
Snowfall: Hardware Stream Analysis Made Easy

Jens Teubner Louis Woods
ETH Zurich, Systems Group · Universitätstrasse 6 · 8092 Zurich, Switzerland

{jens.teubner | louis.woods}@inf.ethz.ch

1 Introduction

Field-programmable gate arrays (FPGAs) are chip devices that can be runtime-reconfigur-
ed to realize arbitrary processing tasks directly in hardware. Industrial products [Net, Xtr]
as well as research prototypes [MTA09, MVB+09, SLS+10, TMA11] demonstrated how
this capability can be exploited to build highly efficient processors for data warehousing,
data mining, or stream analysis tasks.

On the flip side, the construction of dedicated hardware circuits requires considerable engi-
neering efforts and skills that are often not available in application-focussed development
teams. To bridge this gap, at ETH we developed a set of tools that aid developers for
high-performance stream processing solutions and enable agile hardware generation for
changing application demands.

In this demonstration, we showcase Snowfall, a compiler tool for low-level stream analysis.
Comparable to scanner generators for software-based systems (e.g., lex/flex), Snowfall
can be used to decode incoming data streams in hardware, react to low-level patterns in a
stream, and perform initial input data analysis. Snowfall plays well together with Glacier,
a query-to-hardware compiler that we described and demonstrated in [MTA09, MTA10].
A typical use case is to use Snowfall for input parsing and pre-processing, then perform
SQL-style query processing on top with a hardware query plan obtained with help of
Glacier.

In the demo, we illustrate Snowfall based on a real-world use case with exceptionally high
demands for throughput and latency. With help of Snowfall, we perform risk checking for
financial trading applications. Snowfall allows for a declarative description of the problem,
yet will generate a hardware circuit that can process input streams in real time.

2 Field-Programmable Gate Arrays and State Machines

Field-programmable gate arrays (FPGAs) are programmable chip devices that can imple-
ment electronic circuits directly in hardware. They are programmed with a hardware de-
scription language such as VHDL or Verilog. Vendor-provided synthesis tools map circuit
descriptions expressed in these languages to basic FPGA device primitives (e.g., lookup

SOH = 0x01; # special value "SOH" (field delimiter)
FIXVersion = "4.2";

FIX Data Types
Length = [0-9]+;
Qty = [0-9]* (’.’ [0-9]*)?;
String = (any - SOH) *;

FIX Fields
BeginString = "8=FIX." FIXVersion SOH;
BodyLength = "9=" Length SOH;
CheckSum = "10=" (any - SOH){3} SOH;
AnyField = [1-9] [0-9]{0,3} "=" (any - SOH)* SOH;

NewOrderSingleMessage =
BeginString BodyLength "35=D" SOH # msg type = NewOrderSingleMessage
AnyField * :>> "110=" Qty SOH # quantity of executed order
AnyField * :>> "55=" String SOH # symbol
AnyField * :>> "54=1" SOH # this order is a buy
AnyField * :>> CheckSum

:::::::::::
@check_order;

main := NewOrderSingleMessage;

Figure 1: Excerpt from a parser specification to decode FIX order messages.

tables; flip-flop registers; or Block RAMs). They generate a bit stream that, when uploaded
to the FPGA, instantiates these primitives and realizes the hardware circuit.

Probably the most important design technique for FPGA circuits is the use of finite state
machines, be it to implement the control logic that complements the data flow-oriented
circuit components; to communicate with external devices; or to interpret data streams or
protocols. Finite state machines fit the available FPGA chip resource types well and can
run at very high speeds.

Designing the proper state machine for a given application need, however, can be tedious
and error-prone. Even for relatively simple tasks, the necessary state machine can quickly
grow too large to be truly understood by a human developer. And once programmed
successfully, state machines tend to be hard to document, understand, and maintain. The
problem is exacerbated by the necessity to express the state machine in VHDL or Verilog—
languages that typical application developers are rarely familiar with.

3 Snowfall

Snowfall, part of a tool set that we develop in the context of the Avalanche project at
ETH Zurich, addresses both aspects of the problem. It provides a high-level abstraction
to express state machines and associated semantic actions.1 Snowfall optimizes these state
machines and emits VHDL code that implements them efficiently in hardware.

1Snowfall is based on the Ragel state machine compiler http://www.complang.org/ragel/.

Figure 1 shows an excerpt of the Snowfall code that decodes FIX messages for online
trading applications. The code describes the lexical structure of buy orders (message type
‘NewOrderSingleMessage’ in the FIX specification) and inspects the quantity and stock
symbol fields (FIX fields 110 and 55).

From the code in Figure 1, Snowfall will build a hardware state machine (expressed in
VHDL) that recognizes the specified FIX message type. Whenever (parts of) the state ma-
chine have successfully matched on the input data, it will trigger the execution of action
code blocks. These contain user-defined VHDL code that can be used to process lexi-
cal elements in the input stream (lex/flex are used in a similar way in software-based
systems).

Since in this demo description we are restricted on space, Figure 1 shows only one ex-
ample of how action code can be embedded into a Snowfall language specification. The
@check_order annotation after the CheckSum syntactical element specifies that the rou-
tine check_order should be invoked whenever a full NewOrderSingleMessage was
successfully parsed.

A typical implementation of an action code like check_order will build an internal rep-
resentation of a FIX order tuple (e.g., of schema 〈quantity, symbol〉). The tuple is then
forwarded on to further hardware logic that performs high-level analysis of the stream of
FIX orders. One such analysis task could be an assessment of the risk associated with the
orders made. For instance, we would like an alert to be raised whenever the order volume
within a given time window exceeds a certain limit.

3.1 Glacier: A Query-to-Hardware Compiler

Higher-level stream analysis tasks are a good fit for Glacier, another part of our FPGA
toolbox. Glacier is a SQL-to-hardware compiler. Given a query in an SQL dialect with
streaming extensions, Glacier generates the VHDL description of a corresponding hard-
ware query plan. The inner workings of Glacier are the subjects of [MTA09, MTA10].

To implement our risk analysis example, a Glacier-generated hardware plan consumes
tuples that our FIX parser constructed in check_orders and performs aggregation and
windowing on the tuple stream. For instance, the query

SELECT SUM (quantity) AS qsum
FROM orders [SIZE 600 ADVANCE 60 TIME]

GROUP BY symbol

aggregates all orders over a window of 10 minutes and reports the ordered quantities for
each stock symbol every minute. A violation of risk limits could easily be detected from
the aggregated output of this query; or a dedicated query could be written that only emits
data in alert situations.

In summary, the combination of Snowfall and Glacier makes the development of stream
processing solutions on FPGAs comparable to a typical software development work flow.

At the same time, generated solutions will run as bare-hardware implementations and thus
benefit from the architectural advantages offered by the FPGA technology. In particular,
the risk analysis example sketched here benefits from network-speed processing—no order
will be missed even under peak load—and real-time latency—the system could react to
risk violations within sub-microseconds time.

4 Demonstration Setup

The real value of our tool set results from the seamless interplay among our own tools,
but also with commercial FPGA synthesis and simulation tools. To make this point, we
will bring to Kaiserslautern not only Snowfall, but also a full FPGA design environment as
well as FPGA hardware. We will show how a full example application can be developed,
simulated, and debugged; and we will show how the resulting can process a (synthetic)
FIX message stream in real time.

Visitors of the demo will be invited to modify our code examples, write their own queries
for Glacier, and inspect the generated hardware solution using commercial circuit visual-
ization tools. The focus application for this demonstration, Snowfall, includes function-
ality to debug and visualize generated state machines. We will show and explain this
functionality and illustrate how Snowfall eases the development of FPGA-based stream
processing solutions.

References

[MTA09] Rene Mueller, Jens Teubner, and Gustavo Alonso. Streams on Wires—A Query com-
piler for FPGAs. Proceedings of the VLDB Endowment (PVLDB), 2(1), August 2009.

[MTA10] Rene Mueller, Jens Teubner, and Gustavo Alonso. Glacier: A Query-to-Hardware Com-
piler. In Proc. of the 2010 ACM SIGMOD Conference on Management of Data, Indi-
anapolis, IN, USA, June 2010.

[MVB+09] Abhishek Mitra, Marcos R. Vieira, Petko Bakalov, Vassilis J. Tsotras, and Walid A.
Najjar. Boosting XML Filtering Through a Scalable FPGA-Based Architecture. In
Int’l Conference on Innovative Data Research (CIDR), Asilomar, CA, January 2009.

[Net] Netezza Inc. http://www.netezza.com/.

[SLS+10] Mohammad Sadoghi, Martin Labrecque, Harsh Singh, Warren Shum, and Hans-Arno
Jacobsen. Efficient Event Processing through Reconfigurable Hardware for Algorith-
mic Trading. Proceedings of the VLDB Endowment (PVLDB), 3(2), September 2010.

[TMA11] Jens Teubner, Rene Mueller, and Gustavo Alonso. Frequent Item Computation on a
Chip. IEEE Transactions on on Knowledge and Data Engineering (TKDE), 2011. (to
appear).

[Xtr] XtremeData Inc. http://www.xtremedata.com/.

