the right end of the figure copies
matches to the circuit output and ensures a well-formed
XML result. We detail the inner workings of each build-
ing block in the following.

The segment matchers take the lion’s share of the avail-
able chip space (in practice there are hundreds of them).
Together with the XML parser and the serializer they are
arranged in a strictly sequential circuit structure. Such a
structure can be mapped particularly efficient to the avail-
able two-dimensional chip space, for instance using a snake
shape as illustrated in Figure 6. A so-obtained chip lay-
out has a simple routing structure with only short-distance
links. As we will see in Section 5, this allows us to operate
our system at very high clock speeds to achieve correspond-
ingly high throughput rates.

The sequential design exploits an important characteris-
tic of non-deterministic finite-state automata that are built
from projection paths: each such automaton will always
have a strictly linear structure, only interspersed with *
transitions for each descendant step in the path. Every
segment (marked at the bottom of Figure 4) of the linear
automaton corresponds to one part of the path expression
that is evaluated.

The chain of segment matchers in our system realizes this
structure in a generic fashion, whereby segment matchers
can be runtime-(re)configured to include a * loop or not.

4.2 XML Parsing
The input XML byte stream enters our system on the left

clk

data < a b c > x y z < / a b c >

token

time

τ1 τ2 τ3 τ4 τ1 τ5 τ2 τ6

τ1: TagStart τ4: Text
τ2: TagNameChar τ5: ClosingTagSlash
τ3: OpeningTagEnd τ6: ClosingTagEnd

Figure 7: Timing diagram of XML parser output.
The XML stream is enriched with a token signal to
make lexical information explicit.

side of Figure 5 and is fed into the hardware XML parser.
Much like a SAX parser in the software world, our parser
identifies lexical elements in an input stream. While doing
so, the parser annotates the raw XML input stream with a
token field that makes the lexical structure of the stream ac-
cessible to subsequent processing units. We refer to an XML
stream with token annotations as a cooked XML stream.

The behavior of the XML parser component is illustrated
in Figure 7 as a timing diagram (clk is the FPGA clock
signal). The token signal carries values of an enumeration
type, whose symbolic names we listed at the bottom of the
figure. We implemented the XML parser component with
help of our Snowfall parser generator [16]. The parser is
standards-compliant, but lacks support for namespaces and
DTDs.

4.3 Path Matching
The key building block of our system is its path matching

engine, which consumes a “cooked” XML stream and en-
riches it with a match flag. This flag is interpreted by the
serializer to produce the projected XML document. To un-
derstand the inner workings of the path matching engine, we
first assume there is only a single path expression to match.
In Section 4.4, we extend the setup to support multiple pro-
jection paths.

4.3.1 Segment Matchers
The path matching engine consists of a series of segment

matchers. Together, this series implements a hardware-
based NFA (cf. Figure 4), but now in a fully runtime-(re)con-
figurable way.

Each segment matcher thereby implements one of the NFA
segments that we indicated at the bottom of Figure 4. On
the XPath language level, each segment corresponds to a
node test and the XPath navigation axis that follows it. On
the hardware side, an NFA segment contains some ‘and’ and
‘or’ gates, a flip-flop register, and—depending on the XPath
axis to match—a back loop * or not. Rather than wiring
and combining these logic components statically, a segment
matcher can implement any possible combination of gates
(and loops); the exact behavior is determined by runtime
parameters that can be modified on-line.

4.3.2 Configurable NFA Block
Wiring and gate combination are implemented in our sys-

tem by a component that we call configurable NFA block.
It is parameterized by an axis information that decides on
the logic gates to combine and it enables or disables the *
loop.

The role of the configurable NFA block (“cNFA block”) in-
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1 switch din.token do
2 case OpeningTagEnd
3 if (tag matches and match in)
4 or (axis = desc and history[last]) then
5 match := true;

6 else
7 match := false;

8 push (history, match);

9 case ClosingTagEnd
10 pop (history);

Algorithm 1: Pseudo code for configurable NFA.

side a segment matcher is illustrated in Figure 8. Through
its match in signal, the block receives the match state of
the preceding segment matcher (this corresponds to the for-
warded flip-flop states in Figure 4). The input signal din
contains the cooked XML input stream.

The configurable NFA block interfaces to two flip-flop reg-
isters that encode the four supported XPath axes. This in-
formation is runtime-(re)configurable, which we indicate as

in our illustration. The state of the two axis flip-flop reg-
isters will determine in which way ‘and’ and ‘or’ gates are
to be combined for this NFA segment.

As in the hard-wired circuit (Figure 4), the current match-
ing state for each NFA segment is represented by a flip-flop
register, which we represented as in Figure 8. Here we
embedded the flip-flop inside a history unit that implements
backtracking inside the segment matcher.

In hardware, the history unit is implemented using a shift
register whose contents can be shifted left/right as the parser
moves down/up in the XML tree structure (e.g., upon open-
ing and closing tag events). The rightmost bit of this shift
register corresponds to the current state and is propagated
to the outside in terms of the match out signal. In the
software world, the history unit would best compare to a
stack for single-bit values, where the stack top determines
the match out signal.

Algorithm 1 summarizes in pseudo code the behavior of a
configurable NFA block.2 Matching occurs when an open-
ing XML tag is fully consumed. Lines 3–7 then combine
the axis parameter, tag match information, the input match
flag, and (to implement * loops) the existing match state
to determine a new match state. This new match state is

2For ease of presentation we simplified to only child or
descendant axes.

then pushed/shifted into the history shift register (line 8),
which implicitly makes the information also available on the
match out port. The match state is restored from the history
shift register when a closing tag is consumed (lines 9–10).

The pseudo code in Algorithm 1 can straightforwardly be
translated into a Verilog/VHDL circuit description. Note
that in hardware this code is not executed as sequential
code. Rather, the code is compiled into combinational logic
that drives the control signals of the hardware shift register.

4.3.3 Tag Decoding
Input to the configurable NFA block is an information

whether an element with corresponding tag name was seen
in the input. The classical approach to this sub-problem
is shown in Figure 4. A dedicated tag decoder is compiled
along with the main NFA. It includes a hard-wired set of
tag names and produces a separate output signal for each
tag name in the set. These signals are wired to segments in
the NFA as needed (top part of Figure 4).

Two fundamental problems render this approach unsuited
for our scenario: (a) the set of all interesting tag names
must be known at circuit compilation time (no runtime-
(re)configuration) and (b) routing the output signals of the
tag decoder may require long signal paths which will deteri-
orate performance.

In our system, tag name matching is wrapped inside each
of the segment matchers (cf. Figure 8), which keeps signal
lengths short and independent of the overall circuit size.

Inside each segment matcher, tag matching then boils
down to a string comparison, which is simple to do in hard-
ware and thus allows for high clock speeds. Each incoming
tag name is compared to a tag predicate (a tag name, wild-
card, or node test). The tag predicate is part of the query
workload and held in dedicated RAM blocks, one of which
is connected to each tag matcher.

4.3.4 Matching a Whole Path
The combination of a number of segment matchers as

a chain (see system overview in Figure 5) yields a non-
deterministic finite-state automaton that can match a sin-
gle path expression. A recognized match is indicated by a
raising of the match out signal of the right-most segment
matcher.

The number of matchers required to match a path p de-
pends on the length of p: one matcher is needed for each
path step, plus a special matcher configuration that imple-
ments fn:root () (we detail this in a moment).

4.4 Matching Multiple Paths
Besides maintaining its own match state, each segment

matcher in the path matching engine passes the (cooked)
input XML stream directly on to its right neighbor. We
can use this property to evaluate multiple projection paths
within the same processing chain.

Figure 9 illustrates the idea. As the XML input is streamed
through, sections of the entire chain of segment matchers
are responsible for evaluating different projection paths pj .
To realize this setting, all we have to do is ensure proper
behavior at both ends of a chain section. We do so by in-
troducing an explicit fn:root () implementation and with
help of match merging at the right end of a chain section.

Implementing fn:root (). A matcher for the XPath built-
in function fn:root () is the only one that does not depend
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single processing chain.

on any previous matches. By placing it in front of every
projection path, we break the linear finite-state automaton
into separate automata that evaluate paths independently.

To evaluate fn:root (), a matcher must (a) enter a match-
ing state exactly when parsing is at the XML root level and
(b) become active in no other situation. We already have
the tools available to implement both aspects of behavior.

To implement (a), we can initialize the history shift regis-
ter such that history[last] ≡ true (so far we silently assumed
that history[last] is initialized to false). The true flag will au-
tomatically be shifted around such that the matching state
re-appears whenever parsing moves back up to the root level.

Property (b) can be assured by keeping the match in signal
low at the input of every chain section. The matcher will
then match no tag in the document (Algorithm 1, line 3),
but still follow a * transition if it is configured to do so
(i.e., if fn:root () is followed by a descendant step; line 4
in Algorithm 1).

Match Merging. At its right end, each chain section will
compute the match state for its corresponding projection
path. The serializer at the end of the processing chain must
be informed whenever some path along the chain found a
match.

To establish such an information, we differentiate between
local matches (for each of the pj) and a global match. The
former corresponds to the match out signal that we used so
far to find single-path matches. To implement the latter, we
propagate an additional match flag along the chain and, at
the end of each chain section, merge it with the local match
result by means of a logical ‘or’ gate.

Resource Allocation. Note that the division of the entire
chain of segment matchers into sections is not static. Rather,
a sequence of segment matchers is allocated as needed for
each projection path. This lets us make efficient use of re-
sources and use the same circuit to match either many short
paths or fewer paths if they are very long.

4.5 XML Serialization
Our engine is designed to support XML projection in a

fully transparent manner, where the receiving query proces-
sor need not even know that it operates on pre-filtered XML
data. Thus, the document must be filtered in such a way
that an oblivious back-end processor will still produce the
same query output (provided that all its projection paths
have been configured in our engine).

To exemplify, the document filter must preserve site,
regions, and africa elements in Figure 1, even though they
are not themselves matched by any projection path. Other-
wise, Query Q1 will miss its regions elements and return an
empty result or—even worse—fail entirely because the pro-

cNFA block
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tag matcher
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history
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segment matcher

din

match in

dout

match out

Figure 10: Configuration logic changes workload pa-
rameters outside the main processing and data path.

jected document contains more than a single root element.
Therefore, the serializer component of our circuit ensures

that the root-to-node paths of all matching nodes are pre-
served in the circuit output. As the input stream is pro-
cessed, the serializer writes all opening tag names into a
dedicated RAM block. When a match is found, this infor-
mation is read back and used to serialize full root-to-node
paths. Serializer implementation details can be found in
Appendix C.

4.6 Runtime (Re)Configuration
The main goal of this work is to allow for dynamic query

workload changes at runtime. This is made possible by keep-
ing all query workload-specific parameters in on-chip storage
cells that can be modified at runtime (indicated as double-
lined boxes in Figure 8). Query workload changes can be
applied by writing new parameters into these storage cells.
For reasons discussed in Appendix A.1, we use dedicated
RAM to store tag predicates and flip-flop registers for the
navigation axes.

A side effect is that query workload configuration can
be kept completely outside the main processing and data
path. As illustrated in Figure 10, separate configuration
logic can maintain both configuration parameters without
interference with the processing logic. In Appendix A we
describe one particular way to implement the configuration
logic, with query workload information multiplexed into the
network data stream. Alternatively, the configuration logic
could receive its input, e.g., via PCI or USB channels.

5. EVALUATION
We implemented and tested our system on widely avail-

able and low-cost ($750 academic price) FPGA hardware.
The Xilinx XUPV5 development board is equipped with a
Virtex-5 XC5VLX110T FPGA (69,120 LUTs, 69,120 flip-
flops; 296×18 kbit BRAM) and has a number of I/O connec-
tors to communicate with outside systems. In the following
Section 5.1 we first characterize the core XML projection
engine, before in Section 5.2 we show how the engine could
be used in a working system.

5.1 Core Engine
We focus our evaluation of the core XML projection en-

gine here on its scalability. We want the circuit to sustain
network-speed throughput even when sizes or amounts of
queries are large. Another indicator for the quality of an
FPGA design is its resource utilization. We discuss this in-
dicator along with optimization strategies in Appendix B.

Clock Frequencies. To evaluate the scalability, we created
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Figure 11: Maximum clock frequency for various
engine configurations. Frequency is not strongly in-
fluenced by circuit size.

instances of our projection engine with a varying number of
segment matchers n. This number controls the maximum
size of the query workload (one path step per matcher) but
also the chip space requirements of the circuit. For each
configuration, we used FPGA design tools to determine the
maximum clock frequency at which it could be operated.3

Figure 11 illustrates the numbers for our basic circuit (“no
BRAM sharing”) but also with resource optimizations (cf.
Appendix B.2) applied (“k-way BRAM sharing”).

The clock frequency directly determines the maximum
speed of the XML projection engine. One input byte can
be processed on every clock cycle, i.e., up to 150–175 MB/s
of sustained XML throughput. This is more than enough for
the use cases our system is designed for: our FPGA imple-
mentation could easily, for instance, keep up with an XML
stream that is served from disk or via a network link.

Scalability. The clock frequencies shown in Figure 11 are
also a good indicator for the scalability properties of our sys-
tem. Since chip space and parallelism are the main asset of
FPGAs, the achievable clock frequency should not (signifi-
cantly) drop when the circuit size is scaled up. Only then
can a circuit really benefit from expected advances in hard-
ware technology (Moore’s law predicts that the transistor
count per chip doubles approximately every two years).

In our case the achievable clock frequency stays high even
for configurations that significantly exceed the 70-80 % chip
utilization beyond which performance often decreases [5].
It is reasonable to expect that our system would keep its
performance characteristics even when it was scaled up to
5000 or more segment matchers on current Virtex-6 chips.

5.2 XML Projection in the Network
Besides performance and power consumption advantages,

the main benefit of FPGA technology lies in system integra-
tion opportunities that cannot be matched with commodity
hardware. To demonstrate this advantage, we connected our
engine directly to a hardware Ethernet interface. The so-
obtained system can perform XML filtering in the network
as data is sent from a network server to a client.

In the resulting system, the client will not only benefit
from reduced memory overhead during query processing (the

3We report only the discrete clock frequencies supported by
the on-chip PLL clock generator.
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Figure 12: Speedup and improvement in memory
consumption due to XML projection for first 10
XMark queries (memory reduction for Q6 and Q8
out of scale).

main incentive in [9]) but also from lesser parsing overhead,
which is a significant cost factor in typical XML applica-
tions [13].

We verified this on the basis of the Saxon-HE (version
9.2.1.2J), a state-of-the-art XQuery processor for in-memory
processing, and the XMark benchmark suite [15]. We used
an XMark instance of scale factor 1 and measured parsing
time, query execution time, and memory consumption of
Saxon when running the 20 XMark queries. Since Saxon
cannot directly process the streaming XML protocol of our
engine, we measured the filtering throughput of our FPGA
and Saxon performance independently (and ran all Saxon
experiments from a memory-cached file).

Filtering Throughput. By design, our system operates in
a strict streaming mode and, as detailed above, can sustain
throughput rates of 150–175 MB/s. This is more than the
Gigabit Ethernet link of our system can provide, so effec-
tively our system is limited by the physical network speed.

We verified this on real hardware and observed a maxi-
mum payload throughput of 109 MB/s on a 100 MB XMark
instance. With protocol overhead counted in, this corre-
sponds to a bandwidth of 123 MB/s on the physical network
link, or 98.7 % of its maximum capacity. To fully saturate
our filtering engine, we would have to connect our chip to a
faster network (e.g., 10 Gb/s Ethernet) or to a different I/O
channel (e.g., to a disk controller).

Application Speedup. On the application side, in-network
filtering leads to significant improvements in parsing time,
execution speed, and memory consumption. On raw data,
Saxon requires 2.79 sec for input parsing (independent of
the query) and uses between 450 MB and 1.3 GB of main
memory (query-dependent; average over all XMark queries:
560 MB). Filtering reduces the parsing time to 37–680 msec
(query-dependent; average: 322 msec) and main memory re-
quirements to 20–365 MB (average: 82 MB).

Figure 12 visualizes the speedup in processing time and
the improvement in main memory consumption for the first
10 benchmark queries. As expected, the main benefit of
hardware-accelerated XML projection is the reduced pars-
ing time, combined with significantly reduced main memory
requirements.



6. MORE RELATED WORK
After Marian and Siméon proposed the concept of XML

projection in [9], the idea was expanded into different direc-
tions by the research community.

On the path evaluation side, Koch et al. [7] suggested an
interesting alternative to the automaton-based path match-
ing as we discussed it in Section 2.2. The key insight are
the problem’s similarities to string matching. This allows
the use of proven-efficient string matching algorithms for
the matching task, such as the classical Boyer-Moore [3] al-
gorithm or—to match sets of paths—the string matching
algorithm of Commentz-Walter [4]. On the flip side, nei-
ther of those algorithms operates in a strict streaming mode,
which makes them more difficult to use for hardware-based
in-network processing.

The work of Benzaken et al. [2] proposes type-based XML
projection. At runtime, the system checks type annotations
in a validated input stream, which shifts much of the ex-
pensive work to the validation part. Much like projection
paths, the necessary validation can be performed using state
automata. With some modifications to our “soft automa-
ton,” we think that validation could be done in hardware,
too. This would combine the advantages of [2] into our ar-
chitecture.

FPGAs are an increasingly attractive alternative to over-
come the architectural limitations of commodity hardware.
The FPGA accelerators in the IBM/Netezza [12] data ware-
housing appliance are based on a parametrization mech-
anism, too. Based on parametrization, the included FP-
GAs can perform very simple filtering and table projection
tasks near the attached disk controllers. Our ambition in
Avalanche is to leverage FPGAs for tasks far beyond the
most simple ones, such that the critical pieces of a query
execution plan can be run fully in hardware.

7. SUMMARY
We presented a hardware implementation for XML pro-

jection, a proven-effective method to reduce processing and
main-memory overhead of XML processors. As such, we
make the architectural advantages—such as in-network proc-
essing—and performance benefits of FPGAs accessible to
XML processing. We demonstrated both aspects with a
micro-benchmark of the main projection engine and by pair-
ing our system with a state-of-the-art XQuery processor.

The key innovation of our work, however, goes far beyond
the presented XML projection scenario. Unlike any existing
FPGA solution found in the database literature, our sys-
tem is fully runtime-reconfigurable. Our “soft automaton”
approach allows runtime query workload changes that be-
come instantly effective (while existing solutions may require
hours of off-line compilation to load a new workload).

On the hardware technology side, our work contributes
a filtering engine with very favorable scalability properties.
This makes our work ready for upcoming chip generations
that will provide significantly more chip space.

The work we presented in this paper is part of our research
effort Avalanche. Our goal is to design a highly dynamic en-
gine with support for ad-hoc querying and runtime resource
optimization.
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APPENDIX
To better focus on the key principles of our system, the
main body of this paper abstracts away from many low-
level aspects. In this appendix we add the missing details to
make this work a documentation of our complete system, in-
cluding a concrete implementation of the configuration part
(Part A), hardware-based optimizations (Part B), and de-
tails on the serializer component (Part C).

A. RUNTIME (RE)CONFIGURATION
Runtime (re)configuration is achieved by placing query

workload-specific information into suitable types of on-chip
storage elements and by implementing a configuration logic
that can update this storage at runtime. We discuss both
aspects in turn.

A.1 Parameter Storage
The projection depends on two flavors of query workload

information: (a) the XPath axis of each navigation step and
(b) the tag predicate that has to be evaluated along with the
step (i.e., a tag name or some information that encodes a
node test). Both pieces of information could be placed either
in flip-flop registers or in dedicated RAM (block RAM). To
use the available capacities efficiently, we use both storage
types, namely flip-flop registers for the XPath axis and block
RAM for the tag predicate of each navigation step.

Flip-flop registers can be allocated at a granularity of a
single bit. This is a good fit for small-sized pieces of informa-
tion, such as the configured XPath axis or the fn:root ()/
end of chain section flags. The benefit is two-fold: (a) we
can allocate just the number of bits really needed for those
parameters and (b) flip-flops are directly woven into the re-
maining FPGA fabric, which lets them efficiently interact
with lookup tables that, e.g., implement the gates in a con-
figurable NFA node.

Tag predicates, by contrast, can become much larger. Thus,
we choose dedicated RAM to store them. Virtex-5 FPGAs
contain hundreds of built-in BRAM blocks, each of which is
18 kbit in size. This is suitable for storing tag predicates
and leaves some room to accommodate even large query
tag names. By default we allocate one BRAM block for
each segment matcher. But we will shortly see how resource
utilization and circuit performance can be improved if this
allocation strategy is changed.

A.2 Configuration Logic
Deliberately we did not describe any specific implemen-

tation for the configuration logic in Section 4.6. Such logic
depends on the way how query workload information is pro-
vided to the hardware implementation (e.g., via PCI, USB,
or a dedicated network link), which is orthogonal to path
processing itself. Here we illustrate one possible implemen-
tation where query workload information is multiplexed into
the input data stream.

Query Workload Format. This representation of the
query workload information is illustrated in Figure 13. Pro-
jection paths are injected directly in the input XML stream,
primarily because this keeps our prototype implementation
self-contained. Special processing instructions <?query . . . ?>
distinguish the query workload from the actual XML stream.
These processing instructions are recognized by a small set

<?xml version="1.0"?>

<?query reset?>
<?query fn:root()/descendant::regions/descendant::item?>
<?query fn:root()/descendant::regions/descendant::item

/child::name #?>
<?query fn:root()/descendant::regions/descendant::item

/child::incategory?>

<site>
<regions>

...
</regions>
...

</site>

Figure 13: XML document with projection process-
ing instructions <?query ...?> included.

config. logic

tag predicate

ax.

segment matcher

din
conf in conf out

configured
flag

Figure 14: Configuration logic for runtime query
workload (re)configuration.

of XML parser extensions. In the“cooked”XML data stream
they are represented as special token values.

Configuration Logic. The configuration logic itself is dis-
tributed and integrated into the segment matchers. The
logic snoops the bypassing XML stream on the din signal
line and writes configuration information into the respective
storage units.

Figure 14 illustrates this interaction. Configuration logic
in the middle interprets the din signal and updates tag pred-
icates as well as the flip-flop-based configuration flags. Con-
figuration updates will become effective immediately. Any
following XML data will always be processed according to
the new query workload.

Matcher Allocation. For new query workloads, segment
matchers are allocated and configured from left to right (that
is, the first workload query p1 will occupy a matcher sub-
set just after the XML parser; later pi will follow in the
processing chain toward the serializer; cf. Figure 9).

To implement this behavior, the distributed pieces of the
configuration logic synchronize between themselves with help
of a configured flag (implemented as a flip-flop register) and
conf in/conf out signals that are propagated from left to
right. A local piece of configuration logic “listens” to con-
figuration tokens as soon as its predecessor has raised the
conf in signal. Once the local configuration is complete, the
baton is passed to the right by setting the configured flag
(and thus raising the conf out signal).

Writing the Local Configuration. Parameters are writ-
ten into local configuration storage while the parser tokens
are passed through (tokens arrive in the same order as they
are seen in the processing instruction, i.e., in the XPath lan-
guage format). As shown in Algorithm 2, different tokens
will trigger writes to different storage locations (lines 1–3
and 13 implement the aforementioned synchronization).

A segment matcher corresponds to one node test and its



1 if din.type = ConfReset then
2 configured ← false;

3 if conf in and not configured then
4 switch din.token do
5 case AxisChild
6 axis ← child;

7 . . .
8 case NameTestChar
9 update tag[. . . ];

10 case FnRoot
11 history[last] ← true;

12 case EndOfPath
13 end of chain section ← true;

14 case ColonColon
15 configured ← true;

Algorithm 2: Semantics of configuration logic.

following XPath axis. Thus, the local configuration is com-
plete when the :: is seen in the input stream. As shown
in lines 14–15, this is the situation where the configured flag
is set and the configuration baton passed on to the right.
Lines 10–11 and 12–13 modifiy the history shift register and
set the end of chain section flag as needed to match multiple
paths in one pipeline (cf. Section 4.4).

The <?query reset?> processing instruction clears all con-
figured projection path. Lines 1–2 in Algorithm 2 implement
this by clearing the configured flag when the ConfReset to-
ken is seen in the stream.

B. TUNING FOR PERFORMANCE
The high-level design of our engine is prepared to exploit

some of low-level characteristics of the underlying FPGA
hardware. In this section we fill in some of the implementa-
tion details that work toward goals in FPGA design that are
quite distinct from those in software-based environments.
Most importantly, an FPGA circuit must (a) meet tight
timing constraints (such that it can be operated at high
clock speeds) and (b) be economic on chip space (to support
real-world problem sizes at low cost). Here we particularly
elaborate on pipelining and BRAM sharing as ways to ad-
dress both aspects.

B.1 Pipelining
The standard approach to hardware-based finite-state au-

tomata is to forward incoming stream tokens simultaneously
to all involved automaton states. In Figure 4, for instance,
the output of the tag decoder was sent to all ‘and’ gates at
the same time. Figure 15(a) emphasizes the same concept
but hides the inner details of circuit segments segi.

Figures 4 and 15(a) both also show the problem that this
incurs. For larger automata, the length of the ‘input stream’
communication paths will increase. In general, the process-
ing speed of any hardware circuit is determined by its longest
signal path.

NFAs for XML Projection. When arbitrary automata
shapes must be supported, this problem is inevitable, since
new value of a state qi might depend on any other state
qj . Non-deterministic finite-state automata generated from

seg0 seg1 seg2 seg3 seg4 seg5st

input stream

(a) standard approach to hardware NFA

seg0 seg1 seg2 seg3 seg4 seg5st

input str.

(b) fully pipelined NFA for XML projection

Figure 15: Standard hardware NFA implementation
(top) requires long signal paths. Pipelining (bot-
tom) reduces signal paths by inserting registers .

XML projection paths, however, will always follow a very
particular pattern. Their shape is strictly sequential and all
data flows into the same direction.

Pipelining. The corresponding circuits are thus amenable
to pipelining, a very effective circuit optimization technique.
Figure 15(b) illustrates the idea. The one-directional data
flow is broken up into disjoint pipeline stages (indicated with
a dotted line). Whenever any signal crosses a stage bound-
ary, a register (marked as ) is inserted.

With the registers in place, the longest signal path is now
reduced to the longest path between any two registers. What
is more is that the longest path length no longer depends
on the overall circuit size, but remains unchanged even if
the automaton size is scaled up. This way, in an n-stage
pipeline the available FPGA hardware parallelism is turned
into a parallel processing of n successive input data items.

Throughput vs. Latency. Pipelining primarily increases
the throughput of a hardware circuit. The clock frequency
is increased and, in a fully pipelined circuit, a new input
item can enter the circuit at every clock cycle. This ben-
efit comes at the expense of a small latency penalty that
increases proportional to the pipeline depth. In general this
penalty is negligible: with a 6 ns clock period, even a 500-
stage pipeline will have a latency of only 3µs—far less than,
say, the travelling time of the same data item over the net-
work in a client-server setup.

Pipelining in Our System. Pipelining is particularly ef-
fective in FPGA designs. In FPGA hardware, each lookup
table is inherently co-located with a flip-flop register (to-
gether they are packed into so-called slices). Thus, by en-
abling those registers, throughput can be improved at very
little cost (since the flip-flop register would remain unused
otherwise).

In our system, we place a pipeline register after every seg-
ment matcher. As a consequence, all signal lengths remain
well within the range of clock frequencies that the FPGA
hardware has been designed for. This is the main reason why
in Section 5.1 we observed throughput rates (clock speeds)
that are independent of the circuit size.

XPath Semantics. At this point we would like to note an
interesting side effect of pipelining to the semantics of XPath
evaluation. Consistent with the original work on XML pro-
jection [9], our supported language dialect covers the XPath
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Figure 16: BRAM sharing. Two segment matchers
store their tag predicates in the same RAM block.
Since each block has only one interface, matchers
seg2k−1 mediate traffic for matchers seg2k.

self and descendant-or-self axes. These axes can not
be expressed using an off-the-shelf hardware automaton like
the one shown in Figure 4, because a segment circuit segi

will report a new match state only after an input item x has
been consumed; this is too late for the successor segi+1 to
perform a match on the same input item x.

In a pipelined circuit x is processed by segi+1 one cy-
cle later. This gives us the opportunity to fast-forward the
match state of segi in case of a self or descendant-or-self
axis. A fast-forwarded state bypasses one intermediate reg-
ister to make up for the missing clock cycle needed to im-
plement the ‘self’ functionality.

Without pipelining and fast-forwarding, a system would
either have to make k successive transitions on a single in-
put symbol to evaluate k successive self steps, or support
k-ary conjunctive predicates for state transitions. Both ap-
proaches would introduce another parameter dimension with
significant complexity in the hardware-based designs. As far
as we are aware, existing path evaluators based on state ma-
chines do not support ‘self’ at all (e.g., XFilter/YFilter).

B.2 BRAM Sharing
Dedicated on-chip RAM is a good fit to store tag pred-

icate configuration parameters directly along each segment
matcher. This may lead to an upper limit on the number of
matchers that can be instantiated (and thus the supported
size of projection path sets), because the available number
of RAM blocks is fixed. The Virtex-5 chip that we used in
our experiments, for instance, contains 296 blocks of RAM,
which would limit the number of segment matchers to 296.4

At the same time, we are underutilizing the available RAM
blocks. The full 18 kbit of a Virtex-5 BRAM unit are rarely
needed for a tag predicate in real world and we read out only
one character at a time even though BRAMs would support
a (configurable) word size of up to 36 bits.

BRAM usage can be improved by sharing each BRAM
unit between two or more segment matchers, which effec-
tively multiplies the supported NFA size. Figure 16 illus-
trates how this idea can be realized in FPGA hardware.
Since there is only a single port to each BRAM block, some
segment matchers act as mediators that relay communica-
tion for their neighbors.

Resource Utilization. BRAM sharing is useful only up
to the point where the number of matchers is bound by
the amount of logic resources (lookup tables and flip-flop
registers) available. A given piece of FPGA hardware is
best exploited if the use of BRAM and logic resources are
properly balanced.

4In practice, this number is further limited, because the se-
rializer component and surrounding glue logic require few
additional RAM blocks.

0 %

25 %

50 %

75 %

100 %

re
so

u
rc

e
u
ti

li
za

ti
o
n

0 100 200 300 400 500 600

number of segment matchers n

no BRAM sharing:

BRAM utilization
logic utilization

3-way BRAM sharing:

BRAM utilization
logic utilization

Figure 17: FPGA chip resource consumption of var-
ious engine configurations. BRAM sharing allows to
balance the use of logic and BRAM resources to ob-
tain a larger overall engine size.

We evaluated resource consumption for the hardware we
had available. Again we instantiated various configurations
of the XML projection engine (varying number of segment
matchers; with and without BRAM sharing enabled) and
this time determined the FPGA resources that the result-
ing circuit was using. Figure 17 reports the utilization for
BRAM units (filled markers) and logic blocks (empty mark-
ers) as a percentage of the total available BRAMs/slices on
the chip.

As can be seen in the graph, without BRAM sharing
(square markers) all BRAM resources are used up for circuit
configurations beyond ≈ 250 segment matchers (while more
than 1/3 of the available logic resources are unused). Besides
a clear indication that the configuration underutilizes the
available hardware, this situation also explains the perfor-
mance degradation in Figure 11 with 250 segment matchers
and no BRAM sharing. To reach the BRAM blocks that are
spread all across the chip die, the matching pipeline must
be stretched artificially to cover the entire chip. This again
increases signal paths and thus limits the achievable clock
rate.

Balancing Resources. Resource utilization is better bal-
anced when BRAM sharing is enabled. With 3-way BRAM
sharing (i.e., three segment matchers share one BRAM block;
plotted using diamond symbols), the maximum number of
segment matchers is now limited by logic resources (lookup
tables for that matter) and we can instantiate up to 600 seg-
ment matchers on our chip (i.e., we can support more than
two times as many concurrent projection paths).

With 2-way sharing (not shown in the graph for space
reasons), BRAM and logic utilization are almost perfectly
in balance. As we saw earlier in Figure 11, 3-way sharing still
has a slight advantage in terms of the number of matchers
supported. For this particular hardware, 3-way sharing is
thus the best choice.

C. XML SERIALIZATION



1 switch din.token do
2 case TagStart
3 opening tag ← true;

4 case ClosingTagSlash
5 opening tag ← false;

6 case TagNameChar
7 if opening tag then
8 copy din.char to tagmem[mempos];
9 mempos ← mempos + 1;

10 case OpeningTagEnd
11 push (tagstack, mempos);
12 current level ← current level + 1;

13 case ClosingTagEnd
14 if not match then
15 print_closing_tag (printed level);

16 printed level ← printed level - 1;
17 mempos ← pop (tagstack);
18 current level ← current level - 1;

19 if match then
20 while printed level < curr level do
21 printed level ← printed level + 1;
22 print_opening_tag (printed level);

23 copy din.char to dout;

Algorithm 3: The XML Serialization unit makes sure
that full root-to-node paths are preserved for all out-
put nodes. To this end, opening tags are copied to
on-chip BRAM.

As discussed on a high level in Section 4.5, the serializer
component in our system temporarily writes opening tags
into a dedicated RAM block. Whenever a match is detected,
it copies those tags into the output stream to ensure that the
projection remains transparent to the receiving application.

Algorithm 3 makes this functionality explicit. Lines 2–12
copy all opening tag names from the input stream to the
dedicated RAM tagmem. When a match is discovered by
the path matching engine, lines 20–22 check whether any
opening tags are still missing in the output stream and emit
them (using data from BRAM) if need-be. Line 23 copies
all matching data directly to the output stream.

Lines 14 and 15 make sure that tags are properly closed
again (even when they are not fully contained in any matched
document region). Lines 16–18 do the necessary bookkeep-
ing for closing tags.


